BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: A retrospective claims database study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026251
Article Type:	Research
Date Submitted by the Author:	23-Aug-2018
Complete List of Authors:	Hashimoto, Hideki; Jichi Medical University Hospital, Division of General Internal Medicine Matsui, Hiroki; Jichi Medical University, Data Science Center; School of Public Health, University of Tokyo, Department of Clinical Epidemiology and Health Economics Sasabuchi, Yusuke; Jichi Medical University, Data Science Center Yasunaga, Hideo; Jichi Medical University, Data Science Center; School of Public Health, The University of Tokyo, Department of Clinical Epidemiology and Health Economics Kotani, Kazuhiko; Jichi Medical University, Division of Community and Family Medicine Nagai, Ryozo; Jichi Medical University, President Hatakeyama, Shuji; Jichi Medical University Hospital, Division of General Internal Medicine/Division of Infectious Diseases
Keywords:	Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

BMJ Open

1	Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: A
2	retrospective claims database study
3	
4	Hideki Hashimoto ¹ , Hiroki Matsui ^{2, 3} , Yusuke Sasabuchi ² , Hideo Yasunaga ^{2, 3} , Kazuhiko
5	Kotani ⁴ , Ryozo Nagai ⁵ , Shuji Hatakeyama ^{1, 6*}
6	
7	¹ Division of General Internal Medicine, Jichi Medical University Hospital, 3311-1
8	Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
9	² Data Science Center, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi,
10	Tochigi 329-0498, Japan.
11	³ Department of Clinical Epidemiology and Health Economics, School of Public Health,
12	University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
13	⁴ Division of Community and Family Medicine, Jichi Medical University, 3311-1
14	Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
15	⁵ President, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi
16	329-0498, Japan.

17	⁶ Division of Infectious Diseases, Jichi Medical University Hospital, 3311-1 Yakushiji,
18	Shimotsuke-shi, Tochigi 329-0498, Japan.
19	
20	*Corresponding author:
21	Shuji Hatakeyama, M.D., Ph.D.
22	Division of General Internal Medicine/Division of Infectious Diseases, Jichi Medical
23	University Hospital, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
24	Phone: +81-285-58-7498
25	Fax: +81-285-40-5160
26	E-mail: shatake-tky@umin.ac.jp
27	
28	Key words: antibiotic, antimicrobial stewardship, antimicrobial-resistance, big data,
29	inappropriate prescribing
30	Running title: Antibiotic prescriptions in Japan
31	Word count for the main text: 2,511 words
32	

33	Abstract
34	Objectives: To investigate antibiotic prescribing patterns and identify factors associated
35	with antibiotic prescriptions, with the aim of reducing inappropriate use.
36	Design: Retrospective cohort study.
37	Setting: Database of public health insurance claims in Kumamoto prefecture (Japan).
38	Participants: Individuals who joined the national or late elders' health insurance
39	system between April 2012 and March 2013.
40	Main outcome measures: Of 7,770,481 patients, 682,822 had a code for antibiotics.
41	Third-generation cephalosporins (35%), macrolides (32%), and quinolones (21%) were
42	most frequently prescribed. Acute respiratory tract infections (ARTIs), including viral
43	upper respiratory infections (URI) (22%), pharyngitis (18%), bronchitis (11%), and
44	sinusitis (10%) were most frequently diagnosed for antibiotic prescribing; then,
45	gastrointestinal infections (9%), urinary tract infections (8%); and skin, cutaneous, and
46	mucosal infections (5%). Antibiotic prescribing rates for viral URI, pharyngitis,
47	bronchitis, sinusitis, and gastrointestinal infections were 35%, 54%, 53%, 57%, and
48	30%, respectively. In multivariable analysis for ARTIs and gastrointestinal infections,

49	patient age (10-19 years especially), gender (male), and facility scale (clinic or
50	small-sized hospital visits) were associated with increased antibiotic prescribing.
51	Conclusions: Broad-spectrum antibiotics constituted 88% of oral antibiotic
52	prescriptions. Approximately 70% of antibiotics were prescribed for ARTIs and
53	gastroenteritis with modest benefit from antibiotic treatment. The quality of antibiotic
54	prescribing needs to be improved. Antimicrobial stewardship interventions should target
55	ARTIs and gastroenteritis, as well as young patients and small-sized institution groups.
56	

BMJ Open

2 3		
4 5		
6 7	57	Strength and limitations of this study
8 9 10	58	• This is the first Japanese study to describe antibiotic prescription patterns linked to
11 12 13 14	59	individual diagnoses data, comprehensively, by use of the public health insurance
15 16 17	60	claims database.
18 19 20	61	• This study included patients older than 65 years of age, who were hardly included
21 22 23	62	in previous Japanese studies.
24 25 26	63	• The accuracy of the diagnosis has not been validated due to the nature of the
27 28 29	64	administrative claims database.
30 31 32	65	• There are some unmeasured potential confounding factors such as out-of-hour
33 34 35	66	visits and physician specialty.
36 37 38 39 40	67	
41 42 43		
44 45 46		
47 48 49		
50 51 52		
53 54 55		
56 57 58		
59		

68 Introduction

69	There is a growing concern about infections by antimicrobial-resistant bacteria.
70	Antimicrobial resistance results in increased health care costs, prolonged hospitalization,
71	and death. ¹⁻³ The World Health Organization launched the global action plan to combat
72	the antimicrobial-resistant bacteria in 2015 ⁴ and requested Member States to endorse
73	national action plans within two years. The government of Japan launched a national
74	action plan in 2016 in response to the request. ⁵
75	Since antimicrobial use is one of the important factors in the emergence of
76	antimicrobial resistance, ⁶ it is essential to reduce the inappropriate use of antibiotics. In
77	Japan, a previous study, based on sales data, revealed that oral antibiotics accounts for
78	more than 90% of the total antibiotic consumption and that broad-spectrum antibiotics
79	(third-generation cephalosporins, macrolides, and fluoroquinolones) accounts for 77%
80	of oral antibiotic consumption (daily doses defined per 1,000 inhabitants per day). ⁷ The
81	Japanese national action plan aims to reduce the total antimicrobial use to two-thirds,
82	and the use of oral cephalosporins, quinolones, and macrolides to one-half, by 2020. To
83	accomplish the reduction of inappropriate antimicrobial use, it is important to determine

BMJ Open

84	the antimicrobial prescribing patterns and factors associated with antibiotic prescription.
85	However, such information is limited in Japan to date. Although a few recent studies ^{8,9}
86	described the prescription patterns for upper respiratory tract infections and bronchitis,
87	the prescription patterns of infections other than acute respiratory tract infections
88	(ARTIs) have not been clarified. In addition, patients older than 65 years of age were
89	hardly included in these studies; because these studies relied on data from
90	employee-based insurance claims database. With the high rate in aging population in
91	Japan, it is important to describe the prescription patterns in the elderly.
92	In this study, we described oral antibiotic prescribing patterns for all infections and in
93	all ages, using Japanese administrative claims database. Also, we aimed to identify
94	factors associated with antibiotic prescriptions for ARTIs and gastrointestinal infections,
95	the targets of the antimicrobial stewardship guideline formulated by the government of
96	Japan. ¹⁰
97	ı

98 Methods

99 Data sources

100	We conducted a retrospective analysis using the administrative health insurance
101	claims database of Kumamoto prefecture, situated in the southwestern region of Japan,
102	with a population of about 1.7 million. This database covers approximately 780,000
103	residents of Kumamoto prefecture who joined the national health insurance system (for
104	those younger than 75 years of age), ¹¹ or the late elders' health insurance system (for
105	those aged 75 years and older). ¹²
106	The database is composed of medical (inpatient and outpatient) and pharmacy claims.
107	It provides monthly information about patient demographics (year and month of birth
108	and gender), diagnoses, date of diagnoses, medical procedures, medications, scale
109	(number of beds) of the medical facility, as well as the identification numbers assigned
110	to each individual, medical facility, and dispensing pharmacy. The diagnoses were
111	coded according to the International Classification of Diseases and Related Health
112	Problems, 10th Revision (ICD-10).
113	

60

BMJ Open

1		
2 3		
4 5 6 7	114	Data preparation
8 9 10	115	We linked the medical and pharmacy claims, on the database, using an identification
11 12 13 14	116	number unique to each patient, medical facility, and dispensing pharmacy. We identified
15 16 17	117	all newly diagnosed outpatients, with any infectious diseases, between April 2012 and
18 19 20	118	March 2013. Infectious diseases diagnoses are categorized according to the indication
21 22 23	119	for antibiotic use (Table S1, available as supplementary data). This categorization is
24 25 26 27	120	based on the study by Fleming-Dutra KE et al. ¹³ Bronchitis and bronchiolitis were
27 28 29	121	divided into two categories based on whether the patients had chronic obstructive
30 31 32 33	122	pulmonary disease (COPD) as comorbidity or not, because of differing need of
34 35 36	123	treatment with antibiotics. If a patient had multiple infectious diagnoses in one month, a
37 38 39	124	single infectious diagnosis, selected in order from Group 1 (antibiotics are usually
40 41 42	125	indicated) to Group 3 (antibiotics are rarely indicated), and the first-listed diagnosis in
43 44 45	126	alphabetical order of ICD-10 codes in the selected group; was included in the analyses
46 47 48	127	(Table S1).
49 50 51	128	We also identified all outpatients with any antibiotic prescriptions. Topical,
52 53 54 55 56	129	intramuscular, and intravenous antibiotics were excluded. Antibiotics were categorized
57 58 50		

2	
3	
-	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

141

1

 (http://www.whocc.no/atcddd/) into: tetracyclines (J01A), penicillins (J01C), first- and second-generation cephalosporins (J01DB and J01DC), third-generation cephalosporins (J01DD), sulphonamides and trimethoprim (J01E), macrolides (J01FA), quinolones (J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. <i>Data Analysis</i> 		
 second-generation cephalosporins (J01DB and J01DC), third-generation cephalosporins (J01DD), sulphonamides and trimethoprim (J01E), macrolides (J01FA), quinolones (J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. 	130	according to the Anatomical Therapeutic Chemical (ATC) classification system
 (J01DD), sulphonamides and trimethoprim (J01E), macrolides (J01FA), quinolones (J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. 	131	(http://www.whocc.no/atcddd/) into: tetracyclines (J01A), penicillins (J01C), first- and
 (J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. <i>Data Analysis</i> 	132	second-generation cephalosporins (J01DB and J01DC), third-generation cephalosporins
 third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. <i>Data Analysis</i> 	133	(J01DD), sulphonamides and trimethoprim (J01E), macrolides (J01FA), quinolones
 hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. <i>Data Analysis</i> 	134	(J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that
 137 cephalosporins. 138 139 Data Analysis 	135	third-generation cephalosporins accounted for most of cephalosporins used in Japan;
 137 cephalosporins. 138 139 Data Analysis 140 We calculated the frequency of antibiotic prescription for all visits with infections 	136	
 138 139 Data Analysis 140 We calculated the frequency of antibiotic prescription for all visits with infections 	137	cephalosporins.
 Data Analysis We calculated the frequency of antibiotic prescription for all visits with infections 	138	
140 We calculated the frequency of antibiotic prescription for all visits with infections	139	Data Analysis
	140	We calculated the frequency of antibiotic prescription for all visits with infections

142 bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and

(according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis,

143 gastrointestinal infections separately, we performed multivariable logistic regression

- 144 analyses to identify the factors associated with antibiotic prescriptions. The variables
- 145 were as follows: age and gender of patients and scale (number of beds) of the medical

Page 11 of 39		BMJ Open
1 2 3 4		
5 6 7	146	facilities. Generalized estimating equations with exchangeable correlation structure
8 9 10 11	147	were used to account for the clustering of the medical facilities. P -values < 0.05 were
12 13 14	148	considered statistically significant. All statistical analyses were performed with the
15 16 17	149	statistical package R, v.3.5.0 (http://cran.r-project.org).
18 19 20	150	
21 22 23	151	Patient involvement
24 25 26	152	No patients were involved in the development of the research question or the outcome
27 28 29 30	153	measures, nor were they involved in developing plans for design or implementation of
31 32 33	154	the study. No patients were asked to advise on interpretation or writing up of results.
34 35 36	155	There are no plans to disseminate the study results to the relevant patient community.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	156	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

157 Results

158	In total, there were 7,770,481 patients between April 2012 and March 2013.
159	Antibiotics were prescribed in 682,822 patients. Among these, third-generation
160	cephalosporins were most frequently prescribed (237,372 patients, 35%), followed by
161	macrolides (215,656 patients, 32%) and quinolones (145,135 patients, 21%). This trend
162	was observed regardless of age group (Table 1) and scale of the medical facility (Table
163	2), except with those less than 9 years of age in whom the systemic use of quinolones is
164	not recommended. Information about facility scale was available from 669,086 out of
165	682,822 patients. Of these, antibiotics were prescribed most frequently at clinics
166	(530,916 patients, 79%), followed by small-sized (< 200 beds; 78,546 patients, 12%),
167	medium-sized (200-499 beds; 45,271 patients, 7%), and large-sized (500 beds or more;
168	14,353 patients, 2%) hospitals (Table 2).
169	We could link the individual diagnoses to the antibiotic prescription in 447,232
170	patients (Table 3). Of these patients, approximately 60% of antibiotics were prescribed
171	for ARTIs; viral URI (96,989 patients, 22%), followed by pharyngitis (78,469 patients,
172	18%), bronchitis without COPD (47,248 patients, 11%), and sinusitis (45,456 patients,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

173	10%). Other than ARTIs, there were frequent antibiotic prescriptions for gastrointestinal
174	infections (41,309 patients, 9%), urinary tract infections (37,674 patients, 8%), and skin,
175	cutaneous, and mucosal infections (23,572 patients, 5%). The antibiotic prescription
176	rates for viral URI, pharyngitis, bronchitis (without underlying COPD), sinusitis, and
177	gastrointestinal infections were 35% (96,989 out of 274,441 patients), 54% (78,469 out
178	of 146,508 patients), 53% (47,248 out of 89,479 patients), 57% (45,456 out of 80,078
179	patients), and 30% (41,309 out of 137,661 patients), respectively (Table 3).
180	Table 4 shows the results of the logistic regression analysis about antibiotic
181	prescription for ARTIs. Male gender was associated with more antibiotic prescription
182	(adjusted odds ratio [OR], 1.10; 95% confidence interval [CI], 1.08 to 1.11). With
183	patients aged 65 years or older as reference, patients aged 10 to 19 years were more
184	likely to be prescribed antibiotics (adjusted OR, 2.75; 95% CI, 2.69 to 2.82), followed
185	by patients aged 20 to 64 years (adjusted OR, 1.92; 95% CI, 1.89 to 1.94), and patients
186	younger than 10 years (adjusted OR, 1.48; 95% CI, 1.46 to 1.50). With facility scale,
187	with large-sized (500 beds or more) hospitals as reference, clinic (adjusted OR, 4.24;
188	95% CI, 4.03 to 4.45), small-sized (< 200 beds) hospitals (adjusted OR, 2.07; 95% CI,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

189	1.97 to 2.18), and medium-sized (200-499 beds) hospitals (adjusted OR, 1.71; 95% CI,
190	1.62 to 1.80) were significantly associated with more antibiotic prescription.
191	Similar results were shown with the logistic regression analysis for gastrointestinal
192	infections (Table 5). Male gender was associated with slightly more antibiotic
193	prescription (adjusted OR, 1.04; 95% CI, 1.01 to 1.06) than female gender. Patients
194	aged 10 to 19 years (adjusted OR, 1.92; 95% CI, 1.83 to 2.00), 20 to 64 years (adjusted
195	OR, 1.55; 95% CI, 1.51 to 1.60), and younger than 10 years (adjusted OR, 1.76; 95% CI,
196	1.71 to 1.82) received more antibiotic prescriptions compared with patients aged 65
197	years or older. With reference to large-sized (\geq 500 beds) hospital, clinic (adjusted OR,
198	1.88; 95% CI, 1.68 to 2.10) and small-sized (< 200 beds) hospital (adjusted OR, 1.17;
199	95% CI, 1.04 to 1.32) were associated with frequent antibiotic prescription for
200	gastrointestinal infections.
201	

BMJ Open

202 Discussion

203	We described oral antibiotic prescription patterns in outpatient care setting, in Japan.
204	To the best of our knowledge, this is the first Japanese study to comprehensively
205	describe antibiotic prescription patterns linked to individual diagnoses data, by use of
206	the claims database. Broad-spectrum antibiotics consisting of third-generation
207	cephalosporins, macrolides, and quinolones accounted for nearly 90% of antibiotic
208	prescriptions in the primary care settings. Prescription of penicillin, a representative
209	narrow-spectrum antibiotic, was only 5%. This prescription pattern is consistent with
210	the results of an analysis of antibiotic sales data in Japan in which 77% of oral
011	
211	antibiotics shipped, were broad-spectrum. ⁷ In contrast, the use of cephalosporins,
211 212	antibiotics shipped, were broad-spectrum.' In contrast, the use of cephalosporins, macrolides, and quinolones in the United States of America (USA) and Europe were
212	macrolides, and quinolones in the United States of America (USA) and Europe were
212 213	macrolides, and quinolones in the United States of America (USA) and Europe were much lower than Japan. Hicks <i>et al.</i> ¹⁴ analyzed the sales data of oral antibiotics in the
212 213 214	macrolides, and quinolones in the United States of America (USA) and Europe were much lower than Japan. Hicks <i>et al.</i> ¹⁴ analyzed the sales data of oral antibiotics in the USA and showed that cephalosporins, macrolides, and quinolones accounted for 48% of
212213214215	macrolides, and quinolones in the United States of America (USA) and Europe were much lower than Japan. Hicks <i>et al.</i> ¹⁴ analyzed the sales data of oral antibiotics in the USA and showed that cephalosporins, macrolides, and quinolones accounted for 48% of the total oral antibiotics. In their study, penicillin had the largest share of the antibiotics

2	18	third of the total oral antibiotic consumptions, in Europe. This study demonstrated a
2	19	rather high ratio of broad-spectrum to narrow-spectrum oral antibiotics, in Japan;
2	20	therefore, the quality of antibiotic prescribing needs to be improved.
2	21	Among antibiotics linked with individual diagnosis data, over 60% of antibiotics were
2	22	prescribed for ARTIs, followed by gastrointestinal infections (9%), urinary tract
2	23	infections (8%); and skin, cutaneous, and mucosal infections (5%). Surprisingly, viral
2	24	URI (common cold) was the most frequent infection associated with antibiotic
2	25	prescription. In the ambulatory care setting in the USA, antibiotics were prescribed
2	26	most frequently for acute respiratory conditions (41-44%), followed by skin and
2	27	mucosal conditions (15-19%), urinary tract infections (7-8%), and gastrointestinal
2	28	conditions (5-6%). ^{13,16} Another study using primary care data in the United Kingdom
2	29	(UK) ¹⁷ demonstrated that 46% of antibiotics were prescribed for respiratory tract
2	30	conditions, followed by urogenital tract (23%), and skin conditions (10%). Only 1%
2	31	was prescribed for gastrointestinal conditions. Our study demonstrated a higher
2	32	proportion of antibiotic prescription for ARTIs (approximately 15% higher than those in
2	33	USA or UK) and gastrointestinal infections (approximately 5% higher), in Japan.

1
2
3
4
5
6
7
, 8
o 9
9 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
55 56
57
58
59
60

234	Antibiotics were prescribed for 35% of viral URI and approximately 50-60% of
235	pharyngitis, bronchitis, and sinusitis in our study. These prescription rates were
236	approximately similar to the USA study results; ¹³ showing a rate of 30% for viral URI,
237	62% for pharyngitis, 65% for bronchitis, and 72% for sinusitis. Medically, antibiotics
238	are rarely indicated for ARTIs. ¹⁸ Antibiotics have no role in the treatment of both viral
239	URI (common cold) and the majority of acute bronchitis, which are caused by viral
240	infection. Only a minority of patients with bronchitis (< 10%), for example patients who
241	have underlying COPD or whooping cough, may derive any benefit from antibiotic
242	treatment. With pharyngitis, antibiotics are mainly indicated only for streptococcal
243	pharyngitis, which account for 5%-15% of pharyngitis in adults and 20%-30% in
244	children. ^{19,20}
245	The antibiotic prescription rate for gastrointestinal infections was 3 times higher than
246	the rate reported in the USA (30% vs 10%). ¹³ As most acute gastroenteritis are
247	self-limiting, Japanese national guideline recommended the non-usage of antibiotics for
248	gastroenteritis unless symptoms are severe. ¹⁰ Based on our study, approximately 70% of
249	oral antibiotics are prescribed for ARTIs or acute gastroenteritis; however, most (>

250	80%), did not require antibiotics. Therefore, there is need for suitable targets for the
251	reduction of unnecessary antibiotic use in accordance with antimicrobial stewardship
252	program.
253	The logistic regression analyses revealed several factors associated with antibiotic
254	prescriptions for ARTIs and gastrointestinal infections. The smaller the facility scale,
255	the higher the odds of antibiotic prescribing observed. Recent studies from Japan ⁸ and
256	Taiwan ²¹ have found similar results. As family practitioners, pediatricians, and internists
257	usually prescribe a high number of antibiotic courses, ¹⁴ greater adherence to treatment
258	guidelines among physicians in these specialties is particularly important. It has also
259	been reported that mid- or late-career stage physicians (because the effect of training
260	received during medical education might have reduced, after this long time) were more
261	likely to prescribe antibiotics for nonbacterial acute URI. ²²
262	Patient age was another factor associated with antibiotic prescription. In this study,
263	antibiotic prescription rates for ARTIs and gastrointestinal infections were highest in
264	patients aged 10-19 years, followed by patients aged 20-64 years (ARTIs) or 0-9 years
265	(gastrointestinal infections). A previous study in Dutch primary care showed similar

BMJ Open

266	results of antibiotic over-prescribing for ARTIs in patients aged 31-65 years (i.e., not in
267	children or the elderly). ²³ As adolescents and young adults generally pose a much lower
268	risk of disease complications than young children or elderly, antimicrobial stewardship
269	should be focused on these age groups of patients. In this study, male sex was also
270	associated with increased antibiotic prescribing. Although sex difference was observed
271	in another study, the results differed; females were more likely to have high prescribing
272	in the USA. ¹⁴
273	Our study has several limitations. First, our results do not represent the entire
274	antibiotic prescription patterns in Japan because the claims database used in this study
275	was composed of claims in only one prefecture. Geographical diversity may be present,
276	as observed in the previous study from the USA. ¹⁴ Second, since we used an
277	administrative claims database; the accuracy of the diagnosis was not validated. In
278	addition, we could not link diagnosis and antibiotic prescriptions on a one-to-one level
279	when patients had multiple infectious diagnoses. Third, there may be other potential
280	confounding factors that were not included in this study. For example, information on
281	out-of-hour visits, ⁸ non-physician practitioners or non-specialty physician, ^{8, 21, 24} and

282	patient's low-per capita income, black race, or low-education,14 which have been
283	reported as potential factors associated with inappropriate antibiotics prescribing, could
284	not be extracted from the claims database in this study. Fourth, we found no follow-up
285	visit when patients had multiple visits for a single infection. Consequently,
286	inappropriate antibiotic prescription might be underestimated rather than overestimated.
287	In conclusion, this Japanese study demonstrated that third-generation cephalosporins,
288	macrolides, and quinolones accounted for 88% of oral antibiotic prescription.
289	Approximately 60% of antibiotic prescription was provided for ARTIs, with viral URI
290	and pharyngitis being the two ARTI diagnoses with the largest antibiotic prescriptions.
291	Gastrointestinal infections were the second most common diagnosis for antibiotic
292	prescribing. The scale of the facilities (clinic or small-sized hospital) and patient age
293	(adolescents and young adults) were factors associated with antibiotic over-prescription.
294	Antimicrobial stewardship interventions should focus on targeting antibiotic prescribing
295	for these infectious diagnoses, and patients and institution groups. Further nationwide
296	studies are needed to support our data, and longitudinal studies using medical-claims
297	data are needed to evaluate the effectiveness of antimicrobial stewardship.

298	Authors' contributions
299	HH and SH conceived the study, interpreted the data and results, and drafted the
300	manuscript. HH, HM, YS, and HY collected, organized, and analyzed the data, and
301	performed statistical analyses. KK and RN conceived the study and collected and
302	interpreted the data. All authors critically revised the manuscript for intellectual content.
303	All authors read and approved the final manuscript.
304	
305	Funding
306	This work was funded by ImPACT Program of Council for Science, Technology, and
307	Innovation (Cabinet Office, Government of Japan) and by MEXT KAKENHI, Grant
308	Number 16K09254.
309	
310	Competing interests
311	None declared.
312	
313	Data sharing

314 No additional data available.

316 Transparency declarations

317 The lead author (the manuscript's guarantor) affirms that the manuscript is an honest,

accurate, and transparent account of the study reported; that no important aspects of the

study have been omitted; and that any discrepancies from the study as planned have

320 been explained.

322 Ethical approval

323 This study was approved by the Ethics Committee of the Jichi Medical University

324 (Number 17-002).

BMJ Open

Table 1. Frequency of oral antibiotic prescriptions by age and antibiotic groups

A	Number of visits with antibiotic prescription							
Antibiotic groups	Age Group, y							
coded by ATC* classification**	0–9	10–19	20–64	≥ 65	All ages			
Penicillins	7,495	1,724	8,574	14,924	32,717			
First/second-generation cephalosporins	964	411	2,987	5,719	10,081			
Third-generation cephalosporins	52,082	16,367	60,621	108,302	237,372			
Macrolides	28,597	14,691	56,719	115,649	215,656			
Quinolones	7,286	4,158	48,843	84,848	145,135			
Sulphonamides and trimethoprim	32	53	1,389	4,520	5,994			
Tetracyclines	915	1,366	4,366	5,147	11,794			
Other antibiotics	6,901	2,021	7,186	7,965	24,073			
All antibiotics	104,272	40,791	190,685	347,074	682,822			

*ATC: Anatomical Therapeutic Chemical

**Penicillins, J01C; First-generation cephalosporins, J01DB; Second-generation cephalosporins,

J01DC; Third-generation cephalosporins, J01DD; Macrolides, J01FA; Quinolones, J01M;

Sulphonamides and trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH,

J01DI, J01FF, J01G, and J01X

Table 2. Frequency of oral antibiotic prescriptions by facility scale and antibiotic group*

		Numbe	er of visits with antibiotic pre	escription	
Antibiotic groups		Fa	acility scale (clinic and hospi	tals)	
coded by ATC** classification***	Clinia	Small-sized (< 200	Medium-sized (200–499	Large-sized (≥ 500	A 11 C
	Clinic	beds)	beds)	beds)	All facilities
Penicillins	25,225	3,453	2,968	565	32,211
First/second-generation cephalosporins	6,755	1,789	1,245	158	9947
Third-generation cephalosporins	187,928	25,463	15,252	4,139	232,782
Macrolides	169,980	26,307	11,319	3,833	211,439
Quinolones	110,770	17,877	9,992	3,402	142,041
Sulphonamides and trimethoprim	712	1,069	2,234	1,618	5,633
Tetracyclines	9,477	846	803	320	11,446
Other antibiotics	20,069	1,742	1,458	318	23,587
All antibiotics	530,916	78,546	45,271	14,353	669,086

*13,736 patients with antibiotic prescription were excluded due to missing data about facility scale.

335 **ATC: Anatomical Therapeutic Chemical

336 ***Penicillins, J01C; First-generation cephalosporins, J01DB; Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD;

337 Macrolides, J01FA; Quinolones, J01M; Sulphonamides and trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF,

338 J01G, and J01X

BMJ Open

Table 3. Frequency of oral antibiotic prescriptions by antibiotic groups and diagnoses

		Visits with any		Number of	visits with an	tibiotic presc	riptions by ant	ibiotic grou	ps*	
Diagnoses	All visits	antibiotic prescription and prescription rate (%)	Penicillins	1 st /2 nd cephem	3 rd cephem	Macrolide s	Quinolone s	ST	Tetracycli nes	Other antibiotics
Miscellaneous bacterial infections	45,061	20,429 (45.3)	2,969	468	7,404	7,868	5,731	181	444	728
STD	14,051	3,931 (28.0)	86	76	836	1515	496	14	147	1,260
Bacterial Pneumonia	47,035	21,473 (45.7)	916	121	5,044	8,568	11,236	191	238	316
Abdominal infection	9,208	2,077 (22.6)	69	29	680	142	1,086	≤ 10	≤ 10	177
Orthopedic infection	1,749	380 (21.7)	36	22	225	21	93	≤ 10	19	22
Urinary tract infections	97,948	37,674 (38.5)	1,195	567	14,735	1,998	20,229	429	521	1,232
PID	11,621	1,763 (15.2)	84	26	1127	164	167	≤ 10	≤ 10	273
GI infections	137,661	41,309 (30.0)	2,121	264	12,060	8603	13206	196	232	9,680
Skin, cutaneous and mucosal infections	62,202	23,572 (37.9)	1,167	1,337	15,311	1,975	2,848	25	997	1,615
Suppurative otitis media	16,059	9,958 (62.0)	1,566	18	5,213	1,972	3,654	≤10	92	812

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Pharyngitis	146,508	78,469 (53.6)	4,372	450	35,958	27,454	16,387	121	301	976
Sinusitis	80,078	45,456 (56.8)	3,654	481	15,282	20,677	11,441	≤ 10	779	766
Bronchitis with COPD	6,832	4,313 (63.1)	208	14	912	2,178	1,762	28	11	17
Acne	6,939	2,030 (29.3)	≤ 10	32	174	739	41	≤10	1,050	62
Nonbacterial GI infections	1,215	116 (9.5)	≤10	≤10	42	38	33	≤10	≤10	14
Nonsuppurative otitis media	2,807	888 (31.6)	63	≤10	384	481	128	≤10	≤10	26
Viral URI	274,441	96,989 (35.3)	4,839	825	44,475	37,001	16,941	160	790	601
Influenza	22,868	8,665 (37.9)	296	74	3,030	3,934	2,040	≤ 10	47	69
Viral pneumonia	15	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Bronchitis without COPD	89,479	47,248 (52.8)	1,509	332	14,521	22,779	11,078	58	250	346
Noninfectious diarrhea	1,597	50 (3.1)	≤ 10	≤10	≤10	19	15	≤10	≤ 10	≤ 10
Fever	2,908	438 (15.1)	20	≤ 10	190	103	156	≤10	≤ 10	≤ 10

1st/2nd cephem, first/second-generation cephalosporins; 3rd cephem, third-generation cephalosporins; ST, Sulphonamides and trimethoprim; STD, sexual
 transmitted diseases; PID, pelvic inflammatory diseases; GI infections, gastrointestinal infections; COPD, chronic obstructive pulmonary disease; URI,
 upper respiratory infections

344 *Antibiotics were coded according to Anatomical Therapeutic Chemical (ATC) codes: Penicillins, J01C; First-generation cephalosporins, J01DB;

345 Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD; Macrolides, J01FA; Quinolones, J01M; Sulphonamides and

BMJ Open

trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF, J01G, and J01X

. antibiotics, J01B, J01DH, J01DI, J01FF, J01G, and J01X

Table 4. Factors associated with antibiotic prescription for acute upper respiratory infections*

Characteristics	Antibiotic prescription, n (%)	Unadjusted odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Patient age			
0–9	44,413 (50.4)	1.66 (1.64 to 1.69)	1.48 (1.46 to 1.5
10–19	20,822 (65.1)	3.08 (3.00 to 3.15)	2.75 (2.69 to 2.8
20–64	85,952 (54.6)	1.98 (1.95 to 2.00)	1.92 (1.89 to 1.9
≥65	121,289 (37.9)	1	
Patient sex			
Male	112,643 (47.4)	1.13 (1.12 to 1.14)	1.10 (1.08 to 1.1
Female	155,038 (44.4)		
Facility scale			
Clinic	233,078 (49.8)	4.48 (4.27 to 4.70)	4.24 (4.03 to 4.4
Hospital (< 200 beds)	23,012 (30.8)	2.01 (1.91 to 2.11)	2.07 (1.97 to 2.1
Hospital (200–499 beds)	9,327 (28.2)	1.77 (1.68 to 1.89)	1.71 (1.62 to 1.8
Hospital (\geq 500 beds)	2,064 (18.2)	1	
CL confidence interval			

349 CI, confidence interval

350 *Acute upper respiratory infections include viral upper respiratory infections, pharyngitis, bronchitis, and sinusitis.

 BMJ Open

Table 5. Factors associated with antibiotic prescription for gastrointestinal infections.

Characteristics	Antibiotic prescription, n (%)	Unadjusted odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Patient age			
0–9	10,809 (37.0)	1.92 (1.86 to 1.98)	1.76 (1.71 to 1.82
10–19	4,395 (38.7)	2.07 (1.98 to 2.16)	1.92 (1.83 to 2.0
20–64	12,310 (32.4)	1.57 (1.53 to 1.61)	1.55 (1.51 to 1.6
≥ 65	13,795 (23.4)	1	
Patient sex			
Male	59,937 (30.9)	1.09 (1.06 to 1.12)	1.04 (1.01 to 1.0
Female	74,902 (29.1)		
Facility type			
Clinic	33,712 (32.9)	2.03 (1.82 to 2.27)	1.88 (1.68 to 2.1
Hospital (< 200 beds)	4,056 (21.7)	1.15 (1.02 to 1.29)	1.17 (1.04 to 1.3
Hospital (200–499 beds)	2,214 (18.9)	0.97 (0.86 to 1.09)	0.93 (0.82 to 1.0
Hospital (\geq 500 beds)	396 (19.4)	1	

353 CI, confidence interval

354 References

355	1. de Kraker ME, Wolkewitz M, Davey PG et al. Clinical impact of antimicrobial
356	resistance in European hospitals: excess mortality and length of hospital stay related to
357	methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents
358	Chemother 2011; 55: 1598-605.
359	2. Stewardson AJ, Allignol A, Beyersmann J et al. The health and economic burden of
360	bloodstream infections caused by antimicrobial-susceptible and non-susceptible
361	Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: a
362	multicentre retrospective cohort study. Euro Surveill 2016; 21: pii=30319.
363	3. Ammerlaan HS, Harbarth S, Buiting AG et al. Secular trends in nosocomial
364	bloodstream infections: antibiotic-resistant bacteria increase the total burden of
365	infection. Clin Infect Dis 2013; 56: 798-805.
366	4. World Health Organization. Global action plan on antimicrobial resistance. Available
367	at: http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1
368	(Accessed: August 3, 2018).
369	5. The Government of Japan. National Action Plan on Antimicrobial Resistance (AMR)
	90

BMJ Open

370	2016-2020. Available at:
371	https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/0000138942.p
372	df. (Accessed: August 3, 2018).
373	6. Tacconelli E. Antimicrobial use: risk driver of multidrug resistant microorganisms in
374	healthcare settings. Curr Opin Infect Dis 2009; 22: 352-8.
375	7. Muraki Y, Yagi T, Tsuji Y et al. Japanese antimicrobial consumption surveillance:
376	First report on oral and parenteral antimicrobial consumption in Japan (2009-2013). J
377	Glob Antimicrob Resist 2016; 7: 19-23.
378	8. Yoshida S, Takeuchi M, Kawakami K. Prescription of antibiotics to pre-school
379	children from 2005 to 2014 in Japan: a retrospective claims database study. J Public
380	Health (Oxf) 2018; 40: 397-403.
381	9. Higashi T, Fukuhara S. Antibiotic prescriptions for upper respiratory tract infection in
382	Japan. Intern Med 2009; 48: 1369-75.
383	10. The Government of Japan, Ministry of Health, Labour and Welfare. Manual
384	of Antimicrobial Stewardship (1st Edition). Available at: http://www.mhlw.go.jp/fil
385	e/06-Seisakujouhou-10900000-Kenkoukyoku/0000193504.pdf. (Accessed: August 3,
	31

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

386	2018).
387	11. Kumamoto prefectural government. 2012 Kumamoto National Health Insuranc
388	e business situation report. Available at: http://www.pref.kumamoto.jp.e.qp.hp.trans
389	er.com/kiji_2735.html (Accessed: August 3, 2018).
390	12. Kumamoto prefectural government. The situation such as Kumamoto elderly
391	aged 75 or over medical expenses. Available at: http://www.pref.kumamoto.jp.e.qp.
392	hp.transer.com/kiji_13777.html (Accessed: August 3, 2018).
393	13. Fleming-Dutra KE, Hersh AL, Shapiro DJ et al. Prevalence of Inappropriate
394	Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA 2016;
395	315: 1864-73.
396	14. Hicks LA, Bartoces MG, Roberts RM et al. US outpatient antibiotic prescribing
397	variation according to geography, patient population, and provider specialty in 2011.
398	Clin Infect Dis 2015; 60: 1308-16.
399	15. ESAC-Net surveillance data. Surveillance of antimicrobial consumption in Europe.
400	Available at:
401	http://ecdc.europa.eu/en/publications/Publications/antimicrobial-consumption-europe-es
	32

BMJ Open

402	ac-net-2012.pdf (Accessed: August 3, 2018).
403	16. Shapiro DJ, Hicks LA, Pavia AT et al. Antibiotic prescribing for adults in
404	ambulatory care in the USA, 2007-09. J Antimicrob Chemother 2014; 69: 234-40.
405	17. Dolk FCK, Pouwels KB, Smith DRM et al. Antibiotics in primary care in
406	England: which antibiotics are prescribed and for which conditions? J Antimicrob
407	Chemother 2018; 73: ii2-ii10.
408	18. Harris AM, Hicks LA, Qaseem A. Appropriate Antibiotic Use for Acute Respiratory
409	Tract Infection in Adults: Advice for High-Value Care From the American College of
410	Physicians and the Centers for Disease Control and Prevention. Ann Intern Med 2016;
411	164: 425-434.
412	19. Bisno AL. Acute pharyngitis: etiology and diagnosis. Pediatrics 1996; 97: 949-54.
413	20. Ebell MH, Smith MA, Barry HC et al. The rational clinical examination. Does this
414	patient have strep throat? JAMA 2000; 284: 2912-8.
415	21. Lee ML, Cho CY, Hsu CL, et al. Recent trends in antibiotic prescriptions for acute
416	respiratory tract infections in pediatric ambulatory care in Taiwan, 2000-2009: A
417	nationwide population-based study. J Microbiol Immunol Infect 2016; 49: 554-560.
	33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6 418	22. Silverman M, Povitz M, Sontrop JM, et al. Antibiotic Prescribing for Nonbacterial
7	
8	
9 419	Acute Upper Respiratory Infections in Elderly Persons. Ann Intern Med 2017; 166:
10	Redic Opper Respiratory infections in Enderry reisons. And intern wed 2017, 100.
11	
10	
12 420 13	765-774.
14	
15	
15 421 16	23. Akkerman AE, van der Wouden JC, Kuyvenhoven MM et al. Antibiotic prescribing
17	
18	
19 422	for respiratory tract infections in Dutch primary care in relation to patient age and
20	
21	
21 423	clinical entities. J Antimicrob Chemother 2004; 54: 1116-1121.
23	
24	
25 424	24. Schmidt ML, Spencer MD, Davidson LE. Patient, Provider, and Practice
26	21. Seminar ME, Spencer MB, Burnson EE. Fanon, Frenaer, and Fractice
27	
27 28 425	Characteristics Associated with Inappropriate Antimicrobial Prescribing in Ambulatory
29 425	Characteristics Associated with mappropriate Antimerobial Tresenoing in Amouatory
30	
	Practices Infact Control Hogn Enidemial 2018, 20:207 215
31 426 32	Practices. Infect Control Hosp Epidemiol. 2018; 39:307-315.
33	Z
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	0.4
56	34
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

1 Table S1. Classification of infections by groups with corresponding ICD-10 codes

$\mathbf{2}$

	Diagnosis	ICD-10 codes			
Group	Group 1: Infections for which antibiotics are usually indicated				
1	Miscellaneous bacterial infections	Tuberculosis (A15–A19); Certain zoonotic bacterial diseases (A20–A28); Other bacterial diseases including listeriosis, diphtheria, bartonellosis, erysipelas, and rickettsioses (A30–A37, A39–A49, A75–A79); Bacterial meningitis, encephalitis, and intracranial abscess (G00, G042, G049, G06); Mastoiditis (H70); Infective endocarditis (I33, T826); Acute epiglottitis (J051); Deep neck space infections (J36, J390, J391); Abscess of lung and mediastinum; Pyothorax (J85, J86); Infections of the jaws and mouth (K102, K122); Infections due to cardiac and vascular devices (T827); Infection due to internal prosthetic devices, implants and grafts (T857)			
2	Sexually transmitted infections	Infections with a predominantly sexual mode of transmission (A50–A64); Other spirochetal diseases (A65–A69); Other diseases caused by chlamydia (A70–A74)			
3	Pneumonia	Bacterial pneumonia (J13–J18)			
4	Abdominal infections	Acute appendicitis (K35); Abscess of anal and rectal regions, intestine, and liver (K61, K630, K750); Peritonitis (K65); Cholecystitis and cholangitis (K800, K801, K803, K804, K810, K819, K830)			
5	Orthopedic infections	Pyogenic arthritis and prosthetic joint infection (M00, T845); necrotizing fasciitis (M726); Infective myositis, synovitis and bursitis (M600, M650–M651, M710–M711); Osteomyelitis (M462–M465, M86)			
6	Urinary tract infections	Acute pyelonephritis/pyonephrosis ((N10, N12, N136); Renal abscess (N151); Kidney infection, unspecified (N159); Acute cystitis (N300); Cystitis, unspecified (N308, N309); Urethritis and urethral abscess (N34); Urinary tract infections, unspecified (N390); Prostatitis and abscess of prostate (N41); Orchitis and epididymitis (N45); Catheter associated urinary tract infections (T835)			

BMJ Open

-			
ł			
	7	Pelvic inflammatory	Pelvic inflammatory diseases (N70-N73, N751, N760-N764);
,		diseases	Infections of genitourinary tract in pregnancy (O23)
	Group	2 : Infections for which an	tibiotics are potentially indicated
	1	Gastrointestinal infections	Intestinal infectious diseases (A00-A07, A09); Diverticulitis of
			intestine (K57)
	2	Skin, cutaneous and	Infections of other skin and subcutaneous tissue including cellulitis,
		mucosal infections	cutaneous abscess, furuncle, carbuncle, impetigo, acute lymphadenitis,
			folliculitis, mastitis (H050, J340, L00-L08, N61, T814); Infections of
			the eye and adnexa (H00, H440); Infective otitis externa (H600–H603)
	3	Suppurative otitis media	Suppurative and unspecified otitis media (H66)
	4	Pharyngitis	Streptococcal pharyngitis/tonsillitis (J020, J030); Acute
			pharyngitis/tonsillitis, unspecified (J029, J039); Scarlet fever (A38)
	5	Sinusitis	Acute sinusitis (J01); Chronic sinusitis (J32)
	6	Bronchitis and	Acute bronchitis (J20) *; Acute bronchiolitis (J21) *; Unspecified
	0	bronchiolitis with COPD	acute lower respiratory infection (J22) *
1	7	Acne	Acne (L70)
Ī			
1	-		ibiotics are rarely indicated
	1	Nonbacterial	Viral and other specified intestinal infections (A08)
1	_	gastrointestinal infections	
	2	Nonsuppurative otitis	Nonsuppurative otitis media (H65)
ļ		media	
	3	Viral upper respiratory	Acute nasopharyngitis [common cold] (J00); Acute
		infection	pharyngitis/tonsillitis due to other specified organisms (J028, J038);
			Acute laryngitis and tracheitis (J04); Acute obstructive laryngitis
			[croup] (J050); Acute upper respiratory infections of multiple and
			unspecified sites (J06); Cough (R05)
	4	Influenza	Influenza (J10, J11)
_	5	Viral pneumonia	Viral pneumonia (J12)
	6	Bronchitis and	Acute bronchitis (J20) **; Acute bronchiolitis (J21) **; Unspecified
		bronchiolitis without	acute lower respiratory infection (J22) **
		COPD	
	7	Noninfectious diarrhea	Noninfective gastroenteritis and colitis, unspecified (K529)
			2
		For peer review only - http	o://bmionen.hmi.com/site/about/quidelines.yhtml

60

1 2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

	8	Fever	Fever of unknown origin (R50)	
3			CD-10 code for COPD (J41–J44) are present	
4			ICD-10 code for COPD (J41–J44) are not present	
				3
				ა
		For peer review of	only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	I

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	5
Introduction		was cone and what was round	
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7—8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	9
-		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	-
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	9
variables	,	and effect modifiers. Give diagnostic criteria, if applicable	,
Data sources/	8*	For each variable of interest, give sources of data and details of methods	8–9
measurement	-	of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how the study size was arrived at Explain how quantitative variables were handled in the analyses. If	
Qualititative variables	11	applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	9-1
Statistical methods	12		9-1
		confounding	0 1
		(b) Describe any methods used to examine subgroups and interactions	9-1
		(c) Explain how missing data were addressed	
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	11
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	11
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	11
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	12
		their precision (eg, 95% confidence interval). Make clear which confounders were	13
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11
			13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	18
		imprecision. Discuss both direction and magnitude of any potential bias	19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	19
		multiplicity of analyses, results from similar studies, and other relevant evidence	20
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	21
		applicable, for the original study on which the present article is based	1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: A retrospective claims database study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026251.R1
Article Type:	Research
Date Submitted by the Author:	12-Dec-2018
Complete List of Authors:	Hashimoto, Hideki; Jichi Medical University Hospital, Division of General Internal Medicine Matsui, Hiroki; Jichi Medical University, Data Science Center; School of Public Health, University of Tokyo, Department of Clinical Epidemiology and Health Economics Sasabuchi, Yusuke; Jichi Medical University, Data Science Center Yasunaga, Hideo; Jichi Medical University, Data Science Center; School of Public Health, The University of Tokyo, Department of Clinical Epidemiology and Health Economics Kotani, Kazuhiko; Jichi Medical University, Division of Community and Family Medicine Nagai, Ryozo; Jichi Medical University, President Hatakeyama, Shuji; Jichi Medical University Hospital, Division of General Internal Medicine/Division of Infectious Diseases
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, INFECTIOUS DISEASES

1	Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: A
2	retrospective claims database study
3	
4	Hideki Hashimoto ¹ , Hiroki Matsui ^{2, 3} , Yusuke Sasabuchi ² , Hideo Yasunaga ^{2, 3} , Kazuhiko
5	Kotani ⁴ , Ryozo Nagai ⁵ , Shuji Hatakeyama ^{1, 6*}
6	
7	¹ Division of General Internal Medicine, Jichi Medical University Hospital, 3311-1
8	Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
9	² Data Science Center, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi,
10	Tochigi 329-0498, Japan.
11	³ Department of Clinical Epidemiology and Health Economics, School of Public Health,
12	University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
13	⁴ Division of Community and Family Medicine, Jichi Medical University, 3311-1
14	Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
15	⁵ President, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-
16	0498, Japan.
	1

BMJ Open

17	⁶ Division of Infectious Diseases, Jichi Medical University Hospital, 3311-1 Yakushiji,
18	Shimotsuke-shi, Tochigi 329-0498, Japan.
19	
20	*Corresponding author:
21	Shuji Hatakeyama, M.D., Ph.D.
22	Division of General Internal Medicine/Division of Infectious Diseases, Jichi Medical
23	University Hospital, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
24	Phone: +81-285-58-7498
25	Fax: +81-285-40-5160
26	E-mail: shatake-tky@umin.ac.jp
27	
28	Key words: antibiotic, antimicrobial stewardship, antimicrobial-resistance, big data,
29	inappropriate prescribing
30	Running title: Antibiotic prescriptions in Japan
31	Word count for the main text: 3,069 words
32	
	2

2 3	
4 5	
6 7 33 Abstract 8	
9 10 34 Objectives: To investigate oral antibiotic 11	c prescribing patterns and identify factors
 12 13 35 associated with antibiotic prescriptions, wi 14 15 	th the aim of guiding future interventions to
 16 17 36 reduce inappropriate prescribing. 18 	
 19 20 37 Design: Retrospective cohort study. 21 22 	
 38 Setting: Database of public health insuranc 25 	e claims in Kumamoto prefecture (Japan).
26	al or late elders' health insurance system
 29 30 40 between April 2012 and March 2013. 	
 32 33 34 35 41 Main outcome measures: Of 7,770,481 	outpatient visits, 682,822 had a code for
36	per 1000 population). Third-generation
41	and quinolones (21%) were most frequently
 42 43 44 prescribed. Acute respiratory tract infection 45 	ns (ARTIs), including viral upper respiratory
46	, bronchitis (11%), and sinusitis (10%) were
51	escribing, followed by gastrointestinal (9%),
52 53 54 55 47 urinary tract (8%), and skin, cutaneous, 55	and mucosal infections (5%). Antibiotic
56	is, bronchitis, sinusitis, and gastrointestinal 3

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

49	infections were 35%, 54%, 53%, 57%, and 30%, respectively. In multivariable analysis
50	for ARTIs and gastrointestinal infections, patient age (10-19 years especially), patient
51	sex (male), and facility scale (free-standing clinics or small-scale hospital-based clinics)
52	were associated with increased antibiotic prescribing.
53	Conclusions: Broad-spectrum antibiotics constituted 88% of oral outpatient antibiotic
54	prescriptions. Approximately 70% of antibiotics were prescribed for ARTIs and
55	gastroenteritis with modest benefit from antibiotic treatment. The quality of antibiotic
56	prescribing needs to be improved. Antimicrobial stewardship interventions should target
57	ARTIs and gastroenteritis, as well as young patients and small-scale institutions.

Page 5 of 42		BMJ Open			
1 2 3 4 5					
6 7 8	58	Stre	ength and limitations of this study		
11	59	•	This is the first Japanese study to describe outpatient antibiotic prescription patterns		
12 13 14 15	60		linked to individual diagnosis data, comprehensively, by use of the public health		
16	61		insurance claims database.		
21	62	•	This study included patients older than 65 years of age, who have not typically been		
22 23 24 25	63		included in previous Japanese studies.		
26	64	•	The accuracy of the diagnosis has not been validated due to the nature of the		
29 30 31	65		administrative claims database.		
32 33 34 35	66	•	There are some unmeasured potential confounding factors such as out-of-hours		
36	67		visits and physician specialty.		
 39 40 41 42 43 44 45 			visits and physician specialty.		
46 47 48 49					
50 51 52 53 54					
55 56 57					
58 59 60			5		

69 Introduction

70	There is a growing concern about antimicrobial-resistant bacterial infections.
71	Antimicrobial resistance results in increased health care costs, prolonged hospitalization,
72	and death. ¹⁻³ The World Health Organization launched the global action plan to combat
73	the antimicrobial-resistant bacteria in 2015 ⁴ and requested Member States to endorse
74	national action plans within two years. The government of Japan launched a national
75	action plan in 2016 in response to the request. ⁵
76	Since antimicrobial use is one of the important factors in the emergence of antimicrobial
77	resistance, ⁶ it is essential to reduce the inappropriate use of antibiotics. In Japan, a
78	previous sales data-based study revealed that oral antibiotics account for more than 90%
79	of total antibiotic consumption and that broad-spectrum antibiotics (third-generation
80	cephalosporins, macrolides, and fluoroquinolones) account for 77% of oral antibiotic
81	consumption (daily doses defined per 1000 inhabitants per day). ⁷ The Japanese national
82	action plan aims to reduce the total antimicrobial use to two-thirds of current use, and the
83	use of oral cephalosporins, quinolones, and macrolides to one-half, by 2020. To reduce
84	inappropriate antimicrobial use, it is important to determine the antimicrobial prescribing
	6

BMJ Open

85	patterns and factors associated with antibiotic prescription. However, such information
86	has been limited in Japan to date. Although a few recent studies ^{8,9} described the
87	prescription patterns for upper respiratory tract infections and bronchitis, the prescription
88	patterns of infections other than acute respiratory tract infections (ARTIs) have not been
89	clarified. In addition, patients older than 65 years of age have not been commonly
90	included in these studies, because these studies relied on data from an employee-based
91	insurance claims database. With the high rate in aging population in Japan, it is important
92	to describe the prescription patterns in elderly patients.
93	In this study, we described outpatient oral antibiotic prescribing patterns for all
93 94	In this study, we described outpatient oral antibiotic prescribing patterns for all infections and in all ages, using the Japanese administrative claims database. Furthermore,
94	infections and in all ages, using the Japanese administrative claims database. Furthermore,
94 95	infections and in all ages, using the Japanese administrative claims database. Furthermore, we aimed to identify factors associated with antibiotic prescriptions for ARTIs and
94 95 96	infections and in all ages, using the Japanese administrative claims database. Furthermore, we aimed to identify factors associated with antibiotic prescriptions for ARTIs and gastrointestinal infections, the targets of the antimicrobial stewardship guideline

3 4 5 6 7 8 9 10 1 1 2 3 14 5 16 7 18 9 20 1 2 2 3 2 4 5 2 2 7 2 8 9 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	2
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	4 5
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	6
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	7
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	8
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	9
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	10 11
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	12
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	13
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	14
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	15 16
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	17
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	18
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	19
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	20
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	∠⊺ 22
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	23
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	24
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	25
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	26 27
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	28
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 57 58 59	29
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 57 58 59	30
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 57 58 59	31 32
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 57 58 59	33
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 57 58 59	34
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	35
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	36 37
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	38
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	39
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	
 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	
 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	43
46 47 48 49 50 51 52 53 54 55 56 57 58 59	44
47 48 49 50 51 52 53 54 55 56 57 58 59	
48 49 50 51 52 53 54 55 56 57 58 59	
49 50 51 52 53 54 55 56 57 58 59	
51 52 53 54 55 56 57 58 59	49
52 53 54 55 56 57 58 59	
53 54 55 56 57 58 59	
54 55 56 57 58 59	
56 57 58 59	54
57 58 59	
58 59	56 57
59	58
60	59
	60

99 Methods

100 Data sources

101	The current population of Japan is approximately 127 million. All citizens are enrolled
102	in a universal health coverage insurance program provided by the social insurance system
103	(for employees younger than 75 years of age), national health insurance system (for self-
104	employed or unemployed people younger than 75 years of age), and the late elders' health
105	insurance system (for those aged 75 years and older). In Japan, patients can visit any
106	clinic of their choice. All physicians working at any free-standing or hospital-based
107	clinics can provide primary care and prescribe antibiotics.
108	We conducted a retrospective analysis using the administrative health insurance claims
109	database of Kumamoto prefecture, situated in the southwestern region of Japan, with a
110	population of about 1.7 million. This database covers approximately 780,000 residents of
111	Kumamoto prefecture (44% of the population) who were beneficiaries of the national
112	health insurance system, ¹¹ or the late elders' health insurance system. ¹² The participants
113	in this study may be older than the general population of Japan.
114	The database is composed of medical and pharmacy claims. It provides monthly

BMJ Open

115	information about patient demographics (year and month of birth and sex), diagnoses,
116	date of diagnoses, medical procedures, medications, scale (number of beds) of the
117	medical facility, as well as the identification numbers assigned to each individual, medical
118	facility, and dispensing pharmacy. At the end of each month, claims are registered from
119	each medical facility. The diagnoses were recorded by physicians of each medical facility
120	and coded according to the International Classification of Diseases and Related Health
121	Problems, 10th Revision (ICD-10).
122	
123	Data preparation
124	We linked the medical and pharmacy claims on the database using an identification
125	number unique to each patient, medical facility, and dispensing pharmacy. We identified
126	all newly diagnosed outpatients, with any infectious diseases, between April 2012 and
127	March 2013. Infectious diseases diagnoses were categorized according to the indication
128	for antibiotic use (Table S1, available as supplementary data). This categorization was
129	based on the study by Fleming-Dutra KE et al. ¹³ Bronchitis and bronchiolitis were divided
130	into two categories based on whether the patients had chronic obstructive pulmonary
	9

BMJ Open

disease (COPD) as comorbidity or not, because of differing need of treatment with antibiotics. If a patient had multiple infectious diagnoses in one month, a single infectious diagnosis, selected in order from Group 1 (antibiotics are usually indicated) to Group 3 (antibiotics are rarely indicated), and the first-listed diagnosis in alphabetical order of ICD-10 codes in the selected group was included in the analyses (Table S1). We also identified all outpatients with any antibiotic prescriptions. Topical, intramuscular, and intravenous antibiotics were excluded. Antibiotics were categorized according to the Anatomical Therapeutic Chemical (ATC) classification system (http://www.whocc.no/atcddd/) as follows: tetracyclines (J01A), penicillins (J01C), first-second-generation cephalosporins and (J01DB and J01DC), third-generation cephalosporins (J01DD), sulfonamides and trimethoprim (J01E), macrolides (J01FA), quinolones (J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. Antibiotics were linked to the infectious diagnoses in each patient's claims when both the code of antibiotics and the code of diagnoses were

1		
2		
3		
4 5		
6	147	recorded in the same month
7	147	recorded in the same month.
8 9		
10	148	
11		
12 13		
14	149	Data Analysis
15		
16	150	We calculated the frequency of antibiotic prescription for all visits with infections
17 18	100	we calculated the nequency of antibiotic prescription for an visits with infections
19		
20	151	(according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis,
21		
22 23	150	bronchitig/bronchiplitig and visal unner require term infections [LIDI]) and contraintecting
24	152	bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal
25		
26 27	153	infections, we performed separate multivariable logistic regression analyses to identify
28		
29		
30 21	154	the factors associated with antibiotic prescriptions. The variables were as follows: age
31 32		
33	155	and sex of patients and scale (number of beds) of the medical facilities. Generalized
34	100	
35 36		
37	156	estimating equations with exchangeable correlation structure were used to account for the
38		
39 40	157	clustering of the medical facilities. P -values < 0.05 were considered statistically
41	107	clustering of the medical facilities. I -values < 0.05 were considered statistically
42		
43	158	significant. All statistical analyses were performed with the statistical package R, v.3.5.0
44 45		
46	150	
47	159	(http://cran.r-project.org).
48 49		
50	160	
51		
52 53		
53 54	161	Patient involvement
55		
56	162	No patients were involved in the development of the research question or the outcome
57 58	104	The particular force in the development of the research question of the outcome
59		11
60		

measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked for advice regarding the interpretation or writing of results. There are no plans to disseminate the study results to the relevant patient to beet terien only community.

1 2 3 4 5 6 7	
7 8 9 10 11 12 13 14 15 16 17 18 19	
14 15 16 17 18 19 20	
20 21 22 23 24 25 26 27 28 29	
30 31 32 33	
34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48	
49 50 51 52 53 54	
55 56 57 58 59 60	

168	Results
169	In total, there were 7,770,481 outpatient visits between April 2012 and March 2013.
170	Antibiotics were prescribed in 682,822 visits (860 antibiotic prescriptions per 1000
171	population). Among these, third-generation cephalosporins were most frequently
172	prescribed (237,372 visits, 35%), followed by macrolides (215,656 visits, 32%) and
173	quinolones (145,135 visits, 21%). This trend was observed regardless of age group (Table
174	1) and scale of the medical facility (Table 2), except for those less than 9 years of age in
175	whom the systemic use of quinolones is not recommended. Information about facility
176	scale was available from 669,086 out of 682,822 visits. Of these, antibiotics were
177	prescribed most frequently at free-standing clinics (530,916 visits, 79%), followed by
178	small-scale (< 200 beds; 78,546 visits, 12%), medium-scale (200–499 beds; 45,271 visits,
179	7%), and large-scale (500 beds or more; 14,353 visits, 2%) hospital-based clinics (Table
180	2).
181	We were able to link the individual diagnoses to the antibiotic prescription in 447,232
182	visits (Table 3). Of these patients, approximately 60% of antibiotics were prescribed for
183	ARTIs, including viral URI (96,989 visits, 22%), pharyngitis (78,469 visits, 18%),

2	
3	
4	
5	
6	
6 7 8	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33 34 35 36 37	
33	
37	
25	
25	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

184	bronchitis without COPD (47,248 visits, 11%), and sinusitis (45,456 visits, 10%). Other
185	than ARTIs, there were frequent antibiotic prescriptions for gastrointestinal infections
186	(41,309 visits, 9%), urinary tract infections (37,674 visits, 8%), and skin, cutaneous, and
187	mucosal infections (23,572 visits, 5%). The antibiotic prescription rates for viral URI,
188	pharyngitis, bronchitis (without underlying COPD), sinusitis, and gastrointestinal
189	infections were 35% (96,989 out of 274,441 visits), 54% (78,469 out of 146,508 visits),
190	53% (47,248 out of 89,479 visits), 57% (45,456 out of 80,078 visits), and 30% (41,309
191	out of 137,661 visits), respectively (Table 3).
192	Table 4 shows the results of the logistic regression analysis of antibiotic prescription for
193	ARTIS. Patient sex of male was associated with more antibiotic prescription (adjusted
194	odds ratio [OR], 1.10; 95% confidence interval [CI], 1.08 to 1.11). With patients aged 65
195	years or older as reference, patients aged 10 to 19 years were more likely to be prescribed
196	antibiotics (adjusted OR, 2.75; 95% CI, 2.69 to 2.82), followed by patients aged 20 to 64
197	years (adjusted OR, 1.92; 95% CI, 1.89 to 1.94), and patients younger than 10 years
198	(adjusted OR, 1.48; 95% CI, 1.46 to 1.50). Regarding facility scale, with large-scale (500
199	beds or more) hospital-based clinics as reference, free-standing clinics (adjusted OR,
	14

BMJ Open

200	4.24; 95% CI, 4.03 to 4.45), small-scale (< 200 beds) hospital-based clinics (adjusted OR,
201	2.07; 95% CI, 1.97 to 2.18), and medium-scale (200-499 beds) hospital-based clinics
202	(adjusted OR, 1.71; 95% CI, 1.62 to 1.80) were significantly associated with more
203	frequent antibiotic prescription.
204	Similar results were shown with the logistic regression analysis for gastrointestinal
205	infections (Table 5). Patient sex of male was associated with slightly more antibiotic
206	prescription (adjusted OR, 1.04; 95% CI, 1.01 to 1.06) than was patient sex of female.
207	Patients aged 10 to 19 years (adjusted OR, 1.92; 95% CI, 1.83 to 2.00), 20 to 64 years
208	(adjusted OR, 1.55; 95% CI, 1.51 to 1.60), and younger than 10 years (adjusted OR, 1.76;
209	95% CI, 1.71 to 1.82) received more antibiotic prescriptions compared with patients aged
210	65 years or older. With reference to large-scale (\geq 500 beds) hospital-based clinics, free-
211	standing clinics (adjusted OR, 1.88; 95% CI, 1.68 to 2.10) and small-scale (< 200 beds)
212	hospital-based clinics (adjusted OR, 1.17; 95% CI, 1.04 to 1.32) were associated with
213	frequent antibiotic prescription for gastrointestinal infections.

Discussion

216	We described oral antibiotic prescription patterns in the outpatient care setting in Japan.
217	To the best of our knowledge, this is the first Japanese study to comprehensively describe
218	antibiotic prescription patterns linked to individual diagnoses data, using the claims
219	database. Broad-spectrum antibiotics consisting of third-generation cephalosporins,
220	macrolides, and quinolones accounted for nearly 90% of antibiotic prescriptions in the
221	primary care settings. Prescription of penicillin was only 5%. This prescription pattern is
222	consistent with the results of an analysis of antibiotic sales data in Japan, in which 77%
223	of oral antibiotics shipped were broad-spectrum. ⁷ In contrast, the use of cephalosporins,
224	macrolides, and quinolones in the United States of America (USA) and Europe were
225	much lower than in Japan. Hicks <i>et al.</i> ¹⁴ analyzed the sales data of oral antibiotics in the
226	USA and showed that cephalosporins, macrolides, and quinolones accounted for 48% of
227	the total oral antibiotics. In their study, penicillin had the largest share of the antibiotics
228	(23%). Data from the European Surveillance of Antimicrobial Consumption project ¹⁵ also
229	showed that cephalosporins, macrolides, and quinolones accounted for about one third of
230	the total oral antibiotic consumptions, in Europe. This study demonstrated a rather high
	16

BMJ Open

ratio of broad-spectrum to narrow-spectrum oral antibiotics, in Japan; therefore, the quality of antibiotic prescribing needs to be improved. Although quinolones are not recommended for children, quinolones were prescribed as much as penicillins in children aged 0-9 years in our study. This may be because oral fluoroquinolones such as tosufloxacin are approved for children to treat otitis media and pneumonia in Japan. Since the approval of quinolones in 2010, despite the recommendation to prescribe quinolones carefully for children, many physicians prescribed tosufloxacin to children in expectation of clinical effectiveness. Among antibiotics linked with individual diagnosis data, over 60% of antibiotics were prescribed for ARTIs, followed by gastrointestinal infections (9%), urinary tract infections (8%), and skin, cutaneous, and mucosal infections (5%). Surprisingly, viral URI (common cold) was the most frequent infection associated with antibiotic prescription. In the ambulatory care setting in the USA, antibiotics were prescribed most frequently for acute respiratory conditions (41-44%), followed by skin and mucosal conditions (15–19%), urinary tract infections (7–8%), and gastrointestinal conditions (5– 6%).^{13,16} Another study using primary care data in the United Kingdom (UK)¹⁷

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

247	demonstrated that 46% of antibiotics were prescribed for respiratory tract conditions,
248	followed by urogenital tract (23%), and skin conditions (10%). Only 1% was prescribed
249	for gastrointestinal conditions. Our study demonstrated a higher proportion of antibiotic
250	prescription for ARTIs (approximately 15% higher than those in USA or UK) and
251	gastrointestinal infections (approximately 5% higher) in Japan.
252	Antibiotics were prescribed for 35% of viral URI cases and approximately 50–60% of
253	pharyngitis, bronchitis, and sinusitis cases in our study. These prescription rates were
254	approximately similar to those of a USA study, ¹³ which showed a rate of 30% for viral
255	URI, 62% for pharyngitis, 65% for bronchitis, and 72% for sinusitis. Medically,
256	antibiotics are rarely indicated for ARTIs. ¹⁸ Antibiotics have no role in the treatment of
257	either viral URI (common cold) or the majority of acute bronchitis cases, which are
258	generally caused by viral infection. Only a minority of patients with bronchitis (< 10%),
259	for example patients who have underlying COPD or whooping cough, may derive any
260	benefit from antibiotic treatment. With pharyngitis, antibiotics are mainly indicated only
261	for streptococcal pharyngitis, which accounts for 5–15% of pharyngitis in adults and 20–
262	30% in children. ^{19, 20}

BMJ Open

263	The antibiotic prescription rate for gastrointestinal infections was three times higher than
264	the rate reported in the USA (30% vs. 10%). ¹³ As most acute gastroenteritis is self-
265	limiting, the Japanese national guideline recommends the non-usage of antibiotics for
266	gastroenteritis unless symptoms are severe. ¹⁰ Based on our study, approximately 70% of
267	oral antibiotics are prescribed for ARTIs or acute gastroenteritis; however, most (> 80%),
268	did not require antibiotics. Therefore, there is a need for suitable targets to reduce
269	unnecessary antibiotic use in accordance with antimicrobial stewardship program.
270	Previous studies from the UK ^{21, 22} analyzed reasons for antibiotic prescribing for sore
271	throats and assessed that patient demand for antibiotics and physician pressure to meet
272	patient demand are associated with antibiotic prescription. In addition, we suppose that
273	physicians frequently prescribe antibiotics for URI as prophylaxis for complicating
274	secondary bacterial infections.
275	As for antibiotic prescription for ARTIs and gastrointestinal infections, most
276	antibiotics prescribed were broad-spectrum. For example, quinolones accounted for 15-
277	35% of the antibiotics prescribed for ARTIs in this study, although the proportion of

quinolones to whole antibiotics prescribed for ARTIs should be <5% according to the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23 24
24 25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
47 48
40 49
49 50
50 51
52
53
54
55
56
57
58
59
60

ESAC disease-specific quality indicators²³. Accordingly, the quality of antibiotic
prescribing should be improved.

The logistic regression analyses revealed several factors associated with antibiotic 281prescriptions for ARTIs and gastrointestinal infections. The smaller the facility scale, the 282higher the odds of antibiotic prescribing. Recent studies from Japan⁸ and Taiwan²⁴ have 283found similar results. As family practitioners, pediatricians, and internists usually 284prescribe a high number of antibiotic courses,¹⁴ greater adherence to treatment guidelines 285among physicians in these specialties is particularly important. It has also been reported 286that mid- or late-career stage physicians (because the effect of training received during 287medical education might have reduced, after this long time) were more likely to prescribe 288antibiotics for nonbacterial acute URI.25 289Patient age was another factor associated with antibiotic prescription. In this study, 290antibiotic prescription rates for ARTIs and gastrointestinal infections were highest in 291patients aged 10–19 years, followed by patients aged 20–64 years (ARTIs) or 0–9 years 292(gastrointestinal infections). A previous study concerning Dutch primary care showed 293similar results of antibiotic over-prescribing for ARTIs in patients aged 31-65 years (i.e., 29420

BMJ Open

295	not in children or the elderly). ²⁶ As adolescents and young adults generally pose a much
296	lower risk of disease complications than young children or elderly individuals,
297	antimicrobial stewardship should focus on these age groups of patients. In this study,
298	patient sex of male was also associated with increased antibiotic prescribing. Although a
299	patient sex difference was observed in another study, the results differed; female patients
300	were more likely to have high prescribing in the USA. ¹⁴ The reason for patient age and
301	sex difference in antibiotic prescribing remains to be clarified. Patient sex and age-
302	standardized antibiotic prescription rates need to be assessed in Japan for effective
303	intervention.
303 304	intervention. Our study has several limitations. First, our results do not represent the entire antibiotic
304	Our study has several limitations. First, our results do not represent the entire antibiotic
304 305	Our study has several limitations. First, our results do not represent the entire antibiotic prescription pattern in Japan because the claims database used in this study was composed
304 305 306	Our study has several limitations. First, our results do not represent the entire antibiotic prescription pattern in Japan because the claims database used in this study was composed of claims in only one prefecture. Geographical diversity in antibiotic prescribing may be
304 305 306 307	Our study has several limitations. First, our results do not represent the entire antibiotic prescription pattern in Japan because the claims database used in this study was composed of claims in only one prefecture. Geographical diversity in antibiotic prescribing may be present, as observed in the previous study from the USA. ¹⁴ Second, since we used an
304 305 306 307 308	Our study has several limitations. First, our results do not represent the entire antibiotic prescription pattern in Japan because the claims database used in this study was composed of claims in only one prefecture. Geographical diversity in antibiotic prescribing may be present, as observed in the previous study from the USA. ¹⁴ Second, since we used an administrative claims database; the accuracy of the diagnosis was not validated. In

BMJ Open

311	confounding factors that were not included in this study. For example, information on
312	out-of-hours visits, ⁸ non-specialty physicians, ^{8, 24, 27} and patient's low-per capita income
313	or low-education,14 which have been reported as potential factors associated with
314	inappropriate antibiotics prescribing, could not be extracted from the claims database in
315	this study. Fourth, only 65% of antibiotic prescriptions were linked to infectious disease
316	visits. This may be partly because we could not capture the information concerning
317	follow-up visits when patients had multiple visits for a single infection (antibiotics were
318	linked to the infectious diagnoses only when they were prescribed at the first visit of an
319	illness episode). In addition, approximately 3–5% of medical claims that included
320	diagnostic codes and 0.1% of pharmacy claims that included prescription (medication)
321	codes were registered in non-digital format. As non-digital insurance claims were not
322	included in our database, 3–5% of antibiotic prescriptions were not linked to diagnoses.
323	Therefore, inappropriate antibiotic prescription might be underestimated rather than
324	overestimated.
325	In conclusion, this Japanese study demonstrated that third-generation cephalosporins,
326	macrolides, and quinolones accounted for 88% of oral antibiotic prescription.

BMJ Open

327	Approximately 60% of antibiotic prescription was provided for ARTIs, with viral URI
328	and pharyngitis being the two ARTI diagnoses with the largest antibiotic prescriptions.
329	Gastrointestinal infections were the second most common diagnosis for antibiotic
330	prescribing. The scale of the facilities (clinic or small-scale hospital) and patient age
331	(adolescents and young adults) were factors associated with antibiotic over-prescription.
332	Antimicrobial stewardship interventions should focus on targeting antibiotic prescribing
333	for these infectious diagnoses, patients, and institutions. Further nationwide studies are
334	needed to support our data, and longitudinal studies using medical claims data are needed
335	to evaluate the effectiveness of antimicrobial stewardship.

336 Authors' contributions

337	HH and SH conceived the study, interpreted the data and results, and drafted the
338	manuscript. HH, HM, YS, and HY collected, organized, analyzed the data, and
339	performed statistical analyses. KK and RN conceived the study and collected and
340	interpreted the data. All authors critically revised the manuscript for intellectual content.
341	All authors read and approved the final manuscript.
342	
343	Funding
344	This work was funded by ImPACT Program of Council for Science, Technology, and
345	Innovation (Cabinet Office, Government of Japan) and by MEXT KAKENHI, Grant
346	Number 16K09254.
347	
348	Competing interests
349	None declared.
350	
351	Data sharing

1		
2		
3		
4		
5		
6	352	No additional data available.
7	502	No autitional data available.
8		
9		
10	353	
11		
12		
13	354	Transparency declarations
14	001	Transpurchey accurations
15		
16		
17	355	The lead author (the manuscript's guarantor) affirms that the manuscript is an honest,
18		
19		
20	356	accurate, and transparent account of the study reported; that no important aspects of the
21		
22		
23	~ ~ -	
24	357	study have been omitted; and that any discrepancies from the study as planned have been
25		
26		
20	358	explained.
28		
29	050	
30	359	
31		
32		
33	360	Ethical approval
34		
35		
36	961	This study was approved by the Ethics Committee of the Jichi Medical University
37	361	This study was approved by the Eulies Commutee of the Jenn Medical Oniversity
38		
39		
40	362	(Number 17-002).
41		
42		
43		
44		(Number 17-002).
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
58 59		
		25
60		

		Number (%) of visits with antibiotic prescription						
Antibiotic groups		Age Group, y						
coded by ATC* classification**	0–9	10–19	20–64	≥ 65	All ages			
Penicillins	7,495 (7.2)	1,724 (4.2)	8,574 (4.5)	14,924 (4.3)	32,717 (4.8)			
First/second-generation cephalosporins	964 (0.9)	411 (1.0)	2,987 (1.6)	5,719 (1.6)	10,081 (1.5)			
Third-generation cephalosporins	52,082 (49.9)	16,367 (40.1)	60,621 (31.8)	108,302 (31.2)	237,372 (34.8)			
Macrolides	28,597 (27.4)	14,691 (36.0)	56,719 (29.7)	115,649 (33.3)	215,656 (31.6)			
Quinolones	7,286 (7.0)	4,158 (10.2)	48,843 (25.6)	84,848 (24.4)	145,135 (21.3)			
Sulfonamides and trimethoprim	32 (0.0)	53 (0.1)	1,389 (0.7)	4,520 (1.3)	5,994 (0.9)			
Tetracyclines	915 (0.9)	1,366 (3.3)	4,366 (2.3)	5,147 (1.5)	11,794 (1.7)			
Other antibiotics	6,901 (6.6)	2,021 (5.0)	7,186 (3.8)	7,965 (2.3)	24,073 (3.5)			
All antibiotics	104,272	40,791	190,685	347,074	682,822			

365 *ATC: Anatomical Therapeutic Chemical

366 **Penicillins, J01C; First-generation cephalosporins, J01DB; Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD;

367 Macrolides, J01FA; Quinolones, J01M; Sulfonamides and trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF,

368 J01G, and J01X

 BMJ Open

Table 2. Frequency of oral antibiotic prescriptions by facility scale and antibiotic group*

Antibiotic groups	Number (%) of visits with antibiotic prescription						
coded by ATC** classification***		Small-scale hospital	Medium-scale	Large-scale hospital			
	Free-standing clinic	(< 200 beds)-based	hospital (200-499	(\geq 500 beds)-based	All facilities		
		clinic	beds)-based clinic	clinic			
Penicillins	25,225 (4.8)	3,453 (4.4)	2,968 (6.6)	565 (3.9)	32,211 (4.8)		
First/second-generation cephalosporins	6,755 (1.3)	1,789 (2.3)	1,245 (2.8)	158 (1.1)	9947 (1.5)		
Third-generation cephalosporins	187,928 (35.4)	25,463 (32.4)	15,252 (33.7)	4,139 (28.8)	232,782 (34.8)		
Macrolides	169,980 (32.0)	26,307 (33.5)	11,319 (25.0)	3,833 (26.7)	211,439 (31.6)		
Quinolones	110,770 (20.9)	17,877 (22.8)	9,992 (22.1)	3,402 (23.7)	142,041 (21.2)		
Sulfonamides and trimethoprim	712 (0.1)	1,069 (1.4)	2,234 (4.9)	1,618 (11.3)	5,633 (0.8)		
Tetracyclines	9,477 (1.8)	846 (1.1)	803 (1.8)	320 (2.2)	11,446 (1.7)		
Other antibiotics	20,069 (3.8)	1,742 (2.2)	1,458 (3.2)	318 (2.2)	23,587 (3.5)		
All antibiotics	530,916	78,546	45,271	14,353	669,086		

371 *13,736 patients with antibiotic prescription were excluded due to missing data about facility scale.

372 **ATC: Anatomical Therapeutic Chemical

373 ***Penicillins, J01C; First-generation cephalosporins, J01DB; Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD;

374 Macrolides, J01FA; Quinolones, J01M; Sulfonamides and trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF,

375 J01G, and J01X

BMJ Open

Table 3. Frequency of oral antibiotic prescriptions by antibiotic groups and diagnoses

		Visits with any	Number (%) of visits with antibiotic prescriptions by antibiotic groups*								
Diagnoses	All visits	antibiotic prescription and prescription rate (%)	Penicillins	1 st /2 nd cephem	3 rd cephem	Macrolide s	Quinolone s	ST	Tetracyclin es	Other antibiotics	
Miscellaneous bacterial infections	45,061	20,429 (45.3)	2,969 (11.5)	468 (1.8)	7,404 (28	7,868 (30 .5)	5,731 (22 .2)	181 (0.7)	444 (1.7)	728 (2.8)	
STD	14,051	3,931 (28.0)	86 (1.9)	76 (1.7)	836 (18.9	1515 (34. 2)	496 (11.2	14 (0.3)	147 (3.3)	1,260 (28.4)	
Bacterial Pneumonia	47,035	21,473 (45.7)	916 (3.4)	121 (0.5)	5,044 (18 .9)	8,568 (32 .2)	11,236 (4 2.2)	191 (0.7)	238 (0.9)	316 (1.2)	
Abdominal infection	9,208	2,077 (22.6)	69 (3.2)	29 (1.3)	680 (31.1)	142 (6.5)	1,086 (49 .7)	≤ 10	≤ 10	177 (8.1)	
Orthopedic infection	1,749	380 (21.7)	36 (8.2)	22 (5.0)	225 (51.4	21 (4.8)	93 (21.2)	≤ 10	19 (4.3)	22 (5.0)	
Urinary tract infections	97,948	37,674 (38.5)	1,195 (2.9)	567 (1.4)	14,735 (3 6.0)	1,998 (4. 9)	20,229 (4 9.5)	429 (1.0)	521 (1.3)	1,232 (3.0)	
PID	11,621	1,763 (15.2)	84 (4.6)	26 (1.4)	1127 (61.	164 (8.9)	167 (9.1)	≤ 10	≤10	273 (14.8) 28	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 2	29 of	42
--------	-------	----

						2)			
	GI infections	127 ((1	41 200 (20 0)	2,121 (4.6)	264 (0.6)	12,060 (2	8603 (18.	13206 (2	196 (0.4)
		137,661	41,309 (30.0)			6.0)	6)	8.5)	
	Skin infections				1,337 (5.	15,311 (6	1,975 (7.	2,848 (11	
		62,202	23,572 (37.9)	1,167 (4.6)	3)	0.6)	8)	.3)	25 (0.1)
	Suppurative otitis	16.050			10 (0.1)	5,213 (39	1,972 (14	3,654 (27	. 10
	media	16,059	9,958 (62.0)	1,566 (11.8)	18 (0.1)	.1)	.8)	.4)	≤ 10
	Pharyngitis		78,469 (53.6)	4,372 (5.1)	450 (0.5)	35,958 (4	27,454 (3	16,387 (1	
		146,508				1.8)	1.9)	9.1)	121 (0.1)
	Sinusitis	00.070		2 (2 ((0))	481 (0.9)	15,282 (2	20,677 (3	11,441 (2	. 10
		80,078	45,456 (56.8)	3,654 (6.9)		8.8)	9.0)	1.6)	≤10
	Bronchitis with			208 (4.1)	14 (0.3)	912 (17.8	2,178 (42	1,762 (34	
	COPD	6,832	4,313 (63.1)			5	.5)	.3)	28 (0.5)
	Acne	6.000		. 10			739 (35.2		. 10
		6,939	2,030 (29.3)	≤ 10	32 (1.5)	174 (8.3))	41 (2.0)	≤10
	Nonbacterial GI								
	infections	1,215	116 (9.5)	≤ 10	≤10	42 (33.1)	38 (29.9)	33 (26.0)	≤10
	Nonsuppurative					384 (35.5	481 (44.5	128 (11.8	
	otitis media	2,807	888 (31.6)	63 (5.8)	≤10)))	≤10
	Viral URI	274,441	96,989 (35.3)	4,839 (4.6)	825 (0.8)	44,475 (4	37,001 (3	16,941 (1	160 (0.2)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

232 (0.5)

997 (3.9)

92 (0.7)

301 (0.3)

779 (1.5)

11 (0.2)

1,050 (50.

0)

 ≤ 10

 ≤ 10

790 (0.7)

9,680 (20.9)

1,615 (6.4)

812 (6.1)

976 (1.1)

766 (1.4)

17 (0.3)

62 (3.0)

14 (11.0)

26 (2.4)

601 (0.6)

29

43 44 45

46

					2.1)	5.0)	6.0)			
Influenza	22,868	8,665 (37.9)	296 (3.1)	74 (0.8)	3,030 (31 .9)	3,934 (41 .5)	2,040 (21 .5)	≤ 10	47 (0.5)	69 (0.7)
Viral pneumonia	15	≤ 10	≤ 10	≤10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Bronchitis without COPD	89,479	47,248 (52.8)	1,509 (3.0)	332 (0.7)	14,521 (2 8.5)	22,779 (4 4.8)	11,078 (2 1.8)	58 (0.1)	250 (0.5)	346 (0.7)
Noninfectious diarrhea	1,597	50 (3.1)	≤10	≤ 10	≤10	19 (55.9)	15 (44.1)	≤ 10	≤ 10	≤10
Fever	2,908	438 (15.1)	20 (4.3)	≤10	190 (40.5)	103 (22.0	156 (33.3)	≤ 10	≤ 10	≤ 10

378 1st/2nd cephem, first/second-generation cephalosporins; 3rd cephem, third-generation cephalosporins; ST, Sulfonamides and trimethoprim; STD,

379 sexual transmitted diseases; PID, pelvic inflammatory diseases; GI infections, gastrointestinal infections; Skin infections, Skin, cutaneous and

380 mucosal infections; COPD, chronic obstructive pulmonary disease; URI, upper respiratory infections

 381 *Antibiotics were coded according to Anatomical Therapeutic Chemical (ATC) codes: Penicillins, J01C; First-generation cephalosporins, J01DB;

382 Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD; Macrolides, J01FA; Quinolones, J01M; Sulfonamides and

trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF, J01G, and J01X

Table 4. Factors associated with antibiotic prescription for acute upper respiratory infections*

Characteristics	Antibiotic prescription, n (%)	Unadjusted odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Patient age			
0—9	44,413 (50	.4) 1.66 (1.64 to 1.69)	1.48 (1.46 to 1.5
10–19	20,822 (65	.1) 3.08 (3.00 to 3.15)	2.75 (2.69 to 2.8
20–64	85,952 (54	.6) 1.98 (1.95 to 2.00)	1.92 (1.89 to 1.9
≥ 65	121,289 (37	.9) 1	
Patient sex			
Male	112,643 (47	.4) 1.13 (1.12 to 1.14)	1.10 (1.08 to 1.1
Female	155,038 (44	.4) 1	
Facility scale			
Free-standing clinic	233,078 (49	.8) 4.48 (4.27 to 4.70)	4.24 (4.03 to 4.4
Hospital (< 200 beds)-based clinic	23,012 (30	.8) 2.01 (1.91 to 2.11)	2.07 (1.97 to 2.1
Hospital (200-499 beds)-based clinic	9,327 (28	.2) 1.77 (1.68 to 1.89)	1.71 (1.62 to 1.8
Hospital (\geq 500 beds)-based clinic	2,064 (18	.2) 1	

387 CI, confidence interval

388 *Acute upper respiratory infections include viral upper respiratory infections, pharyngitis, bronchitis, and sinusitis.

Table 5. Factors associated with antibiotic prescription for gastrointestinal infections

Characteristics	Antibiotic prescription, n (%)	Unadjusted odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Patient age			
0—9	10,809 (37.0)	1.92 (1.86 to 1.98)	1.76 (1.71 to 1.82
10–19	4,395 (38.7)	2.07 (1.98 to 2.16)	1.92 (1.83 to 2.00
20–64	12,310 (32.4)	1.57 (1.53 to 1.61)	1.55 (1.51 to 1.6
≥65	13,795 (23.4)	1	
Patient sex			
Male	18,547 (30.9)	1.09 (1.06 to 1.12)	1.04 (1.01 to 1.0
Female	21,831 (29.1)	1	
Facility type			
Free-standing clinic	33,712 (32.9)	2.03 (1.82 to 2.27)	1.88 (1.68 to 2.1
Hospital (< 200 beds)-based clinic	4,056 (21.7)	1.15 (1.02 to 1.29)	1.17 (1.04 to 1.3
Hospital (200-499 beds)-based clinic	2,214 (18.9)	0.97 (0.86 to 1.09)	0.93 (0.82 to 1.0
Hospital (\geq 500 beds)-based clinic	396 (19.4)	1	

391 CI, confidence interval

2		
3		
4 5		
6		
7	392	References
8		
9		
10	393	1. de Kraker ME, Wolkewitz M, Davey PG et al. Clinical impact of antimicrobial
11		
12		
13 14	394	resistance in European hospitals: excess mortality and length of hospital stay related to
15		
16		
17	395	methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents
18		
19		
20	396	Chemother 2011; 55: 1598-605.
21		
22 23		
24	397	2. Stewardson AJ, Allignol A, Beyersmann J et al. The health and economic burden of
25		
26		
27	398	bloodstream infections caused by antimicrobial-susceptible and non-susceptible
28		
29		
30	399	Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: a
31 32		
33	100	
34	400	multicentre retrospective cohort study. Euro Surveill 2016; 21: pii=30319.
35		
36	401	2 American HC Hadroth C Duiting AC at all Constant from the in management
37	401	3. Ammerlaan HS, Harbarth S, Buiting AG et al. Secular trends in nosocomial
38		
39 40	402	bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection.
40	402	bioodstream infections, antibiotic-resistant bacteria increase the total burden of infection.
42		
43	403	Clin Infect Dis 2013; 56: 798-805.
44	400	enin mileet Dis 2015, 50. 796-605.
45		
46	404	4. World Health Organization. Global action plan on antimicrobial resistance. Available
47 48	101	1. World Health Organization. Grobal action plan on antimeroblar resistance. Available
40		
50	405	at: http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1
51		
52		
53	406	(Accessed: August 3, 2018).
54		
55		
56 57	407	5. The Government of Japan. National Action Plan on Antimicrobial Resistance (AMR)
58		•
59		33
60		

408	2016-2020. Available at: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-
409	Kenkoukyoku/0000138942.pdf. (Accessed: August 3, 2018).
410	6. Tacconelli E. Antimicrobial use: risk driver of multidrug resistant microorganisms in
411	healthcare settings. Curr Opin Infect Dis 2009; 22: 352-8.
412	7. Muraki Y, Yagi T, Tsuji Y et al. Japanese antimicrobial consumption surveillance:
413	First report on oral and parenteral antimicrobial consumption in Japan (2009-2013). J
414	Glob Antimicrob Resist 2016; 7: 19-23.
415	8. Yoshida S, Takeuchi M, Kawakami K. Prescription of antibiotics to pre-school
416	children from 2005 to 2014 in Japan: a retrospective claims database study. J Public
417	Health (Oxf) 2018; 40: 397-403.
418	9. Higashi T, Fukuhara S. Antibiotic prescriptions for upper respiratory tract infection in
419	Japan. Intern Med 2009; 48: 1369-75.
420	10. The Government of Japan, Ministry of Health, Labour and Welfare. Manual
421	of Antimicrobial Stewardship (1st Edition). Available at: http://www.mhlw.go.jp/fil
422	e/06-Seisakujouhou-10900000-Kenkoukyoku/0000193504.pdf. (Accessed: August 3,
423	2018).

2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30
22 22
23
24
25
26
27
27
28
29
30
31 32 33 34 35 36 37 38
27
52
33
34
35
36
27
57
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50
57
58
59
60

424	11. Kumamoto prefectural government. 2012 Kumamoto National Health Insuranc
425	e business situation report. Available at: http://www.pref.kumamoto.jp.e.qp.hp.trans
426	er.com/kiji_2735.html (Accessed: August 3, 2018).
427	12. Kumamoto prefectural government. The situation such as Kumamoto elderly
428	aged 75 or over medical expenses. Available at: http://www.pref.kumamoto.jp.e.qp.h
429	p.transer.com/kiji_13777.html (Accessed: August 3, 2018).
430	13. Fleming-Dutra KE, Hersh AL, Shapiro DJ et al. Prevalence of Inappropriate
431	Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA 2016;
432	315: 1864-73.
433	14. Hicks LA, Bartoces MG, Roberts RM et al. US outpatient antibiotic prescribing
434	variation according to geography, patient population, and provider specialty in 2011. Clin
435	Infect Dis 2015; 60: 1308-16.
436	15. ESAC-Net surveillance data. Surveillance of antimicrobial consumption in Europe.
437	Available at: http://ecdc.europa.eu/en/publications/Publications/antimicrobial-
438	consumption-europe-esac-net-2012.pdf (Accessed: August 3, 2018).
439	16. Shapiro DJ, Hicks LA, Pavia AT et al. Antibiotic prescribing for adults in ambulatory
	35

1 2		
3		
4 5		
6 7 8	440	care in the USA, 2007-09. J Antimicrob Chemother 2014; 69: 234-40.
9 10 11	441	17. Dolk FCK, Pouwels KB, Smith DRM et al. Antibiotics in primary care in England:
12 13 14	442	which antibiotics are prescribed and for which conditions? J Antimicrob Chemother
15 16 17 18	443	2018; 73: ii2-ii10.
19 20 21	444	18. Harris AM, Hicks LA, Qaseem A. Appropriate Antibiotic Use for Acute Respiratory
22 23 24 25	445	Tract Infection in Adults: Advice for High-Value Care From the American College of
26 27 28	446	Physicians and the Centers for Disease Control and Prevention. Ann Intern Med 2016;
29 30 31	447	164: 425-434.
32 33 34 35	448	19. Bisno AL. Acute pharyngitis: etiology and diagnosis. Pediatrics 1996; 97: 949-54.
36 37 38	449	20. Ebell MH, Smith MA, Barry HC et al. The rational clinical examination. Does this
39 40 41 42	450	patient have strep throat? JAMA 2000; 284: 2912-8.
42 43 44 45	451	21. Butler CC, Rollnick S, Pill R et al. Understanding the culture of prescribing:
46 47 48	452	qualitative study of general practitioners' and patients' perceptions of antibiotics for sore
49 50 51	453	throats. BMJ 1998; 317: 637-42.
52 53 54 55	454	22. Kumar S, Little P, Britten N. Why do general practitioners prescribe antibiotics for
56 57 58	455	sore throat? Grounded theory interview study. BMJ 2003; 326: 138.
59 60		36

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

456	23. Adriaenssens N, Coenen S, Tonkin-Crine S, et al. European Surveillance of
457	Antimicrobial Consumption (ESAC): disease-specific quality indicators for outpatient
458	antibiotic prescribing. BMJ Qual Saf 2011; 20: 764-72.
459	24. Lee ML, Cho CY, Hsu CL, et al. Recent trends in antibiotic prescriptions for acute
460	respiratory tract infections in pediatric ambulatory care in Taiwan, 2000-2009: A
461	nationwide population-based study. J Microbiol Immunol Infect 2016; 49: 554-560.
462	25. Silverman M, Povitz M, Sontrop JM, et al. Antibiotic Prescribing for Nonbacterial
463	Acute Upper Respiratory Infections in Elderly Persons. Ann Intern Med 2017; 166: 765-
464	774.
465	26. Akkerman AE, van der Wouden JC, Kuyvenhoven MM et al. Antibiotic prescribing
466	for respiratory tract infections in Dutch primary care in relation to patient age and clinical
467	entities. J Antimicrob Chemother 2004; 54: 1116-1121.
468	27. Schmidt ML, Spencer MD, Davidson LE. Patient, Provider, and Practice
469	Characteristics Associated with Inappropriate Antimicrobial Prescribing in Ambulatory
470	Practices. Infect Control Hosp Epidemiol. 2018; 39:307-315.

1 Table S1. Classification of infections by groups with corresponding ICD-10 codes

 $\mathbf{2}$

	Diagnosis	ICD-10 codes
Group	0 1: Infections for which an	tibiotics are usually indicated
1	Miscellaneous bacterial infections	Tuberculosis (A15–A19); Certain zoonotic bacterial diseases (A20– A28); Other bacterial diseases including listeriosis, diphtheria, bartonellosis, erysipelas, and rickettsioses (A30–A37, A39–A49, A75–A79); Bacterial meningitis, encephalitis, and intracranial abscess (G00, G042, G049, G06); Mastoiditis (H70); Infective endocarditis (I33, T826); Acute epiglottitis (J051); Deep neck space infections (J36, J390, J391); Abscess of lung and mediastinum; Pyothorax (J85, J86); Infections of the jaws and mouth (K102, K122); Infections due to cardiac and vascular devices (T827); Infection due to internal prosthetic devices, implants and grafts (T857)
2	Sexually transmitted infections	Infections with a predominantly sexual mode of transmission (A50–A64); Other spirochetal diseases (A65–A69); Other diseases caused by chlamydia (A70–A74)
3	Pneumonia	Bacterial pneumonia (J13–J18)
4	Abdominal infections	Acute appendicitis (K35); Abscess of anal and rectal regions, intestine, and liver (K61, K630, K750); Peritonitis (K65); Cholecystitis and cholangitis (K800, K801, K803, K804, K810, K819, K830)
5	Orthopedic infections	Pyogenic arthritis and prosthetic joint infection (M00, T845); necrotizing fasciitis (M726); Infective myositis, synovitis and bursitis (M600, M650–M651, M710–M711); Osteomyelitis (M462–M465, M86)
6	Urinary tract infections	Acute pyelonephritis/pyonephrosis ((N10, N12, N136); Renal abscess (N151); Kidney infection, unspecified (N159); Acute cystitis (N300); Cystitis, unspecified (N308, N309); Urethritis and urethral abscess (N34); Urinary tract infections, unspecified (N390); Prostatitis and abscess of prostate (N41); Orchitis and epididymitis (N45); Catheter associated urinary tract infections (T835)

		BMJ Open
7	Pelvic inflammatory	Pelvic inflammatory diseases (N70-N73, N751, N760-N76
	diseases	Infections of genitourinary tract in pregnancy (O23)
Group	o 2 : Infections for which an	tibiotics are potentially indicated
1	Gastrointestinal infections	Intestinal infectious diseases (A00–A07, A09); Diverticulitis intestine (K57)
2	Skin, cutaneous and	Infections of other skin and subcutaneous tissue including cellul
	mucosal infections	cutaneous abscess, furuncle, carbuncle, impetigo, acute lymphaden
		folliculitis, mastitis (H050, J340, L00–L08, N61, T814); Infection
		the eye and adnexa (H00, H440); Infective otitis externa (H600–H6
3	Suppurative otitis media	Suppurative and unspecified otitis media (H66)
4	Pharyngitis	Streptococcal pharyngitis/tonsillitis (J020, J030); Ad
		pharyngitis/tonsillitis, unspecified (J029, J039); Scarlet fever (A38)
5	Sinusitis	Acute sinusitis (J01); Chronic sinusitis (J32)
6	Bronchitis and	Acute bronchitis (J20) *; Acute bronchiolitis (J21) *; Unspecie
	bronchiolitis with COPD	acute lower respiratory infection (J22) *
7	Acne	Acne (L70)
Group	o 3: Infections for which ant	ibiotics are rarely indicated
1	Nonbacterial	Viral and other specified intestinal infections (A08)
	gastrointestinal infections	
2	Nonsuppurative otitis	Nonsuppurative otitis media (H65)
	media	
3	Viral upper respiratory	Acute nasopharyngitis [common cold] (J00); Ac
	infection	pharyngitis/tonsillitis due to other specified organisms (J028, J0
		Acute laryngitis and tracheitis (J04); Acute obstructive laryng
		[croup] (J050); Acute upper respiratory infections of multiple
		unspecified sites (J06); Cough (R05)
4	Influenza	Influenza (J10, J11)
5	Viral pneumonia	Viral pneumonia (J12)
6	Bronchitis and	Acute bronchitis (J20) **; Acute bronchiolitis (J21) **; Unspeci
	bronchiolitis without	acute lower respiratory infection (J22) **
	COPD	

8	Fever	Fever of unknown origin (R50)	
3 *i	includes visits in whi	ch ICD-10 code for COPD (J41–J44) are present	
4 **	*includes visits in wh	ich ICD-10 code for COPD (J41-J44) are not present	
			3

STROBE Statement—checklist of items that should be included in re	ports of observational studies
STRODE Statement—enceknist of items that should be included in re	ports of observational studies

STROBE Statement-	-check	-checklist of items that should be included in reports of observational studie			
	Item No	Recommendation	Pag No		
Fitle and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1		
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5		
Objectives	3	State specific objectives, including any prespecified hypotheses	6		
•			Ň		
Methods	1	Present key elements of study design early in the paper	7		
Setting	4 5	Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of	7 7—8		
		recruitment, exposure, follow-up, and data collection			
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	9		
		methods of selection of participants. Describe methods of follow-up			
		Case-control study—Give the eligibility criteria, and the sources and			
		methods of case ascertainment and control selection. Give the rationale			
		for the choice of cases and controls			
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and			
	-	methods of selection of participants			
		(b) Cohort study—For matched studies, give matching criteria and			
		number of exposed and unexposed			
		<i>Case-control study</i> —For matched studies, give matching criteria and the			
		number of controls per case			
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	9		
	Orth	and effect modifiers. Give diagnostic criteria, if applicable	0.0		
Data sources/	8*	For each variable of interest, give sources of data and details of methods	8–9		
measurement		of assessment (measurement). Describe comparability of assessment			
	0	methods if there is more than one group			
Bias	9	Describe any efforts to address potential sources of bias			
Study size	10	Explain how the study size was arrived at			
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If			
24-4:-4:141 4-	12	applicable, describe which groupings were chosen and why	0.10		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9–1(
	-	confounding (b) Describe any methods used to examine subgroups and interactions	0.10		
	-	(b) Describe any methods used to examine subgroups and interactions	9–10		
	-	(c) Explain how missing data were addressed			
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed			
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed			
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	11
1 articipants	15	eligible, examined for eligibility, confirmed eligible, included in the study, completing	11
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	11
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	11
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	12-
		their precision (eg, 95% confidence interval). Make clear which confounders were	13
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11-
			13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	18-
		imprecision. Discuss both direction and magnitude of any potential bias	19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	19-
		multiplicity of analyses, results from similar studies, and other relevant evidence	20
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	21
č		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: A retrospective claims database study

	2442.0
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026251.R2
Article Type:	Research
Date Submitted by the Author:	21-Feb-2019
Complete List of Authors:	Hashimoto, Hideki; Jichi Medical University Hospital, Division of General Internal Medicine Matsui, Hiroki; Jichi Medical University, Data Science Center; School of Public Health, University of Tokyo, Department of Clinical Epidemiology and Health Economics Sasabuchi, Yusuke; Jichi Medical University, Data Science Center Yasunaga, Hideo; Jichi Medical University, Data Science Center; School of Public Health, The University of Tokyo, Department of Clinical Epidemiology and Health Economics Kotani, Kazuhiko; Jichi Medical University, Division of Community and Family Medicine Nagai, Ryozo; Jichi Medical University, President Hatakeyama, Shuji; Jichi Medical University Hospital, Division of General Internal Medicine/Division of Infectious Diseases
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, INFECTIOUS DISEASES

1	Antibiotic prescription among outpatients in a prefecture of Japan, 2012–2013: A
2	retrospective claims database study
3	
4	Hideki Hashimoto ¹ , Hiroki Matsui ^{2, 3} , Yusuke Sasabuchi ² , Hideo Yasunaga ^{2, 3} , Kazuhiko
5	Kotani ⁴ , Ryozo Nagai ⁵ , Shuji Hatakeyama ^{1, 6*}
6	
7	¹ Division of General Internal Medicine, Jichi Medical University Hospital, 3311-1
8	Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
9	² Data Science Center, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi,
10	Tochigi 329-0498, Japan.
11	³ Department of Clinical Epidemiology and Health Economics, School of Public Health,
12	University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
13	⁴ Division of Community and Family Medicine, Jichi Medical University, 3311-1
14	Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
15	⁵ President, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-
16	0498, Japan.
	1

17	⁶ Division of Infectious Diseases, Jichi Medical University Hospital, 3311-1 Yakushiji,
18	Shimotsuke-shi, Tochigi 329-0498, Japan.
19	
20	*Corresponding author:
21	Shuji Hatakeyama, M.D., Ph.D.
22	Division of General Internal Medicine/Division of Infectious Diseases, Jichi Medical
23	University Hospital, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
24	Phone: +81-285-58-7498
25	Fax: +81-285-40-5160
26	E-mail: shatake-tky@umin.ac.jp
27	
28	Key words: antibiotic, antimicrobial stewardship, antimicrobial-resistance, big data,
29	inappropriate prescribing
30	Running title: Antibiotic prescriptions in Japan
31	Word count for the main text: 3,002 words
32	
	2

1 2 3 4		
5 6 7 8	33	Abstract
9 10 11	34	Objectives:
12 13 14	35	associated wi
15 16 17 18	36	reduce inappr
19 20 21	37	Design: Retro
22 23 24	38	Setting: Data
25 26 27 28	39	Participants
29 30 31	40	between Apri
32 33 34	41	Main outco
35 36 37 38	42	antibiotics (
39 40 41	43	cephalosporin
42 43 44	44	prescribed. A
45 46 47 48	45	infections (U
49 50 51	46	most frequen
52 53 54	47	urinary tract
55 56 57 58	48	prescribing r
59 60		

34	Objectives: To investigate oral antibiotic prescribing patterns and identify factors
35	associated with antibiotic prescriptions, with the aim of guiding future interventions to
36	reduce inappropriate prescribing.
37	Design: Retrospective cohort study.
38	Setting: Database of public health insurance claims in Kumamoto prefecture (Japan).
39	Participants: Beneficiaries of the national or late elders' health insurance system
40	between April 2012 and March 2013.
41	Main outcome measures: Of 7,770,481 outpatient visits, 682,822 had a code for
42	antibiotics (860 antibiotic prescriptions per 1000 population). Third-generation
43	cephalosporins (35%), macrolides (32%), and quinolones (21%) were most frequently
44	prescribed. Acute respiratory tract infections (ARTIs), including viral upper respiratory
45	infections (URI) (22%), pharyngitis (18%), bronchitis (11%), and sinusitis (10%) were
46	most frequently diagnosed for antibiotic prescribing, followed by gastrointestinal (9%),
47	urinary tract (8%), and skin, cutaneous, and mucosal infections (5%). Antibiotic
48	prescribing rates for viral URI, pharyngitis, bronchitis, sinusitis, and gastrointestinal

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

49	infections were 35%, 54%, 53%, 57%, and 30%, respectively. In multivariable analysis
50	for ARTIs and gastrointestinal infections, patient age (10-19 years especially), patient
51	sex (male), and facility scale (free-standing clinics or small-scale hospital-based clinics)
52	were associated with increased antibiotic prescribing.
53	Conclusions: Broad-spectrum antibiotics constituted 88% of oral outpatient antibiotic
54	prescriptions. Approximately 70% of antibiotics were prescribed for ARTIs and
55	gastroenteritis with modest benefit from antibiotic treatment. The quality of antibiotic
56	prescribing needs to be improved. Antimicrobial stewardship interventions should target
57	ARTIs and gastroenteritis, as well as young patients and small-scale institutions.

Page 5 of 43	}		BMJ Open
1 2 3 4 5			
6 7 8	58	Stre	ength and limitations of this study
9 10 11	59	•	This is the first Japanese study to describe outpatient antibiotic prescription patterns
12 13 14 15	60		linked to individual diagnosis data, comprehensively, by use of the public health
16	61		insurance claims database.
21	62	•	This study included patients older than 65 years of age, who have not typically been
22 23 24 25	63		included in previous Japanese studies.
26	64	•	The accuracy of the diagnosis has not been validated due to the nature of the
29 30 31	65		administrative claims database.
32 33 34 35	66	•	There are some unmeasured potential confounding factors such as out-of-hours
36	67		visits and physician specialty.
 39 40 41 42 43 44 45 			visits and physician specialty.
46 47 48 49			
50 51 52 53 54			
55 56 57			
58 59 60			5

69 Introduction

70	There is a growing concern about antimicrobial-resistant bacterial infections.
71	Antimicrobial resistance results in increased health care costs, prolonged hospitalization,
72	and death. ¹⁻³ The World Health Organization launched the global action plan to combat
73	the antimicrobial-resistant bacteria in 2015 ⁴ and requested Member States to endorse
74	national action plans within two years. The government of Japan launched a national
75	action plan in 2016 in response to the request. ⁵
76	Since antimicrobial use is one of the important factors in the emergence of antimicrobial
77	resistance, ⁶ it is essential to reduce the inappropriate use of antibiotics. In Japan, a
78	previous sales data-based study revealed that oral antibiotics account for more than 90%
79	of total antibiotic consumption and that broad-spectrum antibiotics (third-generation
80	cephalosporins, macrolides, and fluoroquinolones) account for 77% of oral antibiotic
81	consumption (daily doses defined per 1000 inhabitants per day). ⁷ The Japanese national
82	action plan aims to reduce the total antimicrobial use to two-thirds of current use, and the
83	use of oral cephalosporins, quinolones, and macrolides to one-half, by 2020. To reduce
84	inappropriate antimicrobial use, it is important to determine the antimicrobial prescribing
	6

BMJ Open

85	patterns and factors associated with antibiotic prescription. However, such information
86	has been limited in Japan to date. Although a few recent studies ^{8,9} described the
87	prescription patterns for upper respiratory tract infections and bronchitis, the prescription
88	patterns of infections other than acute respiratory tract infections (ARTIs) have not been
89	clarified. In addition, patients older than 65 years of age have not been commonly
90	included in these studies, because these studies relied on data from an employee-based
91	insurance claims database. With the high rate in aging population in Japan, it is important
92	to describe the prescription patterns in elderly patients.
93	In this study, we described outpatient oral antibiotic prescribing patterns for all
93 94	In this study, we described outpatient oral antibiotic prescribing patterns for all infections and in all ages, using the Japanese administrative claims database. Furthermore,
94	infections and in all ages, using the Japanese administrative claims database. Furthermore,
94 95	infections and in all ages, using the Japanese administrative claims database. Furthermore, we aimed to identify factors associated with antibiotic prescriptions for ARTIs and
94 95 96	infections and in all ages, using the Japanese administrative claims database. Furthermore, we aimed to identify factors associated with antibiotic prescriptions for ARTIs and gastrointestinal infections, the targets of the antimicrobial stewardship guideline

3 4 5 6 7 8 9 10 1 1 2 3 14 5 16 7 18 9 20 1 2 2 3 2 4 5 2 2 7 2 8 9 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	2
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	4 5
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	6
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	7
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	8
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	9
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	10 11
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	12
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	13
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	14
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	15 16
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	17
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	18
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	19
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	20
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	∠⊺ 22
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	23
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	24
36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58	25
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	26 27
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	28
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	29
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	30
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	31 32
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	33
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 57 58 59	34
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	35
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	36 37
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	38
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	39
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	
 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	
 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	43
46 47 48 49 50 51 52 53 54 55 56 57 58 59	44
47 48 49 50 51 52 53 54 55 56 57 58 59	
48 49 50 51 52 53 54 55 56 57 58 59	
49 50 51 52 53 54 55 56 57 58 59	
51 52 53 54 55 56 57 58 59	49
52 53 54 55 56 57 58 59	
53 54 55 56 57 58 59	
54 55 56 57 58 59	
56 57 58 59	54
57 58 59	
58 59	56 57
59	58
60	59
	60

99 Methods

100 Data sources

101	The current population of Japan is approximately 127 million. All citizens are enrolled
102	in a universal health coverage insurance program provided by the social insurance system
103	(for employees younger than 75 years of age), national health insurance system (for self-
104	employed or unemployed people younger than 75 years of age), and the late elders' health
105	insurance system (for those aged 75 years and older). In Japan, patients can visit any
106	clinic of their choice. All physicians working at any free-standing or hospital-based
107	clinics can provide primary care and prescribe antibiotics.
108	We conducted a retrospective analysis using the administrative health insurance claims
109	database of Kumamoto prefecture, situated in the southwestern region of Japan, with a
110	population of about 1.7 million. This database covers approximately 780,000 residents of
111	Kumamoto prefecture (44% of the population) who were beneficiaries of the national
112	health insurance system, ¹¹ or the late elders' health insurance system. ¹² The participants
113	in this study may be older than the general population of Japan.
114	The database is composed of medical and pharmacy claims. It provides monthly

115	information about patient demographics (year and month of birth and sex), diagnoses,
116	date of diagnoses, medical procedures, medications, scale (number of beds) of the
117	medical facility, as well as the identification numbers assigned to each individual, medical
118	facility, and dispensing pharmacy. At the end of each month, claims are registered from
119	each medical facility. The diagnoses were recorded by physicians of each medical facility
120	and coded according to the International Classification of Diseases and Related Health
121	Problems, 10th Revision (ICD-10).
122	
123	Data preparation
124	We linked the medical and pharmacy claims on the database using an identification
125	number unique to each patient, medical facility, and dispensing pharmacy. We identified
126	all newly diagnosed outpatients, with any infectious diseases, between April 2012 and
127	March 2013. Infectious diseases diagnoses were categorized according to the indication
128	for antibiotic use (Table S1, available as supplementary data). This categorization was
129	based on the study by Fleming-Dutra KE et al. ¹³ Bronchitis and bronchiolitis were divided
130	into two categories based on whether the patients had chronic obstructive pulmonary
	9

disease (COPD) as comorbidity or not, because of differing need of treatment with antibiotics. If a patient had multiple infectious diagnoses in one month, a single infectious diagnosis, selected in order from Group 1 (antibiotics are usually indicated) to Group 3 (antibiotics are rarely indicated), and the first-listed diagnosis in alphabetical order of ICD-10 codes in the selected group was included in the analyses (Table S1). We also identified all outpatients with any antibiotic prescriptions. Topical, intramuscular, and intravenous antibiotics were excluded. Antibiotics were categorized according to the Anatomical Therapeutic Chemical (ATC) classification system (http://www.whocc.no/atcddd/) as follows: tetracyclines (J01A), penicillins (J01C), first-and second-generation cephalosporins (J01DB and J01DC), third-generation cephalosporins (J01DD), sulfonamides and trimethoprim (J01E), macrolides (J01FA), quinolones (J01M), and others (J01B, J01DH, J01DI, J01FF, J01G, and J01X). We assumed that third-generation cephalosporins accounted for most of cephalosporins used in Japan; hence, we divided cephalosporins into two groups: first/second- and third-generation cephalosporins. Antibiotics were linked to the infectious diagnoses in each patient's claims when both the code of antibiotics and the code of diagnoses were

 recorded in the same month. <i>Data Analysis</i> We calculated the frequency of antibiotic prescription for all visits with infections (according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis, inonchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal infections, we performed separate multivariable logistic regression analyses to identify the factors associated with antibiotic prescriptions. The variables were as follows: age and sex of patients and scale (number of beds) of the medical facilities. Generalized instimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistical instimation analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). <i>Patient involvement</i> To patients were involved in the development of the rescarch question or the outcome 		
148 149 Data Analysis 150 We calculated the frequency of antibiotic prescription for all visits with infections 151 (according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis, 152 bronchitis/bronchiolitis, and viral upper respiratory infections [URIJ] and gastrointestinal 153 infections, we performed separate multivariable logistic regression analyses to identify 154 the factors associated with antibiotic prescriptions. The variables were as follows: age 155 and sex of patients and scale (number of beds) of the medical facilities. Generalized 156 clustering of the medical facilities. P-values < 0.05 were considered statistically 157 ignificant. All statistical analyses were performed with the statistical package R, v.3.5.0 159 (http://cran.r-project.org). 161 Patient involvement 162 No patients were involved in the development of the research question or the outcome		
149Data Analysis150We calculated the frequency of antibiotic prescription for all visits with infections151(according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis,152bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal153infections, we performed separate multivariable logistic regression analyses to identify154the factors associated with antibiotic prescriptions. The variables were as follows: age155and sex of patients and scale (number of beds) of the medical facilities. Generalized156estimating equations with exchangeable correlation structure were used to account for the157clustering of the medical facilities. P-values < 0.05 were considered statistically	147	recorded in the same month.
 We calculated the frequency of antibiotic prescription for all visits with infections (according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis, bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal infections, we performed separate multivariable logistic regression analyses to identify the factors associated with antibiotic prescriptions. The variables were as follows: age and sex of patients and scale (number of beds) of the medical facilities. Generalized estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). 	148	
 (according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis, bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal infections, we performed separate multivariable logistic regression analyses to identify the factors associated with antibiotic prescriptions. The variables were as follows: age and sex of patients and scale (number of beds) of the medical facilities. Generalized estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). 	149	Data Analysis
 bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal infections, we performed separate multivariable logistic regression analyses to identify the factors associated with antibiotic prescriptions. The variables were as follows: age and sex of patients and scale (number of beds) of the medical facilities. Generalized estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). <i>Patient involvement</i> No patients were involved in the development of the research question or the outcome 	150	We calculated the frequency of antibiotic prescription for all visits with infections
 infections, we performed separate multivariable logistic regression analyses to identify the factors associated with antibiotic prescriptions. The variables were as follows: age and sex of patients and scale (number of beds) of the medical facilities. Generalized estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). 	151	(according to diagnosis and antibiotic class). For ARTIs (including pharyngitis, sinusitis,
 the factors associated with antibiotic prescriptions. The variables were as follows: age and sex of patients and scale (number of beds) of the medical facilities. Generalized estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). <i>Patient involvement</i> No patients were involved in the development of the research question or the outcome 	152	bronchitis/bronchiolitis, and viral upper respiratory infections [URI]) and gastrointestinal
 and sex of patients and scale (number of beds) of the medical facilities. Generalized estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). <i>Patient involvement</i> No patients were involved in the development of the research question or the outcome 	153	infections, we performed separate multivariable logistic regression analyses to identify
 estimating equations with exchangeable correlation structure were used to account for the clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). <i>Patient involvement</i> No patients were involved in the development of the research question or the outcome 	154	the factors associated with antibiotic prescriptions. The variables were as follows: age
 157 clustering of the medical facilities. <i>P</i>-values < 0.05 were considered statistically 158 significant. All statistical analyses were performed with the statistical package R, v.3.5.0 159 (http://cran.r-project.org). 160 161 <i>Patient involvement</i> 162 No patients were involved in the development of the research question or the outcome 	155	and sex of patients and scale (number of beds) of the medical facilities. Generalized
 significant. All statistical analyses were performed with the statistical package R, v.3.5.0 (http://cran.r-project.org). <i>Patient involvement</i> No patients were involved in the development of the research question or the outcome 	156	estimating equations with exchangeable correlation structure were used to account for the
 159 (http://cran.r-project.org). 160 161 <i>Patient involvement</i> 162 No patients were involved in the development of the research question or the outcome 	157	clustering of the medical facilities. P -values < 0.05 were considered statistically
 160 161 <i>Patient involvement</i> 162 No patients were involved in the development of the research question or the outcome 	158	significant. All statistical analyses were performed with the statistical package R, v.3.5.0
 161 <i>Patient involvement</i> 162 No patients were involved in the development of the research question or the outcome 	159	(http://cran.r-project.org).
162 No patients were involved in the development of the research question or the outcome	160	
	161	Patient involvement
11	162	No patients were involved in the development of the research question or the outcome
		11

measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked for advice regarding the interpretation or writing of results. There are no plans to disseminate the study results to the relevant patient to beet terien only community.

1 2 3 4 5 6 7	
7 8 9 10 11 12 13 14 15 16 17 18 19	
14 15 16 17 18 19 20	
20 21 22 23 24 25 26 27 28 29	
30 31 32 33	
34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48	
49 50 51 52 53 54	
55 56 57 58 59 60	

168	Results
169	In total, there were 7,770,481 outpatient visits between April 2012 and March 2013.
170	Antibiotics were prescribed in 682,822 visits (860 antibiotic prescriptions per 1000
171	population). Among these, third-generation cephalosporins were most frequently
172	prescribed (237,372 visits, 35%), followed by macrolides (215,656 visits, 32%) and
173	quinolones (145,135 visits, 21%). This trend was observed regardless of age group (Table
174	1) and scale of the medical facility (Table 2), except for those less than 9 years of age in
175	whom the systemic use of quinolones is not recommended. Information about facility
176	scale was available from 669,086 out of 682,822 visits. Of these, antibiotics were
177	prescribed most frequently at free-standing clinics (530,916 visits, 79%), followed by
178	small-scale (< 200 beds; 78,546 visits, 12%), medium-scale (200–499 beds; 45,271 visits,
179	7%), and large-scale (500 beds or more; 14,353 visits, 2%) hospital-based clinics (Table
180	2).
181	We were able to link the individual diagnoses to the antibiotic prescription in 447,232
182	visits (Table 3). Of these patients, approximately 60% of antibiotics were prescribed for
183	ARTIs, including viral URI (96,989 visits, 22%), pharyngitis (78,469 visits, 18%),

2	
3	
4	
5	
6	
7	
8	
9	
10 11	
11	
12	
13	
12 13 14 15	
15	
16 17	
17 18 19 20	
10	
20	
21	
22	
23	
24	
22 23 24 25	
26	
27	
28	
29	
30	
31 32 33	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42 43	
43 44	
44 45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

184	bronchitis without COPD (47,248 visits, 11%), and sinusitis (45,456 visits, 10%). Other
185	than ARTIs, there were frequent antibiotic prescriptions for gastrointestinal infections
186	(41,309 visits, 9%), urinary tract infections (37,674 visits, 8%), and skin, cutaneous, and
187	mucosal infections (23,572 visits, 5%). The antibiotic prescription rates for viral URI,
188	pharyngitis, bronchitis (without underlying COPD), sinusitis, and gastrointestinal
189	infections were 35% (96,989 out of 274,441 visits), 54% (78,469 out of 146,508 visits),
190	53% (47,248 out of 89,479 visits), 57% (45,456 out of 80,078 visits), and 30% (41,309
191	out of 137,661 visits), respectively (Table 3).
192	Table 4 shows the results of the logistic regression analysis of antibiotic prescription for
193	ARTIs. Male sex was associated with more antibiotic prescription (adjusted odds ratio
194	[OR], 1.10; 95% confidence interval [CI], 1.08 to 1.11). With patients aged 65 years or
195	older as reference, patients aged 10 to 19 years were more likely to be prescribed
196	antibiotics (adjusted OR, 2.75; 95% CI, 2.69 to 2.82), followed by patients aged 20 to 64
197	years (adjusted OR, 1.92; 95% CI, 1.89 to 1.94), and patients younger than 10 years
198	(adjusted OR, 1.48; 95% CI, 1.46 to 1.50). Regarding facility scale, with large-scale (500
199	beds or more) hospital-based clinics as reference, free-standing clinics (adjusted OR,
	14

200	4.24; 95% CI, 4.03 to 4.45), small-scale (< 200 beds) hospital-based clinics (adjusted OR,
201	2.07; 95% CI, 1.97 to 2.18), and medium-scale (200-499 beds) hospital-based clinics
202	(adjusted OR, 1.71; 95% CI, 1.62 to 1.80) were significantly associated with more
203	frequent antibiotic prescription.
204	Similar results were shown with the logistic regression analysis for gastrointestinal
205	infections (Table 5). Male sex was associated with slightly more antibiotic prescription
206	(adjusted OR, 1.04; 95% CI, 1.01 to 1.06) than the female sex. Patients aged 10 to 19
207	years (adjusted OR, 1.92; 95% CI, 1.83 to 2.00), 20 to 64 years (adjusted OR, 1.55; 95%
208	CI, 1.51 to 1.60), and younger than 10 years (adjusted OR, 1.76; 95% CI, 1.71 to 1.82)
209	received more antibiotic prescriptions compared with patients aged 65 years or older.
210	With reference to large-scale (\geq 500 beds) hospital-based clinics, free-standing clinics
211	(adjusted OR, 1.88; 95% CI, 1.68 to 2.10) and small-scale (< 200 beds) hospital-based
212	clinics (adjusted OR, 1.17; 95% CI, 1.04 to 1.32) were associated with frequent antibiotic
213	prescription for gastrointestinal infections.

Discussion

216	We described oral antibiotic prescription patterns in the outpatient care setting in Japan.
217	To the best of our knowledge, this is the first Japanese study to comprehensively describe
218	antibiotic prescription patterns linked to individual diagnoses data, using the claims
219	database. Broad-spectrum antibiotics consisting of third-generation cephalosporins,
220	macrolides, and quinolones accounted for nearly 90% of antibiotic prescriptions in the
221	primary care settings. Prescription of penicillin was only 5%. This prescription pattern is
222	consistent with the results of an analysis of antibiotic sales data in Japan, in which 77%
223	of oral antibiotics shipped were broad-spectrum. ⁷ In contrast, the use of cephalosporins,
224	macrolides, and quinolones in the United States of America (USA) and Europe were
225	much lower than in Japan. Hicks et al. ¹⁴ analyzed the sales data of oral antibiotics in the
226	USA and showed that cephalosporins, macrolides, and quinolones accounted for 48% of
227	the total oral antibiotics. In their study, penicillin had the largest share of the antibiotics
228	(23%). Data from the European Surveillance of Antimicrobial Consumption project ¹⁵ also
229	showed that cephalosporins, macrolides, and quinolones accounted for about one third of
230	the total oral antibiotic consumptions, in Europe. This study demonstrated a rather high
	16

BMJ Open

ratio of broad-spectrum to narrow-spectrum oral antibiotics, in Japan; therefore, the quality of antibiotic prescribing needs to be improved. Although quinolones are not recommended for children, quinolones were prescribed as much as penicillins in children aged 0-9 years in our study. This may be because oral fluoroquinolones such as tosufloxacin are approved for children to treat otitis media and pneumonia in Japan. Since the approval of quinolones in 2010, despite the recommendation to prescribe quinolones carefully for children, many physicians prescribed tosufloxacin to children in expectation of clinical effectiveness. Among antibiotics linked with individual diagnosis data, over 60% of antibiotics were prescribed for ARTIs, followed by gastrointestinal infections (9%), urinary tract infections (8%), and skin, cutaneous, and mucosal infections (5%). Surprisingly, viral URI (common cold) was the most frequent infection associated with antibiotic prescription. In the ambulatory care setting in the USA, antibiotics were prescribed most frequently for acute respiratory conditions (41-44%), followed by skin and mucosal conditions (15–19%), urinary tract infections (7–8%), and gastrointestinal conditions (5– 6%).^{13,16} Another study using primary care data in the United Kingdom (UK)¹⁷

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53 54	
54 55	
55 56	
57 58	
58 59	
59 60	
00	

247	demonstrated that 46% of antibiotics were prescribed for respiratory tract conditions,
248	followed by urogenital tract (23%), and skin conditions (10%). Only 1% was prescribed
249	for gastrointestinal conditions. Our study demonstrated a higher proportion of antibiotic
250	prescription for ARTIs (approximately 15% higher than those in USA or UK) and
251	gastrointestinal infections (approximately 5% higher) in Japan.
252	Antibiotics were prescribed for 35% of viral URI cases and approximately 50-60% of
253	pharyngitis, bronchitis, and sinusitis cases in our study. These prescription rates were
254	approximately similar to those of a USA study, ¹³ which showed a rate of 30% for viral
255	URI, 62% for pharyngitis, 65% for bronchitis, and 72% for sinusitis. Medically,
256	antibiotics are rarely indicated for ARTIs. ¹⁸ Antibiotics have no role in the treatment of
257	either viral URI (common cold) or the majority of acute bronchitis cases, which are
258	generally caused by viral infection. Only a minority of patients with bronchitis (< 10%),
259	for example patients who have underlying COPD or whooping cough, may derive any
260	benefit from antibiotic treatment. With pharyngitis, antibiotics are mainly indicated only
261	for streptococcal pharyngitis, which accounts for 5–15% of pharyngitis in adults and 20–
262	30% in children. ^{19, 20}

BMJ Open

263	The antibiotic prescription rate for gastrointestinal infections was three times higher than
264	the rate reported in the USA (30% vs. 10%). ¹³ As most acute gastroenteritis is self-
265	limiting, the Japanese national guideline recommends the non-usage of antibiotics for
266	gastroenteritis unless symptoms are severe. ¹⁰ Based on our study, approximately 70% of
267	oral antibiotics are prescribed for ARTIs or acute gastroenteritis; however, most (> 80%),
268	did not require antibiotics. Therefore, there is a need for suitable targets to reduce
269	unnecessary antibiotic use in accordance with antimicrobial stewardship program.
270	Previous studies from the UK ^{21, 22} analyzed reasons for antibiotic prescribing for sore
271	throats and assessed that patient demand for antibiotics and physician pressure to meet
272	patient demand are associated with antibiotic prescription. In addition, we suppose that
273	physicians frequently prescribe antibiotics for URI as prophylaxis for complicating
274	secondary bacterial infections. Previous qualitative studies identified that additional
275	factors associated with antibiotic prescription included diagnostic uncertainty,
276	unawareness of guidelines, time pressure at work, and patient expectations regarding
277	antibiotics. ²³⁻²⁵
278	As for antibiotic prescription for ARTIs and gastrointestinal infections, most

antibiotics prescribed were broad-spectrum. For example, quinolones accounted for 15– 35% of the antibiotics prescribed for ARTIs in this study, although the proportion of quinolones to whole antibiotics prescribed for ARTIs should be <5% according to the ESAC disease-specific quality indicators.²⁶ Accordingly, the quality of antibiotic prescribing should be improved. The logistic regression analyses revealed several factors associated with antibiotic prescriptions for ARTIs and gastrointestinal infections. The smaller the facility scale, the higher the odds of antibiotic prescribing. Recent studies from Japan⁸ and Taiwan²⁷ have found similar results. As family practitioners, pediatricians, and internists usually prescribe a high number of antibiotic courses,¹⁴ greater adherence to treatment guidelines among physicians in these specialties is particularly important. It has also been reported that mid- or late-career stage physicians (because the effect of training received during medical education might have reduced, after this long time) were more likely to prescribe antibiotics for nonbacterial acute URI.28 Patient age was another factor associated with antibiotic prescription. In this study, antibiotic prescription rates for ARTIs and gastrointestinal infections were highest in

295 patients aged 10–19 years, followed by patients aged 20–64 years (ARTIs) or 0–9 years	295
296 (gastrointestinal infections). A previous study concerning Dutch primary care showed	296
similar results of antibiotic over-prescribing for ARTIs in patients aged 31–65 years (i.e.,	297
not in children or the elderly). ²⁹ As adolescents and young adults generally pose a much	298
299 lower risk of disease complications than young children or elderly individuals,	299
antimicrobial stewardship should focus on these age groups of patients. In this study,	300
301 male sex was also associated with increased antibiotic prescribing. Although a patient sex	301
302 difference was observed in another study, the results differed; female patients were more	302
303 likely to have high prescribing in the USA. ¹⁴ The reason for patient age and sex difference	303
304 in antibiotic prescribing remains to be clarified. Patient sex and age-standardized	304
antibiotic prescription rates need to be assessed in Japan for effective intervention.	305
306 Our study has several limitations. First, our results do not represent the entire antibiotic	306
307 prescription pattern in Japan because the claims database used in this study was composed	307
308 of claims in only one prefecture. Geographical diversity in antibiotic prescribing may be	308
309 present, as observed in the previous study from the USA. ¹⁴ Second, since we used an	309
administrative claims database; the accuracy of the diagnosis was not validated. In	310
21	

1 2
3
4
5
6
7
8 9
9 10
11
12
13
14
15
16 17
17 18
19
20
21
22 23
23 24
24 25
26
27
28
29 30
30
31 32
33
34
34 35 36 37 38
36
37
38 39
40
41
42
43
44
45 46
40 47
48
49
50
51
52 53
53 54
55
56
57
58
59
60

311	addition, we could not link diagnosis and antibiotic prescriptions on a one-to-one level
312	when patients had multiple infectious diagnoses. Third, there may be other potential
313	confounding factors that were not included in this study. For example, information on
314	out-of-hours visits, ⁸ non-specialty physicians, ^{8, 27, 30} and patient's low-per capita income
315	or low-education, ¹⁴ which have been reported as potential factors associated with
316	inappropriate antibiotics prescribing, could not be extracted from the claims database in
317	this study. Fourth, only 65% of antibiotic prescriptions were linked to infectious disease
318	visits. This may be partly because we could not capture the information concerning
319	follow-up visits when patients had multiple visits for a single infection (antibiotics were
320	linked to the infectious diagnoses only when they were prescribed at the first visit of an
321	illness episode). In addition, approximately 3-5% of medical claims that included
322	diagnostic codes and 0.1% of pharmacy claims that included prescription (medication)
323	codes were registered in non-digital format. As non-digital insurance claims were not
324	included in our database, 3–5% of antibiotic prescriptions were not linked to diagnoses.
325	Therefore, inappropriate antibiotic prescription might be underestimated rather than
326	overestimated.

327	In conclusion, this Japanese study demonstrated that third-generation cephalosporins,
328	macrolides, and quinolones accounted for 88% of oral antibiotic prescription.
329	Approximately 60% of antibiotic prescription was provided for ARTIs, with viral URI
330	and pharyngitis being the two ARTI diagnoses with the largest antibiotic prescriptions.
331	Gastrointestinal infections were the second most common diagnosis for antibiotic
332	prescribing. The scale of the facilities (clinic or small-scale hospital) and patient age
333	(adolescents and young adults) were factors associated with antibiotic over-prescription.
334	Antimicrobial stewardship interventions should focus on targeting antibiotic prescribing
335	for these infectious diagnoses, patients, and institutions. Further nationwide studies are
336	needed to support our data, and longitudinal studies using medical claims data are needed
337	to evaluate the effectiveness of antimicrobial stewardship.

338 Authors' contributions

339	HH and SH conceived the study, interpreted the data and results, and drafted the
340	manuscript. HH, HM, YS, and HY collected, organized, analyzed the data, and
341	performed statistical analyses. KK and RN conceived the study and collected and
342	interpreted the data. All authors critically revised the manuscript for intellectual content.
343	All authors read and approved the final manuscript.
344	
345	Funding
346	This work was funded by ImPACT Program of Council for Science, Technology, and
347	Innovation (Cabinet Office, Government of Japan) and by MEXT KAKENHI, Grant
348	Number 16K09254.
349	
350	Competing interests
351	None declared.
352	
353	Data sharing

No additional data available.

Transparency declarations

explained.

Ethical approval

(Number 17-002).

The lead author (the manuscript's guarantor) affirms that the manuscript is an honest,

accurate, and transparent account of the study reported; that no important aspects of the

study have been omitted; and that any discrepancies from the study as planned have been

'è e.

This study was approved by the Ethics Committee of the Jichi Medical University

1	
2 3	
4	
5	
6	354
7 8	001
9	
10	355
11	
12 13	
13	356
15	
16	357
17 18	597
18 19	
20	358
21	
22	
23 24	359
24 25	
26	
27	360
28	
29 30	361
31	501
32	
33	362
34 35	
36	
37	363
38	
39 40	364
40	504
42	
43	
44 45	
43 46	
47	
48	
49 50	
50 51	
52	
53	
54 57	
55 56	
57	
58	
59	
60	

Table 1. Frequency of oral antibiotic prescriptions by age and antibiotic groups

		Number (%) of	visits with antibioti	c prescription			
Antibiotic groups	Age Group, y						
coded by ATC* classification**	0–9	10–19	20–64	≥ 65	All ages		
Penicillins	7,495 (7.2)	1,724 (4.2)	8,574 (4.5)	14,924 (4.3)	32,717 (4.8)		
First/second-generation cephalosporins	964 (0.9)	411 (1.0)	2,987 (1.6)	5,719 (1.6)	10,081 (1.5)		
Third-generation cephalosporins	52,082 (49.9)	16,367 (40.1)	60,621 (31.8)	108,302 (31.2)	237,372 (34.8)		
Macrolides	28,597 (27.4)	14,691 (36.0)	56,719 (29.7)	115,649 (33.3)	215,656 (31.6)		
Quinolones	7,286 (7.0)	4,158 (10.2)	48,843 (25.6)	84,848 (24.4)	145,135 (21.3)		
Sulfonamides and trimethoprim	32 (0.0)	53 (0.1)	1,389 (0.7)	4,520 (1.3)	5,994 (0.9)		
Tetracyclines	915 (0.9)	1,366 (3.3)	4,366 (2.3)	5,147 (1.5)	11,794 (1.7)		
Other antibiotics	6,901 (6.6)	2,021 (5.0)	7,186 (3.8)	7,965 (2.3)	24,073 (3.5)		
All antibiotics	104,272	40,791	190,685	347,074	682,822		

367 *ATC: Anatomical Therapeutic Chemical

368 **Penicillins, J01C; First-generation cephalosporins, J01DB; Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD;

369 Macrolides, J01FA; Quinolones, J01M; Sulfonamides and trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF,

370 J01G, and J01X

 BMJ Open

Table 2. Frequency of oral antibiotic prescriptions by facility scale and antibiotic group*

Antibiotic groups	Number (%) of visits with antibiotic prescription						
coded by ATC** classification***		Small-scale hospital	Medium-scale	Large-scale hospital			
	Free-standing clinic	(< 200 beds)-based	hospital (200-499	$(\geq 500 \text{ beds})$ -based	All facilities		
		clinic	beds)-based clinic	clinic			
Penicillins	25,225 (4.8)	3,453 (4.4)	2,968 (6.6)	565 (3.9)	32,211 (4.8)		
First/second-generation cephalosporins	6,755 (1.3)	1,789 (2.3)	1,245 (2.8)	158 (1.1)	9947 (1.5)		
Third-generation cephalosporins	187,928 (35.4)	25,463 (32.4)	15,252 (33.7)	4,139 (28.8)	232,782 (34.8)		
Macrolides	169,980 (32.0)	26,307 (33.5)	11,319 (25.0)	3,833 (26.7)	211,439 (31.6)		
Quinolones	110,770 (20.9)	17,877 (22.8)	9,992 (22.1)	3,402 (23.7)	142,041 (21.2)		
Sulfonamides and trimethoprim	712 (0.1)	1,069 (1.4)	2,234 (4.9)	1,618 (11.3)	5,633 (0.8)		
Tetracyclines	9,477 (1.8)	846 (1.1)	803 (1.8)	320 (2.2)	11,446 (1.7)		
Other antibiotics	20,069 (3.8)	1,742 (2.2)	1,458 (3.2)	318 (2.2)	23,587 (3.5)		
All antibiotics	530,916	78,546	45,271	14,353	669,086		

373 *13,736 patients with antibiotic prescription were excluded due to missing data about facility scale.

374 **ATC: Anatomical Therapeutic Chemical

375 ***Penicillins, J01C; First-generation cephalosporins, J01DB; Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD;

376 Macrolides, J01FA; Quinolones, J01M; Sulfonamides and trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF,

377 J01G, and J01X

BMJ Open

Table 3. Frequency of oral antibiotic prescriptions by antibiotic groups and diagnoses

379

		Visits with any	Number (%) of visits with antibiotic prescriptions by antibiotic groups*							
Diagnoses	All visits	antibiotic prescription and prescription rate (%)	Penicillins	1 st /2 nd cephem	3 rd cephem	Macrolide s	Quinolone s	ST	Tetracyclin es	Other antibiotics
Miscellaneous	45,061	20,429 (45.3)	2,969 (11.5)	468 (1.8)	7,404 (28	7,868 (30	5,731 (22	181 (0.7)	444 (1.7)	728 (2.8)
bacterial infections		43,001	20,429 (43.3)	2,909 (11.3)	408 (1.8)	.7)	.5)	.2)	181 (0.7)	444 (1.7)
STD	14,051	3,931 (28.0)	86 (1.9)	76 (1.7)	836 (18.9	1515 (34. 2)	496 (11.2)	14 (0.3)	147 (3.3)	1,260 (28.4)
Bacterial Pneumonia	47,035	21,473 (45.7)	916 (3.4)	121 (0.5)	5,044 (18 .9)	8,568 (32 .2)	11,236 (4 2.2)	191 (0.7)	238 (0.9)	316 (1.2)
Abdominal infection	9,208	2,077 (22.6)	69 (3.2)	29 (1.3)	680 (31.1)	142 (6.5)	1,086 (49 .7)	≤ 10	≤ 10	177 (8.1)
Orthopedic infection	1,749	380 (21.7)	36 (8.2)	22 (5.0)	225 (51.4	21 (4.8)	93 (21.2)	≤ 10	19 (4.3)	22 (5.0)
Urinary tract infections	97,948	37,674 (38.5)	1,195 (2.9)	567 (1.4)	14,735 (3 6.0)	1,998 (4. 9)	20,229 (4 9.5)	429 (1.0)	521 (1.3)	1,232 (3.0)
PID	11,621	1,763 (15.2)	84 (4.6)	26 (1.4)	1127 (61.	164 (8.9)	167 (9.1)	≤ 10	≤ 10	273 (14.8) 28

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 2	29	of 4	43
--------	----	------	----

					2)			
GI infections	137,661	41,309 (30.0)	2,121 (4.6)	264 (0.6)	12,060 (2 6.0)	8603 (18. 6)	13206 (2 8.5)	196 (0.4
Skin infections	62,202	23,572 (37.9)	1,167 (4.6)	1,337 (5. 3)	15,311 (6 0.6)	1,975 (7. 8)	2,848 (11 .3)	25 (0.1
Suppurative otitis media	16,059	9,958 (62.0)	1,566 (11.8)	18 (0.1)	5,213 (39 .1)	1,972 (14 .8)	3,654 (27 .4)	≤1
Pharyngitis	146,508	78,469 (53.6)	4,372 (5.1)	450 (0.5)	35,958 (4 1.8)	27,454 (3 1.9)	16,387 (1 9.1)	121 (0.1
Sinusitis	80,078	45,456 (56.8)	3,654 (6.9)	481 (0.9)	15,282 (2 8.8)	20,677 (3 9.0)	11,441 (2 1.6)	≤ 1
Bronchitis with COPD	6,832	4,313 (63.1)	208 (4.1)	14 (0.3)	912 (17.8)	2,178 (42 .5)	1,762 (34 .3)	28 (0.5
Acne	6,939	2,030 (29.3)	≤ 10	32 (1.5)	174 (8.3)	739 (35.2	41 (2.0)	≤1
Nonbacterial GI infections	1,215	116 (9.5)	≤ 10	≤10	42 (33.1)	38 (29.9)	33 (26.0)	≤1
Nonsuppurative otitis media	2,807	888 (31.6)	63 (5.8)	≤ 10	384 (35.5)	481 (44.5	128 (11.8	≤10
Viral URI	274,441	96,989 (35.3)	4,839 (4.6)	825 (0.8)	44,475 (4	37,001 (3	16,941 (1	160 (0.2)

232 (0.5) 9,680 (20.9)

1,615 (6.4)

812 (6.1)

976 (1.1)

766 (1.4)

17 (0.3)

62 (3.0)

14 (11.0)

26 (2.4)

601 (0.6)

29

997 (3.9)

92 (0.7)

301 (0.3)

779 (1.5)

11 (0.2)

1,050 (50.

0)

 ≤ 10

 ≤ 10

790 (0.7)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

43 44 45

46

					2.1)	5.0)	6.0)			
Influenza	22,868	8,665 (37.9)	296 (3.1)	74 (0.8)	3,030 (31	3,934 (41	2,040 (21	≤10	47 (0.5)	69 (0.7)
	22,000	0,000 (01.5)	290 (3.1)	, (0.0)	.9)	.5)	.5)	_ 10	(0.0)	0) (0.7)
Viral pneumonia	15	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Bronchitis without	00.470	47 249 (52 9)	1 500 (2.0)	222 (0.7)	14,521 (2	22,779 (4	11,078 (2	50 (0,1)	250 (0.5)	24(-(0,7))
COPD	89,479	47,248 (52.8)	1,509 (3.0)	332 (0.7)	8.5)	4.8)	1.8)	58 (0.1)	250 (0.5)	346 (0.7)
Noninfectious	1,597	50 (2 1)	≤ 10	≤10	≤ 10	19 (55.9)	15 (44.1)	≤ 10	≤ 10	< 10
diarrhea	1,397	50 (3.1)		≤ 10	≤ 10	19 (33.9)	13 (44.1)	≤ 10	≤ 10	≤ 10
Fever	2 0.08		< 10	190 (40.5	103 (22.0	156 (33.3	≤ 10	< 10	< 10	
	2,908	438 (15.1)	20 (4.3)	≤10)))	≤ 10	≤10	≤ 10

380 1st/2nd cephem, first/second-generation cephalosporins; 3rd cephem, third-generation cephalosporins; ST, Sulfonamides and trimethoprim; STD,

381 sexual transmitted diseases; PID, pelvic inflammatory diseases; GI infections, gastrointestinal infections; Skin infections, Skin, cutaneous and

382 mucosal infections; COPD, chronic obstructive pulmonary disease; URI, upper respiratory infections

 383 *Antibiotics were coded according to Anatomical Therapeutic Chemical (ATC) codes: Penicillins, J01C; First-generation cephalosporins, J01DB;

384 Second-generation cephalosporins, J01DC; Third-generation cephalosporins, J01DD; Macrolides, J01FA; Quinolones, J01M; Sulfonamides and

trimethoprim, J01E; Tetracyclines, J01A; Other antibiotics, J01B, J01DH, J01DI, J01FF, J01G, and J01X

 BMJ Open

Characteristics	Antibiotic prescription, n (%)	Unadjusted odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Patient age			
0–9	44,413 (50.4)	1.66 (1.64 to 1.69)	1.48 (1.46 to 1.50
10–19	20,822 (65.1)	3.08 (3.00 to 3.15)	2.75 (2.69 to 2.82
20–64	85,952 (54.6)	1.98 (1.95 to 2.00)	1.92 (1.89 to 1.94
≥ 65	121,289 (37.9)	1	
Patient sex			
Male	112,643 (47.4)	1.13 (1.12 to 1.14)	1.10 (1.08 to 1.12
Female	155,038 (44.4)	1	
Facility scale			
Free-standing clinic	233,078 (49.8)	4.48 (4.27 to 4.70)	4.24 (4.03 to 4.4)
Hospital (< 200 beds)-based clinic	23,012 (30.8)	2.01 (1.91 to 2.11)	2.07 (1.97 to 2.18
Hospital (200–499 beds)-based clinic	9,327 (28.2)	1.77 (1.68 to 1.89)	1.71 (1.62 to 1.80
Hospital (\geq 500 beds)-based clinic	2,064 (18.2)	1	

CI, confidence interval

*Acute upper respiratory infections include viral upper respiratory infections, pharyngitis, bronchitis, and sinusitis.

Table 4. Factors associated with antibiotic prescription for acute upper respiratory infections*

Table 5. Factors associated with antibiotic prescription for gastrointestinal infections

Characteristics	Antibiotic prescription, n (%)	Unadjusted odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Patient age			
0–9	10,809 (37.0)	1.92 (1.86 to 1.98)	1.76 (1.71 to 1.82
10–19	4,395 (38.7)	2.07 (1.98 to 2.16)	1.92 (1.83 to 2.0
20–64	12,310 (32.4)	1.57 (1.53 to 1.61)	1.55 (1.51 to 1.6
\geq 65	13,795 (23.4)	1	
Patient sex			
Male	18,547 (30.9)	1.09 (1.06 to 1.12)	1.04 (1.01 to 1.0
Female	21,831 (29.1)	1	
Facility type			
Free-standing clinic	33,712 (32.9)	2.03 (1.82 to 2.27)	1.88 (1.68 to 2.1
Hospital (< 200 beds)-based clinic	4,056 (21.7)	1.15 (1.02 to 1.29)	1.17 (1.04 to 1.3
Hospital (200-499 beds)-based clinic	2,214 (18.9)	0.97 (0.86 to 1.09)	0.93 (0.82 to 1.0
Hospital (\geq 500 beds)-based clinic	396 (19.4)	1	

393 CI, confidence interval

394	References
395	1. de Kraker ME, Wolkewitz M, Davey PG et al. Clinical impact of antimicrobial
396	resistance in European hospitals: excess mortality and length of hospital stay related to
397	methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents
398	Chemother 2011; 55: 1598-605.
399	2. Stewardson AJ, Allignol A, Beyersmann J et al. The health and economic burden of
400	bloodstream infections caused by antimicrobial-susceptible and non-susceptible
401	Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: a
402	multicentre retrospective cohort study. Euro Surveill 2016; 21: pii=30319.
403	3. Ammerlaan HS, Harbarth S, Buiting AG et al. Secular trends in nosocomial
404	bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection.
405	Clin Infect Dis 2013; 56: 798-805.
406	4. World Health Organization. Global action plan on antimicrobial resistance. Available
407	at: http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1
408	(Accessed: August 3, 2018).
409	5. The Government of Japan. National Action Plan on Antimicrobial Resistance (AMR)
	33

BMJ Open

410	2016-2020. Available at: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-
411	Kenkoukyoku/0000138942.pdf. (Accessed: August 3, 2018).
412	6. Tacconelli E. Antimicrobial use: risk driver of multidrug resistant microorganisms in
413	healthcare settings. Curr Opin Infect Dis 2009; 22: 352-8.
414	7. Muraki Y, Yagi T, Tsuji Y et al. Japanese antimicrobial consumption surveillance:
415	First report on oral and parenteral antimicrobial consumption in Japan (2009-2013). J
416	Glob Antimicrob Resist 2016; 7: 19-23.
417	8. Yoshida S, Takeuchi M, Kawakami K. Prescription of antibiotics to pre-school
418	children from 2005 to 2014 in Japan: a retrospective claims database study. J Public
419	Health (Oxf) 2018; 40: 397-403.
420	9. Higashi T, Fukuhara S. Antibiotic prescriptions for upper respiratory tract infection in
421	Japan. Intern Med 2009; 48: 1369-75.
422	10. The Government of Japan, Ministry of Health, Labour and Welfare. Manual
423	of Antimicrobial Stewardship (1st Edition). Available at: http://www.mhlw.go.jp/fil
424	e/06-Seisakujouhou-10900000-Kenkoukyoku/0000193504.pdf. (Accessed: August 3,
425	2018).

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50 51
52
53
54
55
56
50 57
58
59
60

426	11. Kumamoto prefectural government. 2012 Kumamoto National Health Insurance
427	e business situation report. Available at: http://www.pref.kumamoto.jp.e.qp.hp.trans
428	er.com/kiji_2735.html (Accessed: August 3, 2018).
429	12. Kumamoto prefectural government. The situation such as Kumamoto elderly
430	aged 75 or over medical expenses. Available at: http://www.pref.kumamoto.jp.e.qp.h
431	p.transer.com/kiji_13777.html (Accessed: August 3, 2018).
432	13. Fleming-Dutra KE, Hersh AL, Shapiro DJ et al. Prevalence of Inappropriate
433	Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA 2016;
434	315: 1864-73.
435	14. Hicks LA, Bartoces MG, Roberts RM et al. US outpatient antibiotic prescribing
436	variation according to geography, patient population, and provider specialty in 2011. Clin
437	Infect Dis 2015; 60: 1308-16.
438	15. ESAC-Net surveillance data. Surveillance of antimicrobial consumption in Europe.
439	Available at: http://ecdc.europa.eu/en/publications/Publications/antimicrobial-
440	consumption-europe-esac-net-2012.pdf (Accessed: August 3, 2018).
441	16. Shapiro DJ, Hicks LA, Pavia AT et al. Antibiotic prescribing for adults in ambulatory
	35

BMJ Open

1 ว		
2 3		
4		
5		
6 7	442	care in the USA, 2007-09. J Antimicrob Chemother 2014; 69: 234-40.
8		
9		
10	443	17. Dolk FCK, Pouwels KB, Smith DRM et al. Antibiotics in primary care in England:
11		
12 13		
14	444	which antibiotics are prescribed and for which conditions? J Antimicrob Chemother
15		
16	445	2018; 73: ii2-ii10.
17 18	440	2010, 75: 112-1110.
19		
20	446	18. Harris AM, Hicks LA, Qaseem A. Appropriate Antibiotic Use for Acute Respiratory
21		
22		
23 24	447	Tract Infection in Adults: Advice for High-Value Care From the American College of
25		
26	4.4.0	Divisions and the Contant for Disease Control and Drevention Ann Intern Med 2016
27	448	Physicians and the Centers for Disease Control and Prevention. Ann Intern Med 2016;
28 29		
30	449	164: 425-34.
31		
32		
33 34	450	19. Bisno AL. Acute pharyngitis: etiology and diagnosis. Pediatrics 1996; 97: 949-54.
35		
36	4 2 1	20 Fhall MIL Smith MA Dame UC at all The actional aligned argumination. Data this
37	451	20. Ebell MH, Smith MA, Barry HC et al. The rational clinical examination. Does this
38 39		
40	452	patient have strep throat? JAMA 2000; 284: 2912-8.
41	10	
42		
43 44	453	21. Butler CC, Rollnick S, Pill R et al. Understanding the culture of prescribing:
44 45		
46		
47	454	qualitative study of general practitioners' and patients' perceptions of antibiotics for sore
48		
49 50	455	throats. BMJ 1998; 317: 637-42.
51	400	unouis. Divis 1770, 517. 057 42.
52		
53	456	22. Kumar S, Little P, Britten N. Why do general practitioners prescribe antibiotics for
54 55		-
56		
57	457	sore throat? Grounded theory interview study. BMJ 2003; 326: 138.
58		
59 60		36
50		

2	
3	
4	
4 5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
22	
23	
24	
25	
26	
27 20	
20 20	
30	
31	
 31 32 33 34 35 26 	
33	
34	
35	
36	
36 37 38	
38	
39	
40	
41	
42	
43 44	
44 45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

458	23. Brookes-Howell L, Hood K, Cooper L et al. Understanding variation in primary
459	medical care: a nine-country qualitative study of clinicians' accounts of the non-clinical
460	factors that shape antibiotic prescribing decisions for lower respiratory tract infection.
461	BMJ Open. 2012; 2: e000796.
462	24. Tonkin-Crine S, Yardley L, Little P. Antibiotic prescribing for acute respiratory tract
463	infections in primary care: a systematic review and meta-ethnography. J Antimicrob
464	Chemother. 2011; 66: 2215-23.
465	25. O'Connor R, O'Doherty J, O'Regan A et al. Antibiotic use for acute respiratory tract
466	infections (ARTI) in primary care; what factors affect prescribing and why is it
467	important? A narrative review. Ir J Med Sci. 2018; 187: 969-86.
468	26. Adriaenssens N, Coenen S, Tonkin-Crine S, et al. European Surveillance of
469	Antimicrobial Consumption (ESAC): disease-specific quality indicators for outpatient
470	antibiotic prescribing. BMJ Qual Saf 2011; 20: 764-72.
471	27. Lee ML, Cho CY, Hsu CL, et al. Recent trends in antibiotic prescriptions for acute
472	respiratory tract infections in pediatric ambulatory care in Taiwan, 2000-2009: A
473	nationwide population-based study. J Microbiol Immunol Infect 2016; 49: 554-60.
	-

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
12 13 14 15	
15	
16	
16 17	
18	
19	
20	
21	
22	
20 21 22 23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

28. Silverman M, Povitz M, Sontrop JM, et al. Antibiotic Prescribing for Nonbacterial
Acute Upper Respiratory Infections in Elderly Persons. Ann Intern Med 2017; 166: 765-
74.
29. Akkerman AE, van der Wouden JC, Kuyvenhoven MM et al. Antibiotic prescribing
for respiratory tract infections in Dutch primary care in relation to patient age and clinical
entities. J Antimicrob Chemother 2004; 54: 1116-21.
30. Schmidt ML, Spencer MD, Davidson LE. Patient, Provider, and Practice
Characteristics Associated with Inappropriate Antimicrobial Prescribing in Ambulatory
Practices. Infect Control Hosp Epidemiol. 2018; 39: 307-15.

1 Table S1. Classification of infections by groups with corresponding ICD-10 codes

	Diagnosis	ICD-10 codes
Group	o 1: Infections for which an	tibiotics are usually indicated
1	Miscellaneous bacterial infections	Tuberculosis (A15–A19); Certain zoonotic bacterial diseases (A20–A28); Other bacterial diseases including listeriosis, diphtheria, bartonellosis, erysipelas, and rickettsioses (A30–A37, A39–A49, A75–A79); Bacterial meningitis, encephalitis, and intracranial abscess (G00, G042, G049, G06); Mastoiditis (H70); Infective endocarditis (I33, T826); Acute epiglottitis (J051); Deep neck space infections (J36, J390, J391); Abscess of lung and mediastinum; Pyothorax (J85, J86); Infections of the jaws and mouth (K102, K122); Infections due to cardiac and vascular devices (T827); Infection due to internal prosthetic devices, implants and grafts (T857)
2	Sexually transmitted infections	Infections with a predominantly sexual mode of transmission (A50–A64); Other spirochetal diseases (A65–A69); Other diseases caused by chlamydia (A70–A74)
3	Pneumonia	Bacterial pneumonia (J13–J18)
4	Abdominal infections	Acute appendicitis (K35); Abscess of anal and rectal regions, intestine, and liver (K61, K630, K750); Peritonitis (K65); Cholecystitis and cholangitis (K800, K801, K803, K804, K810, K819, K830)
5	Orthopedic infections	Pyogenic arthritis and prosthetic joint infection (M00, T845); necrotizing fasciitis (M726); Infective myositis, synovitis and bursitis (M600, M650–M651, M710–M711); Osteomyelitis (M462–M465, M86)
6	Urinary tract infections	Acute pyelonephritis/pyonephrosis ((N10, N12, N136); Renal abscess (N151); Kidney infection, unspecified (N159); Acute cystitis (N300); Cystitis, unspecified (N308, N309); Urethritis and urethral abscess (N34); Urinary tract infections, unspecified (N390); Prostatitis and abscess of prostate (N41); Orchitis and epididymitis (N45); Catheter

		associated urinary tract infections (T835)
7	Pelvic inflammatory	Pelvic inflammatory diseases (N70-N73, N751, N760-N764);
	diseases	Infections of genitourinary tract in pregnancy (O23)
Grou	1p 2 : Infections for which a	ntibiotics are potentially indicated
1	Gastrointestinal	Intestinal infectious diseases (A00-A07, A09); Diverticulitis of
	infections	intestine (K57)
2	Skin, cutaneous and	Infections of other skin and subcutaneous tissue including cellulitis,
	mucosal infections	cutaneous abscess, furuncle, carbuncle, impetigo, acute
		lymphadenitis, folliculitis, mastitis (H050, J340, L00-L08, N61,
		T814); Infections of the eye and adnexa (H00, H440); Infective otitis
		externa (H600–H603)
3	Suppurative otitis media	Suppurative and unspecified otitis media (H66)
4	Pharyngitis	Streptococcal pharyngitis/tonsillitis (J020, J030); Acute
		pharyngitis/tonsillitis, unspecified (J029, J039); Scarlet fever (A38)
5	Sinusitis	Acute sinusitis (J01); Chronic sinusitis (J32)
6	Bronchitis and	Acute bronchitis (J20) *; Acute bronchiolitis (J21) *; Unspecified
	bronchiolitis with COPD	acute lower respiratory infection (J22) *
7	Acne	Acne (L70)
Grou	1p 3: Infections for which an	ntibiotics are rarely indicated
1	Nonbacterial	Viral and other specified intestinal infections (A08)
	gastrointestinal infections	
2	Nonsuppurative otitis	Nonsuppurative otitis media (H65)
	media	
3	Viral upper respiratory	Acute nasopharyngitis [common cold] (J00); Acute
	infection	pharyngitis/tonsillitis due to other specified organisms (J028, J038);
		Acute laryngitis and tracheitis (J04); Acute obstructive laryngitis
		[croup] (J050); Acute upper respiratory infections of multiple and
		unspecified sites (J06); Cough (R05)
4	Influenza	Influenza (J10, J11)
5	Viral pneumonia	Viral pneumonia (J12)
6	Bronchitis and	Acute bronchitis (J20) **; Acute bronchiolitis (J21) **; Unspecified
	bronchiolitis without	acute lower respiratory infection (J22) **
		2

	0000	
	COPD	
7	Noninfectious diarrhea	Noninfective gastroenteritis and colitis, unspecified (K529
8	Fever	Fever of unknown origin (R50)
*incluc	des visits in which ICD-10 c	ode for COPD (J41–J44) are present
**inclu	udes visits in which ICD-10	code for COPD (J41–J44) are not present

STROBE Statement-checklist of items that should be included in reports of observational studies

Title and abstract 1 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of whe was done and what was found Introduction Background/rationale 2 Explain the scientific background and rationale for the investigation being reported Objectives 3 State specific objectives, including any prespecified hypotheses Methods Study design 4 Present key elements of study design early in the paper Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* Por each variable of interest, give sources of bias Study size 10 </th <th>Pag No</th>	Pag No
(b) Provide in the abstract an informative and balanced summary of whi was done and what was found Introduction Background/rationale 2 Explain the scientific background and rationale for the investigation beir reported Objectives 3 State specific objectives, including any prespecified hypotheses Methods 5 Study design 4 Present key elements of study design early in the paper Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8*<	1
was done and what was found Introduction Explain the scientific background and rationale for the investigation beireported Objectives 3 State specific objectives, including any prespecified hypotheses Methods Methods Study design 4 Present key elements of study design early in the paper Study design 4 Present key elements of study design early in the paper Study design 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (c) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and number of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias. Study size 10 Explain how quantitative variables were handled in the analyses. If	
Introduction Background/rationale 2 Explain the scientific background and rationale for the investigation bei reported Objectives 3 State specific objectives, including any prespecified hypotheses Methods 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—For matched studies, give matching criteria and methods of selection of participants Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how the study size was arrived at Quantitative variables 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohor	t 3
Background/rationale 2 Explain the scientific background and rationale for the investigation beireported Objectives 3 State specific objectives, including any prespecified hypotheses Methods 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (c) Cohort study—For matched studies, give matching criteria and number of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how the study size was arrived at Quantitative variables 12 (a) Describe any methods used to examine subgroup	
reported Objectives 3 State specific objectives, including any prespecified hypotheses Methods	
Objectives 3 State specific objectives, including any prespecified hypotheses Methods Study design 4 Present key elements of study design early in the paper Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of selection of participants Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and mumber of exposed and unexposed Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 12 (a) Describe any methods, including those used to control for confounding (b) Describe any methods used to examine subgroups	ig 5
Methods Study design 4 Present key elements of study design early in the paper Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and th number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls sper case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at<	6
Study design 4 Present key elements of study design early in the paper Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of controls per case (b) Cohort study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of bata and details of methods of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how th	
Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and number of controls per case (b) Cohort study—For matched studies, give matching criteria and number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe any methods used to examine subgroups and interactions (b) Describe any metho	7
Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i> —For matched studies, give matching criteria and number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how quantitative variables were chosen and why Statistical methods 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed	7-8
Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of case and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and mumber of exposed and unexposed Case-control study—For matched studies, give matching criteria and number of controls per case 7 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe any methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed	, ,
methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe any methods used to examine subgroups and interactions </td <td>9</td>	9
Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative arriables were handled in the analyses. If applicable, describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed (d) Cohort study—If applicable, describe analytical methods taking (c) Explain how missing data were addressed (d) Cohort stud	,
methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe anly methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed	
for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Cortorl study—If applicable, describe analytical methods taking	
Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	
methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	
(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (b) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	
number of exposed and unexposed Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	
Case-control study—For matched studies, give matching criteria and th number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods measurement of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	
Number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Crase-control study—If applicable, describe analytical methods taking	
Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of method of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	
and effect modifiers. Give diagnostic criteria, if applicable Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	
Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how matching of cases and controls was addressed Case-control study—If applicable, describe analytical methods taking	s, 9
measurement of assessment (measurement). Describe comparability of assessment methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	
methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	8–9
methods if there is more than one group Bias 9 Describe any efforts to address potential sources of bias Study size 10 Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	
Bias 9 Describe any efforts to address potential sources of bias Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	
Study size 10 Explain how the study size was arrived at Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed case-control study—If applicable, explain how matching of cases and controls was addressed	
applicable, describe which groupings were chosen and why Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	
Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	
confounding(b) Describe any methods used to examine subgroups and interactions(c) Explain how missing data were addressed(d) Cohort study—If applicable, explain how loss to follow-up was addressedCase-control study—If applicable, explain how matching of cases and controls was addressedCross-sectional study—If applicable, describe analytical methods taking	9-10
 (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking 	9-10
 (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking 	0.14
(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	9-10
addressed <i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
controls was addressed Cross-sectional study—If applicable, describe analytical methods taking	
Cross-sectional study—If applicable, describe analytical methods taking	
account of sampling strategy	
(e) Describe any sensitivity analyses	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	11
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	1
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	1
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	12
		their precision (eg, 95% confidence interval). Make clear which confounders were	1.
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	1
			13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	18
		imprecision. Discuss both direction and magnitude of any potential bias	19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	19
		multiplicity of analyses, results from similar studies, and other relevant evidence	20
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	2
		applicable, for the original study on which the present article is based	1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.