Dynamic analysis of metabolic response in gastric ulcer (GU)

rats with electro-acupuncture treatment using ¹H

NMR-based metabolomics

Jia-cheng Shen¹, Lin-yu Lian^{1,2}[†], Yuan Zhang^{1,3}, Qi-da He^{1,2}, Jiao-long Chen^{1,2}, Long-bin Zhang¹, Miao-sen Huang^{1,2}, Mi Liu³, Lin-chao Qian^{1*}, Cai-chun Liu^{1*}, Zong-bao Yang^{1*}

- ¹Department of Traditional Chinese Medicine and Shenzhen Research Institute, Xiamen University, Xiamen 361005, China
- ² College of Acupuncture and Moxibustion, Fujian university of Traditional Chinese Medicine, Fuzhou 350122, China
- ³ College of Acupuncture and Moxibustion, Hunan university of Traditional Chinese Medicine, Changsha 410208, China

Correspondence should be addressed to Zong-bao Yang, yzbldq@163.com and Caichun Liu, caichunliu714@gmail.com.

Fig.S1 Histological examination of gastric mucosa from all groups.(a1, a2 and a3, rats in control group, GU model group and electro-acupuncture at 1day; b1, b2 and b3, rats in control group, GU model group and electro-acupuncture at 4days; c1, c2 and c3, rats in control group, GU model

group and electro-acupuncture at 7days). Scale bars represent 2 µm in each group.

Fig.S2 Corresponding S-plots from stomach of rats in C1 and M1 group (A); stomach of rats in C2 and M2 group (B1); stomach of rats in C3 and M3 group (C1); liver of rats in C1 and M1 group (A2); liver of rats in C2 and M2 group (B2); liver of rats in C3 and M3 group (C2); kidney of rats in C1 and M1 group (A3); kidney of rats in C2 and M2 group (B3), kidney of rats in C3 and M3 group (C3).

Fig.S3 Corresponding S-plots from stomach of rats in M1 and EA1 group (A1); stomach of rats in

M2 and EA2 group (B1); stomach of rats in M3 and EA3 group (C1); liver of rats in M1 and EA1 group (A2); liver of rats in M2 and EA2 group (B2); liver of rats in M3 and EA3 group (C2); kidney of rats in M1 and EA1 group (A3); kidney of rats in M2 and EA2 group (B3); kidney of rats in M3 and EA3 group (C3).

Fig.S4 Relative abundance (mean \pm S.D.) of characteristic metabolites from gastric tissues of rats in C1, M1 and EA1 group.

Fig.S6 Relative abundance (mean ± S.D.) of characteristic metabolites from gastric tissues of rats in C3, M3 and EA3 group..

Fig.S7 Relative abundance (mean \pm S.D.) of characteristic metabolites from liver tissues of rats in C1, M1 and EA1 group.

Fig.S8 Relative abundance (mean ± S.D.) of characteristic metabolites from liver tissues of rats in C2, M2 and EA2 group.

Fig.S9 Relative abundance (mean ± S.D.) of characteristic metabolites from liver tissues of rats in C3, M3 and EA3 group.

Fig.S10 Relative abundance (mean \pm S.D.) of characteristic metabolites from kidney tissues of rats in C1, M1 and EA1 group.

Fig.S11 Relative abundance (mean \pm S.D.) of characteristic metabolites from kidney tissues of rats in C2, M2 and EA2 group.

Fig.S12 Relative abundance (mean \pm S.D.) of characteristic metabolites from kidney tissues of rats in C3, M3 and EA3 group.

Fig.S13 Corresponding S-plots from stomach of rats in M1 and EA1 group (A); stomach of rats in M2 and EA2 group (B1); stomach of rats in M3 and EA3 group (C1); liver of rats in M1 and EA1 group (A2); liver of rats in M2 and EA2 group (B2); liver of rats in M3 and EA3 group (C2); kidney of rats in M1 and EA1 group (A3); kidney of rats in M2 and EA2 group (B3); kidney of rats in M3 and EA3 group (C3).

Fig.S14 Relative abundance (mean \pm S.D.) of characteristic metabolites from gastric tissues of rats in EA1, EA2 and EA3 group.

Fig.S15 Relative abundance (mean \pm S.D.) of characteristic metabolites from liver tissues of rats in EA1, EA2 and EA3 group.

Fig.S16 Relative abundance (mean \pm S.D.) of characteristic metabolites from kidney tissues of rats in EA1, EA2 and EA3 group.

			1
NO.	Metabolites	δ1H/ppm	Moieties
1	Isoleucine	0.94(t); 1.01(d)	δ-CH3; β-CH3
2	Leucine	0.96(t); 1.70(m)	СН3; СН2&ү-СН
3	Valine	0.99(d); 1.04(d)	ү-СН3; ү-СН3
4	3-Hydroxybutyrate	1.21(d)	γCH3 COSY
5	Methylmalonate	1.23(d)	CH3
6	Lactate	1.33(d); 4.11(q)	CH3; CH
7	Alanine	1.48(d); 3.78(q)	СН3; СН
8	Lysine	1.73(m); 1.91(m)	βСН2,δСН2
10	Acetate	1.92(s)	CH3
11	Glutamate	2.05(m)	β-CH
12	Glutamine	2.14(m)	β-CH2
14	Glutathione	2.17(m); 2.55(m)	β-CH2; γ-CH2
15	Succinate	2.41(s)	СН
17	Aspartate	2.69(dd);2.82(dd)	βСН2;βСН2
19	Methylguanidine	2.86(s) 3.38(s)	
21	Asparagine	2.88(dd);2.96(dd)	βСН2;βСН2
22	Creatine	3.04(s);3.94(s)	CH3,CH2
23	Creatinine	3.05(s)	CH3
24	Ethanolamine	3.15(t) 3.84(t)	CH2NH2; CH2OH
25	Choline	3.20(s);3.52(m);4.07(m)	CH3;N-CH2;O-CH2
26	Phosphocholine	3.22(s);3.59(m);4.17(m)	CH3;N-CH2;O-CH2
28	Glycerophosphocholine	3.23(s); 3.96(m)	CH3; CH&O-CH2
29	Acetylcholine	3.24(s)	
30	Betaine	3.27(s); 3.89(s)	CH3; CH2
32	Taurine	3.27(t);3.42(t)	S-CH2;N-CH2
33	Inosine	4.28(dd); 8.22(s)	CH(5); N-CH=N
34	Methanol	3.36(s)	28
36	Glycine	3.56(s)	CH2

Table S1 Peak attribution of the main marked metabolites in ¹H-NMR spectra of stomach sample

37	Glycerol	3.57(m);3.62(m);3.79(m)	CH2; CH'2; CH
39	N,N-Dimethylglycine	2.92(s) 3.73(s)	
40	Serine	3.83(dd); 3.96(m)	CH; CH2
41	Phosphocreatine	3.93(s)	CH2
43	Adenosine monophosphate	4.03(m); 4.37(m)	O-CH2; CH; 66.92
44	Inosine	4.28(dd); 8.22(s)	CH(5); N-CH=N
45	Adenosine	4.30(dd);8.26(s); 8.35(s)	CH(5); N-CH=N
46	β-Glucose	4.64(d)	
47	α-Glucose	5.24(d)	
48	Allantoin	5.39(s)	СН
49	Uracil	5.80(d); 7.53(d) CH(5)	CH(6)
50	Uridine	5.90(d); 7.87(d)	CH(10); CH(11)
51	NADP+	6.05(d);6.15(d)	CH(32); CH(2)
54	Tyrosine	6.89(d); 7.19(d)	m-CH; o-CH
58	Phenylalanine ;	7.33(d); 7.38(t)	β-CH´; o-CH; p-CH
59	Xanthine	7.93(s)	CH(2);CH(9)

s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd: doublet of doublet.

NO.	Metabolites	δ1H/ppm	Moieties
1	Isoleucine	0.94(t); 1.01(d)	δ-СН3; β-СН3
2	Leucine	0.96(t); 1.70(m)	СН3; СН2&у-СН
3	Valine	0.99(d); 1.04(d)	γ-CH3; γ-CH′3
4	3-Hydroxybutyrate	1.21(d)	үСН3
6	Lactate	1.33(d); 4.11(q)	CH3; CH
7	Alanine	1.48(d); 3.78(q)	CH3; CH
8	Lysine	1.73(m), 3.02(t)	βСН2,δСН2
10	Acetate	1.92(s)	CH3
11	Glutamate	2.05(m)	β-CH
12	Glutamine	2.13(m),3.77(t)	βСН2,γСН2
14	Glutathione	2.16 (m),2.55 (m)	β-CH2; γ-CH2
15	Succinate	2.41(s)	СН
18	Dimethylamine	2.72 (s)	CH3
20	N-methylhydantoin	2.92 (s),4.08 (s)	CH3,CH2
24	Ethanolamine	3.13 (d)	CH2
25	Choline	3.20(s);3.52(m);4.07(m)	CH3;N-CH2;O-CH2
26	Phosphocholine	3.22(s);3.59(m);	CH3; N-CH2;
27	Phosphoethanolamine	3.23(t);	NCH2;
28	Glycerophosphocholine	3.68(m);	N-CH2&HO-CH2
30	Betaine	3.27(s); 3.89(s)	CH3; CH2
33	Inositol	3.28(t);3.54(dd);	CH(2); CH(4, 6);
36	Glycine	3.56 (s)	CH2
37	Glycerol	3.64 (m); 3.77 (m)	CH2; CH
38	Glycogen	3.40(m)	1-CH

Table S2 Peak attribution of the main marked metabolites in ¹H-NMR spectra of liver sample

42	Glucaric acid	3.95(t)	CH(8)
46	β-glucose	4.63 (d)	1-CH
47	α-glucose	5.23 (d)	1-CH
48	Allantoin	5.39(s)	СН
49	Uracil	5.80(d); 7.53(d)	CH(5); CH(6)
50	Uridine	5.91(d);7.87(d)	CH(2);CH(11)
52	Cytidine	6.06(d); 7.84(d)	CH(2); CH(11)
53	Fumarate	6.52(s)	СН
54	Tyrosine	6.89(d); 7.19(d)	m-CH; o-CH
56	Tryptophan	7.19(m);7.31(s);7.60(m);	CH(8);CH(6);CH(7)
57	Nicotinamide	7.59(dd);8.24(dd);8.72(d	CH(5);CH(4);CH(6);
		d); 8.94(s)	CH(2)
60	Hypoxanthine	8.19(s); 8.21(s)	CH(2); CH(7)
61	Formate	8.46(s)	СН

s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd: doublet of doublet.

iubic	Take 65 Feak autouton of the main marked metabolites in Trivink specta of kiency sample						
NO.	Metabolites	δ1H/ppm	Moieties				
1	Isoleucine	0.94(t)	б-СНЗ				
2	Leucine	0.96(t);1.70(m)	СН3;СН2&ү-СН				
3	Valine	0.99(d);1.04(d)	γ-CH3;γ-CH´3				
4	3-Hydroxybutyrate	1.21(d)	үСН3				
6	Lactate	1.33(d); 4.11(q)	СН3; СН				
7	Alanine	1.48(d); 3.78(q)	СН3;СН				
8	Lysine	1.73(m), 3.02(t)	βCH2,δCH2				
9	Ornithine	1.73(m)	бСН2				
10	Acetate	1.92(s)	CH3				
11	Glutamate	2.05(m)	β-СН				
12	Glutamine	2.13(m);3.77(t)	βСН2;γСН2				
13	Methionine	2.14(s) ;2.65(t)	γCH2;S-CH3				
14	Glutathione	2.16 (m);2.55 (m)	β-CH2; γ-CH2				
15	Succinate	2.41(s)	СН				
16	Citrate (M)	2.54(d);2.67(d)	CH2;CH2				
17	Aspartate	2.69(dd);2.82(dd)	βCH2;βCH2				
18	Dimethylamine	2.72 (s)	CH3				
21	Asparagine	2.88(dd);2.96(dd)	βCH2;βCH2				
22	Creatine	3.04(s);3.94(s)	CH3,CH2				
23	Creatinine	3.05(s);4.06(s)	CH3;CH2				
24	Ethanolamine	3.13 (d)	CH2				
25	Choline	3.20(s);3.52(m);4.07(m)	CH3;N-CH2;O-CH2				
26	Phosphocholine	3.22(s);3.59(m)	CH3; N-CH2;				
28	Glycerophosphocholine	3.68(m)	N-CH2&HO-CH2				
30	Betaine	3.27(s); 3.89(s)	CH3; CH2				
31	Trimethylamine-N-oxide	3.27(s)	CH3				

Table S3 Peak attribution	of the main marked	l metabolites in ¹ l	H-NMR spectra	of kidney sample

32	Taurine	3.27(t);3.42(t)	S-CH2;N-CH2
33	Inositol	3.28(t);3.54(dd)	CH(2); CH(4, 6);
35	Scyllo-Inositol	3.37(s)	СН
36	Glycine	3.56 (s)	CH2
37	Glycerol	3.64 (m); 3.77 (m)	CH2;CH
45	Adenosine	4.45(t);6.10(d);8.25(s);8.	3-C'H;1-C'H;8-CH;2-
		35(s)	СН
46	β-glucose	4.63 (d)	1-CH
47	α-glucose	5.23 (d)	1-CH
48	Allantoin	5.39(s)	СН
49	Uracil	5.80(d); 7.53(d)	CH(5); CH(6)
50	Uridine	5.91(d);7.87(d)	CH(2);CH(11)
52	Cytidine	6.06(d); 7.84(d)	CH(2); CH(11)
53	Fumarate	6.52(s)	СН
54	Tyrosine	6.89(d); 7.19(d)	m-CH; o-CH
55	Histidine	7.11(s), 7.92(s)	2-CH, 4-CH
57	Nicotinamide	7.59(dd);8.24(dd);	CH(5);CH(4);CH(6);
		8.72(dd); 8.94(s)	CH(2)
59	Xanthine	7.93(s)	СН
60	Hypoxanthine	8.19(s); 8.21(s)	CH(2); CH(7)
61	Formate	8.46(s)	СН

s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd: doublet of doublet.

Table S4 Relative content in control, model and tre	eatment group
---	---------------

-

			Stomach			Liver		Kindev			
Metabo	olites	1day	4days	7days	1day	4days	7days	1day	4days	7days	
	Control	0.00271	0.00374	Ν	0.00241	Ν	0.00157	0.00758	0.00106	N	
Isoleucine	GU model	0.00222	0.00523	Ν	0.00174	Ν	0.00094	0.00548	0.00047	Ν	
	EA	0.00204	0.00654	Ν	0.0028	Ν	0.00227	0.00781	0.00117	Ν	
	Control	0.00719	0.01032	Ν	0.00501	Ν	0.00433	0.01477	0.00159	0.01306	
Leucine	GU model	0.00591	0.01727	Ν	0.00388	Ν	0.00283	0.01106	0.00133	0.01508	
	EA	0.00534	0.0167	Ν	0.00598	Ν	0.00555	0.01478	0.00172	0.01707	
	Control	0.00274	0.004	Ν	0.00316	Ν	0.00085	0.00819	Ν	0.0044	
Valine	GU model	0.00221	0.00532	Ν	0.00248	Ν	0.00052	0.00692	Ν	0.00529	
	EA	0.00193	0.00706	Ν	0.00364	Ν	0.00104	0.00817	Ν	0.0062	
	Control	0.00644	0.01694	0.00687	0.01484	0.00772	0.00639	0.00529	0.01065	0.00255	
Glycerol	GU model	0.00581	0.01067	0.00798	0.01665	0.01154	0.00892	0.00639	0.01143	0.00219	
	EA	0.00617	0.01712	0.00787	0.01456	0.00746	0.00585	0.0053	0.01037	0.0019	
	Control	0.00501	Ν	Ν	0.01484	0.00443	0.0141	0.00682	0.00399	0.01076	
Glutamine	GU model	0.00413	Ν	Ν	0.01665	0.00609	0.0164	0.00541	0.00332	0.01123	
	EA	0.00409	Ν	Ν	0.01456	0.00501	0.01501	0.00609	0.00439	0.01199	
	Control	0.00398	Ν	Ν	0.00159	Ν	0.00147	Ν	Ν	Ν	
Glutamate	GU model	0.00364	Ν	Ν	0.0013	Ν	0.00096	Ν	Ν	Ν	
	EA	0.00372	Ν	Ν	0.00158	Ν	0.00157	Ν	Ν	Ν	

	Control	0.00124	0.0018	Ν	0.00095	Ν	Ν	Ν	Ν	Ν
Tyrosine	GU model	0.00100	0.00276	Ν	0.00070	Ν	Ν	Ν	Ν	Ν
	EA	0.00090	0.00284	Ν	0.00102	Ν	Ν	Ν	Ν	Ν
	Control	Ν	Ν	Ν	0.00646	0.00655	Ν	0.00486	0.00319	0.02454
Choline	GU model	Ν	Ν	Ν	0.00716	0.00345	Ν	0.00595	0.00395	0.01856
	EA	Ν	Ν	Ν	0.00629	0.00435	Ν	0.00516	0.00309	0.01844
	Control	Ν	Ν	Ν	0.01484	0.01099	0.0141	0.01567	0.00241	0.01076
Alanine	GU model	Ν	Ν	Ν	0.01665	0.01315	0.0164	0.01353	0.00191	0.01123
	EA	Ν	Ν	Ν	0.01456	0.01108	0.01501	0.01676	0.00255	0.01199
	Control	Ν	Ν	Ν	0.01141	0.00621	Ν	0.00334	0.01987	Ν
Glycine	GU model	Ν	Ν	Ν	0.01238	0.00958	Ν	0.00461	0.02201	Ν
	EA	Ν	Ν	Ν	0.01113	0.00658	Ν	0.00385	0.0199	Ν
	Control	Ν	Ν	Ν	0.0051	0.00215	0.00462	0.00197	0.00249	0.00267
Betaine	GU model	Ν	Ν	Ν	0.00639	0.00321	0.00801	0.00243	0.00289	0.00243
	EA	Ν	Ν	Ν	0.00537	0.00202	0.00445	0.00216	0.00223	0.00227
	Control	0.00421	0.00355	0.00498	Ν	Ν	Ν	Ν	Ν	Ν
Serine	GU model	0.00496	0.00434	0.00592	Ν	Ν	Ν	Ν	Ν	Ν
	EA	0.00593	0.00542	0.00626	Ν	Ν	Ν	Ν	Ν	Ν
	Control	0.00085	0.00368	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Taurine	GU model	0.0016	0.00164	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	EA	0.00195	0.00205	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	Control	0.00157	0.00206	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Phenylalanine	GU model	0.00117	0.00357	Ν	Ν	Ν	Ν	Ν	Ν	Ν
-	EA	0.00105	0.00357	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	Control	Ν	Ν	Ν	0.01141	Ν	Ν	Ν	Ν	Ν
Inositol	GU model	Ν	Ν	Ν	0.01238	Ν	Ν	Ν	Ν	Ν
	EA	Ν	Ν	Ν	0.01113	Ν	Ν	Ν	Ν	Ν
	Control	Ν	Ν	Ν	0.00152	0.00079	Ν	Ν	Ν	Ν
Succinate	GU model	Ν	Ν	Ν	0.00092	0.00128	Ν	Ν	Ν	Ν
	EA	Ν	Ν	Ν	0.00112	0.00118	Ν	Ν	Ν	Ν
	Control	Ν	Ν	Ν	Ν	Ν	Ν	0.00682	0.00096	Ν
Methionine	GU model	Ν	Ν	Ν	Ν	Ν	Ν	0.00541	0.00073	Ν
	EA	Ν	Ν	Ν	Ν	Ν	Ν	0.00609	0.00107	Ν
Glycerophosp	Control	Ν	Ν	Ν	Ν	Ν	Ν	0.00132	0.00508	0.00148
olycolopiiosp	GU model	Ν	Ν	Ν	Ν	Ν	Ν	0.00163	0.00537	0.00133
hocholine	EA	Ν	Ν	Ν	Ν	Ν	Ν	0.00134	0.00495	0.00116
	Control	Ν	Ν	Ν	Ν	Ν	Ν	0.00243	0.00106	Ν
Ethanolamine	GU model	Ν	Ν	Ν	Ν	Ν	Ν	0.00147	0.00047	Ν
	EA	Ν	Ν	Ν	Ν	Ν	Ν	0.00169	0.00131	Ν
	Control	Ν	Ν	Ν	Ν	Ν	Ν	0.00405	0.00378	0.00222
Creatine	GU model	Ν	Ν	Ν	Ν	Ν	Ν	0.00693	0.00427	0.00193
	EA	Ν	Ν	Ν	Ν	Ν	Ν	0.00483	0.00363	0.00182
Phosphoryleho	Control	Ν	Ν	Ν	Ν	Ν	Ν	0.00591	0.00445	0.00689
jieno	GU model	Ν	Ν	Ν	Ν	Ν	Ν	0.00706	0.00487	0.00815

line	EA	Ν	Ν	Ν	Ν	Ν	Ν	0.00614	0.00426	0.0075
	Control	Ν	Ν	Ν	Ν	Ν	Ν	0.00656	Ν	0.00441
Ornithin	GU model	Ν	Ν	Ν	Ν	Ν	Ν	0.00515	Ν	0.00519
	EA	Ν	Ν	Ν	Ν	Ν	Ν	0.00631	Ν	0.00572

Red color: content increase, blue color: content decrease, N: no statistical significance.

 $\label{eq:source} \textbf{Table S5} \ \textbf{Relative content in different treatment group over time}$

				e	1					
Matabalitag		Stomach		Liver			Kindey			
Wietabonites	EA1	EA2	EA3	EA1	EA2	EA3	EA1	EA2	EA3	
Isoleucine	0.00252	0.00635	0.00326	0.0028	0.00432	0.0025	Ν	Ν	Ν	
Leucine	0.00534	0.0167	0.00679	0.00789	0.01032	0.00717	Ν	Ν	Ν	
Valine	0.00279	0.00857	0.00331	0.00364	0.00524	0.00326	Ν	Ν	Ν	
Alanine	Ν	Ν	Ν	0.00904	0.00839	0.00815	0.00831	0.01037	0.01057	
Betaine	Ν	Ν	Ν	0.00537	0.00363	0.00458	0.00224	0.00189	0.00227	
Choline	Ν	Ν	Ν	0.00629	0.00435	0.00554	0.00143	0.00089	0.00091	
Glutamate	0.00178	0.00286	0.00228	0.00158	0.00226	0.00191	Ν	Ν	Ν	
Glutamine	0.00409	0.0069	0.00387	0.00904	0.00839	0.00815	0.00157	0.00192	0.00162	
Glycerol	0.00803	0.00967	0.00736	0.00303	0.00149	0.00238	0.00814	0.0119	0.01199	
Glycine	Ν	Ν	Ν	0.00748	0.00605	0.00707	Ν	Ν	Ν	
Inositol	Ν	Ν	Ν	0.00626	0.00447	0.00593	Ν	Ν	Ν	
Methionine	Ν	Ν	Ν	Ν	Ν	Ν	0.00576	0.00646	0.00785	
Phenylalanine	0.00105	0.00357	0.00122	Ν	Ν	Ν	Ν	Ν	Ν	
Serine	0.00641	0.00448	0.00626	Ν	Ν	Ν	Ν	Ν	Ν	
Succinate	Ν	Ν	Ν	0.00067	0.00118	0.00068	Ν	Ν	Ν	
Taurine	0.00637	0.00205	0.00382	Ν	Ν	Ν	Ν	Ν	Ν	
Tyrosine	0.00080	0.00284	0.00119	Ν	Ν	Ν	Ν	Ν	Ν	

Red color: content increase, blue color: content decrease, N: no statistical significance.

Table S6 <i>p</i> (CV-ANOVA)	indicating t	the model	quality of	OPLS-DA
	<i>U</i>			

p(CV-ANOVA)								
OPLS-DA model		stomach	liver	kidney				
GU 1d model vs. 4d	14	control	0.0350044	0.150404	0.00910267			
	Iu	EA	0.392812	0.0389342	0.0802677			
	44	control	0.342957	0.0836458	0.0759741			
	4 u	EA	0.000071	0.0291931	0.00442573			
	74	control	0.439592	0.205449	0.0171049			
	/u	EA	0.339974	0.0188815	0.0460066			