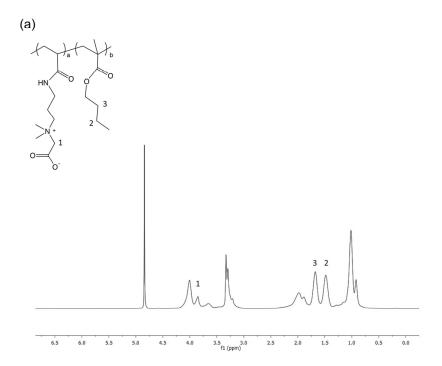
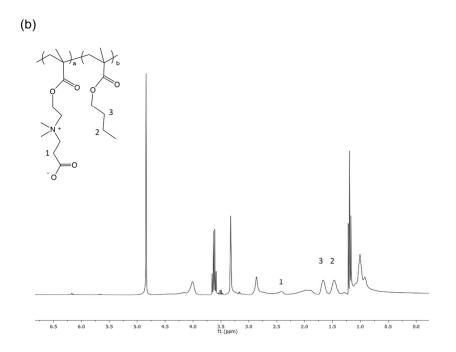
"Supporting Information"

Ultra-low Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers


Xiaojie Lin,[†] Priyesh Jain,[†] Kan Wu,[†] Daewha Hong,[†] Hsiang-Chieh Hung,[†] Mary Beth O'Kelly,[†] Bowen Li,[‡] Peng Zhang,[†] Zhefan Yuan,[†] Shaoyi Jiang^{*,†,‡}


†Department of Chemical Engineering, ‡Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States

Corresponding Author

Fax: +1 (206) 685-3451. E-mail: sjiang@uw.edu

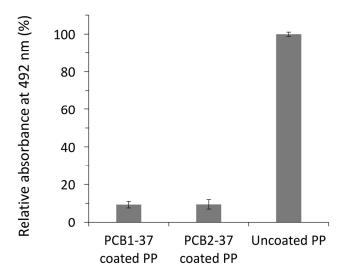

Figure S-1.

Figure S-1. ¹H-NMR spectrum of (a) poly(CB1-*co*-BMA) (PCB1); and (b) poly(CB2-*co*-BMA) (PCB2). CB1: 1-Carboxy-*N*,*N*-dimethyl-*N*-(3'-acrylamidopropyl) ethanaminium inner salt; CB2: carboxybetaine methacrylate, 2-carboxy-*N*,*N*-dimethyl-*N*-(2'-methacryloyloxyethyl) ethanaminium inner salt; BMA: *n*-butyl methacrylate.

Figure S-2.

Figure S-2. Relative adsorption of fibrinogen (1.0 mg/mL, $1 \times$ PBS, pH 7.4) on PP surfaces coated with (a) PCB1-37 and (b) PCB2-37 at 0.5 wt% concentration.