Structure, Volume 26

Supplemental Information

Atomic Structural Models of Fibrin Oligomers

Artem Zhmurov, Anna D. Protopopova, Rustem I. Litvinov, Pavel Zhukov, John W. Weisel, and Valeri Barsegov

Atomic structural models of fibrin oligomers

Supplemental Information

Artem Zhmurov,^{1,2} Anna D. Protopopova,³ Rustem I. Litvinov,^{3,4} Pavel Zhukov,¹ John W. Weisel,^{3,*} and Valeri Barsegov^{1,5,*,**}

¹Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation

²Sechenov University, Moscow 119991, Russian Federation

³Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

⁴Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation

⁵Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA

*Corresponding authors:

E-mail: <u>weisel@mail.med.upenn.edu</u> (JWW) and <u>Valeri_Barsegov@uml.edu</u> (VB) **Lead contact

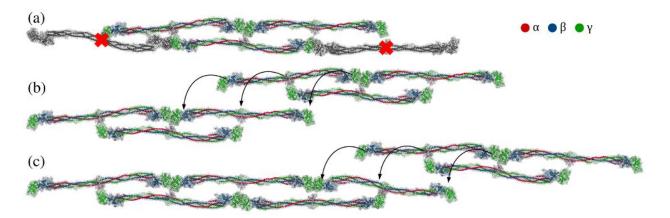

Keywords: fibrinogen; fibrin; fibrin polymerization; fibrin oligomers; fibrin protofibrils; GPU computing; multiscale modeling; MD simulations

Table S1. Crystal structures of human fibrinogen and fibrin from Protein Data Bank. Related to STAR Methods. The table includes various portions of WT fibrin(ogen) and fibrinogen used in the reconstruction of fibrin oligomers.

PDB	Structure		
code			
Fibrinogen			
3GHG	Human fibrinogen co-crystallized with GPRP and GHRP		
D-dimer fragments from crosslinked fibrin			
1FZB	Crosslinked double D fragment		
1FZC	Fragment double-D from human fibrin with bound ligands		
1FZE	Fragment double-D from human fibrin		
1FZF	Fragment double-D from human fibrin with GHRP		
1N86	Human D-dimer from cross-linked fibrin with GPR and GHRPLDK		
1N8E	Fragment double-D from human fibrin		
2HLO	Fragment D-dimer from human fibrin with G-hydroxyP-RP		
2HOD	Fragment D-dimer from human fibrin with G-hydroxyP-RP		
2HPC	Fragment D-dimer from human fibrin with GPRP		
2Q9I	D-dimer from human fibrin with MHRPY		
2Z4E	D-dimer from human fibrin with GHRPY		
3H32	D-dimer from human fibrin with GHRPY		
Fragments D (D-D interactions in a crystal as a result of molecular packing)			
1FZG	Fragment D from human fibrinogen with GHRP		
2H43	Fragment D co-complexed with AHRP		
2FFD	Fibrinogen fragment D with GPRVVE		
3BVH	Recombinant yD364A fibrinogen fragment D with GPRP		
3E1I	BβD432A variant fibrinogen fragment D with GHRP		
20YH	Fragment D of yD298,301A fibrinogen variant with GHRP		
20YI	Fragment D of γD298,301A fibrinogen variant with GHRP		
1LT9	Recombinant human fibrinogen fragment D		
1LTJ	Recombinant human fibrinogen fragment D with GPRP and GHRP		
1FZA	Fibrinogen fragment D		
1RE3	Fragment D of BβD398A fibrinogen variant with GHRP		
1RE4	Fragment D of BβD398A variant fibrinogen		
1RF1	Fragment D of yE132A fibrinogen variant with GHRP		
1RF0	Fragment D of yE132A fibrinogen variant		

Table S2. Structure and shape characteristics of fibrin protofibrils obtained from AFM experiment and equilibrium Molecular Dynamics simulations. Related to Figure 4. Shown are the average quantities and standard deviations of the D-D, D-E, and DED-DED distances and the DED-DED-DED angle (distances and angles are calculated using the centers of mass in the simulations and geometric centers in AFM experiments).

Metric	AFM	Simulations
D-D distance, nm	9.2 ± 1.7	9.0 ± 0.1
D-E distance, nm	6.7 ± 1.2	6.3 ± 0.5
DED-DED distance, nm	22.9 ± 2.5	22.1 ± 1.7
DED-DED-DED angle, degrees	162 ± 12	162 ± 10

Figure S1: Schematic illustration of the reconstruction of fibrin protofibril FP_{n/m}. Related to Figure 1 and STAR Methods.

(A) Two fibrin molecules in the lower strand are removed from the atomic model of oligomer $FO_{2/3}$ (shown in gray color and marked by the cross).

(B) Two copies of the obtained oligomer $FO_{1/2}$ are aligned using Kabsch algorithm (Elongation procedure; see Figure 1B). We overlapped the monomer from $FO_{1/2}$ at the top with the monomer from $FO_{1/2}$ at the bottom (connected by the curved arrows).

(C) The result of this operation described in panel B – the fibrin oligomer $FO_{1/2}$ (bottom structure). This same procedure can be repeated to reconstruct fibrin oligomers $FO_{3/4}$, $FO_{4/5}$, etc., up to a protofibril of arbitrary length.

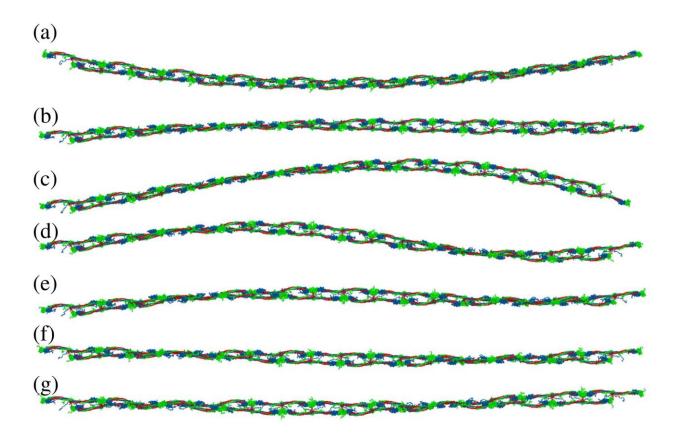


Figure S2: Twisting of fibrin protofibrils upon transition from the straight to the bent configuration of D:D interface. Related to Figure 3.

(A) Structures of fibrin protofibril $FP_{10/9}$ that correspond to the straight conformation of D:D interface (based on PDB structure 1N86).

(B-F) Transient structures detected in the course of transition from the straight to the bent configuration of D:D interface.

(G) Structure of FP_{10/9} that correspond to the bent configuration of D:D interface (based on PDB structure 1FZG).