1 SUPPLEMENTARY MATERIAL 2 **Release from intralocus sexual conflict?** 3 Evolved loss of a male sexual trait 4 demasculinises female gene expression 5 6 Jack G. Rayner,^{1,*,†} Sonia Pascoal,^{2,†} Nathan W. Bailey^{1,*} 7 8 9 ¹School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK ²Department of Zoology, University of Cambridge, CB2 3EJ, UK 10 11

- 12 [†]These authors contributed equally to this work.
- 13 *Corresponding authors: E-mails: jr228@st-andrews.ac.uk, nwb3@st-andrews.ac.uk

SI. SUPPORTING METHODS 14

15

Cricket rearing and production of lines 16

17 Pure-breeding normal-wing (NW) and flatwing (FW) lines from which RNA samples 18 were collected were derived from individuals caught in Kauai, Hawaii in 2012 following the procedures detailed in Pascoal et al. (2016), and thereafter maintained 19 20 under common garden conditions at 25 °C on a 12h:12h light:dark cycle in an 21 incubator with calling males present. Lines used in the follow-up comparison of 22 reproductive output of NW and FW genotypes of the two sexes were descended from 23 the same lines from which RNA samples were collected, but had since been 24 outcrossed by breeding NW and FW lines together to reduce effects of inbreeding. 25 Pure-breeding NW and FW lines were subsequently re-established by mating 26 heterozygous females with males of the desired morph, then backcrossing in the next 27 generation and screening offspring to retain homozygous families. All crickets were 28 reared under common-garden conditions, exposed to acoustic signals of other 29 crickets in the environment. Note that FW and NW lines have not been found to differ 30 in development time (Rayner & Bailey, unpublished data).

31

32 **Collection and sequencing of RNA samples**

33 Head and body tissues were separated and the digestive tract discarded, then 34 samples were stored in RNAlater at -20 °C. Immediately prior to RNA extraction, 35 neural tissue was dissected from the head capsule, and thoracic muscle and testes 36 or ovaries were dissected from the body cavity. Quantity and integrity of RNA 37 samples were assessed using Qubit broad range (Invitrogen) and Agilent

38 Bioanalyzer assays, respectively. Total RNA was depleted with RiboZero and used in 39 the ScriptSeq protocol (Epicentre), following manufacturer instructions. Samples 40 were sequenced on an Illumina HiSeq 2000 with version 3 chemistry, generating 41 2×100 bp paired end reads. CASAVA v1.8.2 (Illumina) was used for basecalling and 42 de-multiplexing of indexed reads. Adapter sequences were trimmed from fastg files 43 using Cutadapt v1.2.1 (Martin 2011) and low quality bases were removed using 44 Sickle v1.200 with a minimum window quality score of 20.

45

46 **Trinity Assembly Quality**

47 Across all 36 samples, sequencing produced 844,050,339 paired reads which 48 passed trimming (Table S4). Trinity-identified genes and isoforms showing greater 49 than 95% similarity were clustered using CD-hit-est (Li & Godzik 2006). Assembly 50 completeness was assessed by testing for the presence of insect BUSCO groups of 51 conserved expressed genes (Simão et al. 2015). Reads were aligned to the 52 transcriptome using Bowtie2 (Langmead & Salzberg 2012) with strand-specific 53 settings, and quantified in RSEM (Li & Dewey 2011) at the Trinity gene level using 54 default parameters. Trinity-identified 'genes' without open reading frames (ORFs) of 55 >100 amino acids in length were removed so that only transcripts with evidence of 56 protein coding regions were included in the analysis.

57 Trinity de novo transcriptome assembly statistics, before and after ORF 58 expression-based filtering are given in Table S5. BUSCO analysis of the unfiltered 59 transcriptome showed 97.8% of 1658 conserved insect genes were present in the 60 unfiltered transcriptome, 7.2% fragmented, and 90.6% complete; of which, after 61 extracting the longest putative isoform for each gene, only 1.8% were duplicated.

62 Together, these statistics suggest the filtered assembly is of a good quality, at least 63 comparable with previously published *de novo* assemblies for *T. oceanicus* and 64 closely related species (Bailey et al. 2013; Berdan et al. 2016; Kasumovic et al. 2016; 65 Pascoal et al. 2016; Pascoal et al. 2018a). Only the 42,496 transcripts passing ORF 66 and expression filters were included in downstream analyses.

67

68 **Differential Expression Analyses**

69 Prior to constructing models, transcripts not expressed at a level above one count 70 per million in a minimum of three samples were filtered from the dataset, as these 71 were considered to have little empirical support and because their removal increased 72 power to identify DE transcripts. After filtering, input counts were adjusted using 73 trimmed mean of M-values (TMM) normalisation.

74 Separate models were initially constructed for somatic (including neural tissue 75 and thoracic muscle from both sexes), and gonad (testes and ovaries) samples. 76 Scaled normalisation procedures assume that no more than 50% of transcripts in a 77 dataset are differentially expressed between any two groups of samples, which was 78 likely to be violated in a single model including both reproductive and somatic 79 tissues. Importantly, however, the TMM method is relatively robust against violations 80 of this assumption (Robinson & Oshlack 2010). For downstream investigation of sex-81 biased patterns of gene expression it was convenient to combine gonad tissues from 82 both sexes in a single model, despite the expectation that a very large proportion of 83 transcripts would be differentially expressed between the sexes. We tested the 84 validity of results from this combined gonad model by also constructing and 85 comparing separate models for testes and ovaries samples. For downstream

86 analyses involving gonad tissues we used results from the model including gonad 87 tissues from both sexes, as comparison of the identity of statistically DE transcripts 88 indicated a high degree of overlap between separate and combined-sex models for 89 ovaries (140 DE in ovaries model, 185 DE in combined sex model; 123 out of 140 90 (87.76%) DE transcripts shared between the two), while 16 transcripts were DE in 91 testes samples in the separate sex model, versus 9 in the combined-sex model (6 92 out of 9 shared between the two).

93 Negative binomial generalised linear models (GLMs) were constructed in 94 edgeR (Robinson et al. 2010), and tested using likelihood ratio tests. Once models had been constructed, pairwise contrasts were performed between groups of 95 96 samples, as recommended by the authors of EdgeR for more complex experimental 97 designs (Robinson et al. 2010), with a Benjamini and Hochberg-adjusted significance 98 threshold of FDR<0.01. Contrasts were specified to examine the number of DE 99 transcripts between morph genotypes for each of the tissues in each sex, as well as 100 a sex comparison which was performed by contrasting average male and female 101 expression values (i.e. samples for both morph genotypes were included for each 102 sex). The approach of including both morph genotypes in sex comparisons was 103 adopted to avoid statistical artefacts that could result from defining sex-biased 104 transcripts using only normal-winged samples, i.e. using the same reference groups 105 in both sex (*NW* male vs *NW* female) and morph (e.g. *NW* male vs *FW* male) 106 comparisons (see: Mallard et al. 2018).

107

108 **Calculating Scaled Mass Index**

109 Scaled mass index (SMI) was calculated using the following equation:

110
$$\widehat{M}_i = M_i \left[\frac{L_0}{L_i}\right]^{b_{SMA}}$$

111 where for each individual, i, M_i and L_i represent mass (with total egg mass or testes 112 mass deducted) and pronotum length, respectively, L_0 is the mean pronotum length within the population, and b_{SMA} is a scaling component, here estimated by log-log 113 114 standardised major axis (SMA) regression of somatic mass on pronotum length. Averages and SMA regression were calculated separately for each of the sexes. 115 116

SII. SUPPORTING REFERENCES 117

- 118 Bailey, N.W., Veltsos, P., Tan, Y.F., Millar, A.H., Ritchie, M.G. & Simmons, L.W.
- 119 (2013) Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.
- 120 G3 (Bethesda), 3(2): 225–30.
- 121 Berdan, E.L., Blankers, T., Waurick, I., Mazzoni, C.J., & Mayer, F. (2016) A genes
- 122 eve view of ontogeny: de novo assembly and profiling of the Gryllus rubens

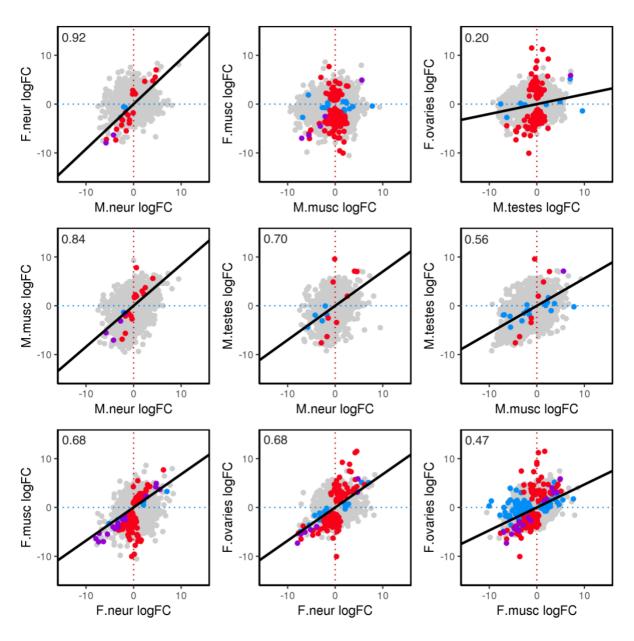
123 transcriptome. Molecular Ecology Resources, 16(6): 1478–1490.

- 124 Kasumovic, M.M., Chen, Z. & Wilkins, M.R., (2016) Australian black field crickets
- 125 show changes in neural gene expression associated with socially-induced
- 126 morphological, life-history, and behavioral plasticity. BMC Genomics, 17(827): 127 1-35.
- 128 Lun, A.T.L., Chen, Y., & Smyth, G.K., (2016) It's DE-licious: A recipe for differential

129 expression analyses of RNA-seq experiments using guasi-likelihood methods in

130 edgeR. Methods in Molecular Biology. DOI: 10.1007/978-1-4939-3578-9 19

- 131 Mallard, F., Jakšić, A.M. & Schlötterer, C. (2018) Contesting the evidence for non-
- 132 adaptive plasticity. Nature, 555: E21.
- 133 Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput 134 sequencing reads. EMBnet.journal, 17(1): 10.


Pascoal, S., Liu, X., Fang, Y., Paterson, S., Ritchie, M.G., Rockliffe, N. et al. (2018a). 135

- 136 Increased socially mediated plasticity in gene expression accompanies rapid 137 adaptive evolution. Ecol. Lett., 21(4):546-556.
- 138 Pascoal, S., Risse, J.E., Zhang, X., Blaxter, M., Cezard, T. et al. (2018b) Silent
- 139 crickets reveal the genomic footprint of recent adaptive trait loss. bioRxiv
- 140 https://doi.org/10.1101/489526.

141	Pascoal, S., Liu, X., Ly, T., Fang, Y., Rockliffe, N., Paterson, S. et al. (2016). Rapid
142	evolution and gene expression: a rapidly evolving Mendelian trait that silences
143	field crickets has widespread effects on mRNA and protein expression. J. Evol.
144	<i>Biol.</i> , 29(6): 1234–1246.
145	Robinson, M.D. & Oshlack, A. (2010) A scaling normalization method for differential
146	expression analysis of RNA-seq data. Genome Biology, 11(3).
147	Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zbodnov, E.M.
148	(2015). BUSCO: Assessing genome assembly and annotation completeness

with single-copy orthologs. *Bioinformatics*, 31(19): 3210–3212. 149

SIII. SUPPORTING FIGURES

154

155 Fig. S1. Concordance of *flatwing*-associated gene expression changes in different sexes (top) and across male (middle row) and female (bottom row) 156 tissues. Greater values along either axis indicate a transcript was more FW-157 158 biased. Transcripts DE in the x-axis comparison are highlighted in blue, transcripts DE in the y-axis comparison in red, and transcripts DE in both 159 comparisons in purple. Lines and annotations denote coefficients from 160 Spearman's rank correlation (P<0.01) across transcripts DE in either 161 162 comparison.

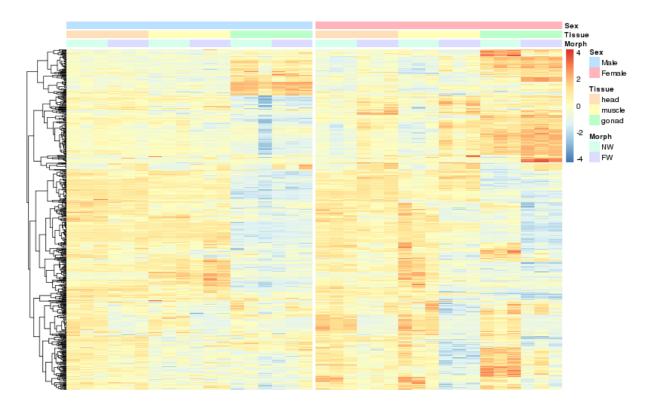
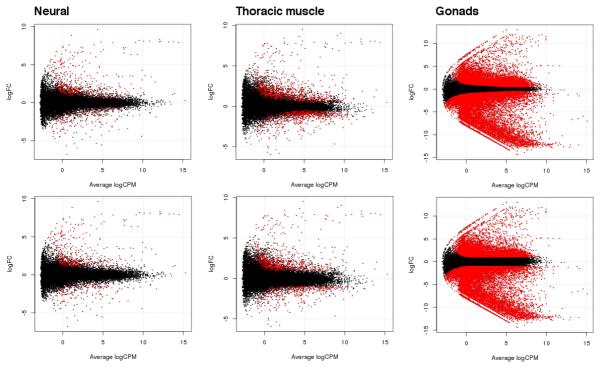



Figure S2. Heatmap showing expression values (log₂-transformed counts per million) across all samples for transcripts significantly (FDR<0.01) DE in any morph genotype comparison, z-scaled by row, for each of the morph genotypes and tissues.
Note that expression values for somatic (neural and thoracic muscle) and gonad tissues are derived from separately normalised libraries, thus only relative (NW vs FW), not absolute, expression values can be compared between the two.

171

Average logCPM
Figure S3. Volcano plots for sex comparisons between each of the tissues, showing expression level in log₂ counts-per-million along the X-axis, and log₂-fold change on the Y-axis. Red points are transcripts identified as DE at FDR<0.01. In the top row, no fold-change threshold is imposed for a transcript to be DE, whereas in the bottom row a log₂-fold change of 1 (fold-change of 2) threshold is imposed.

180 SIV. SUPPORTING TABLES

181

182 183

Table S1. Significantly enriched GO categories for each of the female genotypes. Male genotypes showed no significant GO enrichment.

Genotype	GO Name	GO Category	FDR	Nr Test	Nr Reference	Non Annot Test	Non Annot Reference
Female.FW	endomembrane system	CELLULAR_COMPONENT	1.82E-09	30	648	104	141
Female.FW	endoplasmic reticulum	CELLULAR_COMPONENT	1.96E-07	15	160	119	146
Female.FW	ncRNA metabolic process	BIOLOGICAL_PROCESS	0.005780891	9	118	125	147
Female.FW	tRNA aminoacylation for protein translation	BIOLOGICAL_PROCESS	0.0179214	5	33	129	148
Female.FW	cytoplasm	CELLULAR_COMPONENT	0.0179214	40	2291	94	125
Female.FW	ligase activity, forming aminoacyl-tRNA and related compounds	MOLECULAR_FUNCTION	0.0179214	5	32	129	148
Female.FW	ligase activity, forming carbon-oxygen bonds	MOLECULAR_FUNCTION	0.0179214	5	32	129	148
Female.FW	aminoacyl-tRNA ligase activity	MOLECULAR_FUNCTION	0.0179214	5	32	129	148
Female.FW	tRNA aminoacylation	BIOLOGICAL_PROCESS	0.0179214	5	33	129	148
Female.FW	amino acid activation	BIOLOGICAL_PROCESS	0.0179214	5	33	129	148
Female.FW	tRNA metabolic process	BIOLOGICAL_PROCESS	0.029074957	6	64	128	147
Female.FW	phenylalanyl-tRNA aminoacylation	BIOLOGICAL_PROCESS	0.041903784	2	0	132	1484
Female.FW	cell	CELLULAR_COMPONENT	0.041903784	63	4622	71	102
Female.FW	phenylalanine-tRNA ligase activity	MOLECULAR_FUNCTION	0.041903784	2	0	132	1484
Female.FW	endodermal digestive tract morphogenesis	BIOLOGICAL_PROCESS	0.041903784	2	0	132	1484
Female.FW	cell part	CELLULAR_COMPONENT	0.041903784	63	4622	71	102
Female.FW	intracellular part	CELLULAR_COMPONENT	0.041903784	55	3827	79	110
Female.FW	UDP-glucose:glycoprotein glucosyltransferase activity	MOLECULAR_FUNCTION	0.041903784	2	0	132	148
Female.FW	cellular process	BIOLOGICAL_PROCESS	0.041903784	71	5412	63	94
Female.FW	intracellular	CELLULAR_COMPONENT	0.049092922	55	3861	79	109
Female.NW	muscle cell development	BIOLOGICAL_PROCESS	1.80E-12	15	87	91	147
Female.NW	striated muscle cell development	BIOLOGICAL_PROCESS	1.80E-12	15	86	91	147
Female.NW	myofibril assembly	BIOLOGICAL_PROCESS	8.63E-11	13	75	93	147
Female.NW	striated muscle cell differentiation	BIOLOGICAL_PROCESS	8.63E-11	15	121	91	147
Female.NW	muscle cell differentiation	BIOLOGICAL_PROCESS	1.25E-10	15	128	91	147
Female.NW	sarcomere	_ CELLULAR_COMPONENT	1.67E-09	12	77	94	147
elease from	IASC	Page 12 of 19					

Female.N	W supramolecular complex	CELLULAR_COMPONENT	1.67E-09	16	196	90	14675
Female.N	W supramolecular polymer	CELLULAR_COMPONENT	1.67E-09	16	194	90	14677
Female.N	W actomyosin structure organization	BIOLOGICAL_PROCESS	1.67E-09	13	103	93	14768
Female.N	W myofibril	CELLULAR_COMPONENT	1.99E-09	12	83	94	14788
Female.N	W contractile fiber part	CELLULAR_COMPONENT	1.99E-09	12	82	94	14789
Female.N	W contractile fiber	CELLULAR_COMPONENT	1.99E-09	12	83	94	14788
Female.N	W A band	CELLULAR_COMPONENT	1.23E-08	7	11	99	14860
Female.N	W cellular component assembly involved in morphogenesis	BIOLOGICAL_PROCESS	1.23E-08	13	129	93	14742
Female.N	W supramolecular fiber	CELLULAR_COMPONENT	1.23E-08	15	194	91	14677
Female.N	W muscle structure development	BIOLOGICAL_PROCESS	9.56E-08	16	272	90	14599
Female.N	W sarcomere organization	BIOLOGICAL_PROCESS	3.15E-07	9	55	97	14816
Female.N	W skeletal myofibril assembly	BIOLOGICAL_PROCESS	4.20E-07	5	3	101	14868
Female.N	W organelle assembly	BIOLOGICAL_PROCESS	1.34E-06	13	198	93	14673
Female.N	W muscle thin filament assembly	BIOLOGICAL_PROCESS	1.60E-06	5	5	101	14866
Female.N	W adult somatic muscle development	BIOLOGICAL_PROCESS	1.60E-06	6	14	100	14857
Female.N	W skeletal muscle myosin thick filament assembly	BIOLOGICAL_PROCESS	4.36E-06	4	1	102	14870
Female.N	W striated muscle myosin thick filament assembly	BIOLOGICAL_PROCESS	4.36E-06	4	1	102	14870
Female.N	W supramolecular fiber organization	BIOLOGICAL_PROCESS	6.40E-06	13	232	93	14639
Female.N	W muscle contraction	BIOLOGICAL_PROCESS	2.89E-05	6	26	100	14845
Female.N	W actin cytoskeleton organization	BIOLOGICAL_PROCESS	4.46E-05	13	278	93	14593
Female.N	W myosin filament assembly	BIOLOGICAL_PROCESS	5.12E-05	4	4	102	14867
Female.N	W actin filament-based process	BIOLOGICAL_PROCESS	7.67E-05	13	294	93	14577
Female.N	W muscle system process	BIOLOGICAL_PROCESS	8.63E-05	6	33	100	14838
Female.N	W structural constituent of muscle	MOLECULAR_FUNCTION	1.10E-04	5	17	101	14854
Female.N	W non-membrane-bounded organelle	CELLULAR_COMPONENT	5.72E-04	25	1251	81	13620
Female.N	W intracellular non-membrane-bounded organelle	CELLULAR_COMPONENT	5.72E-04	25	1251	81	13620
Female.N	W myosin filament organization	BIOLOGICAL_PROCESS	0.001041773	4	12	102	14859
Female.N	W anatomical structure formation involved in morphogenesis	BIOLOGICAL_PROCESS	0.001205333	14	450	92	14421
Female.N	W myosin complex	CELLULAR_COMPONENT	0.002402313	5	36	101	14835
Female.N	W tissue development	BIOLOGICAL_PROCESS	0.003135179	21	1035	85	13836
Female.N	W somatic muscle development	BIOLOGICAL_PROCESS	0.003667131	6	70	100	14801

Release from IASC _____

Female.NW	cytoskeleton organization	BIOLOGICAL_PROCESS	0.004851486	15	588	91	14283
Female.NW	actin cytoskeleton	CELLULAR_COMPONENT	0.005463022	7	115	99	14756
Female.NW	single-organism organelle organization	BIOLOGICAL_PROCESS	0.007631604	14	541	92	14330
Female.NW	actin-dependent ATPase activity	MOLECULAR_FUNCTION	0.00827667	3	7	103	14864
Female.NW	collagen trimer	CELLULAR_COMPONENT	0.010052005	2	0	104	14871
Female.NW	Z disc	CELLULAR_COMPONENT	0.012809765	5	55	101	14816
Female.NW	I band	CELLULAR_COMPONENT	0.013560177	5	56	101	14815
Female.NW	flight behavior	BIOLOGICAL_PROCESS	0.019818808	4	31	102	14840
Female.NW	flight	BIOLOGICAL_PROCESS	0.021919929	3	11	103	14860
Female.NW	developmental process	BIOLOGICAL_PROCESS	0.026149506	38	3005	68	11866
Female.NW	structural molecule activity	MOLECULAR_FUNCTION	0.028546329	9	270	97	14601
Female.NW	cytoskeletal part	CELLULAR_COMPONENT	0.043255702	13	573	93	14298
Female.NW	single-organism developmental process	BIOLOGICAL_PROCESS	0.044807148	37	2977	69	11894
Female.NW	anatomical structure development	BIOLOGICAL_PROCESS	0.044807148	36	2864	70	12007

- Table S2. Results from mixed models for proximate measures of reproductive 185
- 186 output, body condition and body size.

	N		χ^{2} 1	df	P-value
In testes mass (mg) ¹	139				
		Morph	8.800	1	0.003
		In pronotum length	0.875	1	0.350
		In somatic mass	33.841	1	<0.001
Egg mass (mg) ²	145				
		Morph	0.011	1	0.916
		In pronotum length	1.190	1	0.275
		In somatic mass	2.688	1	0.101
In somatic SMI (mg) ¹	284				
(),		Sex	14.071	1	<0.001
		Morph	5.095	1	0.024
		Sex × Morph	14.006	1	<0.001

- All mixed models included a random effect of biological line, and pronotum length and somatic mass measures were standardized. In indicates natural log. 187
- 188
- 189 ¹ LMM
- ² Negative binomial GLMM 190
- 191

	N		χ^2 1	df	P-value
Pronotum length (mm)	284				
		Sex	6.925	1	0.008
		Morph	1.109	1	0.292
		Sex × Morph	0.007	1	0.934
Somatic mass (mg)	284				
		Sex	5.521	1	0.019
		Morph	0.000	1	0.998
		Sex × Morph	6.493	1	0.011

193
Table S3. Results from LMMs for measures of pronotum length and somatic mass.

All mixed models included a random effect of biological line. 194

Sample	Untrimmed	Trimmed	R1/R2
12-M-head-NW	61,006,572	60,574,658	30,135,313
13-M-musc-NW	52,305,462	51,887,011	25,750,536
14-M-testes-NW	32,528,962	32,272,950	16,016,686
15-M-head-NW	45,129,482	44,800,976	22,253,685
16-M-musc-NW	38,802,556	38,548,881	19,152,513
17-M-testes-NW	45,673,402	45,345,163	22,526,496
18-M-head-NW	45,144,822	44,759,087	22,255,296
19-M-musc-NW	41,938,996	41,687,713	20,723,620
20-M-testes-NW	46,192,918	45,807,083	22,753,029
21-M-head-FW	41,271,576	41,009,761	20,390,600
22-M-musc-FW	38,299,684	37,927,595	18,827,916
23-M-testes-FW	34,296,850	34,040,366	16,913,615
24-M-head-FW	38,464,592	38,194,020	18,981,007
25-M-musc-FW	40,841,770	40,536,785	20,167,484
26-M-testes-FW	56,988,020	56,698,696	28,215,093
27-M-head-FW	35,047,354	34,844,351	17,324,648
28-M-musc-FW	31,835,044	31,523,465	15,689,092
29-M-testes-FW	35,387,996	35,209,052	17,526,777
30-F-head-NW	42,161,524	41,907,832	20,851,634
31-F-musc-NW	35,282,270	45,057,779	17,431,719
32-F-ovary-NW	41,918,270	41,671,898	20,720,037
33-F-head-NW	54,750,504	54,366,572	27,009,996
34-F-musc-NW	36,707,644	36,478,463	18,133,920
35-F-ovary-NW	61,241,274	60,568,124	30,140,953
36-F-head-NW	40,529,344	40,286,894	20,029,845
37-F-musc-NW	60,875,116	60,420,336	30,002,776
38-F-ovary-NW	49,069,420	48,778,590	24,262,153
39-F-head-FW	68,246,640	67,735,805	33,665,646
40-F-musc-FW	53,574,414	53,152,845	26,401,475
41-F-ovary-FW	60,275,904	59,672,380	29,544,754
42-F-head-FW	49,036,456	48,319,730	23,843,272
43-F-musc-FW	46,013,420	45,292,669	22,295,013
44-F-ovary-FW	72,280,210	71,502,322	35,382,796
45-F-head-FW	72,769,140	71,884,165	35,552,882
46-F-musc-FW	50,181,870	49,502,672	24,456,228
47-F-ovary-FW	58,764,358	58,047,104	28,721,838

 Table S4.
 Summary of the number of sequenced reads before and after trimming.
 195

	Full assembly	Filtered clustered assembly
Total Trinity genes	2,573,977	42,496
N10	2,129	6,764
N20	1,151	5,106
N30	729	4,147
N40	522	3,446
N50	411	2,900
Median contig length	290	1,859
Mean contig length	413.35	2,293
Total bases	1,063,945,697	302,614,475

197	Table S5. Summary statistics for full and filtered	Trinity de nove	o transcriptome assemblies	(longest isoform only)