

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Genetic associations between genes in the reninangiotensin-aldosterone system and renal disease: a systematic review and meta-analysis

Journal:	BMJ Open		
Manuscript ID	omjopen-2018-026777		
Article Type:	Research		
Date Submitted by the Author:	19-Sep-2018		
Complete List of Authors:	Smyth, Laura; Queen's University Belfast Centre for Public Health, Epidemiology and Public Health Research Group Cañadas-Garre, Marisa; Queen's University Belfast Centre for Public Health, Epidemiology and Public Health Research Group Cappa, Ruaidhri; Queen's University Belfast Centre for Public Health, Epidemiology and Public Health Research Group Maxwell, Alexander; Queen's University Belfast Centre for Public Health, Centre for Public Health; Belfast City Hospital, Regional Nephrology Unit McKnight, Amy; Queen's University Belfast, Centre for Public Health		
Keywords:	CKD, NEPHROLOGY, RAAS, Meta-analysis, Renin-angiotensin-aldosterone system, Kidney		

SCHOLARONE" Manuscripts

2		
3	1	Genetic associations between genes in the renin-angiotensin-aldosterone system and renal
4	2	disease: a systematic review and meta-analysis
5 6	3	Laura J. Smyth ^{1*} , Marisa Cañadas-Garre ¹ , Ruaidhri C. Cappa ¹ , Alexander P. Maxwell ^{1,2} , Amy Jayne
7	4	McKnight ¹
8	_	
9	5	^{1.} Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University
10	6	Belfast, Belfast, United Kingdom
11 12	7	^{2.} Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
12	0	
14	8	*Corresponding author email: lsmyth42@qub.ac.uk
15	9	
16	10	
17	10	SHORT TITLE
18 19	11	A meta-analysis of RAAS gene variants and CKD
20	10	
21	12	
22	13	WORD COUNT (excluding Abstract, Key words, References, Figures, Tables, Statements and
23	14	Contributions)
24 25	1 5	2.016
25 26	15	3,016
27	16	
28	17	ABSTRACT
29	17	ADSTRACT
30	18	Background
31 32	19	Chronic kidney disease (CKD) is defined by abnormalities in kidney structure and/or function present
33	20	for more than three months. Worldwide, both the incidence and prevalence rates of CKD are
34	20	increasing. The renin-angiotensin-aldosterone system (RAAS) regulates fluid and electrolyte balance
35	22	through the kidney. RAAS activation is associated with hypertension, which is directly implicated in
36	23	causation and progression of CKD. RAAS blockade, using drugs targeting individual RAAS mediators
37 38	24	and receptors, has proven to be reno-protective.
39		
40	25	Objectives
41	26	To assess genomic variants present within RAAS genes; ACE, ACE2, AGT, AGTR1, AGTR2 and REN, for
42	27	their association with CKD.
43 44	20	
44	28	Design and Data Sources
46	29	A systematic review and meta-analysis of observational research was performed to evaluate the
47	30	RAAS gene polymorphisms in CKD using both PubMed and Web of Science databases. Eligible
48	31	articles included case-control studies of a defined kidney disease and included genotype counts.
49 50	22	Elizibility Critoria
50 51	32	Eligibility Criteria
52	33	Any paper was removed from the analysis if it was not written in English or Spanish, was a non-
53	34	human study, was a paediatric study, was not a case-control study, did not have a renal disease
54	35	phenotype, did not include data for the gene of interest, was a gene expression based study or had a
55	36	pharmaceutical drug focus.
56 57		
58		1
59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

37 Results

A total of 3,286 studies were identified, 108 of which met the inclusion criteria. Genetic variants which had been reported in at least three independent publications for populations with the same ethnicity were then determined and quantitative analyses subsequently performed.

- Three variants returned significant results in populations with different ethnicities at P <0.05; *ACE* insertion, *AGT* rs699-T allele, and *AGTR1* rs5186-A allele; all had small effect sizes and each variant
- 43 was associated with a reduced risk of CKD development.

44 Conclusions

- Further biological pathway and functional analyses of the RAAS gene polymorphisms will help definehow variation in components of the RAAS pathway contribute to CKD.

48 Key words

- 49 CKD, kidney, meta-analysis, RAAS, renin-angiotensin-aldosterone system

51 ARTICLE SUMMARY

52 Strengths and limitations of the study

- Strength: Individuals with microalbuminuria were excluded from both the case and control definitions to improve the discrimination between individuals with and without renal disease as microalbuminuria may regress, remain stable or progress to macroalbuminuria.
 - Strength: Due to previously reported heterogeneity between different ethnic groups, we included this as a risk factor and performed each analysis per ethnicity.
 - Limitation: Some studies in our search could not be included in quantitative analysis as they lacked information relating to genotype counts and had an unclear measure and definition of albuminuria for both cases and controls.

61 Hypothesis statement

• We hypothesise that there will be an association between genetic variants within RAAS genes and CKD.

64 INTRODUCTION

Chronic kidney disease (CKD) is defined as a progressive loss of renal function measured as a reduction in glomerular filtration rate (GFR) to <60 mL/min/1.73m², or the presence of persistent urinary abnormalities including albuminuria and/or structural alterations which have been present for at least three months(1). CKD is an increasing public health issue given its associated morbidities, premature mortality and management of advanced CKD is a significant burden on health care budgets worldwide(2,3). There is substantial evidence that inherited genetic variants(4), the presence of diabetes(5) or hypertension(6) and an individual's ethnicity(7,8) directly influence the development of various CKD phenotypes.

The renin-angiotensin-aldosterone system (RAAS) is a homeostatic endocrine system which is of
 critical importance to the regulation of blood pressure and maintenance of fluid and electrolyte
 balance(9,10). Renin, secreted from the juxtaglomerular apparatus in response to reduced renal

BMJ Open

perfusion pressure, catalyses the conversion of angiotensinogen to angiotensin I(11). Subsequently, angiotensin I converting enzyme (*ACE*) cleaves angiotensin I to generate angiotensin II, which regulates heart and kidney function by binding to and activating angiotensin II receptors (type I and type II)(11,12). The angiotensin II type I receptors are responsible for multiple biologic actions of RAAS including vasoconstriction and sodium reabsorption(11–14).

81 Increased RAAS activation is linked to progression of CKD of different aetiologies, especially diabetic 82 nephropathy (DN)(11,15–18), and is mediated by hypertensive injury(15,17) and accelerated renal 83 fibrosis(19). The physiological relevance of this pathway in the progression of CKD has focused 84 attention on RAAS components including *ACE*, angiotensin I converting enzyme 2 (*ACE2*), 85 angiotensinogen (*AGT*), angiotensin II receptor type 1 (*AGTR1*), angiotensin II receptor type 2 86 (*AGTR2*) and renin (*REN*), as candidate genes for various CKD-related phenotypes. Multiple studies 87 have implicated RAAS gene variants in the progression of CKD(20–26).

This manuscript describes a systematic review and meta-analysis to examine published data reporting genetic variants present within six of the RAAS candidate genes: *ACE*, *ACE2*, *AGT*, *AGTR1*, *AGTR2* and *REN*, for a range of CKD phenotypes and ethnicities, to help define their putative roles as risk factors for CKD.

93 METHODS

Search Strategy: A systematic search was undertaken following recognised methods, the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines(27), by two investigators. PubMed and Web of Science online databases were searched for studies between the inception of each database and 31st December 2016. All search terms are detailed in Supplementary Table S1. Reference lists from included publications were also manually searched. Two authors (US and MCG) independently conducted the literature search, screened the articles and extracted the data. In the case of any disagreement, a third author (RCC) considered the articles. A range of CKD phenotypes were included in this analysis, the case and control definitions are included in Table 1.

102 Table 1: Phenotypic comparisons included in this analysis

Case Group	Control Group
Autosomal dominant polycystic kidney disease	Healthy controls
Atherosclerotic renal artery stenosis	Healthy controls
Balkan endemic nephropathy	Healthy controls
Chronic glomerulonephritis	Healthy controls
Chronic kidney disease	Healthy controls
Diabetic nephropathy*	Diabetes mellitus
Diabetic nephropathy*	Healthy controls
End-stage renal disease	Healthy controls
End-stage renal disease	Type 1 diabetes mellitus
Focal segmental glomerulosclerosis	Healthy controls
Glomerulonephritis	Healthy controls
Hypertension-related renal disease	Healthy controls with hypertension
Hypertension-related renal disease	Healthy controls
IgA Nephropathy	Healthy controls
Interstitial nephritis	Healthy controls
Lupus nephritis	Systemic lupus erythematosus

Lupus nephritis	Healthy controls
Minimal change nephrotic syndrome	Healthy controls
Non-Balkan endemic nephropathy	Healthy controls
Nephroangiosclerosis	Healthy controls
Polycystic kidney disease	Healthy controls
Primary membranous glomerulonephritis	Healthy controls
Primary membranous glomerulonephritis	Organ donors
Renal transplant recipients	Healthy controls
Renal transplant recipients	Kidney Donors
Type 1 diabetic nephropathy*	Type 1 diabetes mellitus
Type 1 diabetic nephropathy linked to end-stage renal disease	Healthy controls
Type 1 diabetic nephropathy linked to end-stage renal disease	Type 1 diabetes mellitus
Type 2 diabetic nephropathy*	Type 2 diabetes mellitus
Type 2 diabetic nephropathy linked to end-stage renal disease	Healthy controls
Type 2 diabetic nephropathy linked to end-stage renal disease	Type 2 diabetes mellitus
* In the studies including diabatic nonbronathy as eased	and individuals with reported

* In the studies including diabetic nephropathy as cases, only individuals with reported macroalbuminuria or proteinuria were included. Individuals with microalbuminuria were excluded.

Inclusion/Exclusion Criteria: Inclusion criteria were judged against a standardised list of agreed criteria (LIS, MCG and AJM), whereby the English or Spanish language publication described an adult, human case-control study, of a defined kidney disease. In the rare instances when suspected duplicate data was identified within two or more included articles, only the article either published first, or that with the larger number of participants was included.

Articles were excluded if they included paediatric subjects, were a pharmacological based study reporting clinical trials of medications, did not contain genotypic data for the correct gene or were non-human studies.

Data extraction: Where available, the size of each study, case group disease definition and number of individuals, control group definition and number of individuals, ethnicity, genetic variant, genotype in the format of allele one-heterozygote-allele two and allele counts were recorded and calculated in spreadsheets by two authors (LJS and MCG). Articles were re-assessed where any disagreement occurred and a third reviewer was employed. Ethnicities were recorded from the articles and re-coded following the International Genome Sample Resources' online guidance(28). Where any population did not align to a listed population code, a new one was created for the purposes of this study. All ethnicity codes are available in Supplementary Table S2. The data collected was divided into disease phenotype groups to ensure a high level of homogeneity.

Statistical Analysis: Each genetic variant which had been investigated and reported in at least three independent publications for the same ethnicity and phenotype was included in guantitative statistical analyses. Review Manager (RevMan) 5.3 (The Cochrane Collaboration, The Nordic Cochrane Centre, Copenhagen, Denmark) was employed to facilitate the analysis of allele frequencies. For each SNP, the total number of alleles were recorded per case and control group. Hardy Weinberg was calculated for all included studies. Statistical analyses were performed using the random effects model as heterogeneity was expected. For each SNP, this analysis provided the P value, odds ratio (OR) and 95% confidence intervals (CI). It also facilitated the assessment of the heterogeneity level using the I² statistic(29). Forest plots and funnel plots were generated automatically to assess publication bias and the significance value was set at P<0.05 (LIS and RCC).

The quality of the studies was assessed by all available quality control measures including reported genotype completion rate, phenotype description, microalbuminuria exclusion and Hardy Weinberg

equilibrium. No sensitivity analysis was performed. All study methodology conformed to the MOOSE
criteria(27). No published protocol is available for this review. The workflow followed a consistent
pattern for each gene. A summary of this is included in Figure 1.

137 Figure 1: Workflow pattern

139 RESULTS

The database searches returned 3,286 results, 138 of which remained following the application of inclusion and exclusion criteria and the removal of any SNP which was not reported on at least three occasions. Several articles included data for more than one gene, signifying that they have emerged multiple times throughout the database searches; the total number of individual articles was therefore 108. The search strategies are included as Supplementary Figures S1a-f. All excluded studies are listed in Supplementary Tables S3a-f

The total number of subjects analysed within these studies (n=108) was 17,782 individuals with renal
disease and 21,199 individuals acting as controls. For SNPs in three of the RAAS genes, ACE2, AGTR2

148 and REN, there were less than three independent populations studied. A summary table detailing

149 the main results is included as Table 2.

150 Table 2: Summary of most significant result for each selected gene

Gene	Articles	Articles	Max.	Most	P Value	OR (95% CL)	l ² (%)
	returned	analysed	individuals in analysis (n)	significant result			
	(n)	(n)	allalysis (II)	result			
ACE	366	91	32,666	I/D (EAS)	0.008	0.80 (0.67, 0.94)	68
ACE2	1413	0	NA		NA	NA	NA
AGT	656	31	11,210	rs699 (EUR)	0.002	0.84 (0.76, 0.94)	0
AGTR1	191	16	6917	rs5186 (SAS)	0.001	0.71 (0.58, 0.87)	37
AGTR2	28	0	NA		NA	NA	NA
REN	632	0	NA		NA	NA	NA

151 Abbreviations: EAS, East Asian; EUR, European; NA, Not Applicable; SAS, South Asian.

ACE

A total of 14 quantitative analyses were completed for the insertion / deletion (I/D) polymorphism located within ACE in eight phenotypes, details of which are included in Supplementary Table S4. Three quantitative analyses returned a significant result. The first analysis comprised 11 publications, each studying an East Asian population with T2DN (type 2 diabetes and nephropathy) and compared with T2DM (type 2 diabetes mellitus without nephropathy). Figure 2a displays these results, P= 0.009; OR= 0.74; 95% CI= 0.59, 0.93, I^2 = 55%, showing that the presence of the insertion variant at this ACE locus was significantly associated with this phenotype. The insertion provides a lower risk of developing T2DN in an East Asian population.

162 Figure 2a: ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to
163 individuals with type 2 diabetes mellitus in an East Asian Population (ACE insertion variant compared
164 to deletion variant).

BMJ Open

165 The *ACE* insertion variant was similarly significantly associated with a lower risk of T2DN compared 166 with T2DM in a South Asian population, despite the presence of a high level of heterogeneity (P= 167 0.01; OR= 0.57; 95% CI= 0.37, 0.87; I^2 = 89%). The comparison of East Asian individuals with end-stage 168 renal disease (ESRD) compared to a healthy population with no evidence of renal disease also 169 showed a significant association with moderate levels of heterogeneity (P= 0.008; OR= 0.8; 95% CI= 170 0.67, 0.94; I^2 = 68%). These results are included as Figures 2b and 2c respectively.

Figure 2b: *ACE* I/D investigation, individuals with type 2 diabetic nephropathy compared to 172 individuals with type 2 diabetes mellitus in a South Asian Population (insertion compared to 173 deletion).

Figure 2c: *ACE* I/D investigation, individuals with end-stage renal disease compared to healthy 175 controls in an East Asian Population (insertion compared to deletion).

176 In each analysis (T2DN vs. T2DM; ESRD vs. normal), the presence of the ACE insertion was associated
177 with a lower risk of developing the CKD phenotype in the respective populations. The non-significant
178 results are included in Supplementary Figures S2a-S2k.

AGT

Seven quantitative analyses were completed for rs699, where the T allele was compared to the C allele. Details of each of these comparisons are included in Supplementary Table S5. One significant result was identified - the comparison of ESRD with healthy controls in a European population. The results were (P=0.002; OR= 0.84; 95% CI= 0.76, 0.94; I²= 0%) and are shown in Figure 2d. These results indicate that the presence of the T allele is associated with a lower risk of developing ESRD in this population. The non-significant results are included in Supplementary Figures S2I-S2q.

Figure 2d: AGT rs699 investigation, individuals with end-stage renal disease compared to healthy
 controls in a European Population (AGT rs699 T allele compared to C allele).

AGTR1

Four quantitative analyses were performed for *AGTR1* rs5186, comparing the A allele with the C. Details of these comparisons are included within Supplementary Table S6. One of the four studies returned a significant result for association, the comparison of T2DN with T2DM in a South Asian population (P= 0.001; OR= 0.71; 95% CI= 0.58, 0.87; I²= 37%). This result is shown in Figure 2e. These results indicate that the presence of the A allele is associated with a lower risk of developing T2DN in this population. The non-significant results are included in Supplementary Figures S2r-S2t.

Figure 2e: AGTR1 rs5186 investigation, individuals with type 2 diabetic nephropathy compared to
individuals with type 2 diabetes mellitus in a South Asian Population (AGTR1 rs5186 A allele
compared to C allele).

All funnel plots for these analyses are included in Supplementary Figure S3. Only the plots for ACE
I/D CKD in a South Asian population and ACE I/D T2DN in a European population showed a tendency
for publication bias.

- 201 Studies not complying with Hardy Weinberg equilibrium are shown in Supplementary Table S7.

DISCUSSION

Investigations into RAAS genetic variants previously reported to have been associated with a range of CKD phenotypes were undertaken. A total of 3,286 studies were identified, 108 of which met the inclusion criteria. Subsequently, 25 quantitative analyses were completed for three RAAS genes where there were at least three independent population studies of the RAAS gene variants. Five significant results within three genes were obtained at the significance level p<0.05, each revealing an association with CKD.

ACE is encoded by DCP1 and is a key component of the RAAS. It catalyses the modification of angiotensin I to II, which is more biologically active(30). ACE is the most frequently studied gene of the RAAS(31). First sequenced in 1992(32), this 287 bp ALU repetitive element at intron 16(32) is located on chromosome 17 and is represented by four individual SNPs, rs4646994, rs1799752, rs4340 and rs13447447. Further understanding of its genetic architecture and disease associations may enable patient groups to benefit from targeted therapies with ACE inhibitors(33).

Since 1994, the association of ACE and DN has been rigorously investigated(33,34), with studies returning conflicting results. A meta-analysis undertaken in 2005 by Ng and colleagues(35) reported a statistically significant result wherein the ACE insertion was associated with protection from development of diabetic nephropathy in Asians and Caucasians. A second meta-analysis undertaken in 2012 also identified an association between the ACE I/D polymorphism and the development of diabetic nephropathy to ESRD, in that the presence of the deletion was associated with ESRD susceptibility(36). Despite having differences in the inclusion criteria to our meta-analysis, in that these investigations did not include any article published since 2011(35,36) and included individuals with microalbuminuria as cases(35), we returned similar results to the 2005 previous meta-analysis. Including individuals with microalbuminuria in the control population may cause challenges with phenotype definition as microalbuminuria may regress, remain stable, or progress to macroalbuminuria(37-39) over time. Individuals with microalbuminuria were therefore excluded from both case and control definitions to clarify the phenotypes in our review.

In our meta-analysis of ACE, which comprised 14,509 individuals with CKD and 18,157 individuals as controls from 94 population groups, we identified three significant associations of the ACE I/D polymorphism with CKD. Due to previously reported heterogeneity between different ethnic groups(35), we included this as a risk factor and performed each analysis per ethnicity (Table S2).

Firstly, comparisons between T2DN and T2DM in East Asian and South Asian populations returned significant results highlighting a protective effect of the ACE insertion in the development of diabetic nephropathy (P=0.009 and P=0.01 respectively). This result was mimicked in the comparison of individuals with ESRD, which was not caused by diabetic nephropathy, and healthy control individuals in an East Asian population (P=0.008). The ACE I/D polymorphism remains a well characterised genetic locus associated with the progression of diabetic nephropathy.

AGT encodes the AGT glycoprotein, which is created in the liver and facilitates the creation of angiotensin I(11,40). It is located on chromosome 1. Several investigations have been conducted into the AGT gene variants and their association with risk of CKD(40-43). Among these, Zhou and colleagues undertook a meta-analysis investigation into AGT rs699 and its association with ESRD(40). The results of this study are agreement with ours in relation to the European ethnicity. Our meta-analysis encompassing 5,076 individuals with renal disease and 6,134 individuals without; the T allele provided a protective effect in ESRD development (P=0.002) within this European population.

BMJ Open

The AGTR1 gene has been shown to be involved in the regulation of blood pressure, fluid and electrolyte balance(11). It may also have a role in inflammation and vasoconstriction(44). SNP rs5186, an AC nucleotide substitution at position 1166 in the 3' untranslated region of chromosome 3, is reportedly able to be recognised by microRNA-155. When the A allele is present at this locus, microRNA-155 is able to undergo complementary base-pairing with AGTR1 messenger RNA to suppress translation. However this is not possible when the alternative C allele is present, resulting in increased AGTR1 protein levels(45). This interplay may affect blood pressure regulation and warrants further investigation(45).

Previous studies have identified associations between rs5186 in AGTR1 and diseases including coronary artery disease(46), systemic lupus erythematosus(47) and cancer(48). Several smaller studies had also been undertaken to assess links between this gene and renal disease(25,49–54). We conducted this study to provide a clearer understanding of the effect of this SNP on CKD.

This meta-analysis of AGTR1 variants included 3,197 individuals with renal disease and 3,720 controls investigating rs5186. One significant result was identified; that the presence of an A allele at this locus provided a lower risk of developing T2DN in a South Asian population (P=0.001).

One meta-analysis published in 2014(55) assessed AGTR1 in individuals with CKD, ESRD, IgA nephropathy or vesicoureteral reflux. This meta-analysis identified that rs5186 was not associated with any of these diseases, which corresponds to the results from our investigation.

The three remaining RAAS genes included in this meta-analysis, ACE2, AGTR2 and REN, have not been researched as extensively as the ACE, AGT and AGTR1 for associations with renal disease. Very few articles were identified describing genetic association studies for these genes at the data extraction stage of the analysis, and those that were, were removed prior to the quantitative analysis stage, mainly due to the inclusion of paediatric individuals or non-human approaches, as outlined in Figures S1b, S1e and S1f. Further research into the ACE2, AGTR2 and REN genes and their polymorphisms should be undertaken to elucidate their role in CKD and ESRD.

Some studies in our search could not be included in quantitative analysis as they lacked information relating to genotype counts and had an unclear measure and definition of albuminuria for both cases and controls, which could constitute a limitation. Publication bias was reported in two of our quantitative analyses, but was not found in the analyses which provided our significant results. Lack of clarity in phenotype definitions, along with unclear descriptions of ethnicities, inherently challenge the use of meta-analyses of different populations as a valid instrument to uncover robust associations. CKD itself has a range of causes including glomerular damage and declining eGFR without albuminuria. Other confounding factors such as hypertension and cardiovascular disease, and a lack of prospective follow up of included individuals, which would ensure phenotypes are robust and stable, may also cause conflicting results.

CONCLUSION

This meta-analysis of the RAAS pathway genes and their association with renal disease has provided evidence for five significant associations with individually small effect sizes that may cumulatively contribute to dysfunction of the RAAS pathway leading to kidney disease. The insertion in ACE I/D polymorphism was a protection factor for the development of diabetic nephropathy in individuals with type 2 diabetes mellitus from both East and South Asian origin, and for ESRD in an East Asian population. In Europeans, the T allele of the AGT rs699 conferred a lower risk of ESRD development

1		
2 3	291	in healthy population. The A allele in AGTR1 rs5186 acted as a protection factor for renal disease
4	292	development in South Asian population.
5 6	293	Further study into the specific ethnicities and investigations into a broader range of RAAS linked
7	294	genes, or a deeper analysis of them including investigations of more variants, may pinpoint the
8	295	molecular basis underlying the role of pathway in kidney disease. Network analysis and functional
9 10	296	studies enlightening the mechanisms involved ultimately will be required to complete the picture of
10	297	RAAS variation in renal traits.
12	298	
13 14	299	STATEMENTS AND CONTRIBUTIONS
15	300	
16	300	
17 18	301	Acknowledgements and Funding
19	302	LJS is the recipient of a Northern Ireland Kidney Research Fund Fellowship.
20 21	303	MCG is funded by a Science Foundation Ireland-Department for the Economy (SFI-DfE) Investigator
22	304	Program Partnership Award (15/IA/3152).
23 24	305	RCC is the recipient of a Department for the Economy (DfE) PhD studentship.
25 26	306	None of the funding bodies had a role in the study design or analysis.
27	307	
28 29	308	Statement of competing interests
30	309	The authors declare that they have no competing interests.
31 32		The authors declare that they have no competing interests.
33	310	
34 35	311	Availability of data and material
36	312	The datasets generated and/or analysed during the current study are available from the
37	313	corresponding author on reasonable request.
38 39	314	
40	514	
41	315	Author contributions
42	316	LJS formulated the research plan, conducted the analysis, interpreted the data, drafted the
43 44	317	manuscript and revised the manuscript.
45	318	MCG conducted the analysis, interpreted the data and revised the manuscript.
46 47	319	RCC conducted the analysis, interpreted the data and revised the manuscript.
48 49	320	APM acquired the funding, managed the project, interpreted the data and revised the manuscript.
50		
51	321	AJM acquired the funding, formulated the research plan, interpreted the data, managed the project
52	322	and revised the manuscript.
53 54	323	All authors read and approved the final manuscript.
55	324	
56 57		
57		9
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	325	REFE	RENCES
4 5	326	1.	Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012 Jan 14;379(9811):165–80.
6 7 8	327 328	2.	Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13(2):104–14.
9 10 11	329 330 331	3.	Mills KT, Xu Y, Zhang W, Bundy JD, Chen C-S, Kelly TN, et al. A systematic analysis of world- wide population-based data on the global burden of chronic kidney disease in 2010 HHS Public Access. Kidney Int. 2015;88(5):950–7.
12 13 14	332 333	4.	Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol. 2014;307(7):F757-76.
15 16 17 18	334 335 336	5.	Brancati FL, Whelton PK, Randall BL, Neaton JD, Stamler J, Klag MJ. Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Multiple Risk Factor Intervention Trial. JAMA. 1997;278(23):2069–74.
19 20 21	337 338	6.	Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334(1):13–8.
22 23 24 25	339 340 341	7.	Cowie CC, Port FK, Wolfe RA, Savage PJ, Moll PP, Hawthorne VM. Disparities in Incidence of Diabetic End-Stage Renal Disease According to Race and Type of Diabetes. N Engl J Med. 1989;321(16):1074–9.
26 27 28 29	342 343 344	8.	Mathur R, Dreyer G, Yaqoob MM, Hull SA. Ethnic differences in the progression of chronic kidney disease and risk of death in a UK diabetic population: an observational cohort study. BMJ Open. 2018;8(3):e020145.
30 31	345 346	9.	Velez JCQ. The importance of the intrarenal renin-angiotensin system. Nat Clin Pract Nephrol. 2009;5(2):89–100.
32 33 34 35	347 348 349	10.	Nishiyama A, Kim-Mitsuyama S. New Approaches to Blockade of the Renin–Angiotensin– Aldosterone System: Overview of Regulation of the Renin–Angiotensin–Aldosterone System. J Pharmacol Sci. 2010;113(4):289–91.
36 37 38	350 351	11.	Remuzzi G, Perico N, Macia M, Ruggenenti P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl. 2005;68(99):S57–65.
39 40	352 353	12.	Nishiyama A, Kobori H. Independent regulation of renin–angiotensin–aldosterone system in the kidney. Clin Exp Nephrol. 2018;doi: 10.1007/s10157-018-1567-1.
41 42 43	354 355	13.	Carey RM. The intrarenal renin-angiotensin system in hypertension. Adv Chronic Kidney Dis. 2015;22(3):204–10.
44 45 46	356 357	14.	Zhang F, Liu H, Liu D, Liu Y, Li H, Tan X, et al. Effects of RAAS Inhibitors in Patients with Kidney Disease. Curr Hypertens Rep. 2017;19(9):72.
47 48 49 50	358 359 360	15.	Coll E, Campos B, González-Núñez D, Botey A, Poch E. Association between the A1166C polymorphism of the angiotensin II receptor type 1 and progression of chronic renal insufficiency. J Nephrol. 2003;16(3):357–64.
51 52 53	361 362 363	16.	Bermejo S, García CO, Rodríguez E, Barrios C, Otero S, Mojal S, et al. The renin-angiotensin- aldosterone system blockade in patients with advanced diabetic kidney disease. Nefrologia. 2017;32(2):197–206.
54 55 56 57	364 365	17.	Yamout H, Lazich I, Bakris GL. Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21(3):281–6.
58 59			10
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3	366	18.	Rahimi Z. The Role of Renin Angiotensin Aldosterone System Genes in Diabetic Nephropathy.
4 5	367	-	Can J Diabetes. 2016;40(2):178–83.
6 7	368 369	19.	Mezzano S a, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38(3 Pt 2):635–8.
8 9	370	20.	Kelly TN, Raj D, Rahman M, Kretzler M, Kallem RR, Ricardo AC, et al. The role of renin-
9 10	371		angiotensin-aldosterone system genes in the progression of chronic kidney disease: Findings
11	372		from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol Dial Transplant.
12	373		2015;30(10):1711–8.
13	374	21.	Ramanathan G, Elumalai R, Periyasamy S, Lakkakula BVKS. Renin gene rs1464816
14 15	375		polymorphism contributes to chronic kidney disease progression in ADPKD. J Biomed Sci.
15 16	376		2016;23(1):1–7.
17	377	22.	Kawada N, Moriyama T, Yokoyama K, Yamauchi A, Ando A, Mikami H, et al. Renin-angiotensin
18	378		system component gene polymorphisms in Japanese maintenance haemodialysis patients.
19	379		Nephrology. 1997;3(4):521–6.
20	380	23.	Parsa A, Lovett DH, Peden EA, Zhu L, Seldin MF, Criswell LA. Renin-angiotensin system gene
21 22	381	23.	polymorphisms predict the progression to renal insufficiency among Asians with lupus
22	382		nephritis. Genes Immun. 2005;6(3):217–24.
24	202	24	Örlene O. Sörleners člu O. Sören S. Misielis čelu M. Tursen S. Kolmen S. stel. Denin
25	383 384	24.	Özkaya O, Söylemezoğlu O, Gönen S, Misirlioğolu M, Tuncer S, Kalman S, et al. Renin- angiotensin system gene polymorphisms: Association with susceptibility to Henoch-Schonlein
26	385		purpura and renal involvement. Clin Rheumatol. 2006;25(6):861–5.
27 28			
28	386	25.	Lau YK, Woo KT, Choong HL, Zhao Y, Tan HB, Chong SMCF, et al. Renin-angiotensin system
30	387 388		gene polymorphisms: Its impact on IgAN and its progression to end-stage renal failure among Chinese in Singapore. Nephron - Physiol. 2004;97(1):1–9.
31	200		Chillese in Singapore. Nephron - Physiol. 2004,97(1).1–9.
32	389	26.	Mtiraoui N, Ezzidi I, Turki A, Chaieb M, Mahjoub T, Almawi WY. Renin-angiotensin-
33 34	390		aldosterone system genotypes and haplotypes affect the susceptibility to nephropathy in
35	391		type 2 diabetes patients. J Renin Angiotensin Aldosterone Syst. 2011;12(4):572–80.
36	392	27.	Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of
37	393		observational studies in epidemiology: a proposal for reporting. Meta-analysis Of
38	394		Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.
39 40	395	28.	International Genome Population [Internet]. Available from:
41	396		www.internationalgenome.org/category/population
42	397	29.	Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses.
43	398	_0.	BMJ Br Med J. 2003;327(7414):557–60.
44 45	200	20	Dieder MI Teuler CL Clerk AC Nielenser DA Converse unristien in the human engisterie
43 46	399 400	30.	Rieder MJ, Taylor SL, Clark AG, Nickerson DA. Sequence variation in the human angiotensin converting enzyme. Nat Genet. 1999;22(1):59–62.
47	400		converting enzyme. Nat Genet. 1999,22(1).59-62.
48	401	31.	Moon JY. Recent update of renin-angiotensin-aldosterone system in the pathogenesis of
49	402		hypertension. Electrolyte Blood Press. 2013;11(2):41–5.
50 51	403	32.	Rigat B, Hubert C, Corvol P, Soubrier R. PCR detection of the insertion/deletion polymorphism
52	404		of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1).
53	405		Nucleic Acids Res. 1992;20(6):1433.
54	406	33.	Ha S-K. ACE Insertion/Deletion Polymorphism and Diabetic Nephropathy: Clinical Implications
55 56	407		of Genetic Information. J Diabetes Res. 2014;2014:1–8.
56 57			
58			11
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	408 409	34.	Marre M, Bernadet P, Gallois Y, Savagner F, Guyene TT, Hallab M, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic
5 6 7 8 9	410 411 412 413 414	35.	retinal and renal complications. Diabetes. 1994;43(3):384–8. Ng DPK, Tai BC, Koh D, Tan KW, Chia KS. Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: A meta-analysis of studies reported between 1994 and 2004 and comprising 14,727 subjects. Diabetologia. 2005;48(5):1008–16.
10 11 12 13 14	414 415 416 417	36.	Yu Z-Y, Chen L-S, Zhang L-C, Zhou T-B. Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic nephropathy. Nephrology (Carlton). 2012;17(5):480–7.
14 15 16 17	418 419	37.	Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: Is albumin excretion rate sufficient? Diabetes. 2000;49(9):1399–408.
18 19	420 421	38.	Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.
20 21 22	422 423	39.	Zelmanovitz T, Gerchman F, Balthazar AP, Thomazelli FC, Matos JD, Canani LH. Diabetic nephropathy. Diabetol Metab Syndr. 2009;1(1):10.
23 24 25	424 425	40.	Zhou T-B, Yin S-S, Qin Y-H. Association of angiotensinogen M235T gene polymorphism with end-stage renal disease risk: a meta-analysis. Mol Biol Rep. 2013;40(2):765–72.
26 27 28 29	426 427 428	41.	Turgut S, AkIn F, AkcIlar R, Ayada C, Turgut G. Angiotensin converting enzyme I/D, angiotensinogen M235T and AT1-R A/C1166 gene polymorphisms in patients with acromegaly. Mol Biol Rep. 2011;38(1):569–76.
30 31	429 430	42.	Wang YJ, Pan Y. Angiotensinogen gene M235T polymorphism and risk of coronary artery disease: a meta-analysis. Mol Med Rep. 2012;6(4):884–8.
32 33 34	431 432	43.	Lin R, Lei Y, Yuan Z, Ju H, Li D. Angiotensinogen Gene M235T and T174M Polymorphisms and Susceptibility of Pre-Eclampsia: A Meta-Analysis. Ann Hum Genet. 2012;76(5):377–86.
35 36 37	433 434	44.	Chow BSM, Allen TJ. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci. 2016;130(15):1307–26.
38 39 40 41	435 436 437	45.	Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24(2):241–6.
42 43 44	438 439 440	46.	Duan LJ, Wang XD. Analysis of correlations between coronary heart disease and haplotypes of the angiotensin II receptor type 1 (AGTR1) gene. Genet Mol Res. 2016;15(1):doi: 10.4238/gmr.15017457.
45 46 47 48	441 442 443	47.	Baniamerian H, Bahrehmand F, Vaisi-Raygani A, Rahimi Z, Pourmotabbed T. Angiotensin type 1 receptor A1166C polymorphism and systemic lupus erythematosus: correlation with cellular immunity and oxidative stress markers. Lupus. 2017;26(14):1534–9.
49 50 51	444 445	48.	Pringle KG, Delforce SJ, Wang Y, Ashton KA, Proietto A, Otton G, et al. Renin–angiotensin system gene polymorphisms and endometrial cancer. Endocr Connect. 2016;5(3):128–35.
52 53 54 55	446 447 448	49.	Gao J, Yu Q-L, Fu R-G, Wei L-T, Wang M, Dong F-M, et al. Lack of Association Between Polymorphisms in AGT and ATR1 and IgA Nephropathy in a Chinese Population. Genet Test Mol Biomarkers. 2015;19(12):710–3.
56 57	449	50.	Huang HD, Lin FJ, Li XJ, Wang LR, Jiang GR. Genetic polymorphisms of the renin-angiotensin-
58 59			12
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3 4	450 451		aldosterone system in Chinese patients with end-stage renal disease secondary to IgA nephropathy. Chin Med J (Engl). 2010;123(22):3238–42.
5 6 7	452 453	51.	Kim SM, Chin HJ, Oh YK, Kim YS, Kim S, Lim CS. Blood pressure-related genes and the progression of IgA nephropathy. Nephron Clin Pract. 2009;113(4):c301-8.
8 9 10 11	454 455 456	52.	Savage DA, Feeney SA, Fogarty DG, Maxwell AP. Risk of developing diabetic nephropathy is not associated with synergism between the angiotensin II (type 1) receptor C1166 allele and poor glycaemic control. Nephrol Dial Transpl. 1999;14(4):891–4.
12 13 14 15	457 458 459	53.	Van Ittersum FJ, De Man AME, Thijssen S, De Knijff P, Slagboom E, Smulders Y, et al. Genetic polymorphisms of the renin-angiotensin system and complications of insulin-dependent diabetes mellitus. Nephrol Dial Transplant. 2000;15(7):1000–7.
16 17 18	460 461 462	54.	Prasad P, Tiwari AK, Kumar KP, Ammini A, Gupta A, Gupta R, et al. Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med Genet. 2006;7(1):42.
19 20 21 22	463 464 465	55.	Braliou GG, Grigoriadou AMG, Kontou PI, Bagos PG. The role of genetic polymorphisms of the Renin-Angiotensin System in renal diseases: A meta-analysis. Comput Struct Biotechnol J. 2014;10(7):1–7.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	466		<text></text>

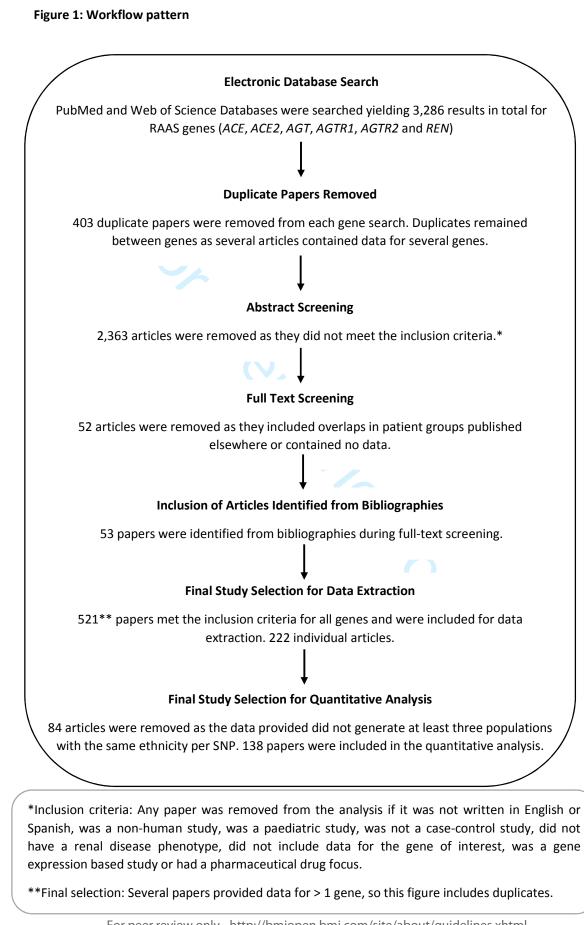


Figure 2a: ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (insertion compared to deletion)

	Case		Contr	ol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl	
Fujisawa 1995	71	108	46	70	7.4%	1.00 [0.53, 1.89]	- + -	
Ha 2003	132	280	123	198	11.9%	0.54 [0.38, 0.79]	-	
Hsieh 2000	219	358	222	314	12.9%	0.65 [0.47, 0.90]		
Mizuiri 1995	72	160	33	62	8.0%	0.72 [0.40, 1.29]		
Nakajima 1996	67	108	55	82	7.8%	0.80 [0.44, 1.47]		
Ohno 1996	28	50	81	106	6.4%	0.39 [0.19, 0.80]		
Shin Shin 2004	112	164	70	118	9.6%	1.48 [0.90, 2.42]	+	
Thomas 2001	72	102	346	510	10.1%	1.14 [0.71, 1.81]	—	
Wang 2016	78	134	1020	1458	12.1%	0.60 [0.42, 0.86]		
Wu 2000	75	142	58	82	8.2%	0.46 [0.26, 0.83]		
Young 1998	27	40	72	108	5.8%	1.04 [0.48, 2.25]	-+	
Total (95% CI)		1646		3108	100.0%	0.74 [0.59, 0.93]	•	
Total events	953		2126					
Heterogeneity: Tau ² = 0	0.08; Chi ²	= 22.4	5, df = 10	(P = 0	.01); l ² = 5	5%		1
Test for overall effect: 2	Z = 2.62 (P = 0.0	09)			0.01	0.1 1 10 Protective Risk	100

Figure 2b: ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a South Asian Population (insertion compared to deletion)

	Case	•	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Ahluwalia 2009	152	480	215	510	18.6%	0.64 [0.49, 0.83]	-
Kumar 2013	448	814	190	370	18.8%	1.16 [0.91, 1.48]	+
Movva 2007	182	348	222	350	18.2%	0.63 [0.47, 0.86]	-
Naresh 2009	19	60	35	60	12.4%	0.33 [0.16, 0.70]	
Shaikh 2012	134	336	394	592	18.5%	0.33 [0.25, 0.44]	-
Vishwanathan 2001	79	172	28	46	13.5%	0.55 [0.28, 1.06]	
Total (95% CI)		2210		1928	100.0%	0.57 [0.37, 0.87]	•
Total events	1014		1084				
Heterogeneity: Tau ² =	0.24; Chi ²	= 46.8	5, df = 5 (P < 0.0	0001); l ² =	89%	
Test for overall effect:	Z = 2.58 (P = 0.0	10)				0.01 0.1 1 10 100 Protective Risk

Figure 2c: ACE I/D investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian Population (insertion compared to deletion)

	Case	Э	Contr	ol		Odds Ratio		Odds Ratio	j.	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C				
Ali 2015	219	380	262	380	14.4%	0.61 [0.45, 0.83]		-		
Kawada 1997	280	432	264	416	15.2%	1.06 [0.80, 1.40]		+		
Su 2014	792	1294	859	1288	21.0%	0.79 [0.67, 0.93]		-		
Tang 2008	100	306	138	296	13.1%	0.56 [0.40, 0.77]				
Wang 2003	316	492	230	366	15.2%	1.06 [0.80, 1.41]		+		
Yang 2015	833	1366	867	1306	21.2%	0.79 [0.68, 0.93]		-		
Total (95% CI)		4270		4052	100.0%	0.80 [0.67, 0.94]		•		
Total events	2540		2620							
Heterogeneity: Tau ² =	0.03; Chi ²	= 15.5	8, df = 5 ((P = 0.0	008); l ² = 6	8%			10	100
Test for overall effect:	Z = 2.65 (P = 0.0	08)		-		0.01	0.1 1 Protective Risk	10	100

Figure 2d: *AGT* rs699 investigation, individuals with end-stage renal disease compared to healthy controls in a European Population (T allele compared to C)

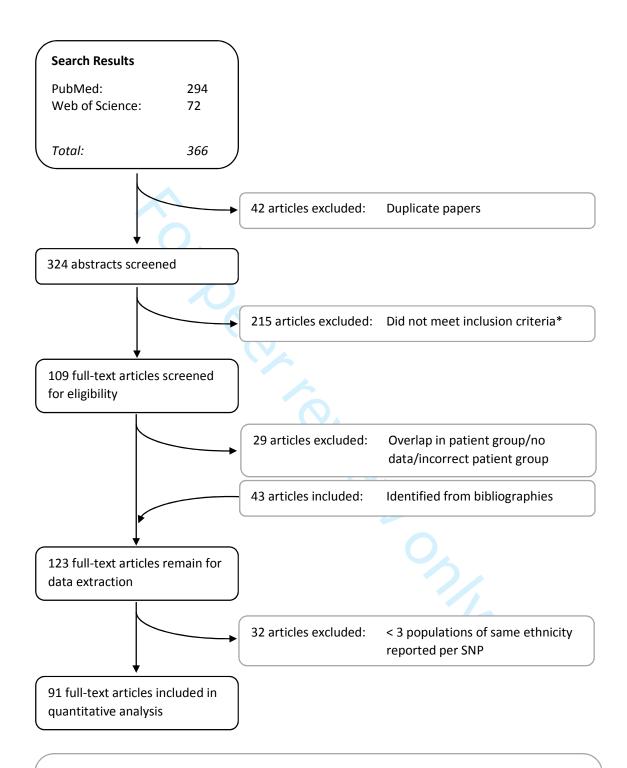
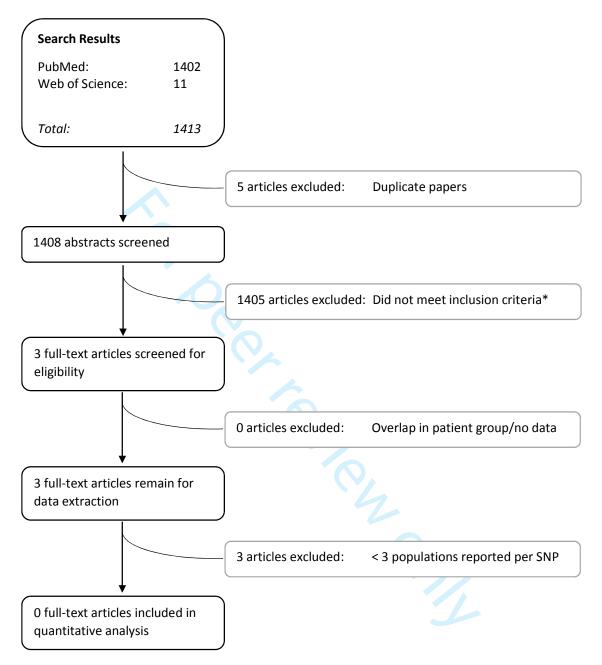
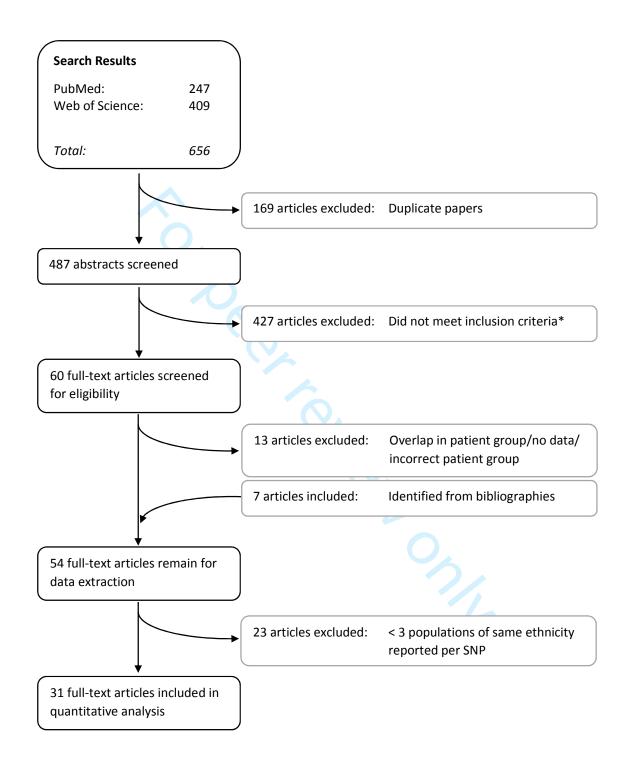

	Case	•	Contr	ol		Odds Ratio		Odds Rati	D	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	1	M-H, Random,	95% CI	
Beige 1996	285	538	307	536	20.1%	0.84 [0.66, 1.07]		-		
Buraczynska 2006	734	1490	564	1040	46.2%	0.82 [0.70, 0.96]				
Losito 2002	165	320	190	338	12.4%	0.83 [0.61, 1.13]				
Lovati 2001	299	520	393	654	21.3%	0.90 [0.71, 1.14]		-		
Total (95% CI)		2868		2568	100.0%	0.84 [0.76, 0.94]		٠		
Total events	1483		1454							
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.42	df = 3 (F	P = 0.94	i); l² = 0%		0.01	0.1 1	10	100
Test for overall effect:	Z = 3.14 (I	P = 0.0	02)				0.01	Protective Risk		100

Figure 2e: *AGTR1* rs5186 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a South Asian Population (A allele compared to C allele)

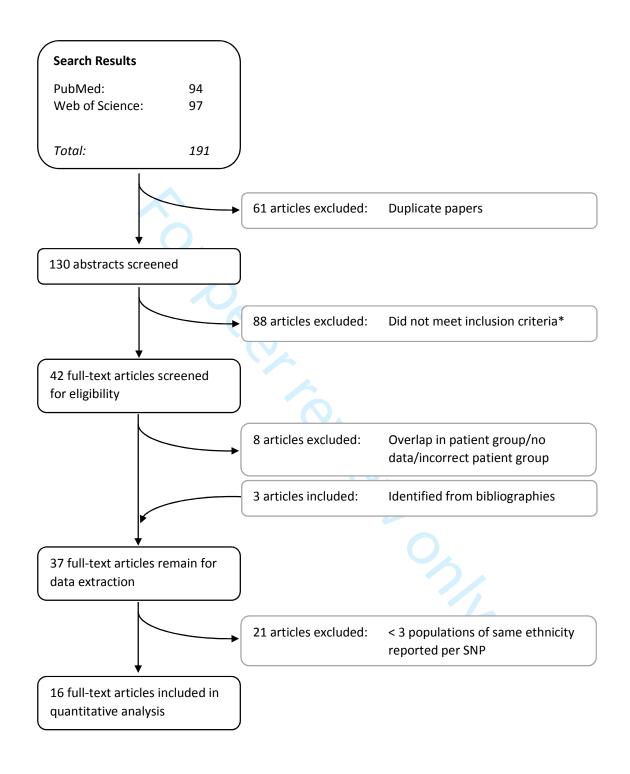
Case Events Total 320 480 360 386 789 1192	Contr Events 381 417 840		34.5%	Odds Ratio M-H, Random, 95% Cl 0.68 [0.51, 0.89]		M-H, Rand	Ratio om, 95%	CI	
320 480 360 386 789 1192	381 417	510	34.5%				om, 95%	CI	
360 386 789 1192	417			0.68 [0.51, 0.89]					
789 1192		450							
	840		13.0%	1.10 [0.64, 1.87]		_			
		1122	52.5%	0.66 [0.55, 0.79]					
2058		2082	100.0%	0.71 [0.58, 0.87]		•			
1469	1638								
1; Chi ² = 3.19	, df = 2 (F	> = 0.20); l² = 37%	, 0	0.01			10	100
3.22 (P = 0.0	01)				0.01		Rick	10	100
	1; Chi² = 3.19		1; Chi ² = 3.19, df = 2 (P = 0.20	1; Chi² = 3.19, df = 2 (P = 0.20); l² = 37%	1; Chi² = 3.19, df = 2 (P = 0.20); l² = 37%	1; Chi ² = 3.19, df = 2 (P = 0.20); l ² = 37%	1; Chi ² = 3.19, df = 2 (P = 0.20); l ² = 37%	1; Chi ² = 3.19, df = 2 (P = 0.20); l ² = 37%	1; Chi ² = 3.19, df = 2 (P = 0.20); l ² = 37% 0.01 0.1 1 10


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

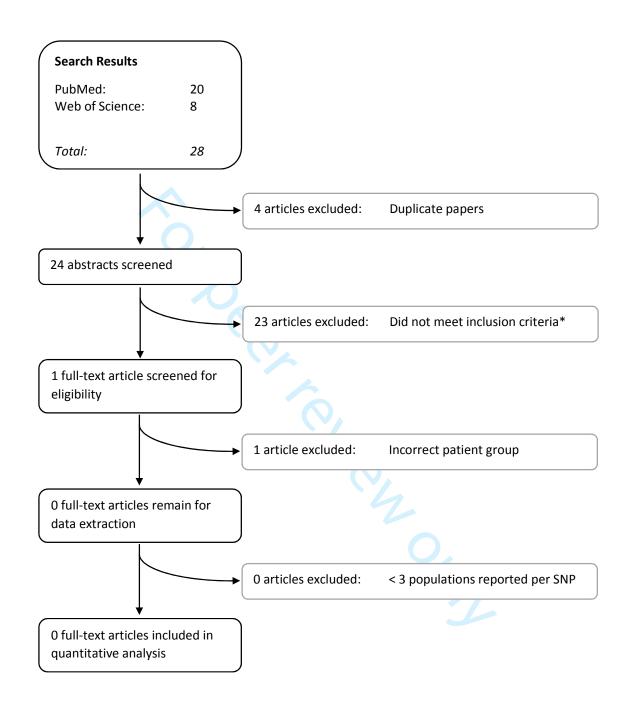
Supplementary Figure S1a: ACE Study Flow Diagram


*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=20), was a non-human study (n=5), was a paediatric study (n=48), was not a casecontrol study (n=34), did not have a renal disease phenotype (n=86), did not include data for *ACE* (n=13) or had a pharmaceutical drug focus (n=9)

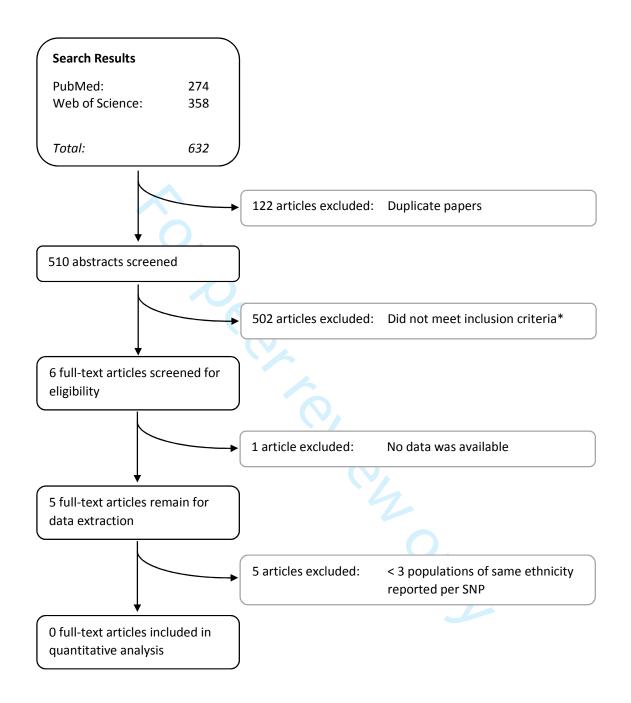
Supplementary Figure S1b: ACE2 Study Flow Diagram


*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=52), was a non-human study (n=96), was a paediatric study (n=135), was not a casecontrol study (n=33), did not have a renal disease phenotype (n=630), did not include data for *ACE2* (n=415) or had a pharmaceutical drug focus (n=44)

Supplementary Figure S1c: AGT Study Flow Diagram


*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=16), was a non-human study (n=112), was a paediatric study (n=37), was not a casecontrol study (n=49), did not have a renal disease phenotype (n=127), did not include data for *AGT* (n=69), was a gene expression based study (n=1) or had a pharmaceutical drug focus (n=16)

Supplementary Figure S1d: AGTR1 Study Flow Diagram


*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=8), was a non-human study (n=10), was a paediatric study (n=19), was not a casecontrol study (n=14), did not have a renal disease phenotype (n=25), did not include data for *AGTR1* (n=2), was a gene expression based study (n=1) or had a pharmaceutical drug focus (n=9)

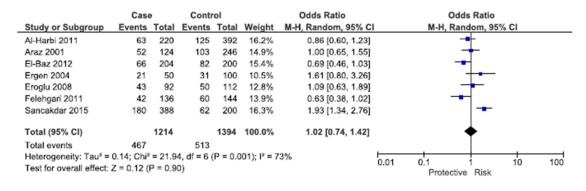
Supplementary Figure S1e: AGTR2 Study Flow Diagram

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=1), was a non-human study (n=1), was a paediatric study (n=6), was not a casecontrol study (n=4), did not have a renal disease phenotype (n=5) or did not include data for *AGTR2* (n=6)

Supplementary Figure S1f: REN Study Flow Diagram

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=17), was a non-human study (n=69), was a paediatric study (n=45), was not a casecontrol study (n=64), did not have a renal disease phenotype (n=166), did not include data for *REN* (n=124), was a gene expression based study (n=3) or had a pharmaceutical drug focus (n=14)

<u>ACE</u>


Supplementary Figure S2a: ACE I/D investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European Population (insertion compared to deletion)

	Case	•	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Barnas 1997	45	100	51	80	4.0%	0.47 [0.25, 0.85]	
Chowdhury 1996	204	484	143	332	10.6%	0.96 [0.73, 1.28]	+
Currie 2010	603	1380	696	1460	15.8%	0.85 [0.73, 0.99]	-
De Cosmo 1999	125	350	89	272	8.9%	1.14 [0.82, 1.60]	+
Demurov 1997	35	112	72	152	5.2%	0.51 [0.30, 0.84]	
Hadjadj 2001	4	12	208	502	1.2%	0.71 [0.21, 2.38]	
Hibberd 1997	60	144	57	172	6.0%	1.44 [0.91, 2.28]	
Marre 1994	43	124	58	124	5.2%	0.60 [0.36, 1.01]	
Ringel 1997	130	268	208	452	9.9%	1.11 [0.82, 1.50]	+
Schmidt 1995 A	86	228	101	266	8.1%	0.99 [0.69, 1.42]	+
Shestakova 2006	65	126	78	132	5.5%	0.74 [0.45, 1.21]	
Tarnow 1995	175	396	169	380	10.5%	0.99 [0.74, 1.31]	+
van Ittersum 2000	33	60	192	376	4.7%	1.17 [0.68, 2.02]	
Walder 1998	49	110	40	88	4.5%	0.96 [0.55, 1.69]	+
Total (95% CI)		3894		4788	100.0%	0.91 [0.79, 1.04]	•
Total events	1657		2162				
Heterogeneity: Tau ² =	0.02; Chi²	= 22.72	2, df = 13	(P = 0	.05); l² = 43	3%	.01 0.1 1 10 100
Test for overall effect: 2	Z = 1.37 (P = 0.1	7)			0.	Protective Risk

Supplementary Figure S2b: ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European Population (insertion compared to deletion)

	Case	e	Contr	ol		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	1	M-H, Random, 95% Cl	
Dudley 1995	147	326	246	534	21.8%	0.96 [0.73, 1.27]		+	
Fradin 2002	34	78	94	236	16.9%	1.17 [0.70, 1.96]		- - -	
Ng 2006	242	582	147	334	21.9%	0.91 [0.69, 1.19]		+	
Nikzamir 2009	21	96	159	290	16.5%	0.23 [0.13, 0.39]			
Schmidt 1997 B	251	622	278	694	22.8%	1.01 [0.81, 1.26]		+	
Total (95% CI)		1704		2088	100.0%	0.78 [0.54, 1.15]		•	
Total events	695		924						
Heterogeneity: Tau ² =	0.15; Chi ²	= 27.0	8, df = 4	(P < 0.0	$(10001); I^2 = 8$	5%			
Test for overall effect:	Z = 1.26 (P = 0.2	1)				0.01	0.1 1 10 Protective Risk	100

Supplementary Figure S2c: ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern Population (insertion compared to deletion)

Odds Ratio Odds Ratio Case Control Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% Cl Study or Subgroup Guo 2016 6.5% 1.71 [0.95, 3.10] Huang 2010 12.5% 0.63 [0.44, 0.92] 0.89 [0.70, 1.13] Jung 2010 19.2% Lau 2004 10.7% 0.70 [0.46, 1.06] Suzuki 2004 19.5% 0.94 [0.74, 1.19] Yoon 2002 17.2% 0.85 [0.64, 1.11] Yorioka 1995 7.8% 1.11 [0.66, 1.88] Yoshida 1995 6.7% 0.56 [0.32, 1.00] Total (95% CI) 2422 100.0% 0.86 [0.72, 1.02]

0.01

0.1

Protective Risk

Supplementary Figure S2d: ACE I/D investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian Population (insertion compared to deletion)

Supplementary Figure S2e: ACE I/D investigation, individuals with IgA nephropathy compared to healthy controls in a European Population (insertion compared to deletion)

	Case	Э	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Burg 1997	26	54	60	120	5.6%	0.93 [0.49, 1.77]	_ _
Drouet 2002	78	250	54	154	12.8%	0.84 [0.55, 1.29]	
Harden 1995	79	200	76	196	14.3%	1.03 [0.69, 1.54]	+
Pawlik 2014	25	62	180	374	7.8%	0.73 [0.42, 1.26]	
Pei 1997	145	336	91	200	18.7%	0.91 [0.64, 1.29]	-
Schmidt 1995 B	168	408	197	468	32.0%	0.96 [0.74, 1.26]	+
Stratta 1999	62	162	38	100	8.8%	1.01 [0.61, 1.69]	-
Total (95% CI)		1472		1612	100.0%	0.93 [0.80, 1.08]	•
Total events	583		696				
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.42	df = 6 (F	P = 0.96	5); I ² = 0%		
Test for overall effect:	Z = 0.97 (P = 0.3	3)				0.01 0.1 1 10 10 Protective Risk

Supplementary Figure S2f: ACE I/D investigation, individuals with chronic kidney disease compared to healthy controls in a South Asian Population (insertion compared to deletion)

	Case		Control			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Anbazhagan 2009	124	236	99	196	26.9%	1.08 [0.74, 1.58]	-
Chen 2014	314	466	617	898	28.0%	0.94 [0.74, 1.20]	+
Nagamani 2015	152	294	195	422	27.6%	1.25 [0.92, 1.68]	-
Shanmuganathan 2015	10	60	55	60	17.6%	0.02 [0.01, 0.06]	←
Total (95% CI)		1056		1576	100.0%	0.53 [0.24, 1.14]	-
Total events	600		966				
Heterogeneity: Tau ² = 0.5	3; Chi² =	50.55, 6	df = 3 (P <	< 0.000	01); l ² = 94	4%	
Test for overall effect: Z =	= 1.63 (P =	0.10)					0.01 0.1 1 10 100 Protective Risk

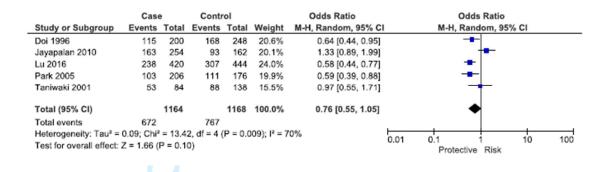
Total events

Test for overall effect: Z = 1.79 (P = 0.07)

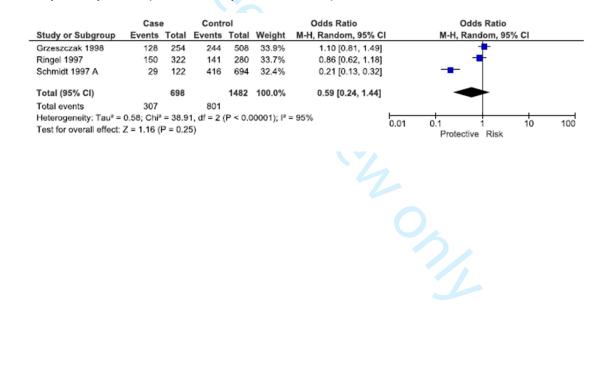
Heterogeneity: Tau² = 0.02; Chi² = 12.42, df = 7 (P = 0.09); l² = 44%

Supplementary Figure S2g: ACE I/D investigation, individuals with end-stage renal disease compared to healthy controls in a European Population (insertion compared to deletion)

	Case	•	Contr	ol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI	
Aucella 2003	315	922	916	2614	15.6%	0.96 [0.82, 1.13]	+	
Buraczynska 2006	688	1490	492	1040	15.6%	0.96 [0.82, 1.12]	+	
Dixit 2002	32	52	17	44	2.4%	2.54 [1.11, 5.80]		
Losito 2002	135	320	128	338	9.7%	1.20 [0.88, 1.64]	<u>+</u>	
McLaughlin 1996	654	1644	353	742	14.9%	0.73 [0.61, 0.87]	-	
Nicod 2002	282	520	261	520	12.1%	1.18 [0.92, 1.50]	-	
Ortiz 2003	68	234	80	258	7.7%	0.91 [0.62, 1.34]	-	
Schmidt 1996	105	212	80	190	7.5%	1.35 [0.91, 2.00]	+	
van der Sman-de Beer 2005	400	830	459	944	14.4%	0.98 [0.82, 1.18]	+	
Total (95% CI)		6224		6690	100.0%	1.01 [0.88, 1.16]	+	
Total events	2679		2786					
Heterogeneity: Tau ² = 0.02; Ch	i ^z = 22.57	, df = 8	(P = 0.00)	04); l ² =	65%		0.01 0.1 1 10	400
Test for overall effect: Z = 0.17	(P = 0.86)					0.01 0.1 1 10 Protective Risk	100


Supplementary Figure S2h: ACE I/D investigation, individuals with primary glomerulonephritis compared to healthy controls in a European Population (insertion compared to deletion)

	Case	е	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Burg 1997	44	92	60	120	12.2%	0.92 [0.53, 1.58]	-+-
Pawlik 2014	101	218	180	374	32.1%	0.93 [0.67, 1.30]	+
Stratta 2004	96	234	134	342	31.2%	1.08 [0.77, 1.52]	+
Zsom 2011	62	146	198	400	24.6%	0.75 [0.51, 1.10]	
Total (95% CI)		690		1236	100.0%	0.92 [0.76, 1.12]	•
Total events	303		572				
Heterogeneity: Tau ² =	= 0.00; Chi ²	² = 1.91	, df = 3 (F	9 = 0.59	9); I² = 0%	0.0	1 0.1 1 10 100
Test for overall effect	: Z = 0.82 (P = 0.4	1)			0.0	1 0.1 1 10 100 Protective Risk


Supplementary Figure S2i: ACE I/D investigation, individuals who have had renal transplants compared to healthy controls in a European Population (insertion compared to deletion)

	Case	e	Contr	ol		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I М-Н,	Random, 95%	CI	
Beige 1997	251	538	244	538	27.2%	1.05 [0.83, 1.34]		+		
El-Essawy 2002	246	588	170	362	24.7%	0.81 [0.62, 1.06]		-		
Hueso 2004	122	360	96	226	18.2%	0.69 [0.49, 0.98]				
Stratta 2008	122	338	112	338	20.0%	1.14 [0.83, 1.57]		+		
Viklický 2001	28	60	599	1306	9.9%	1.03 [0.61, 1.73]		+		
Total (95% CI)		1884		2770	100.0%	0.93 [0.77, 1.11]		•		
Total events	769		1221							
Heterogeneity: Tau ² =	0.02; Chi ²	= 6.59	, df = 4 (F	P = 0.16	5); I ² = 39%	, 0				100
Test for overall effect:	Z = 0.80 (P = 0.4	2)				0.01 0.1 Prote	ective Risk	10	100

Supplementary Figure S2j: ACE I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (insertion compared to deletion)

Supplementary Figure S2k: ACE I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European Population (insertion compared to deletion)

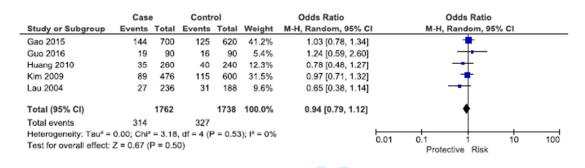
<u>AGT</u>

Supplementary Figure S2I: *AGT* rs699 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European Population (T allele compared to C)

	Case	Ð	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Doria 1996	158	278	96	150	15.1%	0.74 [0.49, 1.12]	
Fogarty 1996	114	190	129	200	15.1%	0.83 [0.55, 1.24]	
Möllsten 2008	62	96	220	394	13.2%	1.44 [0.91, 2.29]	+
Ringel 1997	145	268	257	452	19.5%	0.89 [0.66, 1.21]	-
Schmidt 1996	121	216	132	240	16.6%	1.04 [0.72, 1.51]	+
van Ittersum 2000	31	60	238	376	10.8%	0.62 [0.36, 1.07]	
Walder 1998	60	110	63	88	9.6%	0.48 [0.26, 0.86]	
Total (95% CI)		1218		1900	100.0%	0.85 [0.68, 1.06]	•
Total events	691		1135				
Heterogeneity: Tau ² =	0.04; Chi ²	= 11.5	7, df = 6 ((P = 0.0	07); l ² = 489	%	
Test for overall effect:	Z = 1.43 (P = 0.1	5)				0.01 0.1 1 10 100 Protective Risk

Supplementary Figure S2m: *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (T allele compared to C)

	Case	е	Contr	ol		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI			
Ohno 1996	16	50	25	106	16.8%	1.52 [0.72, 3.21]		-+	
Oue 1999	6	42	13	60	11.8%	0.60 [0.21, 1.74]			
Thomas 2001	18	102	79	510	20.4%	1.17 [0.67, 2.05]			
Wang 2016	19	194	154	946	21.6%	0.56 [0.34, 0.92]			
Wu 2000	21	142	26	82	18.5%	0.37 [0.19, 0.72]			
Young 1998	4	40	25	108	11.0%	0.37 [0.12, 1.14]			
Total (95% CI)		570		1812	100.0%	0.69 [0.43, 1.11]		•	
Total events	84		322						
Heterogeneity: Tau ² =	0.21; Chi ²	= 13.0	2, df = 5 ((P = 0.0	02); l ² = 629	%		0,1 1 10	100
Test for overall effect:	Z = 1.54 (P = 0.1	2)				0.01	0.1 1 10 Protective Risk	100


Supplementary Figure S2n: *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European Population (T allele compared to C)

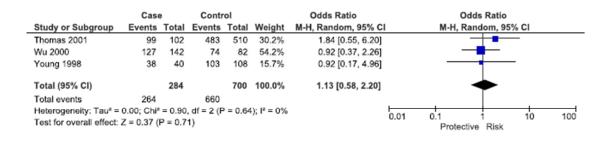
	Case	9	Control		Odds Ratio				
Study or Subgroup	Events Tot		Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% Cl	
Fradin 2002	45	78	139	236	12.7%	0.95 [0.57, 1.60]			
Freire 1998	134	230	148	236	24.8%	0.83 [0.57, 1.20]			
Schmidt 1996	149	254	117	214	25.4%	1.18 [0.81, 1.70]		+	
Zychma 2000	133	254	242	486	37.1%	1.11 [0.82, 1.50]		+	
Total (95% CI)		816		1172	100.0%	1.03 [0.85, 1.24]		•	
Total events	461		646						
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.11	df = 3 (F	P = 0.55	5); I ² = 0%			0,1 1 10	100
Test for overall effect:	Z = 0.29 (P = 0.7	8)				0.01	0.1 1 10 Protective Risk	100

Supplementary Figure S2o: *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern Population (T allele compared to C)

Case Control			ol		Odds Ratio		Odds Ratio		
Events Total		Events	Total	Weight	M-H, Random, 95% CI	M-	H, Random, 95	% CI	
48	92	62	112	25.1%	0.88 [0.51, 1.53]		-		
114	216	89	222	36.0%	1.67 [1.14, 2.44]				
189	388	95	200	38.8%	1.05 [0.75, 1.48]		+		
	696		534	100.0%	1.19 [0.82, 1.71]		•		
351		246							
0.06; Chi ²	= 4.72	df = 2 (F	e = 0.09	9); l² = 58%	, F			10	100
z = 0.91 (F	P = 0.3	6)			0		otective Risk	10	100
	Events 48 114 189 351 0.06; Chi ²	Events Total 48 92 114 216 189 388 696 351 0.06; Chi² = 4.72,	Events Total Events 48 92 62 114 216 89 189 388 95 696 351 246	Events Total Events Total 48 92 62 112 114 216 89 222 189 388 95 200 696 534 351 246 0.06; Chi² = 4.72, df = 2 (P = 0.05)	Events Total Events Total Weight 48 92 62 112 25.1% 114 216 89 222 36.0% 189 388 95 200 38.8% 696 534 100.0% 351 246 0.06; Chi² = 4.72, df = 2 (P = 0.09); l² = 58% 12 58%	Events Total Events Total Weight M-H, Random, 95% Cl 48 92 62 112 25.1% 0.88 [0.51, 1.53] 114 216 89 222 36.0% 1.67 [1.14, 2.44] 189 388 95 200 38.8% 1.05 [0.75, 1.48] 696 534 100.0% 1.19 [0.82, 1.71] 351 246 0.06; Chi ² = 4.72, df = 2 (P = 0.09); l ² = 58% 58% 1.58 1.58	Events Total Events Total Weight M-H, Random, 95% CI M- 48 92 62 112 25.1% 0.88 [0.51, 1.53] 114 216 89 222 36.0% 1.67 [1.14, 2.44] 189 388 95 200 38.8% 1.05 [0.75, 1.48] 696 534 100.0% 1.19 [0.82, 1.71] 351 246 60.06; Chi² = 4.72, df = 2 (P = 0.09); l² = 58% 0.01 0.1 0.1	Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% 48 92 62 112 25.1% 0.88 [0.51, 1.53] M-H, Random, 95% 114 216 89 222 36.0% 1.67 [1.14, 2.44] Image: Comparison of the second s	Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl 48 92 62 112 25.1% 0.88 [0.51, 1.53] 114 216 89 222 36.0% 1.67 [1.14, 2.44] 168 388 95 200 38.8% 1.05 [0.75, 1.48] 105 105 114 246 100.0% 1.19 [0.82, 1.71] 10

Supplementary Figure S2p: *AGT* rs699 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian Population (T allele compared to C)

Supplementary Figure S2q: *AGT* rs699 investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian Population (T allele compared to C)

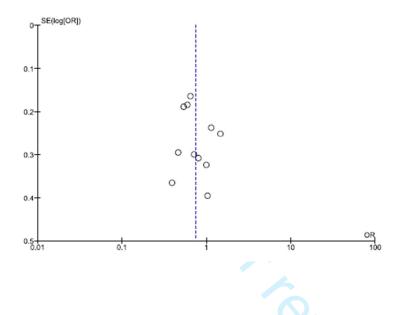

	Case	Case Control				Odds Ratio	Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rand	lom, 95%	CI	
Kawada 1997	91	424	64	404	30.9%	1.45 [1.02, 2.07]			-		
Su 2014	193	1294	230	1288	38.7%	0.81 [0.65, 0.99]		-	ł		
Wang 2003	76	492	64	366	30.4%	0.86 [0.60, 1.24]		-	+		
Total (95% CI)		2210		2058	100.0%	0.99 [0.69, 1.41]		•			
Total events	360		358								
Heterogeneity: Tau ² =	0.07; Chi ²	= 8.04	, df = 2 (F	P = 0.02	2); l² = 75%	6	0.01	0.1	<u> </u>	10	100
Test for overall effect:	Z = 0.07 (P = 0.9	4)				0.01	Protective	Risk	10	100

<u>AGTR1</u>

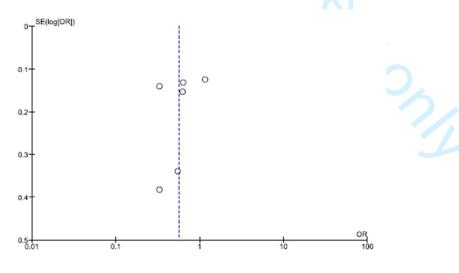
Supplementary Figure S2r: *AGTR1* rs5186 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European Population (A allele compared to C allele)

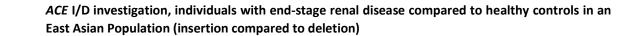
	Case	Э	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Currie 2010	1029	1414	1052	1470	33.2%	1.06 [0.90, 1.25]	+
Doria 1997	99	146	119	158	12.2%	0.69 [0.42, 1.14]	
Möllsten 2008	78	96	290	394	10.4%	1.55 [0.89, 2.72]	+ - -
Savage 1999	136	190	137	194	14.5%	1.05 [0.67, 1.63]	+
Tarnow 1996	287	396	274	380	21.4%	1.02 [0.74, 1.40]	+
van Ittersum 2000	47	60	238	376	8.3%	2.10 [1.10, 4.01]	
Total (95% CI)		2302		2972	100.0%	1.10 [0.89, 1.35]	•
Total events	1676		2110				
Heterogeneity: Tau ² =	0.03; Chi ²	= 8.89	, df = 5 (F	> = 0.11); l² = 44%	, 0	0.01 0.1 1 10 100
Test for overall effect:	Z = 0.87 (P = 0.3	8)				Protective Risk

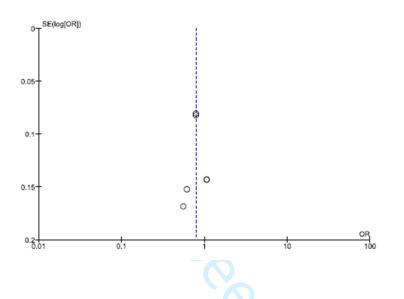
Supplementary Figure S2s: *AGTR1* rs5186 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (A allele compared to C allele)

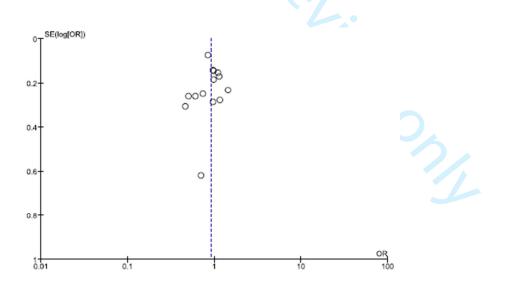


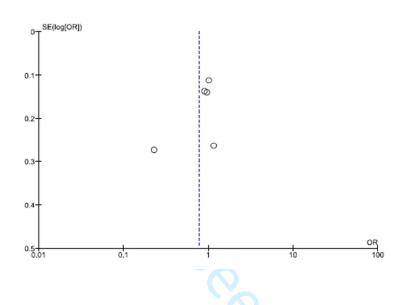
Supplementary Figure S2t: *AGTR1* rs5186 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian Population (A allele compared to C allele)

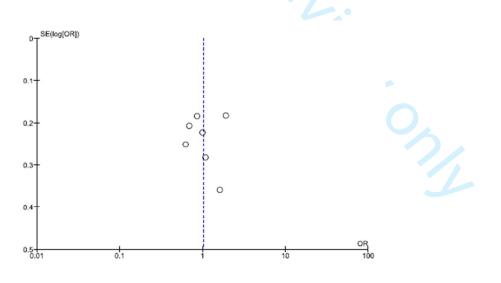

	Case	se Control				Odds Ratio		Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95%	CI		
Gao 2015	659	702	577	620	45.1%	1.14 [0.74, 1.77]		-	-			
Huang 2010	243	260	220	240	19.1%	1.30 [0.66, 2.54]		-	-			
Kim 2009	452	476	576	600	25.7%	0.78 [0.44, 1.40]			-			
Lau 2004	227	236	178	188	10.1%	1.42 [0.56, 3.56]		-	•			
Total (95% CI)		1674		1648	100.0%	1.09 [0.81, 1.46]			•			
Total events	1581		1551									
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.85	df = 3 (F	P = 0.60); I ² = 0%	H	0.01 (t l		10	100	
Test for overall effect:	Z = 0.55 (P = 0.5	8)			· · · ·	0.01 0	0.1 1 Protective	Risk	10	100	

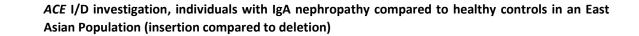

Supplementary Figure S3: Funnel Plots

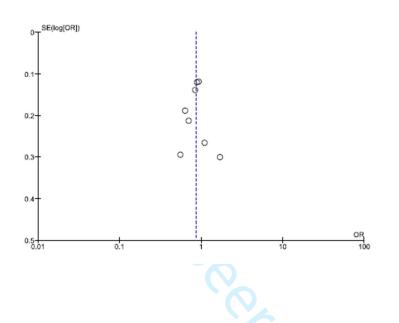

ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (insertion compared to deletion)

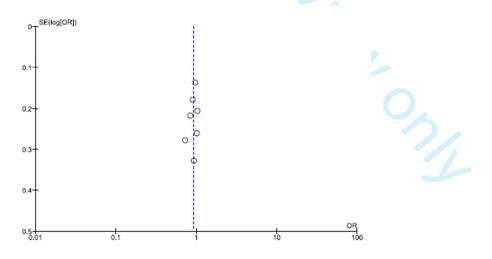

ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a South Asian Population (insertion compared to deletion)

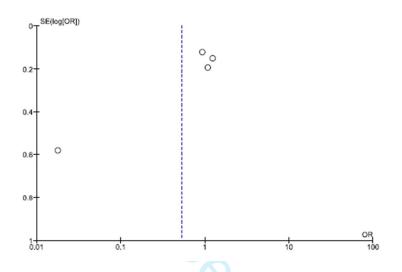



ACE I/D investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European Population (insertion compared to deletion)

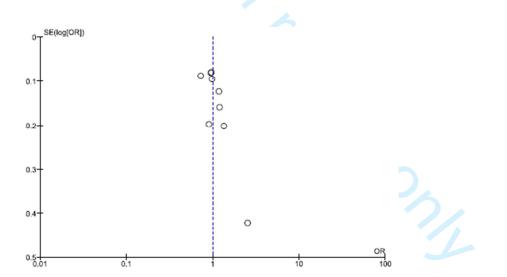


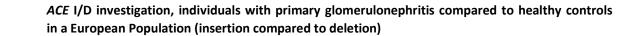

ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European Population (insertion compared to deletion)

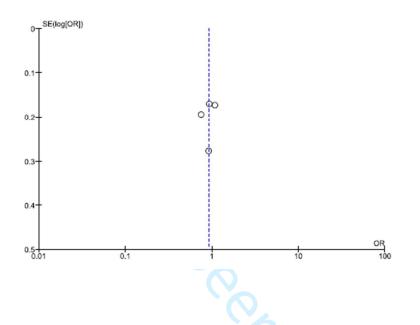

ACE I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern Population (insertion compared to deletion)

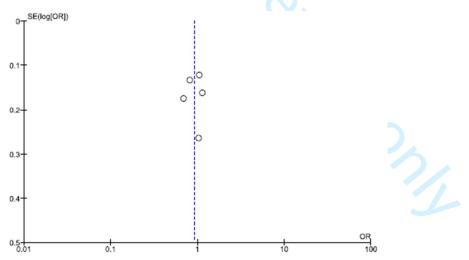


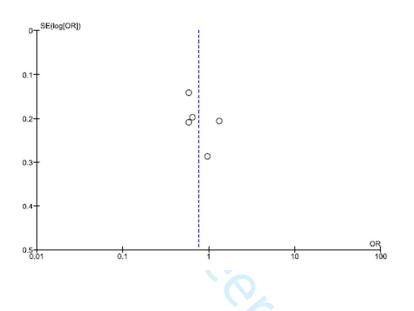
ACE I/D investigation, individuals with IgA nephropathy compared to healthy controls in a European Population (insertion compared to deletion)

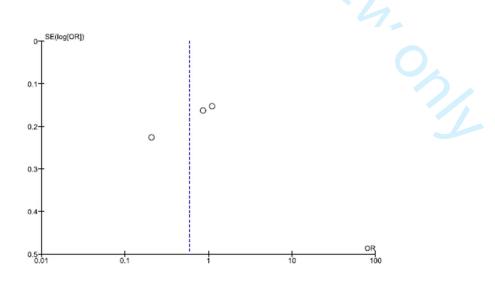


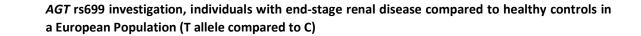

BMJ Open

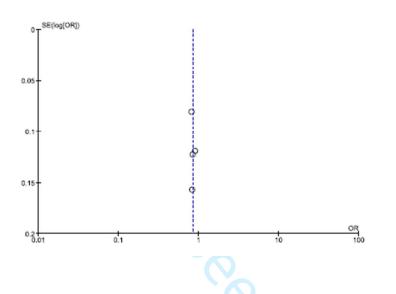

ACE I/D investigation, individuals with chronic kidney disease compared to healthy controls in a South Asian Population (insertion compared to deletion)

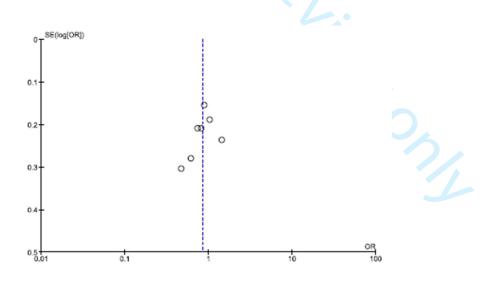

ACE I/D investigation, individuals with end-stage renal disease compared to healthy controls in a European Population (insertion compared to deletion)




ACE I/D investigation, individuals who have had renal transplants compared to healthy controls in a European Population (insertion compared to deletion)




ACE I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (insertion compared to deletion)

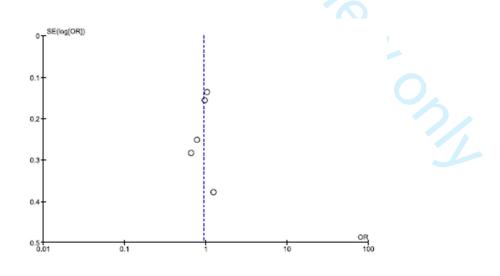

ACE I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European Population (insertion compared to deletion)



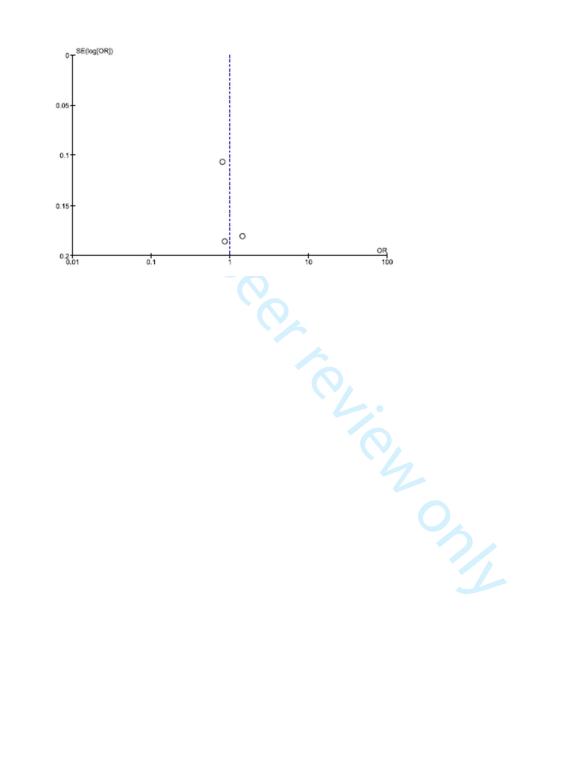
AGT rs699 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European Population (T allele compared to C)

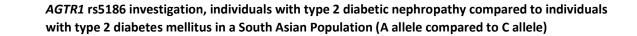
AGT rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian Population (T allele compared to C)

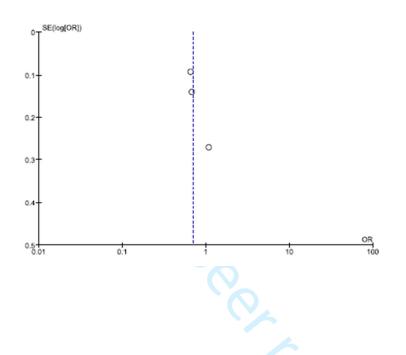

AGT rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European Population (T allele compared to C)


Page 39 of 133

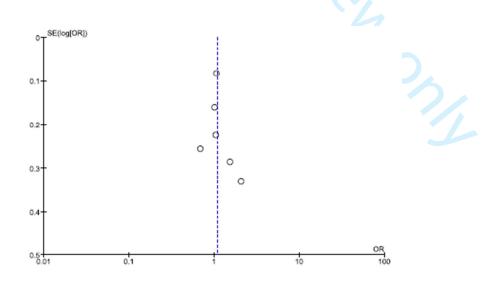
BMJ Open

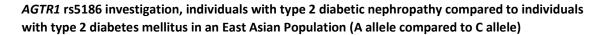

AGT rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern Population (T allele compared to C)

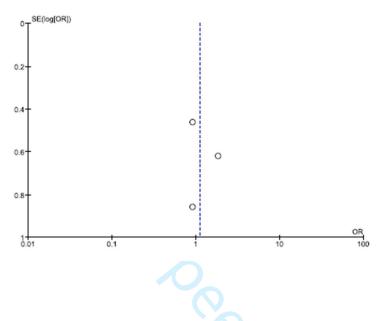

AGT rs699 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian Population (T allele compared to C)

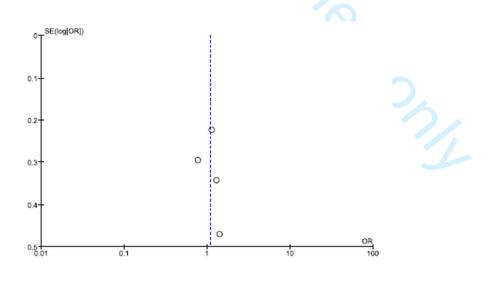


AGT rs699 investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian Population (T allele compared to C)




BMJ Open




AGTR1 rs5186 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European Population (A allele compared to C allele)

AGTR1 rs5186 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian Population (A allele compared to C allele)

2 3	
2 3 4 5 6 7 8 9	
7 8	
9 10 11	
11 12 13	
10 11 12 13 14 15 16 17	
16 17 18	
19 20	
21 22 23	
24 25	
26 27 28	
19 20 21 22 23 24 25 26 27 28 29 30	
31 32 33	
34 35 36	
36 37 38	
39 40	
41 42 43	
43 44 45	
46 47	
48 49 50	
51 52	
53 54 55	
56 57	
58 59 60	
00	

Supplementary Table S1: Search Terms

Gene	Search Terms
ACE	Angiotensin I Converting Enzyme
-	Angiotensin I Converting Enzyme (Peptidyl-Dipeptidase A) 1
	Dipeptidyl Carboxypeptidase I
	CD143 Antigen
	Kininase II
	DCP1
	DCP
	Angiotensin I Converting Enzyme Peptidyl-Dipeptidase A 1
	Transcript
	Angiotensin Converting Enzyme, Somatic Isoform
	Peptidyl-Dipeptidase A
	Carboxycathepsin
	Testicular ECA
	Peptidase P
	EC 3.4.15.1
	EC 3.2.1
	CD143
	MVCD3
	ACE1
	ACE
	ICH
	AND
	Kidney
	Nephrology
	Nephropathy
	Renal
	Nertur -
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
ACE2	Angiotensin I Converting Enzyme 2
	Angiotensin I Converting Enzyme (Peptidyl-Dipeptidase A) 2
	Angiotensin-Converting Enzyme Homolog
	ACE-Related Carboxypeptidase
	Metalloprotease MPROT15
	Peptidyl-Dipeptidase A
	ACEH
	EC 3.4.17.23
	EC 3.4.17
	ACE2
	AND

	Kidney
	Nephrology
	Nephropathy
	Renal
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
AGT	Angiotensinogen
	Angiotensinogen (Serpin Peptidase Inhibitor, Clade A, Member 8)
	Serpin Peptidase Inhibitor, Clade A, Member 8
	Serpin A8
	SERPINA8
	Serine (Or Cysteine) Proteinase Inhibitor
	Alpha-1 Antiproteinase, Antitrypsin
	Alpha-1 Antiproteinase
	Pre-Angiotensinogen
	Angiotensin II
	Angiotensin I
	Antitruncin
	ANHU
	AGT
	ANHU AGT <u>AND</u> Kidney Nephrology Nephropathy Renal
	Kidney
	Nephrology
	Nephropathy
	Renal
	Kenal
	AND
	SNP Polymorphism
	SNP
	Variant
	Allele
	Genotype
AGTR1	Angiotensin II Receptor Type 1
	Angiotensin II Receptor, Type 1
	AGTR1B
	AT1AR
	AT1BR
	AT2R1
	AT1
	Type-1B Angiotensin II Receptor
	Angiotensin II Type-1 Receptor
	Angiotensin Receptor 1B

4
5
6
5 6 7 8 9 10 11
8
g
10
11
12
12 13
14
15
14 15 16 17 18
1/
18
19
20
21
22
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
24
25
26
27
28
29
30
31
32
33
34
35
36
37
35 36 37 38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53 54
54 55
56
57
58
59
60

1 2	
3 4	
4 5	
6	
7 8	
9	
10 11	
12	
13 14	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56 57	
58	
59 60	

	AGTR1A
	AT2R1B
	HAT1R
	AG2S
	AT1B
	AT1R
	AGTR1
	AUTA AT2R1A
	AIZRIA
	AND
	Kidney
	Nephrology
	Nephropathy
	Renal
	iterial
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
AGTR2	Angiotensin II Receptor Type 2
	Angiotensin II Receptor, Type 2
	Angiotensin II Type-2 Receptor
	AT2
	Angiotensin Receptor 2
	ATGR2
	MRX88
	AND
	Kidney
	Nephrology
	Nephropathy
	Renal
	Nephropathy Renal
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
REN	Renin
NEN	
	Angiotensinogenase
	EC 3.4.23.15
	Angiotensin-Forming Enzyme
	Renin Precursor, Renal EC 3.4.23

1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
1	2
1	3
1	4
1	5
	6
	7
	8
	9
2	0
2	1
2	2
2	
	4
	5
	6
	7
	8
2	9
3	0
3	1
3	
3	
	4
	4 5
	6
3	7
3	8
3	9
	0
4	
4	
4	_
	-
4	•
4	
4	
4	-
4	8
4	9
	0
5	
5	
5	-
5	
	5
_	6
5	7
5	8
5	
ر	2

1

	HNFJ2	
	REN	
	AND	
	Kidney Nephrology Nephropathy Renal	
	AND	
	SNP	
	Polymorphism	
	Variant	
	Allele	
	Genotype	
Additional	English / Spanish language	
filters	Human studies	
added to	Case / Control studies	
database	Not clinical trials	
searches	Not review articles	
	Not a case report Not a meta-analysis	
		0,
Supplemen	tary Table S2: Ethnicity Codes	
Donulation		

Supplementary Table S2: Ethnicity Codes

Population	Population Code
Ad Mixed American (Southern USA and Central	AMR
America)	
African American	AFR
East Asian	EAS
European	EUR
Middle Eastern	ME
Mix of ethnicities	MIX
North African	NA
South Asian	SAS

Supplementary Table S3a: Excluded studies from the ACE search

Included in accompanying MS Excel Workbook

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1a)

Supplementary Table S3b: Excluded studies from the ACE2 search

Included in accompanying MS Excel Workbook

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1b)

Supplementary Table S3c: Excluded studies from the AGT search

Included in accompanying MS Excel Workbook

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1c)

Supplementary Table S3d: Excluded studies from the AGTR1 search

Included in accompanying MS Excel Workbook

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1d)

Supplementary Table S3e: Excluded studies from the AGTR2 search

Included in accompanying MS Excel Workbook

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1e)

Supplementary Table S3f: Excluded studies from the REN search

Included in accompanying MS Excel Workbook

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1f)

Controls Cases D D Author Year Ethnicity **SNP** Definition Ν Frequency Frequency Definition Ν I Frequency Frequency Anbazhagan K et al.(55) SAS Ins/Del CKD Healthy Chen WJ et al.(56) SAS Ins/Del CKD Healthy Nagamani S et al.(57) SAS Ins/Del CKD Healthy Shanmuganathan R et SAS al.(58) Ins/Del CKD Healthy Ali A et al.(59) EAS Ins/Del ESRD Healthy Kawada N et al.(22) Healthy EAS Ins/Del **ESRD** Su SL et al.(60) EAS Ins/Del **ESRD** Healthy Tang FY et al.(61) EAS Ins/Del **ESRD** Healthy Wang AY et al.(62) EAS ESRD Ins/Del Healthy Yang HY et al.(63) EAS Ins/Del ESRD Healthy Buraczynska M et al.(64) EUR Ins/Del ESRD Healthy Healthy Dixit M et al.(65) EUR Ins/Del ESRD Losito A et al.(66) EUR **ESRD** Ins/Del Healthy EUR McLaughlin KJ et al.(67) Ins/Del ESRD Healthy Nicod J et al.(68) EUR Ins/Del ESRD Healthy Ortiz MA et al.(69) EUR Ins/Del ESRD Healthy Schmidt A et al.(70) EUR Ins/Del ESRD Healthy van der Sman-de Beer F et al.(71) EUR Ins/Del ESRD Healthy Aucella F et al.(72) EUR Ins/Del ESRD Healthy Guo Y et al.(73) EAS Ins/Del IgAN Healthy Huang HD et al.(50) EAS Ins/Del IgAN Healthy Jung ES et al.(74) EAS Ins/Del IgAN Healthy Lau YK et al.(25) EAS Ins/Del IgAN Healthy Suzuki H et al.(75) EAS Ins/Del IgAN Healthy EAS Yoon HJ et al.(76) Ins/Del IgAN Healthy

Supplementary Table S4: Data included in quantitative analysis for ACE

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	49	of	133	

BMJ Open

Yorioka T et al.(77)	1995	EAS	Ins/Del	IgAN	48	67	29	Healthy	104	139	67
Yoshida H et al.(78)	1995	EAS	Ins/Del	IgAN	53	57	49	Healthy	46	62	30
Burg M et al. *(79)	1997	EUR	Ins/Del	IgAN	70	26	28	Healthy	60	60	60
Drouet M et al.(80)	2002	EUR	Ins/Del	IgAN	125	78	172	Healthy	83	54	100
Harden PN et al.(81)	1995	EUR	Ins/Del	IgAN	100	79	121	Healthy	98	76	120
Pawlik M et al. *(82)	2014	EUR	Ins/Del	IgAN	31	25	37	Healthy	187	180	194
Pei Y et al.(83)	1997	EUR	Ins/Del	IgAN	168	145	191	Healthy	100	91	109
Schmidt S et al. (B)(84)	1995	EUR	Ins/Del	IgAN	204	168	240	Healthy	234	197	271
Stratta P et al.(85)	1999	EUR	Ins/Del	IgAN	81	62	100	Healthy	50	38	62
Burg M et al. *(79)	1997	EUR	Ins/Del	Primary GN	46	44	48	Healthy	60	60	60
Pawlik M et al. *(82)	2014	EUR	Ins/Del	Primary GN	109	101	117	Healthy	187	180	194
Stratta P et al.(86)	2004	EUR	Ins/Del	Primary GN	117	96	138	Organ donors	171	134	208
Zsom M et al.(87)	2011	EUR	Ins/Del	Primary GN	73	62	84	Healthy	200	198	202
				RTx	6			Kidney			
Beige J et al.(88)	1997	EUR	Ins/Del	recipients	269	251	287	Donor	269	244	294
		_		RTx	C						-
El-Essawy AB et al.(89)	2002	EUR	Ins/Del	recipients	294	246	342	Healthy	181	170	192
Hueso M et al.(90)	2004	EUR	Ins/Del	RTx recipients	180	122	238	Healthy & cadaveric renal allograft donors	113	96	130
				RTx							
Stratta P et al. (91)	2008	EUR	Ins/Del	recipients	169	122	216	Healthy	169	112	226
		_		RTx							-
Viklický O et al.(92)	2001	EUR	Ins/Del	recipients	30	28	32	Healthy	653	599	707
Barnas U et al.(93)	1997	EUR	Ins/Del	T1DN	63	45	55	T1DM	59	51	29
Chowdhury TA et al.(94)	1996	EUR	Ins/Del	T1DN	242	204	280	T1DM	166	143	189
Currie D et al.(95)	2010	EUR	Ins/Del	T1DN	718	603	777	T1DM	749	696	764
De Cosmo S et al.(96)	1999	EUR	Ins/Del	T1DN	175	125	225	T1DM	136	89	183
Demurov LM et al.(97)	1997	EUR	Ins/Del	T1DN	56	35	77	T1DM	76	72	80

Page	50	of	133
ruge	20	~	135

2	
3	
4	
J	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	
1	
1	
1	
	8
	9
_	0
	1
2	
2	3
2	4
2	5
2	6
2	7
	8
	9
	0
	1
3	_
3	-
3	4
3	-
3	
3	
3	8
3	9
4	0
4	1
4	
4	
	4
4	
4	
4	/

Hadjadj S et al.(98)	2001	EUR	Ins/Del	T1DN	6	4	8	T1DM	251	208	294
Hibberd ML et al.(99)	1997	EUR	Ins/Del	T1DN	72	60	84	T1DM	86	57	115
Marre M et al.(34)	1994	EUR	Ins/Del	T1DN	62	43	81	T1DM	62	58	66
Ringel J et al. *(100)	1997	EUR	Ins/Del	T1DN	134	130	138	T1DM	226	208	244
Schmidt S et al. (A)(101)	1995	EUR	Ins/Del	T1DN	114	86	142	T1DM	133	101	165
Shestakova MV et al.(102)	2006	EUR	Ins/Del	T1DN	63	65	61	T1DM	66	78	54
Tarnow L et al.(103)	1995	EUR	Ins/Del	T1DN	198	175	221	T1DM	190	169	211
van Ittersum FJ et al.(53)	2000	EUR	Ins/Del	T1DN	30	33	27	T1DM	188	192	184
Walder B et al.(104)	1998	EUR	Ins/Del	T1DN	55	49	61	T1DM	44	40	48
Fujisawa T et al.(105)	1995	EAS	Ins/Del	T2DN	54	71	37	T2DM	35	46	24
Ha SK et al.(106)	2003	EAS	Ins/Del	T2DN	140	132	148	T2DM	99	123	75
Hsieh MC et al.(107)	2000	EAS	Ins/Del	T2DN	179	219	139	T2DM	157	222	92
Mizuiri S et al.(108)	1995	EAS	Ins/Del	T2DN	80	72	88	T2DM	31	33	29
Nakajima S et al.(109)	1996	EAS	Ins/Del	T2DN	54	67	41	T2DM	41	55	27
Ohno T et al.(110)	1996	EAS	Ins/Del	T2DN	25	28	22	T2DM	53	81	25
Shin Y et al.(111)	2004	EAS	Ins/Del	T2DN	82	112	52	T2DM	59	70	48
Thomas GN et al.(112)	2001	EAS	Ins/Del	T2DN	51	72	30	T2DM	255	346	164
Wang M et al.(113)	2016	EAS	Ins/Del	T2DN	106	78	56	T2DM	741	1020	438
Wu SH et al.(114)	2000	EAS	Ins/Del	T2DN	71	75	67	T2DM	41	58	24
Young RP et al.(115)	1998	EAS	Ins/Del	T2DN	20	27	13	T2DM	54	72	36
Dudley CR et al.(116)	1995	EUR	Ins/Del	T2DN	163	246	288	T2DM	267	246	288
Fradin S et al.(117)	2002	EUR	Ins/Del	T2DN	39	94	142	T2DM	118	94	142
Ng DPK et al.(118)	2006	EUR	Ins/Del	T2DN	291	147	187	T2DM	167	147	187
Nikzamir A et al.(119)	2009	EUR	Ins/Del	T2DN	48	159	131	T2DM	145	159	131
Schmidt S et al. (B)(120)	1997	EUR	Ins/Del	T2DN	311	278	416	T2DM	347	278	416
Al-Harbi EM et al.(121)	2011	ME	Ins/Del	T2DN	110	63	157	T2DM	196	125	267
Araz M et al.(122)	2001	ME	Ins/Del	T2DN	62	52	72	T2DM	123	103	143
El-Baz R et al.(123)	2012	ME	Ins/Del	T2DN	102	66	138	T2DM	100	82	118
Ergen HA et al.(124)	2004	ME	Ins/Del	T2DN	25	21	29	T2DM	50	31	69
Eroglu Z et al.(125)	2008	ME	Ins/Del	T2DN	46	43	49	T2DM	56	50	62
Felehgari V et al.(126)	2011	ME	Ins/Del	T2DN	68	42	94	T2DM	72	60	84
Sancakdar E et al.(127)	2015	ME	Ins/Del	T2DN	194	180	208	T2DM	100	62	138

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Ahluwalia TS et al.(128)	2009	SAS	Ins/Del	T2DN	240	152	328	T2DM	200	215	
Kumar R et al.(129)	2013	SAS	Ins/Del	T2DN	407	448	366	T2DM	185	190	
Movva S et al.(130)	2007	SAS	Ins/Del	T2DN	174	182	166	T2DM	175	222	
Naresh VV et al.(131)	2009	SAS	Ins/Del	T2DN	30	19	41	T2DM	30	35	
Shaikh R et al.(132)	2012	SAS	Ins/Del	T2DN	168	134	202	T2DM	296	394	
Vishwanathan V et											
al.(133)	2001	SAS	Ins/Del	T2DN	86	79	93	T2DM	23	28	
Doi Y et al.(134)	1996	EAS	Ins/Del	T2DN-ESRD	100	115	85	T2DM	124	168	
Jayapalan JJ et al.(135)	2010	EAS	Ins/Del	T2DN-ESRD	127	163	91	T2DM	81	93	
Lu M et al.(136)	2016	EAS	Ins/Del	T2DN-ESRD	210	238	182	T2DM	222	307	
Park HC et al.(137)	2005	EAS	Ins/Del	T2DN-ESRD	103	103	103	T2DM	88	111	
Taniwaki H et al.(138)	2001	EAS	Ins/Del	T2DN-ESRD	42	53	31	T2DM	69	88	
Grzeszczak W et al.(139)	1998	EUR	Ins/Del	T2DN-ESRD	127	128	126	T2DM	254	244	
Ringel J et al. *(100)	1997	EUR	Ins/Del	T2DN-ESRD	161	150	172	T2DM	140	141	
Schmidt S et al. (A)(140)	1997	EUR	Ins/Del	T2DN-ESRD	61	29	93	T2DM	347	416	

*Burg M et al., Pawlik M et al., and Ringel J et al., are included twice as these articles contained two phenotypic comparisons

Abbreviations: EAS, East Asian; EUR, European; ME, Middle Eastern; SAS, South Asian; CKD, Chronic Kidney Disease; ESRD, End-Stage Renal Disease; IgAN, IgA Nephropathy; GN, Glomerulonephritis; RTx, Renal Transplant; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

Supplementary Table S5: Data included in quantitative analysis for AGT

					Cases		Controls				
						T Allele	C Allele			T Allele	C Allele
Author	Year	Ethnicity	SNP	Definition	Ν	Frequency	Frequency	Definition	Ν	Frequency	Frequency
Beige J et al. (141)	1996	EUR	rs699	ESRD	269	285	253	Healthy	269	307	229
Buraczynska M et al.(64)	2006	EUR	rs699	ESRD	745	734	756	Healthy	520	564	476
Losito A et al.(66)	2002	EUR	rs699	ESRD	160	165	155	Healthy	169	190	148
Lovati E et al.(142)	2001	EUR	rs699	ESRD	260	299	221	Healthy	327	393	261
Doria A et al.(143)	1996	EUR	rs699	T1DN	139	158	120	T1DM	75	96	54
Fogarty DG et al.(144)	1996	EUR	rs699	T1DN	95	114	76	T1DM	100	129	71
Möllsten A et al.(145)	2008	EUR	rs699	T1DN	73	62	34	T1DM	197	220	174
Ringel J et al.(100)	1997	EUR	rs699	T1DN	134	145	123	T1DM	226	257	195
Schmidt S et al.*(146)	1996	EUR	rs699	T1DN	108	121	95	T1DM	120	132	108
van Ittersum FJ et al.(53)	2000	EUR	rs699	T1DN	30	31	29	T1DM	188	238	138
Walder B et al.(104)	1998	EUR	rs699	T1DN	55	60	50	T1DM	44	63	25
Ohno T et al.(110)	1996	EAS	rs699	T2DN	25	16	34	T2DM	53	25	81
Oue T et al.(147)	1999	EAS	rs699	T2DN	27	6	36	T2DM	40	13	47
Thomas GN et al.(112)	2001	EAS	rs699	T2DN	51	18	84	T2DM	255	79	431
Wang M et al.(113)	2016	EAS	rs699	T2DN	189	19	175	T2DM	473	154	792
Wu SH et al.(114)	2000	EAS	rs699	T2DN	71	21	121	T2DM	41	26	56
Young RP et al.(115)	1998	EAS	rs699	T2DN	20	4	36	T2DM	54	25	83
Fradin S et al.(117)	2002	EUR	rs699	T2DN	39	45	33	T2DM	118	139	97
Freire MB et al.(148)	1998	EUR	rs699	T2DN	117	134	96	T2DM	125	148	88
Schmidt S et al.*(146)	1996	EUR	rs699	T2DN	127	149	105	T2DM	107	117	97
Zychma MJ et al.(149)	2000	EUR	rs699	T2DN	127	133	121	T2DM	243	242	244
Eroglu Z et al.(125)	2008	ME	rs699	T2DN	46	48	44	T2DM	56	62	50
Reis KA et al.(150)	2011	ME	rs699	T2DN	108	114	102	T2DM	111	89	133
Sancakdar E et al.(127)	2015	ME	rs699	T2DN	194	189	199	T2DM	100	95	105
Gao J et al.(49)	2015	EAS	rs699	IgAN	351	144	556	Healthy	310	125	495
Guo Y et al.(73)	2016	EAS	rs699	IgAN	45	19	71	Healthy	45	16	74

 BMJ Open

Huang HD et al.(50)	2010	EAS	rs699	IgAN	130	35	225	Healthy	120	40	200
Kim SM et al.(51)	2009	EAS	rs699	IgAN	238	89	387	Healthy	300	115	485
Lau YK et al.(25)	2004	EAS	rs699	IgAN	118	27	209	Healthy	94	31	157
Kawada N et al.(22)	1997	EAS	rs699	ESRD	216	91	333	Healthy	208	64	340
Su SL et al.(60)	2014	EAS	rs699	ESRD	647	193	1101	Healthy	644	230	1058
Wang AY et al.(62)	2003	EAS	rs699	ESRD	246	76	416	Healthy	183	64	302

*Schmidt S et al., is included twice as the article contained two phenotypic comparisons.

Abbreviations: EAS, East Asian; EUR, European; ME, Middle Eastern; ESRD, End-Stage Renal Disease; IgAN, IgA Nephropathy; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

						Cases				Controls	
						A Allele	C Allele			A Allele	C Allele
Author	Year	Ethnicity	SNP	Definition	Ν	Frequency	Frequency	Definition	N	Frequency	Frequency
Gao J et al.(49)	2015	EAS	rs5186	IgAN	351	659	43	Healthy	310	577	43
Huang HD et al.(50)	2010	EAS	rs5186	IgAN	130	243	17	Healthy	120	220	20
Kim SM et al.(51)	2009	EAS	rs5186	IgAN	238	452	24	Healthy	300	576	24
Lau YK et al.(25)	2004	EAS	rs5186	IgAN	118	227	9	Healthy	94	178	10
Currie D et al.(95)	2010	EUR	rs5186	T1DN	718	1029	385	T1DM	749	1052	418
Doria A et al.(151)	1997	EUR	rs5186	T1DN	73	99	47	T1DM	79	119	39
Möllsten A et al.(145)	2008	EUR	rs5186	T1DN	72	78	18	T1DM	197	290	104
Savage DA et al.(52)	1999	EUR	rs5186	T1DN	95	136	54	T1DM	97	137	57
Tarnow L et al.(152)	1996	EUR	rs5186	T1DN	198	287	109	T1DM	190	274	106
van Ittersum FJ et al.(53)	2000	EUR	rs5186	T1DN	30	47	13	T1DM	188	238	138
Thomas GN et al.(112)	2001	EAS	rs5186	T2DN	51	99	3	T2DM	255	483	27
Wu SH et al.(114)	2000	EAS	rs5186	T2DN	71	127	15	T2DM	41	74	8
Young RP et al.(115)	1998	EAS	rs5186	T2DN	20	38	2	T2DM	54	103	5
Ahluwalia TS et al.(128)	2009	SAS	rs5186	T2DN	240	320	160	T2DM	255	381	129
Prasad P et al.(54)	2006	SAS	rs5186	T2DN	196	360	26	T2DM	225	417	33
Shah VN et al.(153)	2013	SAS	rs5186	T2DN	596	789	403	T2DM	566	840	282

Supplementary Table S6: Data included in quantitative analysis for AGTR1

 Abbreviations: EAS, East Asian; EUR, European; SAS, South Asian; IgAN, IgA Nephropathy; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

 BMJ Open

					C	ases	Co	ntrols
Gene	Author	Year	Ethnicity	SNP	Definition	P value (where	Definition	P value (where
						significant)		significant)
ACE	Jung ES	2010	EAS	Ins/Del	IgAN		Healthy	0.016
	Shanmuganathan R	2015	SAS	Ins/Del	CKD	1.31x10 ⁻⁰⁴	Healthy	1.9x10 ⁻⁰⁵
	Tang FY	2008	EAS	Ins/Del	ESRD	1.8x10 ⁻⁰⁵	Healthy	1x10 ⁻⁰⁶
	Nicod J	2002	EUR	Ins/Del	ESRD	0.0008	Healthy	0.004
	McLaughlin KJ	1996	EUR	Ins/Del	ESRD	0.04	Healthy	
	Yorioka T	1995	EAS	Ins/Del	IgAN	0.013	Healthy	
	Yoshida H	1995	EAS	Ins/Del	IgAN	0.01	Healthy	
	Yoon HJ	2002	EAS	Ins/Del	IgAN	0.002	Healthy	
	Schmidt S	1995	EUR	Ins/Del	IgAN	0.007	Healthy	
	Suzuki H	2004	EAS	Ins/Del	IgAN	0.036	Healthy	0.004
	Zsom M	2011	EUR	Ins/Del	Primary GN	0.005	Healthy	
	Currie D	2010	EUR	Ins/Del	T1DN		T1DM	0.005
	Ringel J	1997	EUR	Ins/Del	T1DN		T1DM	0.018
	Tarnow L	1995	EUR	Ins/Del	T1DN		T1DM	0.013
	Schmidt S	1995	EUR	Ins/Del	T1DN	0.002	T1DM	
	Mizuiri S	1995	EAS	Ins/Del	T2DN	0.019	T2DM	
	Hsieh MC	2000	EAS	Ins/Del	T2DN	4.2x10 ⁻⁰⁵	T2DM	0.004
	Ha SK	2003	EAS	Ins/Del	T2DN		T2DM	0.026
	Schmidt S	1997	EUR	Ins/Del	T2DN	0.0147	T2DM	
	El-Baz R	2012	ME	Ins/Del	T2DN	0.0025	T2DM	1x10 ⁻⁰⁶
	Sancakdar E	2015	ME	Ins/Del	T2DN	0.0076	T2DM	0.003
	Kumar R	2013	SAS	Ins/Del	T2DN	0.0016	T2DM	0.0003
	Park HC	2005	EAS	Ins/Del	T2DN-ESRD		T2DM	0.022
AGT	Fogarty DG	1996	EUR	rs699	T1DN		T1DM	0.044
	Wu SH	2000	EAS	rs699	T2DN	0.0008	T2DM	
	Freire MB	1998	EUR	rs699	T2DN	0.022	T2DM	
	Reis KA	2011	ME	rs699	T2DN	0.006	T2DM	

	Fradin S	2002	EUR	rs699	T2DN	0.008	T2DM	
AGTR1	Ahluwalia TS	2009	SAS	rs5186	T2DN		T2DM	0.0002
	Shah VN	2013	SAS	rs5186	T2DN		T2DM	4.2x10 ⁻⁰⁸
	Lau YK	2004	EAS	rs5186	IgAN	0.038	Healthy	
	Möllsten A	2008	EUR	rs5186	T1DN	0.029	T1DM	

 Abbreviations: EAS, East Asian; EUR, European; ME, Middle Eastern; SAS, South Asian; CKD, Chronic Kidney Disease; ESRD, End-Stage Renal Disease; GN, Glomerulonephritis; IgAN, IgA Nephropathy; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				
2	Supplementary Table S3a			
3	Exclusion S Title	Authors I	PMID	Reason
4	1 Angiotensin I - C			
5	1 Association of T			
6	1 Clinical utility of			
7 8	1 DDOST, PRKCSH			
9	1 Effect of a polyn			
10	1 Effects of erythr	Glicklich D,	10428268	No data for ACE
11	1 Impact of the pr	-		
12	1 Kinin-dependen	Molinaro G	17003818	No data for ACE
13	1 Manganese supe	Lee SJ, Cho	16324912	No data for ACE
14	1 Nephropathy in	Orchard TJ,	12164879	No data for ACE
15	1 Neuropeptide Y	lto, H; Mor	10363627	No data for ACE
16	1 Polymorphisms	Frojdo, S; S	16211375	No data for ACE
17	1 Role of glycaemi	Powrie JK, '	7819935	No data for ACE
18	1 Connexin 43 is n	Ge <mark>r</mark> l, M; Ku	24062052	Non-human
19	1 Kallikrein and ar	Catanzaro (6186886	Non-human
20 21	1 Multi-species co	Hamilton N	23408978	Non-human
21	1 N-domain angio	Bueno, V; F	15194348	Non-human
23	1 Renal angiotens	Stoneking,	9719278	Non-human
24	1 Altered activities	Sharma, JN	25964383	Not a case-control study
25	1 Angiotensin con	Yildiz A, Ya:	12832741	Not a case-control study
26	1 Angiotensin-con	So WY, Ma	16395257	Not a case-control study
27	1 Angiotensin-con	Akçay A, (15013293	Not a case-control study
28	1 Angiotensin-con	Woo KT, La	18536822	Not a case-control study
29				Not a case-control study
30	-	-		Not a case-control study
31	-	-		Not a case-control study
32 33				Not a case-control study
34				Not a case-control study
35		-		Not a case-control study
36				Not a case-control study
37				Not a case-control study
38				Not a case-control study
39		-		Not a case-control study
40				Not a case-control study
41				Not a case-control study
42		-		Not a case-control study
43		-		Not a case-control study
44 45		-		Not a case-control study
46				Not a case-control study
47	•			Not a case-control study
48	-			Not a case-control study
49				Not a case-control study
50				Not a case-control study
51				Not a case-control study
52				Not a case-control study
53				Not a case-control study
54	_			Not a case-control study
55	-			Not a case-control study
56 57		, - ,		
58				

2 3	
4	
5 6	
7	
8 9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
21 22	
23	
24 25	
26	
27 28	
29	
30 31	
32 33	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45	
46 47	
48 49	
49 50	
51 52	
53	
54 55	
56	
57 58	
59 60	
00	

1 PAI-1 4G/5G and Aucella F, N 127	48347 Not a case-control study
1 Risk factors for t Oue, T; Nar 105	80616 Not a case-control study
1 Survival in type : PadrÃ ³ -Mic 190	14923 Not a case-control study
1 The effect of an Nakayama 163	12263 Not a case-control study
1 A novel human I Barash U, C 200	07507 Not a renal disease focus
1 A study on the a Chmaisse ⊢ 198	61867 Not a renal disease focus
1 Abnormal hepat Drenth JP, 150	
1 ACE and PC-1 gede Azevedc 121	
1 ACE gene inserti Dell'omo, C 168	89537 Not a renal disease focus
1 Albuminuria anc Thomas GN 112	00871 Not a renal disease focus
1 alpha-adducin a Clark, CJ; D 111	16113 Not a renal disease focus
1 Angiotensin con Nagi DK, M 85	82133 Not a renal disease focus
1 Angiotensin con Miller JA, S 89	
1 Angiotensin I co Tassiulas, I 97	
1 Angiotensin I-co Costerouss 98	
1 Angiotensin I-co Vasku, A; S 96	
1 Angiotensin-con Mansoor Q 226	
1 Angiotensin-con Negi VS, De 259	
1 Angiotensin-con Catarsi P, R 160	
1 Angiotensin-con Douglas G, 153	
1 Angiotensin-con Pedersen-E 198	
1 Angiotensin-con Stefansson 108	
1 Angiotensin-con Singh M, Si 270	
1 Angiotensin-con Uhm WS, L 120	
1 Angiotensin-Cor Lachurie, N 77	
1 Angiotensin-con Al-Awadhi / 176	
1 Angiotensin-con Prkacin I, N 115	
1 Are the angioter Dikmen M, 167	
1 Association bety Boomsma I 158	
1 Association of A Bahramali 268	61937 Not a renal disease focus
1 Association of A Alsafar H, F 264	91214 Not a renal disease focus
1 Association of a Rabbani M, 187	
1 Association of a Nikzamir A, 181	
1 Association of a RodrÃ-gue: 113	
1 Association of A Singh, PP; 166	
1 Association of B Moholisa R 237	
1 Association of cl Elmonem N 265	
1 Association of cl Kitamura, H 99	
1 Association of p Meng, N; Z 253	
1 Association of re Conen D, G 186	
	336444 Not a renal disease focus
1 Carotid intima-n NergizoÄŸl 104	
1 CCL18: a urinary Boot RG, V(167	
1 COL4A1 mutatic Weng, YC; 1225	
1 Comprehensive Kato, N; Su 109	
1 Contribution of Mondorf U 95	
1 Deletion polymc Gharavi AG 86	
1 Detection of the Matsumoto 111	
1 Different impact Olivieri O, (117	
1 Distribution of d Diamantop 108	
· ·	

1	
1 2	1 Distribution of h Hussain N, 23448612 Not a renal disease focus
3	1 Effects of angiot Kulah E, Du 17625392 Not a renal disease focus
4	1 Efficacy of Korea Kwon, DH; 23717118 Not a renal disease focus
5	1 Elevated urinary Clausen, P; 10872702 Not a renal disease focus
6	1 Frequencies Of VZee, Ryl; B€ 7882587 Not a renal disease focus
7	1 Genetic polymo Deuster, P/ 23543093 Not a renal disease focus
8	1 Genetic polymoi Olivieri O, 1 10567188 Not a renal disease focus
9	1 Genetic risk for Missouris C 8821841 Not a renal disease focus
10	1 Genetic risk of a van Onna N 15326089 Not a renal disease focus
11	1 Genetic variants Szperl M, D 19043368 Not a renal disease focus
12 13	1 Hepatocystin is Overton JD 26671672 Not a renal disease focus
13	1 Impact of mater Pfab T, Stir 17563539 Not a renal disease focus
15	1 Increased amou Suehiro T, I 15164285 Not a renal disease focus
16	1 Increased D allel Morrison C 11381371 Not a renal disease focus
17	1 Increased expre. Yamani MF 17097490 Not a renal disease focus
18	1 Increased frequ(Onizuka M, 16044138 Not a renal disease focus
19	1 Independent, M Morris, Bj; 8104754 Not a renal disease focus
20	1 Inhibition of tiss Montgome 9797175 Not a renal disease focus
21	1 Insertion/Deleti de Martino 21477733 Not a renal disease focus
22	1 Late-onset acid Mehler M, 9923 Not a renal disease focus
23	
24	1 Leukocyte beta- Raghavan S 6770675 Not a renal disease focus
25	1 Lys(173)Arg and Komiya I, Y 10720581 Not a renal disease focus
26 27	1 Mutations in PR Li A, Davila 12529853 Not a renal disease focus
28	1 No association b Yildiz A, Ak 10657713 Not a renal disease focus
29	1 Peripheral vascu Thomas GN 14632699 Not a renal disease focus
30	1 Pharmacogeneti Okamura A 10535720 Not a renal disease focus
31	1 Polymorphisms Deckers IA, 24978482 Not a renal disease focus
32	1 Relationship of I Fu Y, Katsur 15894833 Not a renal disease focus
33	1 Relationship of Heltianu C, 15784171 Not a renal disease focus
34	1 Relationship of t Huang XH, 9544854 Not a renal disease focus
35	1 Renal ACE immu Mizuiri S, Y 9469501 Not a renal disease focus
36	1 Renal changes o Marre, M; 10082486 Not a renal disease focus
37	1 Renal outcome (Molad Y, G 11071585 Not a renal disease focus
38	1 Renin-angiotens BuraczyÅ, s 14502296 Not a renal disease focus
39 40	1 Renovascular di: Pizzolo F, N 14718831 Not a renal disease focus
40 41	1 Synergistic effec Barlassina (10720960 Not a renal disease focus
42	1 Testing of poten Schoenfeld 24667567 Not a renal disease focus
43	1 The angiotensin Ebert, MPA 16365022 Not a renal disease focus
44	1 The Captopril Pr Hansson L, 9495662 Not a renal disease focus
45	1 The presence of Güngör 21332339 Not a renal disease focus
46	1 [A study on angi Nishina M. 9014479 Not English or Spanish
47	1 [Angiotensin-corKrajina-Anc 23120809 Not English or Spanish
48	1 [Angiotensin-coiGuan T, Liu 10436947 Not English or Spanish
49	1 [Arterial hypert: Oko A, Åoc 14974362 Not English or Spanish
50	1 [Association bet Wang L, Pa 10923445 Not English or Spanish
51	1 [Association bet Qiu MY, Xie 25815490 Not English or Spanish
52	1 [Association bet Miloserdov 11234416 Not English or Spanish
53 54	1 [Association of a Lu LH, Cher 18393230 Not English or Spanish
55	1 [Association of t Kamysheva 15532370 Not English or Spanish
56	1 [Association of t BuraczyÅ, s 12476891 Not English or Spanish
57	
58	
59	
	Lor poor rouiou oply bttp://brienen.humi.com/site/-lt/l-

$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 34\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	2 3 4 5	
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 34\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$	7 8 9	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	11 12 13	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	15 16	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	19 20	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	22 23 24	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	26 27 28	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	30 31 32	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	34 35 36	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	38 39 40	
46 47 48 49 50 51 52 53 54 55 56 57 58 59	42 43 44	
50 51 52 53 54 55 56 57 58 59	46 47 48	
54 55 56 57 58 59	50 51 52	
58 59	54 55 56	
	58 59	

1 [Correlative stuc Wu 2	(X, Zhe 15698501 Not English or Spanish	
1 [Genetic predisc Bzor	na B, D 19112833 Not English or Spanish	
1 [I/D relationship Kalie	v RR, E 16078593 Not English or Spanish	
1 [Is PstI polymor; Grze	szczak 9499204 Not English or Spanish	
1 [Polymorphism : Kuty	rina IN 10420452 Not English or Spanish	
1 [Relationship be Wu S	5, Xian 9596955 Not English or Spanish	
1 [Relationship be Mole	eda P, I 17941464 Not English or Spanish	
1 [Relationship be Liao	L, Lei N 12016801 Not English or Spanish	
1 [Renin-angioten Bura	czyńs 11865575 Not English or Spanish	
	Li LM, 12848919 Not English or Spanish	
	ic, M; § 15179569 Paediatric individuals	
	rli E, K 19603195 Paediatric individuals	
-	aroglu 16208534 Paediatric individuals	
-	on I, Fi 12478352 Paediatric individuals	
	ka R, li 9590186 Paediatric individuals	
	ngko T 16421456 Paediatric individuals	
	-	
	ny ME, 18792483 Paediatric individuals	
	US, N: 16825089 Paediatric individuals	
	m F, Si 14986085 Paediatric individuals	
	enfelln 10452281 Paediatric individuals	
•	sa A, H 11487079 Paediatric individuals	
	ai M, P 14713838 Paediatric individuals	
-	SJ, Gu 16272677 Paediatric individuals	
	ovic, M 9950302 Paediatric individuals	
1 Angiotensin I-co Pavl	ovic, M 9354852 Paediatric individuals	
1 Angiotensin-con Rigo	li, L; Ch 15470205 Paediatric individuals	
1 Angiotensin-con al-Ei	sa A, H 10986863 Paediatric individuals	
1 Angiotensin-con Zhoເ	I J, Tiar 15315169 Paediatric individuals	
1 Angiotensin-conTsai	IJ, Yanį 16645262 Paediatric individuals	
1 Angiotensin-con Batir	nić D, 25997642 Paediatric individuals	
1 Angiotensinoger Galle	ego, PF 18413222 Paediatric individuals	
1 Association of A Dhai	ndapar 26154535 Paediatric individuals	
1 Association of a Laks	mi NK, 20149750Paediatric individuals	
1 Association of the Shah	id S, A 22033511 Paediatric individuals	
	ehirli B 22017506 Paediatric individuals	
	r-Ayad 20418353 Paediatric individuals	
	an İ, 1 25262176 Paediatric individuals	
	berg Y 9853248 Paediatric individuals	
	son G. 5016302 Paediatric individuals	
	m B, Ã [.] 25924634 Paediatric individuals	
	enfelln 11354781 Paediatric individuals	
	ein A, 25939993 Paediatric individuals	
•	n H, Ku 16133060 Paediatric individuals	
	S, Alił 10401028 Paediatric individuals	
	ÄŸan F 15138870 Paediatric individuals	
	di E, O 15390293 Paediatric individuals	
-	zzi L, L 16006956 Paediatric individuals	
	gel M, (25170764 Paediatric individuals	
	roso A 9870486 Paediatric individuals	
	uyama 11354780 Paediatric individuals	

BMJ Open

1		Dolymorphisms Eco A Toka	16100095	Pandiatric individuals
2		Polymorphisms Ece A, Teke		
3		Polymorphisms Savvidou A		
2		Renin-angiotens Papp F, Frie		
5	_	Renin-angiotens Ozkaya, O;		
7	1	Renin-angiotens Pardo R, M		
ر ع	1	Renin-angiotens Liu KP, Lin (
ç	1	Role of platelet- Tanaka R, li		
	0 1	Significance of A Hori C, Hira		
	1 1	High serum enal Elung-Jense		_
	2 1	ACE gene polym Parving, HI	18199798	Pharmaceutical drug focus
1	3 1	Chronic protein Ruggenenti	10616844	Pharmaceutical drug focus
1	4 1	Effect of angiote Penno G, C	9726242	Pharmaceutical drug focus
1	5 1	Enalapril and los Rashtchizad	17222813	Pharmaceutical drug focus
1	6 1	Long-term reno; Andersen S	12716812	Pharmaceutical drug focus
		Randomized pla Kvetny J, G	11181984	Pharmaceutical drug focus
	8 1	Renin-angiotens Norooziana	17524880	Pharmaceutical drug focus
	9 1	The influence of Luik PT, Ho	12856080	Pharmaceutical drug focus
	0 2	Influence of gen Parchwani	26214998	Incorrect patient group
	۱ ر	Polymorphism o Woo, KT; Li		
	2	Polymorphism o Frimat, L; P		
	5	Interaction of M Rahimi Z, H		
		The frequency o Rahimi Z, F		
		Polymorphism o Hanyu, O; F		
		Angiotensin I co Gutierrez, (
2	•	The angiotensin Hibberd, M		
2	^	Genetic Predisp Doria, A; W		
Э	Λ	Prognostic value Hadjadj S, F		
	1 2	Association betv Hadjadj S, 1		
	۲ <u>۲</u>	Combinational e Osawa N, K		
	^з	Frequency of an Degirmenci		
	7	Genetic variatio Boright AP,		
		Effects of the ge Luther Y, Bi		
		ACE gene polym Lau YK, Wo		
	_			
	-	Association of the Gohda T, N		
	<u> </u>	The DD genotyp Azar ST, Za		
	1 2	Genetic polymo Lovati E, Ri		
	2 2	Association of a Szelestei T,		
Z	1	Lack of synergisi Tarnow L, k		
2	4	The ACE insertio van Dijk M/		
	5	The reninangic Ong-Ajyoot		
	•	ACE, PAI-1, decc De Cosmo S		
		Effect of ACE ge Kuramoto I		
		Angiotensin-con Jeffers BW,		
	•	Hypertensive ne Kario K, Kai		
	1	Relationships be Oh TG, Shir		
	า	Genetic polymo Buraczyńs		
	2 3	[Angiotensin-1 c Ortega-Pier	17570179	< 3 populations reported per SNP
	3 3	Angiotensin con Fernández-	9607207	< 3 populations reported per SNP
	4 5 3	Angiotensin-con Abbas D et	21976404	< 3 populations reported per SNP
	6 3	Angiotensin-con Lee DY et a	9434071	< 3 populations reported per SNP
	7			
	8			
	9			
6	0	For peer review only - h	http://bmic	ppen.bmi.com/site/about/quidelines

3	Angiotensin-I Cc Kumar A et al. < 3 populations reported per SNP
3	Association betv Uemasu J e 9180368 < 3 populations reported per SNP
3	B Association betv Huo P et al. 25227524 < 3 populations reported per SNP
3	Association of a Akai Y et al 10099886 < 3 populations reported per SNP
3	Association of the X et al. 20540812 < 3 populations reported per SNP
	Chronic renal in: Prasad P et WOS:0002: < 3 populations reported per SNP
	Clinical impact o Amorim et 23362199 < 3 populations reported per SNP
	Contribution of Marre M et 9120002 < 3 populations reported per SNP
	B DNA polymorph Freire MBS 9794558 < 3 populations reported per SNP
	Gene polymorph Su SL et al. 22147663 < 3 populations reported per SNP
	Genes involved i Litovkina O 24727057 < 3 populations reported per SNP
	Genetic Clues Tc Krcunovic ZWOS:0002{< 3 populations reported per SNP
	B Genetic polymor Miura J et a 10499884 < 3 populations reported per SNP
	B Genetic polymo Fabris B et 15662219 < 3 populations reported per SNP
	B Genetic risk fact Tripathi G € 18242170 < 3 populations reported per SNP
	B Genetic variants Shaikh R et 24737640 < 3 populations reported per SNP
	B Identification of Ezzidi I et a 19787680 < 3 populations reported per SNP
	B Influence of ang Ramanatha 27748299 < 3 populations reported per SNP
	B Influence of gen Parchwani 26214998 < 3 populations reported per SNP
3	Influence of the Merta M e1 12697976 < 3 populations reported per SNP
3	B Lack of associati Arfa I et al. 18404607 < 3 populations reported per SNP
3	Polymorphism o Aucella F et 10773756 < 3 populations reported per SNP
3	Polymorphism o Ayed K et a 16635753 < 3 populations reported per SNP
3	8 Polymorphisms Sprovieri SI 15934435 < 3 populations reported per SNP
3	8 Renin-angiotens Parsa A et a 15789057 < 3 populations reported per SNP
3	The DD genotyp Vleming LJ 10099885 < 3 populations reported per SNP
3	B The effect of pol Möllsten A 18413189 < 3 populations reported per SNP
	The presence of Canani LH (16108844 < 3 populations reported per SNP

1	~ 1				
2		ntary Table			D
3	Exclusion S			PMID	Reason
4 5		-			No data for ACE2
6		•	-		No data for ACE2
7					No data for ACE2
8			-		No data for ACE2
9		-	-		No data for ACE2
10			-		No data for ACE2
11					No data for ACE2
12		=			No data for ACE2
13	1	A Lack of Si	Jannot AS,	26829596	No data for ACE2
14	1	A leucine re	Freedman I	17205963	No data for ACE2
15	1	A new poly	Smolenicka	9589699	No data for ACE2
16	1	A novel me	Chen Y, Bui	19162184	No data for ACE2
17	1	A polymor	Bhandary L	21624462	No data for ACE2
18	1	A rare hapl	Martin RJ, I	19783860	No data for ACE2
19	1	A risk allele	Genovese (20668430	No data for ACE2
20	1	A simultane	Papacostas	6688659	No data for ACE2
21			-		No data for ACE2
22 23					No data for ACE2
23 24					No data for ACE2
25			-		No data for ACE2
26					No data for ACE2
27					No data for ACE2
28					No data for ACE2
29					No data for ACE2
30					No data for ACE2
31					
32					No data for ACE2
33					No data for ACE2
34		_	-		No data for ACE2
35		•			No data for ACE2
36		0	-		No data for ACE2
37					No data for ACE2
38					No data for ACE2
39	1	Angiotensi	Schmidt S,	9269698	No data for ACE2
40 41	1	Angiotensi	Tassiulas IC	9710341	No data for ACE2
41	1	Angiotensi	Grzeszczak	9727375	No data for ACE2
43	1	Angiotensi	Stratta P, C	10352195	No data for ACE2
44	1	Angiotensi	So WY, Ma	16395257	No data for ACE2
45	1	Angiotensi	Abbas D, Ez	21976404	No data for ACE2
46	1	Angiotensi	Douglas G,	15338496	No data for ACE2
47	1	Angiotensi	Araz M, Yilı	11640993	No data for ACE2
48	1	Angiotensi	Uhm WS, L	12043886	No data for ACE2
49	1	Angiotensi	Jeffers BW,	9264004	No data for ACE2
50	1	Angiotensi	Lee DY, Kin	9434071	No data for ACE2
51		-			No data for ACE2
52					No data for ACE2
53		-	•		No data for ACE2
54					No data for ACE2
55		-			No data for ACE2
56 57	1				
57 58					
58 59					
59		For pe	er review o	nlv - http://	bmiopen.bmi.com/sit

1 A	ngiotensiı Ortiz MA, E 15012717 No data for ACE2
1 A	ngiotensii Schmidt A, 8785402 No data for ACE2
1 A	ngiotensiı Beige J, Off 9550656 No data for ACE2
1 A	ngiotensii Arzu Ergen 15365253 No data for ACE2
1 A	ngiotensiı Zychma MJ 11096141 No data for ACE2
1 A	nti-glutatl Aguilera I, / 18308775 No data for ACE2
1 A	POL1 vari Papeta N, k 21997397 No data for ACE2
1 A	polipopro Lipkowitz N 22832513 No data for ACE2
1 A	ssessmen Karsli Cepp 21859400 No data for ACE2
1 A	ssociation Ohno T, Kaul 8596493 No data for ACE2
1 A	ssociation Prasad P, T 20353610 No data for ACE2
1 A	ssociation Kavanagh E 21103979 No data for ACE2
1 A	ssociation Wu LS, Hsie 19506043 No data for ACE2
1 A	ssociation Doi Y, Yosh 8720609 No data for ACE2
	ssociation Melander (11114699 No data for ACE2
1 A	ssociation Uemasu J, 1 9180368 No data for ACE2
	ssociation Hadjadj S, 1 17376814 No data for ACE2
	ssociation van Essen (8538349 No data for ACE2
	ssociation Li WL, Lu C. 26125729 No data for ACE2
	ssociation Ferraresso 21851254 No data for ACE2
	ssociation Huo P, Zhai 25227524 No data for ACE2
	ssociation Xiong H, Xii 19682085 No data for ACE2
	ssociation Vigo Gago 15887856 No data for ACE2
	ssociation de Souza Cl 17914260 No data for ACE2
	ssociation Morris BJ, I 11907646 No data for ACE2
	ssociation Szelestei T, 10977777 No data for ACE2
	ssociation Pawlik M, N 23681285 No data for ACE2
	ssociation Tang FY, Lit 18629615 No data for ACE2
	ssociation Pei Y, Schol 9259580 No data for ACE2
	ssociation Cai Z, Chen 22720119 No data for ACE2
	ssociation Park HJ, Kir 24621205 No data for ACE2 ssociation Siddarth M 23619522 No data for ACE2
	ssociation Nagase S, S 12701818 No data for ACE2
	ssociation Böger CA, 21980298 No data for ACE2
	ssociation Bellini MH, 17498125 No data for ACE2
	ssociation Thaha M, P 18793530 No data for ACE2
	ssociation Ezzidi I, Mti 18413207 No data for ACE2
	ssociation Santos KG, 21255858 No data for ACE2
	ssociation Issac MS, A 24151105 No data for ACE2
	ssociation Yoshida T, 19424605 No data for ACE2
	ssociation Yoshida T, 19724895 No data for ACE2
	ssociation Vieira SM, 21962117 No data for ACE2
	ssociation Yoshida T, 19578796 No data for ACE2
	ssociation Yoshida T, 19288030 No data for ACE2
	ssociation Yoshida T, I 19406964 No data for ACE2
	ssociation Datta SK, K 20954980 No data for ACE2
	ssociation Turki A, Ma 23727064 No data for ACE2
	ssociation Bostrom M 20466664 No data for ACE2
	ssociation Liu Y, Zhou 26841219 No data for ACE2
1 A	ssociation Eroglu Z, Ce 18413162 No data for ACE2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	1 Association Gohda T, N 11770799 No data for ACE2
3	1 Association Keene KL, ↑ 18184924 No data for ACE2
4	1 Association Akcay A, Se 15385810 No data for ACE2
5	1 Association Neugebaue 10868974 No data for ACE2
6	1 Association Hodgkinsor 14578247 No data for ACE2
7	1 Association Sener EF, T 24126814 No data for ACE2
8	1 Association Genovese (20647424 No data for ACE2
9	1 Association Pazik J, OÅ, 22210424 No data for ACE2
10	1 Association Zhao YG, Sł 23044313 No data for ACE2
11	1 Association Lavery GG, 11916625 No data for ACE2
12	1 Association Eavery GG, 11910025 No data for ACE2 1 Association Kim SK, Par 24654912 No data for ACE2
13	1 Association Zhu AN, Yai 25867326 No data for ACE2
14 15	1 Balkan end Andonova 15365959 No data for ACE2
16	1 Base excisi Cai Z, Guo V 22780951 No data for ACE2
17	
18	1 Bsml polyn Zhang H, W 22245613 No data for ACE2
19	1 Calpain 10 Demirci H, 18554168 No data for ACE2
20	1 Cardiac hyr Wang AY, C 12675870 No data for ACE2
21	1 Carnosine (Janssen B, 16046297 No data for ACE2
22	1 Catalase/sı Sözmen E 11440784 No data for ACE2
23	1 Characteriz Munkert A, 18927121 No data for ACE2
24	1 Characteriz Armstrong 23762448 No data for ACE2
25	1 Chronic prc Ruggenenti 10616844 No data for ACE2
26	1 Chronic rer Marra M, N 23129820 No data for ACE2
27	1 Circulating Anguiano, I 25813276 No data for ACE2
28 29	1 Circulating Caplin B, N 20010544 No data for ACE2
30	1 Clinical and Kim IW, Mc 22183771 No data for ACE2
31	1 Clinical imp Amorim CE 23362199 No data for ACE2
32	1 Clinical util Elmonem N 25407738 No data for ACE2
33	1 Combinatic Osawa N, K 17143591 No data for ACE2
34	1 Common v Ahluwalia 1 21573905 No data for ACE2
35	1 Contributic Wong TY, S 11431175 No data for ACE2
36	1 Copy Numl Ruchi R, Ge 25933006 No data for ACE2 🦷 🌽
37	1 Correlates Nikzamir A, 17986476 No data for ACE2
38	1 CYP2C9 an MiroÅjevic 24024895 No data for ACE2
39	1 CYP3A4 gei Wang YY, Z 23217392 No data for ACE2
40	1 Cys327Cys KalousovÃj 24667032 No data for ACE2
41	1 DDOST, PR Hoverfelt A 20490454 No data for ACE2
42 43	1 Deletion in Björck S, I 9269704 No data for ACE2
45 44	1 Dense map Nelson GW 20124285 No data for ACE2
45	1 Deregulate Denizot Y, / 10978389 No data for ACE2
46	1 Different in Olivieri O, (11791024 No data for ACE2
47	1 Differential Freedman 21698141 No data for ACE2
48	1 Differential Shankland 10916090 No data for ACE2
49	1 Dinucleotic Maeda S, H 11576356 No data for ACE2
50	1 Disease prc Woo KT, La 17601378 No data for ACE2
51	1 Distribution Thaha M, Y 23770786 No data for ACE2
52	1 DNA polym Freire MB, 9794558 No data for ACE2
53	1 DNA repair Radwan WI 25310768 No data for ACE2
54	1 Donor age De Meyer I 22835948 No data for ACE2
55	1 Donor DNA Rutkowska 18290564 No data for ACE2
56	
57 58	
58	
59	For peer review only - http://bmiopen.bmi.com/site

1			
-	1 Effect of a Morita T, It		
	1 Effect of A(Kuramoto I		
	1 Effect of he Baum L, Ng		
	1 Effect of hı Tarng DC, T		
7	1 Effects of tl Luther Y, Ba		
7	1 Efficient sc Zhang LR, S	16952345	No data for ACE2
8 9	1 Elevated MKaunisto M	19366862	No data for ACE2
9 10	1 Elevated pl Dieplinger	8432847	No data for ACE2
10	1 Elevation o Korponay-S	14570724	No data for ACE2
12	1 Endothelial Marson BP,	20849252	No data for ACE2
	1 Endothelial Yilmaz E, M	20005399	No data for ACE2
	1 Endothelial ReiterovÃj	12077489	No data for ACE2
15	1 Endothelial Shimizu T, (12413777	No data for ACE2
16	1 Endothelial Ahluwalia 1	18401556	No data for ACE2
	1 Endothelial Buraczynsk		
10	1 Endothelial de Prado A		
10	1 Endothelial Wang Y, Kil		
20	1 Endothelial Shoukry A,		
21	1 Endothelial Asakimori		
22	1 Endothelial Bhandary L		
25	1 Endothelial Kerkeni M,		
	1 eNOS 4a/b Rahimi Z, R		
	1 Epidermal { Magistroni		
20	1 Estimated ¿Otero Gonz		
20	1 Estrogen re Cho NH, Sh		
30	1 Evaluation Palmer ND,		
31	1 Evaluation Hirakawa S		
- 57	1 Evaluation Barnas U, S		
22	1 Evidence fc Lamnissou		
JT	1 Exclusion o Wanic K, Pl		
	1 Exome seq Sanna-Chei		
	1 Expression Metalidis C		
	1 Factor B su Nishimukai		
20	1 Frequency Degirmenci		
	1 Gene muta Hoshida Y,	11896204	No data for ACE2
40 41	1 Gene polyn Su SL, Lu K(22147663	No data for ACE2
41	1 Gene polyn Zhang G, W	17984617	No data for ACE2
43	1 Gene-gene Su SL, Yang	24977181	No data for ACE2
44	1 Gene-polyr Burg M, Me	9352153	No data for ACE2
45	1 Genes invo Litovkina O	24727057	No data for ACE2
	1 Genetic an: Szarvas N, !	26826462	No data for ACE2
47	1 Genetic an: Freedman I	11071967	No data for ACE2
48	1 Genetic an HorovÃj E,	22849862	No data for ACE2
49	1 Genetic an Zhang D, G	22024547	No data for ACE2
	1 Genetic de St Peter SD	12364860	No data for ACE2
51	1 Genetic po Rambausek	3118258	No data for ACE2
52	1 Genetic po Zsom M, FÂ	22111818	No data for ACE2
53	1 Genetic po Jimenez-So		
54	1 Genetic po Atanasova		
22	1 Genetic po Buraczynsk		
56 57	,,		-
58			
59			
60	For peer review o	nlv - http://	/bmiopen.bmi.com/s

BMJ Open

1			
2	1 Genetic po Huang HD,	21163122	No data for ACE2
3	1 Genetic po Lovati E, Ri		
4	1 Genetic preKumar R, S		
5	1 Genetic pr€Nikolov IG,		
6	1 Genetic pr€Doria A, Wi		
7	1 Genetic reg Kramer J, S		
8	1 Genetic risl Tripathi G,		
9	1 Genetic var Pirulli D, Cr		
10	1 Genetic var haikh R, S		
11	1 Constigues Dai D. Hindy		
12			
13	_		
14 15	-		
16			
17			
18	i denotypie ispare ivit,		
19	I Genotyping wijnen PA,		
20	I Gluz98ASp MA listen		
21	1 Glutathion Suvakov S,		
22	1 Glutathion Chen B, Bai		
23			
24	1 G-protein t Viklický C	12424427	No data for ACE2
25	1 Haplotype Doi K, Noiri	16215641	No data for ACE2
26		10754410	No data for ACE2
27		16333311	No data for ACE2
28		17042963	No data for ACE2
29		9740165	No data for ACE2
30	1 How to har Saint-Marc	26316426	No data for ACE2
31	1 Hypertensi Basset el-E	11926202	No data for ACE2
32 33	1 Uvportopci Varia V Va	9081678	No data for ACE2
33 34		12874455	No data for ACE2
35	· · · · · · · ·	23539754	No data for ACE2
36		20448065	No data for ACE2
37	_		
38			
39			
40			
41	1 Identificati Toncheva [
42	1 Identificati Ezzidi I. Mti		
43	1. Immuno ro Nobuoka V		
44	1. Juana un a da Damaina A		
45			
46	•		
47 48			
48 49	1 5		
49 50			
51			
52	I inipact of uniajewska i		
53	I impact of E Eller P, Hoc		
54	1 Impact of gSiekierka-H		
55	1 Impact of n El-Din Bess		
56	4 June and a fine Cale X fine Cale	16164625	No data for ACE2
57			
58			
59		المتعقم برام	lancionar brai
60	For peer review of	$\mu v = \Pi U U U / /$	'bmiopen.bmi.com/site

1	
2	1 Impact of pJung ES, Kir 21150220 No data for ACE2
3	1 In vivo acti Lee JP, Yan 21429967 No data for ACE2
4	1 Increased f Hsieh MC, 10862639 No data for ACE2
5	1 Increased f BIüthner 10200987 No data for ACE2
6	1 Increased I Siddarth M 24216264 No data for ACE2
7	1 Influence o Bantis C, H 21777344 No data for ACE2
8	1 Influence o Marco MP, 11522087 No data for ACE2
9 10	1 Influence o Provenzani 21922127 No data for ACE2
11	1 Influence o Quteineh L 19067682 No data for ACE2
12	1 Influence o Singh R, Mi 19486347 No data for ACE2
13	1 Influence o Parchwani 26214998 No data for ACE2
14	1 Influence o Nekooie-M 23649768 No data for ACE2
15	1 Influence o Merta M, R 12697976 No data for ACE2
16	1 Influence o Merta M, R 12212826 No data for ACE2
17	1 Insertion/d Osono E, Ki 9820440 No data for ACE2
18	1 Insertion/d Fedor R, As 21620105 No data for ACE2
19	1 Interaction Stratta P, B 14767013 No data for ACE2
20 21	1 Interaction Rahimi Z, H 21942443 No data for ACE2
22	1 Is increased Reljic Z, Zla 25111321 No data for ACE2
23	1 Is Klotho F3Ozdem S, Y 26022923 No data for ACE2
24	1 Is there a rusbir CS, Ak 11525534 No data for ACE2
25	1 Kinin-deperMolinaro G 17003818 No data for ACE2
26	1 Lack of ass(Arfa I, Abid 18404607 No data for ACE2
27	1 Lack of ass Wong TY, C 10352194 No data for ACE2
28	1 Lack of relaTarnow L, (7729604 No data for ACE2
29 30	1 Lack of ser(Moeller S, (24732864 No data for ACE2
31	1 Lack of syn Tarnow L, k 10907125 No data for ACE2
32	1 Lipoproteir Sechi LA, Zi 10469373 No data for ACE2
33	1 Low preval Trochen N, 15304560 No data for ACE2
34	1 Major-histc Welch TR, I 3458025 No data for ACE2
35	1 Manganese Lee SJ, Cho 16324912 No data for ACE2
36	1 Manganese Kidir V, Uz 26787049 No data for ACE2
37	1 Matrix met Marson BP, 22302011 No data for ACE2
38	1 Matrix met Cozzolino N 19221176 No data for ACE2
39 40	1 Membrano Gradden C\ 11181983 No data for ACE2
41	1 Microarray Lim SC, Liu 19415232 No data for ACE2
42	1 Microfluidi Sohni YR, B 12554058 No data for ACE2
43	1 MTHFR C67El-Baz R, Se 22554825 No data for ACE2
44	1 Multiple su Al-Kateb H, 17914031 No data for ACE2
45	1 Mutation a Zhang S, M 15775720 No data for ACE2
46	1 MYH9 and Colares VS, 24658608 No data for ACE2
47	1 MYH9 is a r Kopp JB, Sn 18794856 No data for ACE2
48 49	1 MYH9 is as Kao WH, KI 18794854 No data for ACE2
50	1 MYH9-relat Pecci A, Kle 24186861 No data for ACE2
51	1 Nephropat Orchard TJ, 12164879 No data for ACE2
52	1 Nitric oxide Passauer J, 15840038 No data for ACE2
53	1 Nitric oxide Rippin JD, F 12687343 No data for ACE2 1 No associal Schmidt S, 7485124 No data for ACE2
54	1 No associal scrimidt S, 7485124 No data for ACE2 1 Nodular glc Wang, M; Z 26973293 No data for ACE2
55	1 Non-muscli Freedman 19567477 No data for ACE2
56	I NOTHIUSCHFIEEUHIAH I 1930/4/7 NO Udld IOFACE2
57 58	
58 59	

BMJ Open

1	
2	1 NOS3 tagSI Ramanatha 24824375 No data for ACE2
3	1 Nosocomia Phipps LM, 22129760 No data for ACE2
4	1 Novel polyi Jacobson P. 21206424 No data for ACE2
5	1 Novel sequ Bahr C, Sch 16759312 No data for ACE2
6	1 Optimizatic Thervet E, I 20393454 No data for ACE2
7	1 Oxidative s Tiwari AK, I 18413200 No data for ACE2
8	1 PAI-1 4G/5 Aucella F, N 12748347 No data for ACE2
9 10	1 Paraoxona: Eren Z, Kan 22555481 No data for ACE2
11	1 Paraoxona: Agachan B, 15251338 No data for ACE2
12	1 Paraoxona: Biasioli S, S 12790379 No data for ACE2
13	1 Paraoxona: KovÃjcs TJ, 17173245 No data for ACE2
14	1 Paraoxona: Pinizzotto I 11206400 No data for ACE2
15	1 Parathyroic Gohda T, Sl 12046039 No data for ACE2
16	1 Patients wi Sekine T, K 20200500 No data for ACE2
17	1 Pharmacog Larriba J, In 20172323 No data for ACE2
18	1 Polymorph Canani LH, 11916943 No data for ACE2
19	1 Polymorph Frimat L, Pł 11053482 No data for ACE2
20	1 Polymorph Ko GJ, Kang 18771471 No data for ACE2
21	1 Polymorph Yorioka T, § 8529313 No data for ACE2
22	1 Polymorph Hanyu O, H 9509566 No data for ACE2
23	1 Polymorph Aucella F, V 10773756 No data for ACE2
24	
25	1 Polymorph Nair SS, Sar 25894154 No data for ACE2
26 27	1 Polymorph Chen Y, Hu 18079690 No data for ACE2
28	1 Polymorph Cooke JN, E 21968013 No data for ACE2
29	1 Polymorph Zhou H, Ch 26627442 No data for ACE2
30	1 Polymorph Narne P, Pc 25041504 No data for ACE2
31	1 Polymorph Nannipieri 11408388 No data for ACE2
32	1 Polymorph Cheng W, Z 21245129 No data for ACE2
33	1 Polymorph Freedman 19177153 No data for ACE2
34	1 Polymorph Araki S, Ma 11151764 No data for ACE2
35	1 Polymorph Rajković № 21620813 No data for ACE2 🥢
36	1 Polymorph Sprovieri SI 15934435 No data for ACE2
37	1 Posttransp Bariéty J, 11158216 No data for ACE2
38	1 Prevalence Shanmugar 26440392 No data for ACE2
39	1 Primary hy _l van der Ho 22844106 No data for ACE2
40	1 Prognostic Hadjadj S, F 18523145 No data for ACE2
41	1 Protein los: Wanner C, 7724034 No data for ACE2
42	1 Quantitativ Tamano M, 15069174 No data for ACE2
43	1 RAGE and (Franko B, B 26607824 No data for ACE2
44 45	1 Rare mutat Sveinbjorn: 25082825 No data for ACE2
45	1 Relation be Tang FY, Zh 21045268 No data for ACE2
40	1 Relations b Shin Shin Y, 15331206 No data for ACE2
48	1 Relationshi Crawford A 22790458 No data for ACE2
49	1 Relationshi Lim SC, Gol 16922713 No data for ACE2
50	1 Relationshi Agrawal S, 18067039 No data for ACE2
51	1 Relationshi Xue JN, Gui 26782518 No data for ACE2
52	•
53	1 Relationshi Movva S, A 17616353 No data for ACE2
54	1 Relationshi El-Shehaby 23198772 No data for ACE2
55	1 Relationshi Cusinato D. 24528196 No data for ACE2
56	1 Relationshi Santos KG, 16358232 No data for ACE2
57	
58	
59	For poor review only http://bmiepon.hmi.com/site/

1		
2 3 4 5 6 7 8 9		
3 ⊿		
4		
5		
0		
/		
0		
9 10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43 44		
44 45		
45 46		
40 47		
47 48		
40 49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

1 Relationshi Huang XH,	9544854	No data for ACE2
1 Relationshi Oh TG, Shir	8854649	No data for ACE2
1 Relationshi Marre M, B	8314010	No data for ACE2
1 Relationshi Xin HW, Xic	19048245	No data for ACE2
1 Renin-angi Lau YK, Wo	15153745	No data for ACE2
1 Renin-angi(Chen WJ, H	24907556	No data for ACE2
1 Replication Maeda S, Ir	23543049	No data for ACE2
1 Resequenc McKnight A	17319955	No data for ACE2
1 Re-Sequen Hawkins G/	26343748	No data for ACE2
1 Risk factors Oue T, Nan	10580616	No data for ACE2
1 Risk of adv. Zanchi A, N		
1 Role of alpl Conway BR		
1 Role of glyc Powrie JK,		
1 Role of the Nicod J, Fre		
1 Serum para Suehiro T, I		
1 Serum para Itahara T, S		
1 Sickle cell t Hicks PJ, La		
1 Single nucl(Alwohhaib		
1 Sirolimus p Djebli N, Rc		
1 SIRTUIN 1 § Shimoyama		
1 Structural ¿Zaehner T, 1 Suppressec Matsui M,		
1 Survival in PadrÃ ³ -Mic		
1 Synergism Testa A, Ma		
1 T(-786)>C Asakimori \		
1 Tacrolimus Li L, Li CJ, Z		
1 The A736V Pelusi S, Gi		
1 The ACE in: van Dijk M/		
1 The acetyl- Tang SC, Le		
1 The angiot Hibberd MI		
1 The angiot Lu M, Zhan		
1 The associa Geng F, Jiac		
1 The C825T Shcherbak		
1 The C825T Fogarty DG		
1 The DD ger Azar ST, Za		
1 The DD ger Vleming LJ,		
1 The effect (Nakayama		
1 The effect (Akgul SU, C	22841242	No data for ACE2
1 The emerg Nogueira E		
1 The endoth Möllsten	19246226	No data for ACE2
1 The freque Rahimi Z, F	20853144	No data for ACE2
1 The functic Zhang W, Y	25447894	No data for ACE2
1 The impact Kurzawski I	16044099	No data for ACE2
1 The influen McDonoug	19373489	No data for ACE2
1 The influen ReiterovÃi	15287194	No data for ACE2
1 The influen ReiterovÃj	16526315	No data for ACE2
1 The interac Stratta P, C	22101623	No data for ACE2
1 The manga Liu L, Zhen		
1 The N-acet Neugebaue		
1 The numbe Stern M, El		

1 Relationshi Huang XH, 9544854 No data for ACE2

1	
2	1 The prevale SÃinchez-F 19715905 No data for ACE2
3	1 The PTPN2 Sfar I, Gorg 19328948 No data for ACE2
4	1 The renin Ong-Ajyoot 10511770 No data for ACE2
5	1 The respon Hodgkinsor 12606529 No data for ACE2
б	1 The role of Dixit M, Ma 12571380 No data for ACE2
7	1 The role of De Cosmo 12147786 No data for ACE2
8	1 The serum Paragh G, S 9736814 No data for ACE2
9	1 The V16A r Möllsten 19834686 No data for ACE2
10	1 Thiopurine Aghdaie MI 21819368 No data for ACE2
11	1 Time of dru Musuamba 19855314 No data for ACE2
12	1 Toward perLampreabe 20970553 No data for ACE2
13	1 TPMT but r Kurzawski I 19229528 No data for ACE2
14 15	1 Tripterygiu Wen J, Li L, 19100464 No data for ACE2
16	
10	1 Uromodulii Köttgen A 19959715 No data for ACE2
18	1 Variants of Li GS, Zhan, 17228361 No data for ACE2
19	1 Vitamin D r Mostowska 23065277 No data for ACE2
20	1 Xbal GLUT1Stefanidis I 19822956 No data for ACE2
21	1 A knock-in Arsenault F 24121508 Non-human
22	1 An inducibl Chowdhury 23336180 Non-human
23	1 Cardiac ang Ferrario CN 26873967 Non-human
24	1 Carnosine t Peters V, Sc 21833769 Non-human
25	1 Chronic rer Stockelmar 9689017 Non-human
26	1 Control of I Shaws TB, I 4856818 Non-human
27	1 Decreased Uchio K, M 11014984 Non-human
28	1 Detection (Singh KP, R 10087325 Non-human
29	1 Effect of pr Tenenhous 7873297 Non-human
30	1 Enhanced a de Morais (2501210 Non-human
31	1 Fecal carria Alonso S, N 17661289 Non-human
32	1 First WNK4 Gandolfi B, 23285264 Non-human
33	1 From man Olabisi O, A 27509583 Non-human
34 35	1 Gain-of-fur Li N, Nakan 14695357 Non-human
35 36	1 Generation Fujimoto K, 17827337 Non-human
37	1 Increased irljuin T, Yu Y 18573875 Non-human
38	1 Kallikrein a Catanzaro (6186886 Non-human
39	
40	1 Kallikrein g Liu K, Li QZ, 19307730 Non-human
41	1 Metabolic Fujino H, Ya 12442637 Non-human
42	1 Multi-speci Hamilton N 23408978 Non-human
43	1 MyoD cont Xiong Q, Cr 20336382 Non-human
44	1 N-Domain Bueno V, P. 15194348 Non-human
45	1 Nitric oxide Migliori M, 10394113 Non-human
46	1 OverexpresLiu X, Zhao 19279555 Non-human
47	1 Purificatior Sekine M, F 7983056 Non-human
48	1 Rat Ace all Kamilic, J; F 21788250 Non-human
49	1 Re-enginee Davies B, H 26840484 Non-human
50	1 Role of ang Yang, XH; V 22580272 Non-human
51	1 Susceptibili Kleymenov 14604887 Non-human
52	1 Targeted deFrA¶hlich L 20427744 Non-human
53	1 Telomerase Sachsinger 11454711 Non-human
54 55	1 Testosteroi Smolen TN, 8437129 Non-human
55 56	1 The activat Wilson CH, 20531296 Non-human
57	·
58	
50	

1 2	
3	
4 5	
6	
7	
8 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56 57	
58	
59 60	

1 The gene II Marion E, K	12086927	Non-human	
1 The mll-AF! Dobson CL,	10393173	Non-human	
1 The Pex1-G Hiebler S, N	24503136	Non-human	
1 The T309G de Martino	25415135	Non-human	
1 Tissue-spec Hu JF, Orug	9482664	Non-human	
1 Transgenic Liu Z, Segav	21303955	Non-human	
1 Tubule-spe Zhou D, Li ነ	22622501	Non-human	
1 A common Wang H, Li	21282199	Non-human	
1 A functiona Herrera VL,	25615575	Non-human	
1 Allelic Varia Jia Z, Johns	26172442	Non-human	
1 Alternative Ren S, Ngu	15788398	Non-human	
1 An alternat Wang Y, Ne	11786430	Non-human	
1 ARHGDIA n Gee HY, Sai	23867502	Non-human	
1 Atrial natrii Nakagawa	25027872	Non-human	
1 Autosomal Ryan S, Ver	20519437	Non-human	
1 BAP1 misse Morrison A	25830670	Non-human	
1 Blocking th Stenströn	19657284	Non-human	
1 Characteriz Qiu H, Dai I			
1 Characteriz Gui J, Song			
1 CpG island Gillespie G			
1 Cystic echir Mitrea IL, I			
1 Cytotoxicit Ilinskaya O			
1 DAPIT Over Kontro H, C			
1 Dynamin-2 Hyndman K			
1 Evidence the Bittner MA			
1 Expression Zhang CJ, R			
1 Factor VIIa Sundaram.			
1 Fluorescen Liu J, Ernst			
1 Functional Tonna S, Da			
1 Generation Roy A, Goo			
1 Hepatitis C Hiasa Y, Ku			
1 Holocarbox Liu D, Zem			
1 Human GRI Wang Z, Ze			
1 Hypoxia inc Ward ME, 1			
1 α1,3-galac Park JY, Par			
1 Identificati Wang L, Ve			
1 Identificati Jung KA, Ch			
1 Implication Heilig C, Br			
1 Luteinizing Apaja PM,			
1 Maitotoxin Sinkins WG			
1 Mammaliai Zhao Y, Zha			
1 Mediation Yao H, Bricl 1 Mitochond Chandler R.			
1 Modulatior Gray SG, Ig			
1 N-terminal Bodenstein			
1 Organizatic Cabral CM,			
1 p300 intera Eid JE, Kun			
1 p38MAPK (Wong ES, L			
1 Pitchfork reKinzel D, Be			
1 Presence o Teixeira AC	2338/326	ivon-numan	

Page 73 of 133	BMJ Open
1	
2	1 Primary hy Vidgren G, 22486513 Non-human
3	1 Production Turner N, F 8006020 Non-human
4	1 PTPN2 contSpalinger N 25492475 Non-human
5	1 Recombina Velan B, Kr 1849451 Non-human
6	1 Renal angic Stoneking, 9719278 Non-human
7	1 Renal colle Hyndman k 23608660 Non-human
8 9	1 Role of the Hedlund M 8642245 Non-human
10	1 Sprouty1 is Basson MA 15691764 Non-human
11	1 Three nove Martin V, B 11956212 Non-human
12	1 TNFα Amp Thiyagaraja 26065428 Non-human
13	1 Truncated Rau H, Rea 10098508 Non-human
14 15	1 Use of the Gallagher A 12874458 Non-human 1 YME1L con Stiburek L, 22262461 Non-human
16	1 Analysis of Wolford JK, 11350189 Not a case-control study
17	1 Bardet-Bie HjortshÃ, j ⁻ 20120035 Not a case-control study
18	1 Brief Repor Zhou XJ, Na 24943867 Not a case-control study
19	1 Chromosor Leak TS, La 20144192 Not a case-control study
20	1 DNA-based Olschwang 7552140 Not a case-control study
21	1 Whole-gen Cordell HJ, 19959718 Not a case-control study
22 23	1 A family of Nagase T, N 12050233 Not a case-control study
24	1 A Novel voi Sexton A, R 26323595 Not a case-control study
25	1 Clinical assiSato N, Kat 15001591 Not a case-control study
26	1 Familial no Opocher G, 17102081 Not a case-control study
27	1 Genetic col Emery AE, 1 4976958 Not a case-control study
28	1 Genome-w Teumer A, 26631737 Not a case-control study
29 30	1 Identificati Fiskerstran 20007846 Not a case-control study
31	1 Mistyping (Ueda S, He 8863184 Not a case-control study
32	1 MYH9 genε Kopp JB, W 20807613 Not a case-control study
33	1 Novel muta Xie J, Hao X 26039629 Not a case-control study
34	1 Novel SMA Simon AJ, L 24197801 Not a case-control study
35	1 Porphyria i Schneider-` 19350426 Not a case-control study 1 Presentatic Lorenzo V, 16912707 Not a case-control study
36 37	1 RFLP-DR be Mytilineos 1975140 Not a case-control study
38	1 Superoxide Beckman G 4775457 Not a case-control study
39	
40	1 Verificatior Barlow-Ste [®] 19287242 Not a case-control study 1 A prospectiKuypers DF 21118736 Not a case-control study 1 ABCB1 (ME Tavira B, G ² 25781547 Not a case-control study
41	1 ABCB1 (ME Tavira B, Gi 25781547 Not a case-control study
42 43	1 ABCB1 poly GarcÃ-a M, 22886152 Not a case-control study
43	1 Acute kidneKirwan CJ, 22005822 Not a case-control study
45	1 An efficient Eisenberge 25646624 Not a case-control study
46	1 An unusual Gambaro G 15814540 Not a case-control study
47	1 Antiproteir Haneda M, 15364166 Not a case-control study
48	1 Captopril e Di Paolo S, 12499886 Not a case-control study
49 50	1 Role of the Yoshida H, 7593601 Not a case-control study
50 51	1 Synergistic Wakahara, 17303661 Not a case-control study
52	1 The effect (Haufroid V, 15167702 Not a case-control study
53	1 A classificat Wachsmuth 1016198 Not a renal disease focus
54	1 A functiona Wang W, P 22593040 Not a renal disease focus 1 A functiona Cao Q, Ju X 23209702 Not a renal disease focus
55	1 A method f Artemov A, 26320181 Not a renal disease focus
56 57	
57	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open	Page
	20007507 Not a renal disease focus	
•	21423093 Not a renal disease focus	
	15687325 Not a renal disease focus	
	19686770 Not a renal disease focus	
-	12845675 Not a renal disease focus	
	12874023 Not a renal disease focus	
	10749116 Not a renal disease focus 10389923 Not a renal disease focus	
•	3677303 Not a renal disease focus	
	16757530 Not a renal disease focus	
	21665507 Not a renal disease focus	
•	18554638 Not a renal disease focus	
	10987279 Not a renal disease focus	
	15662135 Not a renal disease focus	
	16288035 Not a renal disease focus	
	24225843 Not a renal disease focus	
	9758595 Not a renal disease focus	
-	15382067 Not a renal disease focus	
	9844606 Not a renal disease focus	
	19551141 Not a renal disease focus	
	10667834 Not a renal disease focus	
	9519756 Not a renal disease focus	
-	10855732 Not a renal disease focus	
	16459265 Not a renal disease focus	
	19808960 Not a renal disease focus	
	20822933 Not a renal disease focus	
Association Xiao J, Zhu	22172840 Not a renal disease focus	
L Association Hirata H, O	15319295 Not a renal disease focus	
Association Mittal RD, I	21668377 Not a renal disease focus	
L Association Mittal RD, S	21700414 Not a renal disease focus	
Association Kesarwani	18668224 Not a renal disease focus	
L Association Wang W, G	22455395 Not a renal disease focus	
L Association Hashemi M	26475383 Not a renal disease focus	
L Association Srivastava I	22374248 Not a renal disease focus	
L Association Gangwar R,	20380574 Not a renal disease focus	
L Association Srivastava I	21784671 Not a renal disease focus	
1 Association Mayer NJ, I	11836444 Not a renal disease focus	
1 Base excisi Mittal RD, I	22019847 Not a renal disease focus	
L Biallelic ina Hamano K,	11792959 Not a renal disease focus	
L Bladder car Srivastava I	20826916 Not a renal disease focus	
1 Blastemal e Natrajan R,	17145858 Not a renal disease focus	
L Breast canc Truong T, L	24919398 Not a renal disease focus	
	24061861 Not a renal disease focus	
	11410879 Not a renal disease focus	
	21171015 Not a renal disease focus	
	10383153 Not a renal disease focus	
	19412632 Not a renal disease focus	
	21164388 Not a renal disease focus	
	15492928 Not a renal disease focus	
1 Chromonh Abrahams	15569050 Not a renal disease focus	

1	
2	1 Chromosor Chung WY, 8842727 Not a renal disease focus
3	1 Circulating Deprimo SE 17605814 Not a renal disease focus
4	1 Clear cell p Shi SS, Shei 24294381 Not a renal disease focus
5	1 Clear-cell p Rohan SM, 21602815 Not a renal disease focus
6	1 Coding mul O'Keefe D, 9311733 Not a renal disease focus
7	1 Combined Pei J, Feder 20461753 Not a renal disease focus
8	1 Common g Schödel J, 22406644 Not a renal disease focus
9	1 Compreher Kondo K, Y: 11921283 Not a renal disease focus
10 11	1 Congenital Gordeuk VI 14726398 Not a renal disease focus
12	1 Constant al Pan CC, Chi 18085521 Not a renal disease focus
13	1 Constitutio Roversi G, I 26482194 Not a renal disease focus
14	1 CYP24A1 ai Jacobs ET, 1 23423976 Not a renal disease focus
15	1 CYP2E1 ger Farker K, Le 9760005 Not a renal disease focus
16	1 Cytochrom Chang I, Fu 25027399 Not a renal disease focus
17	1 Cytochrom Katoh T, In; 7697828 Not a renal disease focus
18	1 Defects in t Perkins DJ, 14966282 Not a renal disease focus
19	1 Developme Pang Y, Li V 18778725 Not a renal disease focus
20	1 Distinct patKito H, Suzi 12442000 Not a renal disease focus
21	1 DNA repair Mandal RK, 20070155 Not a renal disease focus
22 23	1 Do DNA rei Gangwar R, 19815090 Not a renal disease focus
23	1 Dominant-I Maynard N 17998805 Not a renal disease focus
25	1 Downregul Narimatsu 25315157 Not a renal disease focus
26	1 Duplication Fischer J, P 9715275 Not a renal disease focus
27	1 Effect of a Huang Z, LL 26323945 Not a renal disease focus
28	1 EGF-r gene Moch H, Sa 9664910 Not a renal disease focus
29	1 EGFR seque Franco-Her 17284372 Not a renal disease focus
30	1 Elevated cc Takashi M, 2515181 Not a renal disease focus
31	1 Endothelial Ziaei SA, Sa 23015399 Not a renal disease focus
32	1 Epigenetic Morrissey (11585766 Not a renal disease focus
33	1 ERBB4 gen Hashemi M 27609473 Not a renal disease focus
34 35	1 Expression Vuononvirt 19318497 Not a renal disease focus
35 36	1 Expression Eickelmann 8313512 Not a renal disease focus
37	1 Expression Chung BI, N 14565870 Not a renal disease focus
38	1 Familial cle Woodward 10807693 Not a renal disease focus
39	1 Familial rer Liu H, Sund 21621909 Not a renal disease focus
40	1 FHIT gene ¿Bugert P, V 9290948 Not a renal disease focus
41	1 Fluid intake Wang J, Wt 23632476 Not a renal disease focus
42	1 Fluorescen Jiang H, Bai 25119636 Not a renal disease focus
43	1 Frequent a Nagy A, Bal 12918080 Not a renal disease focus
44	1 Functional Horvath A, 19549888 Not a renal disease focus
45	1 Functional Hung MS, L 20625391 Not a renal disease focus
46 47	1 Functional Zhu J, Qin C 20572163 Not a renal disease focus
47 48	1 Gain-of-fur Hirota S, Ni 11276010 Not a renal disease focus
49	1 Gene-envir Semenza JC 11323315 Not a renal disease focus
50	1 Genetic alt Feng C, Xio 26662507 Not a renal disease focus
51	1 Genetic an Smits KM, § 18245539 Not a renal disease focus
52	1 Genetic an Williams LF 17145815 Not a renal disease focus
53	1 Genetic an Cherubini E 26081799 Not a renal disease focus
54	1 Genetic Po Adabi Z, Mc 26319608 Not a renal disease focus
55	1 Genetic pol Cao Q, Qin 21538578 Not a renal disease focus
56	
57 58	
58 59	
59	For peer review only - http://bmiopen.bmi.com/site/about/o

6 7	
8 9	
10 11	
12 13	
14 15	
16 17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45 46	
40 47 48	
49 50	
51 52	
53 54	
55 56	
57 58 59	
60	

1 Genetic po Habib SL, D	17932460	Not a renal disease focus
1 Genetic Va Zhao R, Liu	26066055	Not a renal disease focus
1 Genetic var Mandal RK,	23054000	Not a renal disease focus
1 Genetic var Nuver J, Lu	15900213	Not a renal disease focus
1 Genetic var Tan X, Wan	24157827	Not a renal disease focus
1 Genomic aı Gerlinger N	24487277	Not a renal disease focus
1 Germline B Ohar JA, Ch	26719535	Not a renal disease focus
1 Germline B de la Fouch	25080371	Not a renal disease focus
1 Germline B Popova T, H	23684012	Not a renal disease focus
1 Glutathion Sweeney C,	10794492	Not a renal disease focus
1 Glutathion Moore LE, I	17617661	Not a renal disease focus
1 Glutathion Buzio L, De	14504370	Not a renal disease focus
1 Glutathion Delbanco E	11218045	Not a renal disease focus
1 GSTM1, GS ChirilÄf DN	26158735	Not a renal disease focus
1 GSTT1, GST Salinas-SÃj	21458313	Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus
1 hOGG1 Ser Zhao H, Qir	21166493	Not a renal disease focus
		Not a renal disease focus
1 Identificati Zatyka M, c	12097293	Not a renal disease focus
1 Immunoex _l GiuffrÃ G,	17390038	Not a renal disease focus
1 Impact of C Farker K, Le	9784018	Not a renal disease focus
1 Impact of g Ahmad ST,	22054067	Not a renal disease focus
1 Impact of n Pfab T, Stir	17563539	Not a renal disease focus
1 Impact of NSrivastava I	23872201	Not a renal disease focus
1 Impact of n Gangawar I	19242824	Not a renal disease focus
1 Increased ϵ Wang WH,	8910385	Not a renal disease focus
1 Increased e Brown LF, E	8238242	Not a renal disease focus
1 Influence o Kesarwani	20804486	Not a renal disease focus
1 Influence o Brüning T	9285043	Not a renal disease focus
1 Influence o Marques I,	23645041	Not a renal disease focus
1 Influence o Gangwar R	19041121	Not a renal disease focus
1 Inhibition t Kotelevets	9603913	Not a renal disease focus
1 Inhibition c Kondo K, Kl		Not a renal disease focus
1 Inhibition c Montgome	9797175	Not a renal disease focus
1 Insertion/d de Martino	21477733	Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus
1 JAK3 in cleade Martino	21868263	Not a renal disease focus
1 KIT express Petit A, Cas	15105658	Not a renal disease focus
-		Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus
-		Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus
		Not a renal disease focus

Page 77 of 133	BMJ Open
1	
2	1 Meningior Zang KD. 11528114 Not a renal disease focus
3	1 Metanephr Mantoan P 23551615 Not a renal disease focus
4 5	1 MicroRNA I Wei H, Ke F 22517515 Not a renal disease focus 1 Microsatell Machin P, (12139636 Not a renal disease focus
6	1 Mixed epitl Pierson CR, 11381370 Not a renal disease focus
7	1 Mucinous t Shen SS, Rc 17240302 Not a renal disease focus
8	1 Mutations Barnabas N 11967908 Not a renal disease focus
9	1 Mutations Gallou C, Jc 10408776 Not a renal disease focus
10 11	1 Novel som; Yang K, Lin: 10454237 Not a renal disease focus
12	1 Occupatior Moore LE, 20663906 Not a renal disease focus
13	1 Oncocytic r Mai KT, Koł 18251779 Not a renal disease focus
14	1 Oncocytic r Xia QY, Rac 23826421 Not a renal disease focus
15	1 p53 mutati Imai Y, Stro 7824511 Not a renal disease focus
16 17	1 Patients wi Skeldon SC 22883484 Not a renal disease focus
18	1 Phase 1 tri: Puzanov I, 5 25294187 Not a renal disease focus
19	1 Phosphodi∈Faucz FR, H 20881257 Not a renal disease focus 1 Point muta Cairns P, Ev 9671402 Not a renal disease focus
20	1 Polymorph Mandal RK, 20590474 Not a renal disease focus
21	1 Polymorph Du Y, Su T, 23069849 Not a renal disease focus
22	1 Polymorph George GP, 21396853 Not a renal disease focus
23 24	1 Polymorph Mandal RK, 22382185 Not a renal disease focus
25	1 Polymorph Deckers IA, 24978482 Not a renal disease focus
26	1 Polymorph Smits KM, § 17982751 Not a renal disease focus
27	1 Polymorph Sasaki M, T 15041720 Not a renal disease focus
28	1 Prevalence van Houwe 15932632 Not a renal disease focus
29 30	1 Progestero Mai KT, Tec 18081814 Not a renal disease focus
31	1 Re-assessm Wiesenhý 17479278 Not a renal disease focus
32	1 Recurrent STorrezan G 24909261 Not a renal disease focus
33	1 Reduced e>Thompson 8971182 Not a renal disease focus
34	1 Relationshi Chen J, Che 22296350 Not a renal disease focus
35 36	1 Relevance Schraml P, 12937142 Not a renal disease focus 1 Renal cell c De Martinc 20083259 Not a renal disease focus
37	1 Renal cell c Hughson N 8959640 Not a renal disease focus
38	1 Renal cell c Lv C, Bai Z, 26191297 Not a renal disease focus
39	1 Renal cell c Karami S, B 18566013 Not a renal disease focus
40	1 Renin in blcTaylor GM, 2450464 Not a renal disease focus
41 42	1 Replicative Singh V, Jai 25218484 Not a renal disease focus
43	1 Retrospect Singh N, Sa 25913740 Not a renal disease focus
44	1 Rhabdoid t Sredni ST, 1 25494491 Not a renal disease focus
45	1 Risk factor Wang G, Hc 22000673 Not a renal disease focus
46	1 Risk of ren: Ahmad ST, 22281432 Not a renal disease focus
47 48	1 Role of MN Srivastava I 20574775 Not a renal disease focus 1 Role of the Hammerscl 17143471 Not a renal disease focus
40	1 RTK/ERK pcChen Y, Xin 24223781 Not a renal disease focus
50	1 Somatic in Prowse AH 9106522 Not a renal disease focus
51	1 Somatic mi Alimov A, L 10628321 Not a renal disease focus
52	1 Somatic mi Di Renzo M 10734314 Not a renal disease focus
53	1 Structural L Forman JR, 19408298 Not a renal disease focus
54 55	1 Subtype-sp Williams RI 20332316 Not a renal disease focus
56	1 Telomerase Dahse R, Fi 10504477 Not a renal disease focus
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	i or peer review only - mtp.//pmjopen.pmj.com/site/about/guidelines.xntml

1

2

3 4 1 TERT Prom de Biase D, 26148423 Not a renal disease focus 1 The beta-si Glaser T, Le 3014343 Not a renal disease focus 1 The E3 liga: Zhang L, Ar 17694067 Not a renal disease focus 1 The extract Blokhuis M 18049911 Not a renal disease focus 1 The Int7G2 Castillejo A 19930569 Not a renal disease focus 1 The polymcQin C, Cao 21778301 Not a renal disease focus 1 The polymcHuang CY, 121982800 Not a renal disease focus 1 The pVHL-a Clifford SC, 11526493 Not a renal disease focus 1 The relatio Peng CT, Cł 12469224 Not a renal disease focus 1 The role of Chang WS, 22993329 Not a renal disease focus 1 Trisomy 7-ł Zhuang Z, F 9731534 Not a renal disease focus 1 Tumor-spe Zhao Q, Cal 23444225 Not a renal disease focus 1 Two single Wang WC, 25217002 Not a renal disease focus 1 Uncommor Brennan P, 17517688 Not a renal disease focus 1 Variants in Qin C, Cher 25239121 Not a renal disease focus 1 VHL alterat Brauch H, V 10766184 Not a renal disease focus 1 VHL and HI Lessi F, Ma: 24446253 Not a renal disease focus 1 Vitamin D r Arjumand \ 21931993 Not a renal disease focus 1 Von Hippel Moore LE, 22022277 Not a renal disease focus 1 Whole-exo Wang L, Tsi 22156295 Not a renal disease focus 1 XRCC3 Thr2Loghin A, B 26682510 Not a renal disease focus 1 A biallelic g Nicod J, Brt 12788845 Not a renal disease focus 1 A complem Funato M, 24906628 Not a renal disease focus 1 A functiona Luo F, Wan 19635985 Not a renal disease focus 1 A functiona Svensson-F 21052022 Not a renal disease focus 1 A genome- Ferrari R, G 26154020 Not a renal disease focus 1 A homoalle Greenberg 8406453 Not a renal disease focus 1 A human p Garrone NF 19364400 Not a renal disease focus 1 A labor- an Tavira B, Gi 24830959 Not a renal disease focus 1 A low-freq: Waterwort 25164947 Not a renal disease focus 1 A naturally Fouladkou 15140763 Not a renal disease focus 1 A novel mis Kovacs P, H 15220220 Not a renal disease focus 1 A novel phe Tham E, Ek 25966638 Not a renal disease focus 1 A novel ST> Linglart A, (15800843 Not a renal disease focus 1 A pilot stuc Brophy DF, 19210273 Not a renal disease focus 1 A polymorr MohÃis M, 19834870 Not a renal disease focus 1 A study on Chmaisse F 19861867 Not a renal disease focus 1 A two-stag Kuo TY, Kar 22534794 Not a renal disease focus 1 A WNK4 ge Mendes AI, 21236712 Not a renal disease focus 1 Abnormal I Drenth JP, 15057895 Not a renal disease focus 1 Absence of Fukumoto : 8675577 Not a renal disease focus 1 ACE and PC de Azevedc 12126783 Not a renal disease focus 1 ACE gene ir Dell'omo G 16889537 Not a renal disease focus 1 ADAM33: a Holgate ST, 16257631 Not a renal disease focus 1 Admixture Bercovici S, 21385031 Not a renal disease focus 1 Adrenal hy|Horvath A, 17178847 Not a renal disease focus 1 Allelic varia RodrÃ-gue: 15681296 Not a renal disease focus 1 Allelic variaZschocke J, 16965804 Not a renal disease focus 1 Alleviating Grabczyk E 11121484 Not a renal disease focus 1 Allotypes o Davidson J/ 6399879 Not a renal disease focus

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
1 2	1 Alpha-1-pr(O'Donoghu 8296629 Not a renal disease focus
3	1 alpha-addu Clark CJ, Da 11116113 Not a renal disease focus
4	1 Alu-Alu rec Franke G, E 19280651 Not a renal disease focus
5	1 AMP-active Mishra R, C 18250161 Not a renal disease focus
6	1 An insertio Rahmutula 10770265 Not a renal disease focus
7	1 An intron 4 Yokoyama 10867538 Not a renal disease focus
8	1 Analyses of Berge KE, B 9298743 Not a renal disease focus
9	1 Analysis of Zhu J, Frosc 7641206 Not a renal disease focus
10	1 Analysis of Farook VS, 12359146 Not a renal disease focus
11	1 Analysis of Takatani R, 26479409 Not a renal disease focus
12	-
13	1 Analysis of Peros E, Ge 15754029 Not a renal disease focus
14	1 Analysis of Hamon Y, L 26607765 Not a renal disease focus
15	1 Angiotensii Nagi DK, M 8582133 Not a renal disease focus
16 17	1 Angiotensii Miller JA, S 8995725 Not a renal disease focus
18	1 Angiotensii Vask ^{A⁻} A, S 9607178 Not a renal disease focus
19	1 Angiotensii Gutiérre; 9258285 Not a renal disease focus
20	1 Angiotensii Mansoor Q 22607040 Not a renal disease focus
21	1 Angiotensii Negi VS, De 25957879 Not a renal disease focus
22	1 Angiotensiı Catarsi P, R 16002416 Not a renal disease focus
23	1 Angiotensii Pedersen-E 19820429 Not a renal disease focus
24	1 Angiotensii Singh M, Si 27030424 Not a renal disease focus
25	1 ANGIOTEN: LACHURIE, 7796503 Not a renal disease focus
26	1 Angiotensii Al-Awadhi 17631741 Not a renal disease focus
27	1 Angiotensiı Prkacin I, N 11505631 Not a renal disease focus
28	1 Are the ang Dikmen M, 16791358 Not a renal disease focus
29	1 Assessmen He F, Liu M 27793583 Not a renal disease focus
30	1 Association Lewis JP, Pa 18443202 Not a renal disease focus
31	1 Association Holstein A, 15963101 Not a renal disease focus
32	1 Association Matsubara 10688808 Not a renal disease focus
33 34	1 Association Boomsma F 15830186 Not a renal disease focus
35	1 Association Sprovieri SI 16047641 Not a renal disease focus
36	1 Association Song SB, Jir 21342026 Not a renal disease focus
37	1 Association Liu H, Zhao 18235092 Not a renal disease focus
38	1 Association Orozco G, § 15641066 Not a renal disease focus
39	1 Association Bahramali I 26861937 Not a renal disease focus
40	1 Association Akai Y, Satc 10099886 Not a renal disease focus
41	1 Association Alsafar H, F 26491214 Not a renal disease focus
42	1 Association Rabbani M. 18711292 Not a renal disease focus
43	
44	1 Association Nikzamir A, 18154415 Not a renal disease focus
45	1 Association RodrÃ-gue: 11345362 Not a renal disease focus
46	1 Association Glorioso N, 17446437 Not a renal disease focus
47	1 Association Moholisa R 23730990 Not a renal disease focus
48	1 Association Lin CH, Che 24433515 Not a renal disease focus
49	1 Association Zhou X, Wa 20406624 Not a renal disease focus
50 51	1 Association Omori S, Ta 18162508 Not a renal disease focus
52	1 Association Elmonem N 26589000 Not a renal disease focus
52	1 Association Bochud M, 16612255 Not a renal disease focus
55	1 Association Vague P, D 9165217 Not a renal disease focus
55	1 Association Kamide K, F 17143180 Not a renal disease focus
56	1 Association Ma Y, Ni W 21332417 Not a renal disease focus
57	
58	
59	
60	For peer review only - http://bmiopen.bmi.com/site/about/gu

1

2

3 4

5

6

1 Association Sucker C, H 17327284 Not a renal disease focus 1 Association Cho ML, Ch 12765304 Not a renal disease focus 1 Association Russo CJ, N 16103266 Not a renal disease focus 1 Association Meng, N; Z 25359286 Not a renal disease focus 1 Association Moez P, So 21818561 Not a renal disease focus 1 Association Conen D, G 18698212 Not a renal disease focus 1 Association Schwab M, 18209482 Not a renal disease focus 1 Association Cakir OO, Y 26945655 Not a renal disease focus 1 Association Hayakawa 17161225 Not a renal disease focus 1 Association Zhou H, Mc 23303384 Not a renal disease focus 1 Association Li X, An J, G 20540812 Not a renal disease focus 1 Association Vazgiourak 17971359 Not a renal disease focus 1 Association Busjahn A, 15107590 Not a renal disease focus 1 Association Kawasaki A 20849588 Not a renal disease focus 1 Association Kawasaki A 20617138 Not a renal disease focus 1 Autosomal Magen D, C 25560765 Not a renal disease focus 1 Autosomal Jüppner F 16831926 Not a renal disease focus 1 Azathioprir Schütz E, 8721407 Not a renal disease focus 1 Bimodal di Mason CC, 21299892 Not a renal disease focus 1 Biological n Haufroid V, 9342622 Not a renal disease focus 1 Bobby Sox Choi YA, Se 24885382 Not a renal disease focus 1 BRAF muta Choueiri Tk 22727996 Not a renal disease focus 1 Calpain-10 Buraczynsk 23021796 Not a renal disease focus 1 C-antineutr Griffith ME 8671812 Not a renal disease focus 1 Carotid inti NergizoÄŸl 10493570 Not a renal disease focus 1 CCL18: a ur Boot RG, VI 16736095 Not a renal disease focus 1 cGMP-dep(Citterio L, F 24060892 Not a renal disease focus 1 Characteriz Mark MR, (8621659 Not a renal disease focus 1 Cholesteryl Meguro S, 11369008 Not a renal disease focus 1 Class II HLA Gilchrist FC 11393660 Not a renal disease focus 1 Clinical and Lombardi C 24064758 Not a renal disease focus 1 Clinical and Gomy I, Mc 20567917 Not a renal disease focus 1 Clinical and Chacon-Cai 20447124 Not a renal disease focus 1 Clinical imp van Woerd 15253729 Not a renal disease focus 1 Clinical phe Han G, Wai 23946278 Not a renal disease focus 1 Clinical pre Erlic Z, Rybi 19825962 Not a renal disease focus 1 Common v Sakiyama N 24882840 Not a renal disease focus 1 Compleme da Rosa Uti 16164698 Not a renal disease focus 1 Compreher Monico CG 17460142 Not a renal disease focus 1 Concentrat Castegnaro 1820331 Not a renal disease focus 1 Contributic Mondorf U 9524045 Not a renal disease focus 1 Contributic Lasram K, E 24636221 Not a renal disease focus 1 Control of Wyatt RJ, F 6445926 Not a renal disease focus 1 Crystal stru Lietha D, Cl 11597998 Not a renal disease focus 1 CYP1B1 mu Campos-Mi 19234632 Not a renal disease focus 1 CYP3A5 gei Fromm MF 16141800 Not a renal disease focus 1 CYP4F2 ger Deng S, Zhi 20227456 Not a renal disease focus 1 Cystinosin (Ivanova EA 27083281 Not a renal disease focus 1 Cytochrom Yen JH, Ch€ 14611903 Not a renal disease focus 1 Deletion pc Gharavi AG 8677872 Not a renal disease focus

Page 81 of 133	BMJ Open
1	
2	1 Delineatior Horn D, Wi 24129430 Not a renal disease focus
3	1 Detection c Pirulli D, Gi 11699734 Not a renal disease focus
4	1 Detection (Matsumote 11106834 Not a renal disease focus
5	1 Developme Coutton C, 20043897 Not a renal disease focus
6	1 Differential Mulivor RA 686677 Not a renal disease focus
7	1 Differential Simon P, Sc 17982254 Not a renal disease focus
8 9	1 Distinct patLiu J, Nealo 15537666 Not a renal disease focus
9 10	1 Distribution Diamantop 10821349 Not a renal disease focus
11	1 Distributior Hussain N, 23448612 Not a renal disease focus
12	1 Distributior Zhang L, Jav 7731160 Not a renal disease focus
13	1 DNase II pc Shin HD, Pa 15723160 Not a renal disease focus
14	1 Does comp Kavanagh E 16061287 Not a renal disease focus
15	1 Early (2008 Thomas CP 24207018 Not a renal disease focus
16 17	1 Effect of sy Mangos GJ 17132537 Not a renal disease focus
18	1 Effects of a Kulah E, Du 17625392 Not a renal disease focus
19	1 Elevated ur Clausen P, 10872702 Not a renal disease focus
20	1 Endothelial Tang FY, Xir 19965945 Not a renal disease focus
21	1 Endothelial Ksiazek P, \ 14580231 Not a renal disease focus
22	1 Endothelial Tantawy A/ 25699607 Not a renal disease focus 1 Enhanced a Nakano T, (11980680 Not a renal disease focus
23	1 eNOS gene Bazzaz JT, / 20565248 Not a renal disease focus
24 25	1 Epistatic ro Voskarides 23516419 Not a renal disease focus
25	1 Evaluation Rumsby G, 15327387 Not a renal disease focus
27	1 Evidence of Tsukada T, 9535806 Not a renal disease focus
28	1 Examinatio Friend LR, 1 8800585 Not a renal disease focus
29	1 Exome seq Kiando SR, 26147384 Not a renal disease focus
30	1 Exome-wid Cutcutache 25597018 Not a renal disease focus
31	1 Exploring g Castro-SÃjr 26082521 Not a renal disease focus
32 33	1 Financial in Bilgel F, Ga 26218985 Not a renal disease focus
34	1 Frequencie Zee RY, Ber 7882587 Not a renal disease focus
35	1 Functional Permana P. 10873397 Not a renal disease focus
36	1 Functional Hoogendoc 15221787 Not a renal disease focus
37	1 Functional Montes T, 19255449 Not a renal disease focus
38	1 Functional Stec DE, Ro 17341693 Not a renal disease focus
39	1 Functional Coto E, Tav 20617557 Not a renal disease focus
40 41	1 Functional Lumb MJ, E 10960483 Not a renal disease focus
42	1 Further stu Danpure CJ 3416563 Not a renal disease focus
43	1 G protein b Thibaudin I 15200440 Not a renal disease focus
44	1 GBPI, a nov Liu QR, Zha 12974676 Not a renal disease focus
45	1 Gender diff Hokimoto § 25264752 Not a renal disease focus
46	1 Gene struc FernÃjndez 10373324 Not a renal disease focus
47	1 Gene-gene Zhou XJ, Lu 21905002 Not a renal disease focus
48 49	1 Genetic an: Agúndez J 8946479 Not a renal disease focus 1 Genetic ch: Ruiz-Lloren 14722919 Not a renal disease focus
50	1 Genetic dia Morey M, (21902834 Not a renal disease focus
51	1 Genetic dia Worky M, V 21902834 Not a renal disease focus
52	1 Genetic dis Westra D, V 2010822 Not a renal disease focus 1 Genetic po Hovnik T, D 19752172 Not a renal disease focus
53	1 Genetic po A–ktem F, / 24841661 Not a renal disease focus
54	1 Genetic po Olivieri 0, 1 10567188 Not a renal disease focus
55	1 Genetic pre Tousoulis E 23479071 Not a renal disease focus
56 57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2

3 4

5

1 Genetic risl Missouris C 8821841 Not a renal disease focus 1 Genetic risl van Onna N 15326089 Not a renal disease focus 1 Genetic var Jiang DK, N 25802187 Not a renal disease focus 1 Genetic var Szperl M, D 19043368 Not a renal disease focus 1 Genetic var Sanghera D 17900266 Not a renal disease focus 1 Genetic var Bespalova | 22322903 Not a renal disease focus 1 Genetic var Jin HS, Hon 20090362 Not a renal disease focus 1 Genetics, c Ghiggeri GI 12500226 Not a renal disease focus 1 Genome-w Matsuo H, 25646370 Not a renal disease focus 1 Genotype a Tavilani H, 25264968 Not a renal disease focus 1 Genotype-¡ Vikkath N, ' 25952756 Not a renal disease focus 1 Genotype-I WittstrĶn 24555745 Not a renal disease focus 1 Genotyping Warpeha K 10506586 Not a renal disease focus 1 Germline n Angrist M, 8896568 Not a renal disease focus 1 Germline n Salomon R, 8896569 Not a renal disease focus 1 Germline V Stanojevic | 17688370 Not a renal disease focus 1 Glutathion Mohamme 26773925 Not a renal disease focus 1 Glutathion Yang Y, Kac 15492856 Not a renal disease focus 1 Glutathion Delles C, Pa 18551009 Not a renal disease focus 1 G-protein L Beige J, Rin 10978395 Not a renal disease focus 1 G-Protein & Beige J, Hol 10205246 Not a renal disease focus 1 G-protein LZagradisnik 15337465 Not a renal disease focus 1 G-protein r Muskalla A 25301854 Not a renal disease focus 1 GSTM1, GS Mittal RD, I 19407363 Not a renal disease focus 1 Haplotypes Pullmann R 18240231 Not a renal disease focus 1 Hepatocyst Overton JD 26671672 Not a renal disease focus 1 High aldost Escher G, C 19151144 Not a renal disease focus 1 Higher freq Barris-Olive 22796398 Not a renal disease focus 1 Higher thrc Bavbek N, (24580410 Not a renal disease focus 1 Homozygoi Moulson Cl 16297189 Not a renal disease focus 1 Human G(s Makita N, S 17962410 Not a renal disease focus 1 Human GFI Angrist M, 9545641 Not a renal disease focus 1 Hyperchole Gragnoli C. 21554682 Not a renal disease focus 1 Identificati Kokubo Y, I 15309683 Not a renal disease focus 1 Identificati Stoetzel C, 17160889 Not a renal disease focus 1 Identificati Mornet E, 1 9781036 Not a renal disease focus 1 Identificati Tyynismaa 10737991 Not a renal disease focus 1 Identificati Schmitz B, 25210049 Not a renal disease focus 1 Identificati Purdue PE, 1703535 Not a renal disease focus 1 Identificati Yik WY, Ste 19105186 Not a renal disease focus 1 Identificati Stopkova P 15121481 Not a renal disease focus 1 Identificati Kunishima 11776386 Not a renal disease focus 1 IFT27, encc Aldahmesh 24488770 Not a renal disease focus 1 Immunolog Wise PJ, Da 2443389 Not a renal disease focus 1 Impact of c Miki I, Aoya 12544691 Not a renal disease focus 1 Impact of g Kamei H, N 23153768 Not a renal disease focus 1 Impact of t Ristau T, Pa 24675670 Not a renal disease focus 1 In vitro trar Prazeres H, 21551259 Not a renal disease focus 1 Increased a Suehiro T, I 15164285 Not a renal disease focus 1 Increased [Morrison C 11381371 Not a renal disease focus

60

1	
2	1 Increased εYamani MF 17097490 Not a renal disease focus
3	1 Increased f Galbusera I 10397728 Not a renal disease focus
4	1 Increased f Onizuka M, 16044138 Not a renal disease focus
5	1 Increased r Abdgawad 16792675 Not a renal disease focus
6	1 Independe Morris BJ, 2 8104754 Not a renal disease focus
7	1 Inducible n Martin J, Pr 15940772 Not a renal disease focus
8 9	1 Influence o Yanagimacl 20030680 Not a renal disease focus
9 10	1 INPPL1 is a: Hyvönen 22486725 Not a renal disease focus
11	1 Insight into Habib SL. 19265534 Not a renal disease focus
12	1 Integrated Sobek AK, E 23010210 Not a renal disease focus
13	1 Interaction Wang W, S⊢23190752 Not a renal disease focus
14	1 Intron 4 po Lee YH, Kim 15119548 Not a renal disease focus
15	1 IRAK1b, a n Jensen LE, 11397809 Not a renal disease focus
16	1 Is factor V I Krieg S, Stu 16411392 Not a renal disease focus
17	1 Is polymor; Gluba A, Ba 19505886 Not a renal disease focus
18 19	1 Isolation ar Lévesque 9295060 Not a renal disease focus
20	1 Klotho gen Xu C, Song 23756195 Not a renal disease focus
21	1 Lack of ass Dell'Omo G 17563560 Not a renal disease focus
22	1 Lack of ass: Orozco G, M 18078626 Not a renal disease focus
23	1 Lack of ass Tangri N, A 21565945 Not a renal disease focus
24	1 Lack of gen Wang J, Liu 26307914 Not a renal disease focus
25	1 Late-onset Mehler M, 9923 Not a renal disease focus
26	1 Leukocyte Raghavan S 6770675 Not a renal disease focus
27	1 Lipoproteir Laschkolnig 24760552 Not a renal disease focus
28	1 Loss of fun Stiburek L, 19295170 Not a renal disease focus
29	1 LRRK2 G23 Gopalai AA 25243190 Not a renal disease focus
30 31	1 Lys(173)Ar _{ Komiya I, Y 10720581 Not a renal disease focus
31	1 Manganese Tugcu V, O: 17628794 Not a renal disease focus
33	1 Manganese Mohamme 24819633 Not a renal disease focus
34	1 Matrix met Bahrehmar 25416694 Not a renal disease focus
35	1 Matrix met Buraczynsk 26025700 Not a renal disease focus
36	1 Mechanism Shimamotc 2676859 Not a renal disease focus
37	1 Missense n Moon YW, 11007037 Not a renal disease focus
38	1 MKS1 regul Slaats GG, I 26490104 Not a renal disease focus
39	1 Molecular ; Udager AM 25602792 Not a renal disease focus 🧹
40 41	1 Molecular I Lovati E, Fe 10523024 Not a renal disease focus
41	1 Molecular l Bertelli M, 15505382 Not a renal disease focus
43	1 Molecular (Hou XH, So 26413058 Not a renal disease focus
44	1 Molecular (Wolford JK, 10607908 Not a renal disease focus
45	1 Molecular (Gürntke § 25224765 Not a renal disease focus
46	1 Multiorgan Notari S, M 20098730 Not a renal disease focus
47	1 Mutation a Assink K, Sc 12753286 Not a renal disease focus
48	1 Mutation s Wang SH, V 22447252 Not a renal disease focus
49	1 Mutational Kinoshita Y 22577109 Not a renal disease focus
50	1 Mutations Li A, Davila 12529853 Not a renal disease focus
51	1 Mutations Siemiatkow 24084495 Not a renal disease focus
52	1 Mutations Calado RT, 17478638 Not a renal disease focus
53 54	1 Mutations Tucker EJ, V 24385928 Not a renal disease focus
54 55	1 MYH9-relatSeri M, Pec 12792306 Not a renal disease focus
56	1 N-acetyltra Juhanson P 18402670 Not a renal disease focus
57	
58	
59	
60	For peer review only - http://bmiopen.bmi.com/site/about/c

1

2

3 4 1 Natural his Deegan PB, 16227523 Not a renal disease focus 1 New insigh Hooker E, E 22982678 Not a renal disease focus 1 NFkappaB (Romzova N 17002901 Not a renal disease focus 1 N-glycosyla Riedl E, Koe 20460427 Not a renal disease focus 1 No associat Wolf G, Par 12147803 Not a renal disease focus 1 No associat Yildiz A, Ak 10657713 Not a renal disease focus 1 No associat Klauke B, V 18582803 Not a renal disease focus 1 No associatLieb W, Bol 16822233 Not a renal disease focus 1 Nosocomia Naseer U, 17295678 Not a renal disease focus 1 Novel miss Zhang C, Zr 22934535 Not a renal disease focus 1 Novel muta Smith SJ, RI 10320521 Not a renal disease focus 1 Novel muta Yuan ZF, W 26253413 Not a renal disease focus 1 Novel NEKE Grampa V, 26967905 Not a renal disease focus 1 Origin of ra Baxter GD, 2558964 Not a renal disease focus 1 Overexpres Coulter-Ma 15802217 Not a renal disease focus 1 Oxidative s CalÃ² LA, Pi 12897089 Not a renal disease focus 1 Paraoxona: Zhang B, Et 14579940 Not a renal disease focus 1 Paraoxona: Bhatnagar ' 22854640 Not a renal disease focus 1 Paraoxona: Murata M, 15270786 Not a renal disease focus 1 Paraverteb Lee SH, Aga 22261628 Not a renal disease focus 1 Peripheral Thomas GN 14632699 Not a renal disease focus 1 Persistence Dudding B/ 5682941 Not a renal disease focus 1 Pharmacol Miyata N, § 25237136 Not a renal disease focus 1 Phenotypic Travaglini L 23386033 Not a renal disease focus 1 Phosphoryl Dennis PB, 9614086 Not a renal disease focus 1 Polymorph Houldswor 25858271 Not a renal disease focus 1 Polymorph Wolford JK, 11513557 Not a renal disease focus 1 Polymorph Ikeda Y, Su 15384959 Not a renal disease focus 1 Position of Pecci A, Pai 18059020 Not a renal disease focus 1 PPP2R2B C Chen CM, F 18484086 Not a renal disease focus 1 Predicting Whitfield N 17084425 Not a renal disease focus 1 Pre-treatm Ahmed WH 23538996 Not a renal disease focus 1 Prevalence Nazareth N 25994082 Not a renal disease focus 1 Proinflamn Borgmann: 12722027 Not a renal disease focus 1 Proteasom Gragnoli C. 22934761 Not a renal disease focus 1 Protein exp Lim SD, Kim 17685929 Not a renal disease focus 1 Proteinase Gencik M, I 11115080 Not a renal disease focus 1 PYGM expr de Luna N, 25240406 Not a renal disease focus 1 Q222R polyPanneer D, 23963431 Not a renal disease focus 1 Random m Nickerson I 11241843 Not a renal disease focus 1 Reduced e> Carter A, B; 2890163 Not a renal disease focus 1 Regulatory Oczos J, Gri 22956172 Not a renal disease focus 1 Relationshi Fu Y, Katsu 15894833 Not a renal disease focus 1 Relationshi Heltianu C, 15784171 Not a renal disease focus 1 Relationshi Tripi LM, M 16729301 Not a renal disease focus 1 Renal ACE i Mizuiri S, Y 9469501 Not a renal disease focus 1 Renal chan Marre M, E 10082486 Not a renal disease focus 1 Renal onco Hes O, Mic 18196270 Not a renal disease focus 1 Renal outco Molad Y, G 11071585 Not a renal disease focus 1 Renin-angi Parsa A, Lo[®] 15789057 Not a renal disease focus

60

1	
2	1 Renin-angi BuraczyÅ,,s 14502296 Not a renal disease focus
3	1 Renovascul Pizzolo F, N 14718831 Not a renal disease focus
4	1 Resequenc Coto E, Reg 22765922 Not a renal disease focus
5	1 Role of P45 BrÃ, sen K, 2060250 Not a renal disease focus
6	1 Role of PTP LÃ ³ pez-Mej 26458874 Not a renal disease focus
7	1 S-adenosyl Feld JJ, Mo 20854821 Not a renal disease focus
8	1 Selected A(Benhaj Mb; 21612638 Not a renal disease focus
9	1 Serum aryleInoue M, St 11092501 Not a renal disease focus
10	1 Serum extr Kimura F, ⊢ 12663605 Not a renal disease focus
11 12	1 Serum para Ikeda Y, Sue 9591753 Not a renal disease focus
12	1 Serum para Atar A, Gec 26795139 Not a renal disease focus
14	1 Single nucl Basson JJ, c 25063733 Not a renal disease focus
15	1 Single-nucl Nishijima T 25151207 Not a renal disease focus
16	1 SIRT1 gene Weyrich P, 19014491 Not a renal disease focus
17	1 Slight assoc Capoluong: 16806146 Not a renal disease focus
18	1 SNP Varian Coulter-Ma 25854853 Not a renal disease focus
19	1 Soluble FLT Jin J, Sison 23063127 Not a renal disease focus
20	1 Somatic mi Weber A, H 22573489 Not a renal disease focus
21	1 Spectrum c Guggilla SR 25982861 Not a renal disease focus
22	1 Spondyloer Briggs TA, F 26951490 Not a renal disease focus
23	
24	1 Structural (Hall AV, An 7528745 Not a renal disease focus
25	1 Structure o Hocking HC 18252712 Not a renal disease focus
26 27	1 Studies of Rousseaux 6215190 Not a renal disease focus
28	1 Synergistic Barlassina (10720960 Not a renal disease focus
29	1 System-WirZhang W, V 26949039 Not a renal disease focus
30	1 T-cell recer Niven MJ, (1969400 Not a renal disease focus
31	1 Testing of Schoenfeld 24667567 Not a renal disease focus
32	1 The action Smith NJ, S 19398560 Not a renal disease focus
33	1 The associa Cikomola J 27461879 Not a renal disease focus
34	1 The associa Atay AE, Ak 24403014 Not a renal disease focus
35	1 The associa Safarinejad 20505681 Not a renal disease focus
36	1 The calcine Di Sole F, B 19556366 Not a renal disease focus
37	1 The Captor Hansson L, 9495662 Not a renal disease focus
38	1 The consen Mesa-Torre 24957194 Not a renal disease focus
39	1 The effect (Ward NC, C 24984178 Not a renal disease focus
40	1 The epiden Price LB, Jo 24345742 Not a renal disease focus
41 42	1 The gene e Cramer SD, 10484776 Not a renal disease focus
42	1 The inhibit Wan KF, Sa 12624098 Not a renal disease focus
44	1 The Leu262 Hatunic M, 19185381 Not a renal disease focus
45	1 The major Coulter-Ma 15963748 Not a renal disease focus
46	1 The non-m Freedman 20523037 Not a renal disease focus
47	1 The presen Güngör 21332339 Not a renal disease focus
48	1 The Prevale Dreisbach / 16202848 Not a renal disease focus
49	1 The PTPN2 Jagiello P, / 16320352 Not a renal disease focus
50	1 The R620W Reddy MV, 16052172 Not a renal disease focus
51	1 The rapid e Nguyen TV 14665637 Not a renal disease focus
52	1 The role of Safarinejad 20586099 Not a renal disease focus
53	1 The role of Åžener EF, 24936541 Not a renal disease focus
54	1 The role of Lee HT, Lin 25671815 Not a renal disease focus
55 56	1 The role of Gluba A, Pi 19939821 Not a renal disease focus
50 57	,
58	
59	
60	For peer review only - http://bmiopen.bmi.com/site/about/g

1

2

3 4

5

6

1 The role of Xu F, Morir 15139850 Not a renal disease focus 1 The role of Celi FS, Cor 18349068 Not a renal disease focus 1 The sirtuin Kanda T, Sa 26388050 Not a renal disease focus 1 The VHL sh Liu Y, Yang 27196060 Not a renal disease focus 1 Three nove Kamide K, 1 15110905 Not a renal disease focus 1 Three nove Fukushima 24088670 Not a renal disease focus 1 Three nove Jap TS, Chiu 21293852 Not a renal disease focus 1 Thrombin a Donmez A, 15668188 Not a renal disease focus 1 Thrombotic Girolami A, 21842307 Not a renal disease focus 1 TMPRSS6 r: Pei SN, Ma 24782651 Not a renal disease focus 1 TNFAIP3 ge Kim SK, Chc 24489017 Not a renal disease focus 1 Trisomy 4 Beghini A, I 10812167 Not a renal disease focus 1 Tropical cal Derikx MH, 19404200 Not a renal disease focus 1 Ubiquitin li Shen Y, Bal 16979136 Not a renal disease focus 1 Use of a Hij Chang DC, | 26606528 Not a renal disease focus 1 Variable nu Aoi N, Som 15785005 Not a renal disease focus 1 Variant scri Prochazka | 12490143 Not a renal disease focus 1 Variants in Wang Y, W 26448018 Not a renal disease focus 1 Vascular er Chen WC, (12719950 Not a renal disease focus 1 Vascular er MaÅ, kiewic 27367286 Not a renal disease focus 1 VEGF-A and Amosco MI 27668980 Not a renal disease focus 1 VHL c.505 Bender BU, 11483638 Not a renal disease focus 1 VHL P25L is Pettman RI 16884327 Not a renal disease focus 1 von Hippel-Hoffman M 11331612 Not a renal disease focus 1 When shou Erlic Z, Neu 19067729 Not a renal disease focus 1 Whole Exol Ma SL, Veg 26107949 Not a renal disease focus 1 [A search f(Voron'ko O 16080611 Not English or Spanish 1 [A study on Nishina M. 9014479 Not English or Spanish 1 [Acquired r Liu Z, Gong 12126523 Not English or Spanish 1 [Activation Braga EA, L 17086988 Not English or Spanish 1 [Angiotens Krajina-Anc 23120809 Not English or Spanish 1 [Angiotensi Guan T, Liu 10436947 Not English or Spanish 1 [Arterial hy Oko A, Åoc 14974362 Not English or Spanish 1 [Associatio Fu LL, Lin Y, 22487833 Not English or Spanish 1 [Associatio Wang L, Pa 10923445 Not English or Spanish 1 [Associatio Qiu MY, Xie 25815490 Not English or Spanish 1 [Associatio Miloserdov 11234416 Not English or Spanish 1 [Associatio Zhang NN, 23225056 Not English or Spanish 1 [Associatio Sun XJ, Liu: 17407071 Not English or Spanish 1 [Associatio Lu LH, Cher 18393230 Not English or Spanish 1 [Associatio Sun JY, Wai 24059111 Not English or Spanish 1 [Associatio Lin S, Qu H, 12421496 Not English or Spanish 1 [Associatio Kamysheva 15532370 Not English or Spanish 1 [Associatio BuraczyÅ, s 12476891 Not English or Spanish 1 [Associativ: Chistiakov | 12469627 Not English or Spanish 1 [Children w Qin M, Gor 25619354 Not English or Spanish 1 [Correlatio: Sun ZJ, Wai 12905707 Not English or Spanish 1 [Correlatio Ren YY, Du 16480581 Not English or Spanish 1 [Correlativ∈Wu XX, Zh∈ 15698501 Not English or Spanish 1 [Distributio Dong JJ, Zh 18476541 Not English or Spanish

Page 87 of 133	BMJ Open
1	
2	1 [DNA repai Akhmadish 25715450 Not English or Spanish
3	1 [Effect of ti Lin YF, Ma 19094710 Not English or Spanish
4	1 [Expression Wang X, W 27430690 Not English or Spanish
5 6	1 [Factors re: Fu SJ, Wani 19114346 Not English or Spanish
7	1 [Gene mut: Song Y, Ma 24229582 Not English or Spanish
8	1 [Gene poly Shao M, Ye 23981990 Not English or Spanish 1 [Genetic pr Bzoma B, D 19112833 Not English or Spanish
9	1 [GENETIC RApolihin OI 26665756 Not English or Spanish
10	1 [I/D relatio Kaliev RR, E 16078593 Not English or Spanish
11 12	1 [Inactivatio MikhaÄ-ler 18389622 Not English or Spanish
13	1 [Increased Gozzoli V, F 11075242 Not English or Spanish
14	1 [Is Pstl poly Grzeszczak 9499204 Not English or Spanish
15	1 [Lipid pero: Eiselt J, Rac 7762187 Not English or Spanish
16	1 [Mutationa Zhao F, Yu 25224051 Not English or Spanish
17	1 [Polymorpł ZieliÅ"ska E 12868187 Not English or Spanish
18 19	1 [Polymorpł Xu JS, Bai Y 27346408 Not English or Spanish
20	1 [Polymorph Kutyrina IN 10420452 Not English or Spanish
21	1 [Relationsh Wu S, Xiang 9596955 Not English or Spanish
22	1 [Relationsh Moleda P, I 17941464 Not English or Spanish 1 [Relationsh Liao L, Lei N 12016801 Not English or Spanish
23	1 [Renal effe Alinovi R, B 12197269 Not English or Spanish
24 25	1 [Renin-ang BuraczyÅ, s 11865575 Not English or Spanish
26	1 [Screening Yu H, Yao L 16027793 Not English or Spanish
27	1 [Search for Zotova EV, 15125229 Not English or Spanish
28	1 [Study on c Lu J, Li LM, 12848919 Not English or Spanish
29	1 [The associ Li C, Dong \ 11930675 Not English or Spanish
30	1 [The functi Rakhov DA, 1475876 Not English or Spanish
31 32	1 [Uric acid s Simmonds 118367 Not English or Spanish
33	1 A common Zhang Z, Qı 18820179 Paediatric individuals
34	1 A molecula Al-Hamed I 23595123 Paediatric individuals
35	1 A polymorr Imai Y, Oda 7586149 Paediatric individuals
36	1 ACE and ATKostić M, 15179569 Paediatric individuals
37 38	1 ACE gene ir Sekerli E, K. 19603195 Paediatric individuals 1 ACE gene ir Serdaroglu 16208534 Paediatric individuals
39	1 ACE gene p Tanaka R, li 9590186 Paediatric individuals
40	1 ACE gene p Sasongko T 16421456 Paediatric individuals
41	1 ACE gene p Fahmy ME, 18792483 Paediatric individuals
42	1 ACE gene p Celik US, Nr 16825089 Paediatric individuals
43	1 ADAMTS13 Choi HS, Ch 21488199 Paediatric individuals
44 45	1 Age and CY Gijsen V, M 21930396 Paediatric individuals
46	1 Angiotensii Al-Eisa A, H 11487079 Paediatric individuals
47	1 Angiotensii Bajpai M, P 14713838 Paediatric individuals
48	1 Angiotensiı Patil SJ, Gu 16272677 Paediatric individuals
49	1 Angiotensii Pavlovic M, 9354852 Paediatric individuals
50 51	1 Angiotensii Rigoli L, Chi 15470205 Paediatric individuals
52	1 Angiotensii al-Eisa A, H 10986863 Paediatric individuals
53	1 Angiotensii Zhou J, Tiar 15315169 Paediatric individuals
54	1 Angiotensii Tsai IJ, Yanį 16645262 Paediatric individuals 1 Angiotensii Batinić D, 25997642 Paediatric individuals
55	1 Association Dhandapar 26154535 Paediatric individuals
56 57	
57	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

1 Association Dursun H, I 23570878 Paediatric individuals 1 Association Shahid S, A 22033511 Paediatric individuals 1 Association Xu ED, Xiao 27323137 Paediatric individuals 1 Association Åšladowska 26227630 Paediatric individuals 1 Bardet-Bie(Benzinou N 17003356 Paediatric individuals 1 BRAF muta Chami R, Yi 26014474 Paediatric individuals 1 Clinical util SantÃ-n S, | 21415313 Paediatric individuals 1 Coagulation Fadel FI, El: 26829282 Paediatric individuals 1 Componen Åšwierzko / 26850322 Paediatric individuals 1 Conversion Lapeyrague 24435759 Paediatric individuals 1 Differentia Vockley J, № 6437214 Paediatric individuals 1 Disruption Ozaltin F, It 21722858 Paediatric individuals 1 Distributior Kurachi Y, (11547947 Paediatric individuals 1 Effect of an Saber-Ayad 20418353 Paediatric individuals 1 EIF2AK3 mi Jahnavi S, F 24168455 Paediatric individuals 1 Endothelial Dursun H, I 16941147 Paediatric individuals 1 Evaluation Graham C, 16397046 Paediatric individuals 1 G protein b Hocher B, F 12000471 Paediatric individuals 1 Gene polyn Kaplan İ, 125262176 Paediatric individuals 1 Genetic po Frishberg Y 11096050 Paediatric individuals 1 Genetic po Chiou YH, V 22610055 Paediatric individuals 1 Genetic po Frishberg Y 9853248 Paediatric individuals 1 HbA1c leve DeÃik B, Dr 12682823 Paediatric individuals 1 HLA extenc Lagueruela 1974661 Paediatric individuals 1 HLA-DQA1 Gbadegesir 25349203 Paediatric individuals 1 Impact of c Hussein A, 25939993 Paediatric individuals 1 Inflammasc Pontillo A, | 26182076 Paediatric individuals 1 Inherited n Lynch ED, (9399897 Paediatric individuals 1 Is paraoxor Bilge I, Sirir 16175651 Paediatric individuals 1 Late effect: BÃirdi E, OI 15390293 Paediatric individuals 1 Linkage and Hahn WH, 1 20372823 Paediatric individuals 1 Modificatic Rangel M, (25170764 Paediatric individuals 1 Molecular (Van Norstr; 17967976 Paediatric individuals 1 Mutations Tory K, Rou 19177160 Paediatric individuals 1 Nitric oxide Alasehirli B 19371282 Paediatric individuals 1 Nitric oxide Balat A, Ala 17365914 Paediatric individuals 1 Novel carb(Sapio MR, \ 25875328 Paediatric individuals 1 Paraoxnase Al-Eisa AA, 26780374 Paediatric individuals 1 Paraoxona: Bivikli NK, / 16565923 Paediatric individuals 1 Phosphodi Hahn WH, 20563733 Paediatric individuals 1 Platelet-ac1Xu H, lijima 10873870 Paediatric individuals 1 Platelet-actXu H, lijima 9853251 Paediatric individuals 1 Polymorph Hahn WH, 1 21047277 Paediatric individuals 1 Polymorph Maruyama 11354780 Paediatric individuals 1 Polymorph Ece A, Teke 16109085 Paediatric individuals 1 Polymorph Savvidou A 20022049 Paediatric individuals 1 PON1 Q192 Vasconcelo 24972570 Paediatric individuals 1 Prostanoid Nüsing RI 9262230 Paediatric individuals 1 Renin-angi Papp F, Frie 12579405 Paediatric individuals 1 Report of a Uhrhamme 18629513 Paediatric individuals

1 2	1 Endothelial Tantawy A/ 25263931 Paediatric individuals
3	1 Major histc McEnery P [*] 2702084 Paediatric individuals
4	1 ACE I/D ger Hohenfelln 10452281 Paediatric individuals
5	1 Impact of A Hohenfelln 11354781 Paediatric individuals
6	1 Role of platTanaka R, 10430976 Paediatric individuals
7	1 ACE gene p Haszon I, Fi 12478352 Paediatric individuals
8	1 Renin-angi Pardo R, M 12579398 Paediatric individuals
9	1 ACE I/D ger Oktem F, Si 14986085 Paediatric individuals
10	1 ls ACE gen∉ErdoÄŸan F 15138870 Paediatric individuals
11	-
12	1 Renin-angicLiu KP, Lin (15045574 Paediatric individuals
13	1 Roles of pa BarÃith A, 16912512 Paediatric individuals
14	1 Implication Hahn H, Ku 16133060 Paediatric individuals
15	1 Changes in Kaukinen A 20020158 Paediatric individuals
16 17	1 Renal mani Han KH, Lei 21210153 Paediatric individuals
17	1 C1GALT1 p He X, Zhao 22544166 Paediatric individuals
19	1 Cost-effect Krall P, Pine 24162162 Paediatric individuals
20	1 MMP-1 and Djuric T, Ziv 24414606 Paediatric individuals
21	1 Muscle inv Park E, Cho 24912603 Paediatric individuals
22	1 Coinheritar Lennon R, § 25739341 Paediatric individuals
23	1 Deficient ft Kvittingen I 6622096 Paediatric individuals
24	1 Significance Hori C, Hira 11474225 Paediatric individuals
25	1 Induction c Ma J, Mats 21451433 Paediatric individuals
26	1 Sudden infrRomÃin R, 18075835 Paediatric individuals
27	1 The polymcSimoÅ,,ska- 18615395 Paediatric individuals
28	1 Thiopurine Dervieux T, 10594482 Paediatric individuals
29	1 Activation (Karlsson J, 25481751 Paediatric individuals
30	1 Activation (Fischer DC, 19176689 Paediatric individuals
31	1 Association Laksmi NK, 20149750 Paediatric individuals
32 33	1 Clinicopath Huo Z, Lu T 27760550 Paediatric individuals
34	1 DD genoty: Alasehirli B 22017506 Paediatric individuals
35	1 Effect of pa Yilmaz A, E 19967651 Paediatric individuals
36	1 Endothelial Elshamaa N 21519233 Paediatric individuals
37	1 Endothelial Rusai K, Va 18334945Paediatric individuals 🧪
38	1 ETV6-NTRK Knezevich § 9823307 Paediatric individuals
39	1 Expression: Tsuruga K, 26058859 Paediatric individuals
40	1 Founder m Elia A, Vosk 20805693 Paediatric individuals
41	1 Genes in th van Eerde / 22558067 Paediatric individuals
42	1 Genetic an Khan AO, A 24997176 Paediatric individuals
43	1 Genetic he Shimozawa 12794690 Paediatric individuals
44	1 Genetic po Sata F, Kura 20059664 Paediatric individuals
45	1 Genomic re Vervoort V: 12404110 Paediatric individuals
46 47	1 Glutathion Elhasid R, K 20348973 Paediatric individuals
47 48	1 Glycosphin Dawson G. 5016302 Paediatric individuals
49	1 Heterogen Wildin RS, 7 7913579 Paediatric individuals
50	
51	1 HLA class II Djilali-Saiał 17050030 Paediatric individuals
52	1 HPSE2 mut Bulum B, ÷ 25924634 Paediatric individuals
53	1 Hypophosp Rutsch F, B. 20016754 Paediatric individuals
54	1 Implication Ozen S, Alil 10401028 Paediatric individuals
55	1 Lethal cysti Simpson M 19303681 Paediatric individuals
56	1 Loss of nep Bergmann 18371931 Paediatric individuals
57	
58	
59	For peer review only - http://bmiopen.bmi.com/site/abo
60	TOF DEEL TEVIEW ONLY - HTTD://DITIODEN.DITI.COM/SILE/3DO

	BMJ Open	Page
1 Low renin-{Peruzzi L, L 16006956	5 Paediatric individuals	
1 Molecular (Elhayek D, 24252324	1 Paediatric individuals	
1 Mutation s Winberg J, 24416387	7 Paediatric individuals	
1 Mutational Boyer O, Be 20591883	3 Paediatric individuals	
1 Mutations Frank V, Ha 23418306	5 Paediatric individuals	
1 Novel ATPE Stover EH, 12414817	7 Paediatric individuals	
1 Polymorph Amoroso A 9870486	5 Paediatric individuals	
1 Renin-angi Ozkaya O, § 16521052	2 Paediatric individuals	
1 RET and GE Jeanpierre 21490379		
1 Role of trui Debiec H, № 15464186		
1 Streptokina Tewodros \ 7783598		
1 The associa Rotman Y, 20684021		
1 Variability i Ferroni MA 8880047		
1 CYP2C9 ger Joy MS, Do 19669737	-	
1 Enalapril ar Rashtchiza(17222813	-	
1 Exaggerate Simonsen J 21749320	-	
1 Long-term Andersen S 12716812	-	
1 Renin-angi Norooziana 17524880	-	
1 Venous res Mitchell A, 14586390		
1 Association Xin HW, Liu 24691060		
1 Association Liu X, Li J, F 25587129	_	
1 Comparing Cai J, Huan 22149319		
1 Compariso Niioka T, Sa 23073468	-	
1 CYP2C9*2 (Ragia G, Ta 24464600		
1 CYP3A5 gei Picard N, R- 21389905		
1 CYP3A5 gei Hesselink E 18334918	_	
1 CYP3A5 po Song J, Kim 22947591		
1 Cytochrom Winoto J, S 21543025 1 Drug-resist Hantz S, Ga 20961907		
1 Effect of ar Penno G, C 9726242		
1 Effect of de Parving HH 8806248		
1 Effects of e Glicklich D, 10428268	_	
1 Endothelial Cheema BS 23260854	_	
1 Endothelial Cherney DZ 19037250	_	
1 Genetic an: Singer JB, F 17563401		
1 Genetic an Jacobson P. 22334041		
1 Genetic ass Watson B J 8794836	_	
1 Genetic po Vu D, Telle; 23721685		
1 Genetic var Tapirdama: 25014506	-	
1 Human thic Weyer N, K 11417444		
1 Impact of t Ro H, Min § 23149441		
1 Impact of t Lely AT, var 18077786	-	
1 In vivo CYP de Jonge H 21753749	-	
1 Individualiz Chen SY, Li 23432535		
1 Influence o Kagaya H, ↑ 22106207		
1 Lack of ass(Hoffmann I 21871624		
1 Matrix met Kurzawski I 16945025	-	
1 Matrix met Drozdzik A, 19778329	-	
1 Modulating Abdin AA, F 19553142	-	
1 Nifedipine Verhaar M(10533616		
	-	

1	
2	1 Pharmacog Okamura A 10535720 Pharmaceutical drug focus
3	1 Pharmacog Lennard L, 2758725 Pharmaceutical drug focus
4	1 Presence o Ragia G, Pe 19891554 Pharmaceutical drug focus
5	1 Randomize Kvetny J, G 11181984 Pharmaceutical drug focus
6	1 Risk of tacr Hooper DK, 22491658 Pharmaceutical drug focus
7	
8	1 The influen Luik PT, Ho 12856080 Pharmaceutical drug focus
9	1 The norbor Kessler M, 10854736 Pharmaceutical drug focus
10	3 Investigatic Currie D, M 20854388 < 3 populations reported per SNP
	3 Polymorph Frojdo, S; S 16211375 < 3 populations reported per SNP
11	3 Angiotensii Yang, HY; L 23477970 < 3 populations reported per SNP
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
45	
44	
45 46	
46 47	
47 48	
49 50	
50	
51	
52	
53	
54	
55	
55 56 57	

58 59

1	Summary antony Table 52a	
2	Supplementary Table S3c	Deesen
3	Exclusion S Title Authors PMID	Reason
4 5		246 Gene expression based study
6	1 A disease h Ng, DPK; Pl 16936	
7	1 A polymort Mollsten, A 21316	
8	1 A rare hapl Martin, RJL 19783	
9	1 ACACÎ ² gen Shah VN, C 23081	
10	1 ACE gene p Felehgari, \ 20830	
11	1 alpha(1)-ar Perdu, J; Gi 16531	
12	1 Analysis of Drouet, M; 12005	
13	1 Angiotensiı Yildiz A, Ya: 12832	
14	1 Angiotensiı Haque, SF; NA	No data for AGT
15	1 Angiotensii Schmidt, S; 9269	
16	1 Angiotensiı Grzeszczak, 9727	
17 18	1 Angiotensiı Stratta, P; (10352	
19	1 Angiotensiı El-Banawy, NA	No data for AGT
20	1 Angiotensiı Buraczynsk 12187	
21	1 Angiotensiı Yoneda, A; 12187	
22	1 Angiotensii Uhm, WS; I 12043	
23	1 Angiotensiı Woo KT, La 18536	822 No data for AGT
24	1 Angiotensiı Schmidt, A; 8785	402 No data for AGT
25	1 Angiotensiı Ergen, HA; NA	No data for AGT
26	1 Angiotensiı Tarnow L, (8671	.962 No data for AGT
27	1 Association Golmoham NA	No data for AGT
28	1 Association Gao, JX; Zh 26045	844 No data for AGT
29	1 Association Conen D, G 18698	212 No data for AGT
30 31	1 Association Bagci, B; Ba 27118	566 No data for AGT
32	1 Carnosine ¿Janssen, B; 16046	297 No data for AGT
33	1 Clinical imp Amorim, CI 23362	199 No data for AGT
34	1 Defining Ur Abushufa, / 25546	407 No data for AGT
35	1 Different N Nakayama, 19293	592 No data for AGT
36	1 DNA polym Freire, MB5 9794	558 No data for AGT
37	1 Effect of A(Böger CA, 16961	.167 No data for AGT
38	1 Effects of e Glicklich, D 10428	268 No data for AGT
39	1 Endothelial Cheema, B: 23260	1854 No data for AGT 🧼 🧹
40	1 GENETIC PI DORIA, A; \ 7909	524 No data for AGT
41	1 Haplotype Doi, K; Noir 16215	641 No data for AGT
42 43	1 Hereditary Marre, M; 10922	971 No data for AGT
43 44	1 High preval Tripathi G, 17042	963 No data for AGT
45	1 Impact of PJung, ES; Ki 21150	220 No data for AGT
46	1 Increased e Ulrich, C; H 16476	718 No data for AGT
47	1 Insertion/d Demurov, I NA	No data for AGT
48	1 Involvemer Yamada, K; 11349	729 No data for AGT
49	1 Kinin-depe Molinaro G 17003	818 No data for AGT
50	1 Lack Of Rel Tarnow, L; 7729	604 No data for AGT
51	1 Neuropept Ito, H; Mor 10363	627 No data for AGT
52	1 NO ASSOCI SCHMIDT, 57485	
53	1 Plasma ren Deinum, J; 10462	
54 55	1 Polymorph Liu, ZH; Li, ∣NA	No data for AGT
55 56	1 Polymorph Chistyakov, NA	No data for AGT
57		
58		
59		
60	For peer review only - ht	tp://bmjopen.bmj.com/site/about

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Polymorph Hanyu, D; 1 9509566 Nu data for AGT 1 Polymorph Yoricka, T. 8529313 Nu data for AGT 1 Proteomic, Kwak, Ni; V 21136594 Nu data for AGT 1 Relations & Shin, YS & 11333226 Nu data for AGT 1 Relations & Shin, YS & 11333226 Nu data for AGT 1 Relations Novak, Sr. 17616533 Nu data for AGT 1 Relations Novak, Sr. 17616533 Nu data for AGT 1 Relations Novak, Sr. 17616533 Nu data for AGT 1 Relations Novak, Sr. 17616533 Nu data for AGT 1 Relations Novak, Sr. 17616533 Nu data for AGT 1 Relations Novak, Sr. 17616533 Nu data for AGT 1 Relations Novak, Sr. 1761653 Nu data for AGT 1 Relations Novak, Sr. 1761653 Nu data for AGT 1 Relations Novak, Sr. 1768265 Nu data for AGT 1 Susceptibili Hanna, MO 23316403 Nu data for AGT 1 Symergistic Walanara, 17330561 Nu data for AGT 1 Symergistic Walanara, 17330561 Nu data for AGT 1 The anglot Lu, Ny, Zhu, 27633502 Nu data for AGT 1 The anglot Lu, Ny, Zhu, 27633502 Nu data for AGT 1 The anglot Lu, Ny, Zhu, 27633502 Nu data for AGT 1 The anglot Lu, Ny, Zhu, 27633502 Nu data for AGT 1 The freque Rahmir, 27 20833144 Nu data for AGT 1 The Influen Nakanerov, 12849872 Nu data for AGT 1 The Influen Nakanerov, 12849872 Nu data for AGT 1 The Influen Nakanerov, 12849872 Nu data for AGT 1 The Influen Nakanerov, 12849872 Nu data for AGT 1 The Influen Nakanerov, 12849872 Nu data for AGT 1 The Influen Nakanerov, 12849872 Nu data for AGT 1 Chronic Maugust, P: NA Nu human 1 Adenomic Gao, X, PH 2235152 Nun-human 1 Adenomic Gao, X, PH 2235152 Nun-human 1 Agetorenis Shahi, SM 2405535 Nun-human 1 Agetorenis Shahi, SM 2405553 Nun-human 1 Agetorenis Shahi, SM 2405553 Nun-human 1 Agetorenis Shahi, SM 2405553 Nun-human 1 Agetorenis Shahi, SM 2405553 Nun-human 1 Agetorenis Shahi, SM 2405553 Nun-human 1 Agetorenis Shahi, SM 24055733 Nun-human 1 Agetorenis Agetore, Chr. 1236562 Nun-human 1 Agetorenis Agetore, Chr. 1236562 Nun-human 1 Congensat Xegners, Li 1136668 Nun-human 1 Chronic Nuberreli, C, 583328 Nun-human 1 Chrolic Nubereli, C, 583328 Nun-human 1 Chronic N	Page 93 of 133	BMJ Open
2 1 Polymorph Harvico, T, BS29313 No data for AGT 3 1 Polymorph Torioka, T, S 123331 No data for AGT 4 1 Polymorph Torioka, T, S 1213664 No data for AGT 5 1 Protection: Kwak, NY, V 2113664 No data for AGT 6 1 Relationsh Dir G, Shin R856464 No data for AGT 7 1 Relationsh Dir G, Shin R856464 No data for AGT 10 1 Relationsh Dir G, Shin R856464 No data for AGT 11 1 Relationsh Dir G, Shin R856464 No data for AGT 12 1 Role of ran Ingo, P, Lu 14558330 No data for AGT 13 1 Serological Coppo, P, 1 7198256 No data for AGT 14 1 Susceptibil Hanna, MC 23316433 No data for AGT 15 1 Synergitic Wakahara, 17303651 No data for AGT 16 1 Synergitic Wakahara, 17303651 No data for AGT 17 1 The angibit LU, M, Zhar 27633502 No data for AGT 18 1 The reque Rahimi, Z, 1 208531 No data for AGT 19 1 The influen Makarcow, 18498720 No data for AGT 21 1 The influen Makarcow, 18498720 No data for AGT 22 1 The influen Makarcow, 18498720 No data for AGT 23 1 The influen Makarcow, 18498720 No hata for AGT 24 1 The rereu		
1 Polymorph Torjob, 5: 15 (211375 No data for AGT 1 Portscomic Kwak, Ni; V 21136584 No data for AGT 1 Relationshi Marc, Ni; V 21136595 No data for AGT 1 Relationshi Marc, Ni; V 21136695 No data for AGT 1 Relationshi Marc, Ni; V 213669 No data for AGT 1 Relationshi Marc, Ni; V 2156353 No data for AGT 1 Relationshi Marc, Ni; V 2156392 No data for AGT 1 Relationshi Marc, Ni; V 2156380 No data for AGT 1 Role for tar miteo, P; Li a 2533408 No data for AGT 1 Saccéglical Coppe, R; / 1798266 No data for AGT 1 Saccéglical Coppe, R; / 1798266 No data for AGT 1 Saccéglical Coppe, R; / 1798266 No data for AGT 1 Saccéglical Coppe, R; / 1798266 No data for AGT 1 Saccéglical Coppe, R; / 1798266 No data for AGT 1 Saccéglical Coppe, R; / 1798266 No data for AGT 1 The angloi: Hibber, M 9023006 No data for AGT 1 The angloi: Hibber, M 9023006 No data for AGT 1 The influer Makineevo: 1732880 No data for AGT 1 The influer Makineevo: 1232840 No data for AGT 1 The influer Ma		1 Polymorph Hanyu, O: F 9509566 No data for AGT
1 Polymorph Frojich, S.; S. 102113754 No data for AGT 1 Protocomic Kwak, NY, S. 113331206 No data for AGT 1 Relationsh Morva, S.; J. 71616353 No data for AGT 1 Relationsh Morva, S.; J. 71616353 No data for AGT 1 Relationsh Morva, N.; J. 71616353 No data for AGT 1 Relationsh Morva, N.; J. 717616353 No data for AGT 1 Relationsh Morva, N.; J. 71788266 No data for AGT 1 Relationsh Morva, N.; J. 71788266 No data for AGT 1 Relationsh Marva, M.; J. 7188266 No data for AGT 1 Storegistic Doria, AC, O. 9380421 No data for AGT 1 Storegistic Doria, AC, O. 9380421 No data for AGT 1 Storegistic Doria, AC, O. 12983241 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 The englobic Lu, M.; Zhar 27633502 No data for AGT 1 <td< th=""><td></td><td></td></td<>		
1 Relations bi.m. Ys; B: 15333206 No data for AGT 1 Relationshi Morus, S: / 17616353 No data for AGT 1 Relationshi Morre, M; 8354649 No data for AGT 1 Relationshi Morre, M; 8354649 No data for AGT 1 Relationshi Morre, M; 8314010 No data for AGT 1 Relationshi Morre, M; 12988269 No data for AGT 1 Relationshi Morre, M; 12988261 No data for AGT 1 Succeptibilithona, MC 2531403 No data for AGT 1 Succeptibilithona, MC 2531205 No data for AGT 1 Succeptibilithona, MC 2531228 No data for AGT 1 The anglotriliber(M) M022006 No data for AGT 1 The anglotriliber(M) M022006 No data for AGT 1 The freet Rinkayama, 16312263 No data for AGT 1 The freet Rinkayama, 16312263 No data for AGT 1 The freet Rinkayama, 16312263 No data for AGT 1 The freet Rinkayama, 16312263 No data for AGT 1 The freet Rinkayama, 16312263 No data for AGT 1 The freet Rinkayama, 16312263 No data for AGT 1 The influen Maxinteroy, 17282840 No hotal for AGT 1 The freet Rinkayama, 16312263 No hotal fo		
1 Relationshi Marcov, S. / 17618353 No data for AGT 1 Relationshi Marcov, N. 18314010 No data for AGT 10 1 Renal perfi Lansang, M. 12086929 No data for AGT 11 1 Role of transing, P. 18314010 No data for AGT 12 Serological Coppo, R. / 17988266 No data for AGT 13 1 Serological Coppo, R. / 1798266 No data for AGT 14 1 SucceptibiliHaman, MC 23316430 No data for AGT 15 1 Synergistic Wakahara, 17303661 No data for AGT 16 1 Synergistic Wakahara, 15312263 No data for AGT 17 17 the angloti Hibbert, M. 9025006 No data for AGT 17 17 the freque Rahimi, Z; 120851344 No data for AGT 17 17 the freque Rahimi, Z; 120851344 No data for AGT 17 17 the freque Rahimi, Z; 120851344 No data for AGT 17 17 the freque Rahimi, Z; 120851344 No data for AGT 17 17 the freque Rahimi, Z; 12085144 No data for AGT 18 1 The Influen Maknerov: 17828404 No hoata for AGT 19 17 the freque Rahimi, Z; 1208513154 No-human 10 16 Actiona Sincevic, 1738440 Non-human 11 16 Actiona Sincevic, 120829235 Non-human 1	5	
1 Relationshith Oris, S. hin 8856439 No data for AGT 1 Relationshith Marc, M.; 8314010 No data for AGT 1 Relationshith Marc, M.; 8314010 No data for AGT 1 Relationshith Marc, M.; 8314010 No data for AGT 1 Rele of trainingo, P.; 14555330 No data for AGT 1 Succeptibil Hanna, MC 2531403 No data for AGT 1 Succeptibil Hanna, MC 2531403 No data for AGT 1 Succeptibil Hanna, MC 2531403 No data for AGT 1 The anglott. Huk, Mara, 7203502 No data for AGT 1 The anglott. Huk, Mara, 7203502 No data for AGT 1 The freque Rahmit, 21 2083314 No data for AGT 1 The freque Rahmit, 21 2083314 No data for AGT 1 The freque Rahmit, 21 2083314 No data for AGT 1 The freque Rahmit, 21 2083314 No data for AGT 1 The freque Rahmit, 21 2083314 No hata for AGT 1 The influen Maknerow: 17228840 No data for AGT 1 The influen Maknerow: 17228840 No hom human 1 Aderome Garon, K.; 1804507222 No data for AGT 1 The influen Maknerow: 18498720 No data for AGT <t< th=""><th></th><th>1 Relations b Shin, YS; Ba 15331206 No data for AGT</th></t<>		1 Relations b Shin, YS; Ba 15331206 No data for AGT
9 1 Relations/I Mar, Million RS, Milli		1 Relationshi Movva, S; / 17616353 No data for AGT
1 1 Relationshi Marre, M; 1 2314010 No data for AGT 1 1 Relo ef trai nigo, P; La 14558330 No data for AGT 1 1 Sercipical Coppo, P; La 15558330 No data for AGT 1 1 Susceptibili Hanna, MC 25316403 No data for AGT 1 1 Synergistic Wakahara, 17303661 No data for AGT 1 1 Synergistic Wakahara, 17303661 No data for AGT 1 The anglot Li, M; Fhar 27633020 No data for AGT 1 The regues Rahim, 12 1 2053144 No data for AGT 1 The regues Rahim, 12 1 2053144 No data for AGT 1 The regues Rahim, 12 1 2053144 No data for AGT 1 The regues Rahim, 12 1 2053144 No data for AGT 1 The regues Rahim, 12 202322 No data for AGT 1 The regues Rahim, No data for AGT 1 The ransform Aguest, P; NA No data for AGT 1 The regues Rahim, Maguest, P; NA No data for AGT 1 The regues Rahim, Maguest, P; NA No data for AGT 1 Tansform Aguest, P; NA No data for AGT 1 Adrenome (Caron, K; H 1736061 Non-human 1 Adrenome (Caron, K; H 1736061 Non-human 1		1 Relationshi Oh TG, Shir 8854649 No data for AGT
1 Renal pert Lansang, M. 12086929. No data for AGT 12 1 Role of Trai milog, P. (1). al 1958300. No data for AGT 13 1 Serological Coppo, R; A 1998266. No data for AGT 14 1 Susceptibili Hanna, MC 23116403. No data for AGT 15 1 Synergistic Doria, A; O 9389421. No data for AGT 16 1 Synergistic Wakahara, 17303661. No data for AGT 17 1 The anglot Hibberg, M. 9025006. No data for AGT 18 1 The anglot Lu, M; Zhar 27333502. No data for AGT 19 1 The effect (Nakayama, 16312263. No data for AGT 20 1 The influen Mainerov. 17328840. No data for AGT 21 1 The influen Mainerov. 17328840. No data for AGT 22 1 Thar formi August, P.; NA No data for AGT 23 1 The influen Mainerov. 17328840. No data for AGT 24 1 The ras res Bonomo, J. 25027322. No data for AGT 25 1 Transformi August, P.; NA No data for AGT 26 1.20-Hydrox, Savas, S.; WNA Non-human 27 1 Acute elev; Frishee Non-human 28 1.4denosi		1 Relationshi Marre, M; 🗉 8314010 No data for AGT
1 Role of trai lingo, PL Li 14558330. No data for AGT 13 1.5 Synergistic Wakahara, 17303661 No data for AGT 14 1. Synergistic Wakahara, 17303661 No data for AGT 15 1.5 Synergistic Wakahara, 17303661 No data for AGT 16 1.5 Yenergistic Wakahara, 17303661 No data for AGT 17 1. The angiot LL, M; Fhar 27633502 No data for AGT 18 1. The effect. Nakayama, 16312263 No data for AGT 19 1. The effect. Nakayama, 16312263 No data for AGT 11 1. The influen Maknerov, 17328840 No data for AGT 12 1. The influen Maknerov, 17328840 No data for AGT 13 1. The are ses Bonom, 1/ 25027322. No data for AGT 14 1. The are ses Bonom, 1/ 25027322. No data for AGT 15 1.2 Hydrox, Sava, S; WMA No data for AGT 14 1. The ser ses Bonom, 1/ 2502732. No data for AGT 15 1.2 Hydrox, Sava, S; WMA No data for AGT 16 1.2 Hydrox, Sava, S; WMA No data for AGT 17 1. Angiotensi Noshino, T; M Non-human 14 1.2 Hydrox, Sava, S; WMA Non-human 13 1.3 Angiotensi Noshino, T; M Non-human 14 1.4 Genosine Gava, X; Pel 2		1 Renal perfi Lansang, M 12086929 No data for AGT
1 Susceptibil Hanna, MC 23316403 No data for AGT 15 1 Synergistic Ooria, A; O 9389421 No data for AGT 16 1 Synergistic Ooria, A; O 9389421 No data for AGT 17 1 The angiot Lu, M; Data 2763302 No data for AGT 18 1 The angiot Lu, M; Data 2763302 No data for AGT 19 1 The freque Rahim, 2; J 20853144 No data for AGT 11 The influen Maixnerov. 1732840 No data for AGT 12 1 The influen Maixnerov. 17328240 No data for AGT 13 1 The rais res 8000000, J 25007232 No data for AGT 14 1 Thera are store 80000, J 25007232 No data for AGT 15 1 Tansformi August, P; NA No data for AGT 16 10-Hydrox, Stavas, St. W NA Non-human 17 1 Actionente Gao, X; Pei 2521152 Non-human 18 1 Adenome Caron, K; H 17350061 Non-human 19 1 Adenome Caron, K; H 17350061 Non-human 19 1 Adiptoensii Shahid, SM 24035938 Non-human 11 1 Angiotensii Shahid, SM 24035938 Non-human 12 1 Angiotensii Shahid, SM 24035938 Non-human 13 1 Angiotensii Shahid, SM 24035938 N		1 Role of trar Inigo, P; La 14558330 No data for AGT
1 Synergistic Doria, A; O 3839421 No data for AGT 1 1 The angiott il/beck M 9025006 No data for AGT 1 The angiott il/beck M 9025006 No data for AGT 1 The angiott il/beck M 9025006 No data for AGT 1 The freque Rahimi, Z; 1 20853144 No data for AGT 1 The influen Makinerov. 17328840 No data for AGT 1 The influen Makinerov. 17328840 No data for AGT 1 The influen Makinerov. 17328840 No data for AGT 1 The influen Makinerov. 17328840 No data for AGT 1 The ras res Bonomo, Jr 25027322 No data for AGT 1 Therasformi August, P; NA No data for AGT 2 1 Transformi August, P; NA No data for AGT 2 1 Transformi August, P; NA No data for AGT 2 1 Actue elev: Frisbec, JC; 10329253 Non-human Non-human 3 1 Adenosine Gao, Y, Piel 25251125 Non-human 3 1 Angiotensii Nashio, T, NA Non-human 3 1 Angiotensii Nashia, Angiotensi Non-human Non-human 3 1 Angiotensi Nashia, Angiotensi Nan-human Non-human <th>13</th> <th>1 Serological Coppo, R; A 17988266 No data for AGT</th>	13	1 Serological Coppo, R; A 17988266 No data for AGT
1 1 Synergistic Wakehara, 17303661 No data for AGT 1 The anglott Li, M.; Jaha 27633502 No data for AGT 1 The effect. Nakayama, 16312263 No data for AGT 1 The effect. Nakayama, 16312263 No data for AGT 1 The influen Makmerov. 1732840 No data for AGT 1 The influen Makmerov. 1732820 No data for AGT 1 The influen Makmerov. 1732827 No data for AGT 1 The rea res 80mon, J. 25007222 No data for AGT 1 The rea res 80mon, J. 25007222 No data for AGT 1 The rea res 80mon, J. 25007222 No data for AGT 1 The rea res 80mon, J. 25007222 No data for AGT 1 The rea res 80mon, J. 25007222 No data for AGT 1 The rea res 80mon, J. 25007222 No data for AGT 1 Actue elsv: fribese, JC, 1032923 Non-human 1 Actue elsv: fribese, JC, 1032923 Non-human 1 Anglotensii Jonsson, JR, 11438504 Non-human 1 Anglotensii Jonsson, JR, 11438504 Non-human 1 Anglotensii Jonsson, JR, 11438504 Non-human 1 Anglotensii Jonsson, JR, 11438504 Non-human 1 Anglotensii Jonsson, JR, 11438504 Non-human 1 Anglotensii Shepinski, JL 1016865 Non-human		
1 The angiot Hibberd, M 9025006 No data for AGT 1 The angiot LU, M; Zhar Z7633502 No data for AGT 1 The ffect (Nakayama, 16312263 No data for AGT 1 The freque Rahimi, Z; I 20853144 No data for AGT 1 The influen Maixnerov. 1738840 No data for AGT 1 The influen Maixnerov. 1248840 No data for AGT 1 The influen Maixnerov. 1248840 No data for AGT 1 The ransformi August, P; NA No data for AGT 26 120-Hydrox Savas, S; WNA No data for AGT 1 Aderosine Gao, X; Pel: 2521152 Non-human 1 Aderosine Gao, X; Pel: 2521152 Non-human 1 Adgiotensit Molino, TX Non-human 1 Adgiotensit Noshiro, TX Non-human 1 Angiotensit Noshiro, TX Non-human 1 Angiotensit Noshiro, TX Non-human 1 Angiotensit Noshiro, TX Non-human 1 Blood pres: Venegas? Non-human 1 Blood pres: Venegas? Site Site Site Site Site Site Site Site		
1 The angloi Lu, M. Zhar 2763300 No data for AGT 1 The engloi Lu, M. Zhar 2763300 No data for AGT 1 The freque Rahmin, Zi 2083144 No data for AGT 1 The freque Rahmin, Zi 2083144 No data for AGT 1 The influen Maixnerov: 17328840 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 The influen Maixnerov: 18498720 No data for AGT 1 Acute elever Frisbee, JC: 10329233 Non-human 1 Acute elever Frisbee, JC: 10329233 Non-human 1 Anglotensii Ionson, JR: 1134804 Non-human 1 Anglotensii Ionson, JR: 1134804 Non-human 1 Anglotensii Consori, Z.2272893 Non-human 1 Associatior Soria, LA; C: 19665052 Non-human 1 Blood pres: Wenegas-PC 2190045 Non-human 1 Compersi Mang, C.H 11380824 Non-human <t< th=""><th></th><th></th></t<>		
1 The anglotta, M, Zhai 2703302 1 The effect NAskyama, 16312263 No data for AGT 1 The influen Maixmerov. 12849820 No data for AGT 1 The influen Maixmerov. 12849820 No data for AGT 1 The influen Maixmerov. 12849820 No data for AGT 1 The ras res Bonomo, J. 25027322. No data for AGT 1 Thanformi August, P; NA No data for AGT 1 Tansformi August, P; NA No data for AGT 1 Acute elev, Frisbee, JC; 10329253. Non-human Non-human 1 Adresone Caron, K; H 17360661. Non-human Non-human 1 Anglotensii Shahid, SM 24035938. Non-human Non-human 1 Anglotensii Moshiro, T; NA Non-human 1 Anglotensii Moshiro, T; NA Non-human 1 Blood pres: Bohlender, 22728903 Non-human Non-human 1 Blood pres: Bohlender, 22728903 Non-human Non-human 1 Coregerega		
111		
1 The influen Maknerov. 17328840 No data for AGT 1 The influen Maknerov. 18498720 No data for AGT 1 The ras res Bonom. Jr. 52057322. No data for AGT 1 Transformi August, P: NA No data for AGT 1 1 Cute elever Fribee, JC; 10329253 Non-human 1 Actue elever Fribee, JC; 10329253 Non-human 1 Actue elever Fribee, JC; 10329253 Non-human 1 Adrenome Caron, K; H 1730661 Non-human 1 Angiotensi Noshino, T, NA Non-human 1 Angiotensi Noshino, T, NA Non-human 1 Angiotensi Noshino, T, NA Non-human 1 Blood pres: Venegas-Pc 21900645 Non-human 1 Cardiac ang Ferrario CV 26873967 Non-human 1 Coroperati Stepinski, J 11016869 Non-human 1 Coroperati Stepinski, J 11016869 Non-human		
1 The influen Maixnerovi 18498720 No data for AGT 1 Theras res Bonomo, Jr 25027322 No data for AGT 1 Transformi August, P; NA No data for AGT 1 Toransformi August, P; NA No data for AGT 1 20-Hydrox, Savas, S; W NA Non-human 1 Actute elev, Frisbee, IC; 10329253 Non-human 1 Adenosine Gao, Y; Pel 25251152 Non-human 1 Angiotensii Shahid, SM 24035938 Non-human 1 Angiotensii Onsson, JR 11438504 Non-human 1 Angiotensii Onsson, JR 11438504 Non-human 1 Angiotensii Onsson, JR 11438504 Non-human 1 Apgiotensii Onsson, JR 11438504 Non-human 1 Apgiotensii Onsson, JR 1143804 Non-human 1 Apgiotensii Onsson, JR 1143804 Non-human 1 Apgiotensii Onsson, JR 1138004 Non-human 1 Apgiotensii Onsson, JR 12 (298093 Non-human 1 Blood press Bohlender, 2272803 Non-human 1 Cordia cam Ferrario CA 26873967 Non-human 1 Comperast Vang, Q; H 11380824 Non-human 1 Comperast Vang, Q; H 11380824 Non-human 1 Cooperati Steplinski, J 11016869 Non-human 1 <td< th=""><td>21</td><td></td></td<>	21	
1 The ras res Bonomo, J/ 25027322 No data for AGT 25 1 Transformi August, P; NA No data for AGT 26 1.20-Hydrox, Sava, S; WA Non-human 27 1 Acute elev; Frisbee, JC; 10329253 Non-human 28 1.40enosine Gao, X; Pelz 2551152 Non-human 29 1.4derenome: Caron, K; H.17306661 Non-human 30 1 Angiotensii Shahid, SM 24035938 Non-human 31 1. Angiotensii Jonsson, JR 11438504 Non-human 32 1.4ngiotensii Koshiro, T; NA Non-human 33 1.Angiotensii Voshiro, T; NA Non-human 34 1.Appropriat Catanzaro I 9931123 Non-human 35 1.4sociatior Soria, LA; C 19665052 Non-human 1 36 1.Blood pres: Bohlender, 22728903 Non-human 1 37 1.Blood pres: Bohlender, 22728903 Non-human 1 38 1.Cardiac ang Ferrario CA 26873967 Non-human 1 49 1.Corlue styri Bonda, TA; 22690222 Non-human 1 41 1.Coreperatis Stepriski, J. 11016869 Non-human 1 42 1.Coreperatis Stepriski, J. 10116869 Non-human 1 43 1.Coreperatis Stepriski, J. 10116869		
251 Transformi August, P: !NANo data for AGT261 20-Hydrox, Savas, S; WNANon-human271 Actue elev: Frishee, L; 10329253 Non-human281 Adenosine Gao, X; Pel: 25251152 Non-human291 Adrenome: Caron, K; H 17360661 Non-human301 Angiotensi: Abalid, SM 24035938 Non-human311 Angiotensi: Noshiro, T; NA331 Angiotensi: Noshiro, T; NA341 Appropriat Catanzaro I 9931123 Non-human351 Associatior Soria, LA; C 19665052 Non-human361 Blood pres: Venegas-Pc 21900645 Non-human371 Blood pres: Venegas-Pc 21900645 Non-human381 Cardiac anj Ferrario CN 26873967 Non-human391 CCN1 exprr Bonda, TA; 23690222 Non-human401 Chronic hyj Merrill, DC; 8613528 Non-human411 Compensal Wang, Q; H 11380824 Non-human421 Co-operati Stepinski, J 11016869 Non-human431 Co-operati Stepinski, J 11016869 Non-human441 Cosgregat Yu, H; Harr. 9794718 Non-human451 Effect of th Mandtrack, 1733097 Non-human461 Effect of Q: Meakawa, SY 200035 Non-human471 Effect of S Ott, IM; Alt 22900035 Non-human481 Effect of S Ott, IM; Alt 2369022 Non-human491 Endotheliu Pruneau, D451 Effect of S Ott, IM; Alt 239077 Non-human461 Effect of S Ott, IM; Alt 239077 Non-human471 Effect of S Ott, IM; Alt 239072 Non-human481 Effect of S Ott, IM; Alt 2590035 Non-human491 Endotheliu Pruneau, D <t< th=""><td></td><td></td></t<>		
26 1 20-Hydrox, Savas, S; W NA Non-human 27 1 Actue elev: Frisbee, JC; 10329253 Non-human 28 1 Adenosine Gao, X; Pel; 2521152 Non-human 29 1 Adrenome Caron, K; H 17360661 Non-human 30 1 Angiotensi: Shahid, SM 24035938 Non-human 31 1 Angiotensi: Shahid, SM 24035938 Non-human 32 1 Angiotensi: Noshiro, T, NA 33 1 Angiotensi: Noshiro, T, NA 34 1 Appropriat Catanzaro I 35 1 Associatior Soria, LA; C 1965052 Non-human 36 1 Blood pres: Wengas-Pc 21900645 Non-human 37 1 Blood pres: Wengas-Pc 21900645 Non-human 38 1 Cardia can Ferrario Ch 26873967 Non-human 39 1 CCN1 exprc Bonda, TA; 23690222 Non-human 41 1 Compensal Wang, Q; H 11380824 Non-human 42 1 Compensal Wang, Q; H 11380824 Non-human 43 1 Co-segregat Vu, H; Harr: 44 1 Cosegregat Vu, H; Harr: 45 1 Effect of th Handtrack, 17333097 Non-human 46 1 Effects of p Omogbai, I 15834453 Non-human 47 1 Effects of S Ott, IN; Alt 2290035 Non-human 48 1 Effects of S Ott, IN; Alt 2290037 Non-human <th></th> <th></th>		
27 1 Acute elevi Frisbee, JC; 10329253 Non-human 28 1 Adenosine Gao, X; Peli 25251152 Non-human 29 1 Adrenome Caron, K; H 1736061 Non-human 30 1 Angiotensii Shahid, SM 24035938 Non-human 31 1 Angiotensii Jonsson, JR 11438504 Non-human 32 1 Angiotensii Jonsson, JR 11438504 Non-human 33 1 Angiotensii Noshiro, T; NA Non-human 34 1 Appropriat Catanzaro I 9911123 Non-human 35 1 Associatior Soria, LA; C 1966052 Non-human 36 1 Blood pres: Venegas-Pc 2190064 Non-human 1 37 1 Blood pres: Bohlender, 22728903 Non-human 1 38 1 Cardiac ang Ferrario CA 26873967 Non-human 1 39 1 CCNI exprc Bonda, TA; 23690222 Non-human 1 40 1 Chronic hyl Merrill, DC; 8613528 Non-human 1 41 1 Cosgregat Yu, H; Harr. 9794718 Non-human 1 42 1 Compensal Wang, Q; H 11380824 Non-human 1 43 1 Cesegregat Yu, H; Harr. 9794718 Non-human 1 44 1 Cosgregat Yu, H; Harr. 9794718 Non-human 1 45 1 Effect of son Meakawa, 8720419 Non-human 1		
281 Adenosine Gao, X; Pel: 2521152 Non-human291 Adrenome: Caron, K; H 17360661 Non-human301 Angiotensii Shahid, SM 24035938 Non-human311 Angiotensii Shahid, SM 24035938 Non-human321 Angiotensii Noshiro, T; NA331 Angiotensii Noshiro, T; NA341 Appropriat Catanzaro I 9931123 Non-human351 Association Soria, LA; C 19665052 Non-human361 Blood pres: Venegas-Pc 21900645 Non-human371 Blood pres: Venegas-Pc 21900645 Non-human381 Cardiac ang Ferrario CA: 26873967 Non-human391 CCN1 expr Bohda, TA; 23690222 Non-human401 Chronic hyl Merrill, DC; 8613528 Non-human411 Compensat Wang, Q: H 11380824 Non-human421 Co-operati: Stepinski, J 11016869 Non-human431 Co-operati: Stepinski, J 11016869 Non-human441 Cosegregat Yu, H; Harr. 9794718 Non-human451 Effect of th Handtrack, 17333097 Non-human461 Effects of Domogbai, E 18384453 Non-human471 Effects of S Ott, IM; Alt 22900035 Non-human481 Effects of S Ott, IM; Alt 2290035 Non-human491 Endotheliu Pruneau, D 8453977 Non-human491 Endotheliu Pruneau, D 8453977 Non-human501 Hemodyna Abreu, Np; 18293204 Non-human511 Hypertensi Marley, W5 10567853 Non-human531 Hypertensi Marley, W5 10567853 Non-human541 Inhibition c Wang, XM; 26883268 Non-human551 Inhibition c Wang, XM; 26883268 Non-human		
29 1 Adrenomer Caron, K; H 17360661 Non-human 30 1 Angiotensi Shahid, SM 24035938 Non-human 31 1 Angiotensi Noshiro, T; M 33 1 Angiotensi Noshiro, T; M 34 1 Appropriat Catanzaro I 35 1 Association Soria, LA; C 19665052 Non-human 36 1 Blood pres: Venegas-Pc 21900645 Non-human 37 1 Blood pres: Bohlender, 22728903 Non-human 38 1 Cardiac ang Ferrario CN 26873967 Non-human 39 1 CCN1 exprt Bonda, TA; 23690222 Non-human 41 1 Compensal Wang, Q; H 11380824 Non-human 42 1 Conperati Stepinski, J 11016869 Non-human 43 1 Cosegregat Yu, H; Harr. 9794718 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of th Handtrack, 17333097 Non-human 46 1 Effect of th C, Mix Att 2290035 Non-human 47 1 Effects of S Ott, IM; Att 2290035 Non-human 48 1 Effect of S Ott, IM; Att 2290035 Non-human 49 1 Endotheliu Pruneau, D & 8453977 Non-human 49 1 Endotheliu Pruneau, D & 8453977 Non-human 40 1 Cosegregat Yu, H; Harr. 9794718 Non-human 41 1 Cosegregat Yu, H; Harr. 970471		
30 1 Angiotensii Shahid, SM 24035938 Non-human 31 1 Angiotensii Jonsson, JR 11438504 Non-human 32 1 Angiotensii Noshiro, T; NA Non-human 33 1 Angiotensii Noshiro, T; NA Non-human 34 1 Appropriat Catanzaro I 9931123 Non-human 35 1 Association Soria, LA; C 19665052 Non-human 36 1 Blood pres: Venegas-Pc 21900645 Non-human 37 1 Blood pres: Wolf Catanzaro I 38 1 Cardia can Ferrario CL 26873967 Non-human 39 1 CCN1 exprt Bonda, TA; 23690222 Non-human 40 1 Chronic hyl Merrill, DC; 8613528 Non-human 41 1 Compensat Wang, Q; H 11380824 Non-human 42 1 Cosegregat Yu, H; Harr. 9794718 Non-human 43 1 Cosegregat Yu, H; Harr. 9794718 Non-human 44 1 Effect of so Maekawa, 8720419 Non-human 45 1 Effect of no Maekawa, 8720419 Non-human 46 1 Effect of S Ott, IM; Alt 2290035 Non-human 47 1 Effect of S Ott, IM; Alt 2290035 Non-human 48 1 Effects of S Ott, IM; Alt 2290035 Non-human 49 1 Endottheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human	29	
11Angiotensin Jonsson, JR 11438504Non-human31Angiotensin Jonsson, JR 11438504Non-human341Appropriat Catanzaro I9931123Non-human351Association Soria, LA; C19665052Non-human361Blood pres: Venegas-Pc21900645Non-human371Blood pres: Bohlender,22728903Non-human381Cardiac ang Ferrario CN26873967Non-human391CCN1 expre Bonda, TA;23690222Non-human401Chronic hyl Merrill, DC;8613528Non-human411Compensat Wang, Q; H11380824Non-human421Consegregat Yu, H; Harr;9794718Non-human431Cosegregat Yu, H; Harr;9794718Non-human441Cosegregat Yu, H; Harr;9794718Non-human451Effect of so Maekawa,8720419Non-human461Effect of so Maekawa,8720419Non-human471Effect of S Ott, IM; Alt 22900035Non-human481Effect of S Ott, IM; Alt 22900035Non-human501Hemodyna Abreu, Np;18293204Non-human511Hyperplast Pauletto, P8156626Non-human531Hypertoir Morgan, TH16796982Non-human541Hypervoler Morgan, TH16796982Non-human551Inhibition c Wang, XM;		
331 Angiotensii Noshiro, T; NANon-human341 Appropriat Catanzaro I9931123 Non-human351 Association Soria, LA; C19665052 Non-human361 Blood pres: Venegas-Pc21900645 Non-human371 Blood pres: Bohlender, 22728903 Non-human381 Cardiac ang Ferrario CN. 26873967 Non-human391 CCN1 exprc Bonda, TA; 23690222 Non-human401 Chronic hyl Merrill, DC; 8613528 Non-human411 Compensat Wang, Q; H 11380824 Non-human421 Co-operatic Stepinski, J431 Co-operatic Stepinski, J441 Cosegregat Yu, H; Harr. 9794718 Non-human451 Effect of so Maekawa, 8720419 Non-human461 Effect of th Handtrack, 1733097 Non-human471 Effects of p Omogbai, E 15834453 Non-human481 Effects of p Omogbai, E 15834453 Non-human491 Endotheliu Pruneau, D481 Effects of SO XI, IM; Alt 2290035 Non-human501 Hemodyna Abreu, Np; 18293204 Non-human511 Hyperplast Pauletto, P521 Hyperplast Pauletto, P531 Hyperlast Pauletto, P541 Hyperlost Marley, WS 10567853 Non-human551 Increased Turkstra, E; 10523346 Non-human561 Inhibition c Wang, XM; 26883268 Non-human5758		
34 1 Appropriat Catanzaro I 9931123 Non-human 35 1 Association Soria, LA; C 19665052 Non-human 36 1 Blood pres: Venegas-Pt 21900645 Non-human 37 1 Blood pres: Bohlender, 22728903 Non-human 38 1 Cardiac an; Ferrario CN 26873967 Non-human 39 1 CCN1 exprt Bonda, TA; 23690222 Non-human 40 1 Chronic hyl Merrill, DC; 8613528 Non-human 41 1 Compensat Wang, Q; H 11380824 Non-human 42 1 Cooperati Stepinski, J 11016869 Non-human 43 1 Cosegregat Yu, H; Harr: 9794718 Non-human 44 1 Cosegregat Yu, H; Harr: 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effects of p Omogbai, E 15834453 Non-human 47 1 Effects of S Ott, IN; Alt 22900035 Non-human 48 1 Effects of S Ott, IN; Alt 22900035 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 52 1 Hyperplast Pauletto, P 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Hypervoler Morgan, Tk 16796982 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wa		
35 1 Association Soria, LA; C 19665052 Non-human 36 1 Blood pres: Venegas-Pc 21900645 Non-human 37 1 Blood pres: Bohlender, 22728903 Non-human 38 1 Cardiac ang Ferrario CN 26873967 Non-human 39 1 CCM1 exprt Bonda, TA; 23690222 Non-human 40 1 Chronic hyl Merrill, DC; 8613528 Non-human 41 1 Compensat Wang, Q; H 11380824 Non-human 42 1 Compensat Wang, Q; H 11380824 Non-human 43 1 Co-operati Stepinski, J 11016869 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of p Omogbai, E 15834453 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IM; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hypertoler Morgan, Tk 16796982 Non-human 54 1 Hypervoler Morgan, Tk 16796982 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57<		1 Appropriat Catanzaro I 9931123 Non-human
37 1 Blood pres: Bohlender, 22728903 Non-human 38 1 Cardiac ang Ferrario CN. 26873967 Non-human 39 1 CCN1 expre Bonda, TA; 23690222 Non-human 40 1 Chronic hyj Merrill, DC. 8613528 Non-human 41 1 Compensat Wang, Q; H 11380824 Non-human 42 1 Co-operatic Stepinski, J 11016869 Non-human 43 1 Co-operatic Stepinski, J 11016869 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of th Handtrack, 17333097 Non-human 47 1 Effects of S Ott, IM; Alt 22900035 Non-human 48 1 Effects of S Ott, IM; Alt 22900035 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 52 1 Hyperlost Pauletto, P 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Inhibition c Wang, XM; 26883268 Non-human 55 1 Inhibition c Wang, XM; 26883268 Non-human		1 Association Soria, LA; C 19665052 Non-human
38 1 Cardiac ang Ferrario CN 26873967 Non-human 39 1 CCN1 exprc Bonda, TA; 23690222 Non-human 40 1 Chronic hyl Merrill, DC; 8613528 Non-human 41 1 Compensat Wang, Q; H 11380824 Non-human 42 1 Co-operatic Stepinski, J 11016869 Non-human 43 1 Co-operatic Stepinski, J 11016869 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effects of p Omogbai, E 15834453 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IM; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hypervoler Morgan, Tk 16796982 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Inhibition c Wang, XM; 26883268 Non-human 55 1 Inhibition c Wang, XM; 26883268 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human	36	1 Blood pres: Venegas-Pc 21900645 Non-human
1 Co-operati Stepinski, J. 11016869 Non-human 43 1 Cosegregat Yu, H; Harr. 9794718 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of th Handtrack, 1733097 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IN; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hyperplast Pauletto, P 8156626 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59 59 50	37	1 Blood pres: Bohlender, 22728903 Non-human
1 Co-operati Stepinski, J. 11016869 Non-human 43 1 Cosegregat Yu, H; Harr. 9794718 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of th Handtrack, 1733097 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IN; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hyperplast Pauletto, P 8156626 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59 59 50		1 Cardiac ang Ferrario CN 26873967 Non-human
1 Co-operati Stepinski, J. 11016869 Non-human 43 1 Cosegregat Yu, H; Harr. 9794718 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of th Handtrack, 1733097 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IN; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hyperplast Pauletto, P 8156626 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59 59 50		1 CCN1 expreBonda, TA; 23690222 Non-human
1 Co-operati Stepinski, J. 11016869 Non-human 43 1 Cosegregat Yu, H; Harr. 9794718 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of th Handtrack, 1733097 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IN; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hyperplast Pauletto, P 8156626 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59 59 50		1 Chronic hy Merrill, DC; 8613528 Non-human
43 1 Co-operatit/Stepinski, J 11016869 Non-human 44 1 Cosegregat Yu, H; Harr. 9794718 Non-human 45 1 Effect of so Maekawa, 8720419 Non-human 46 1 Effect of th Handtrack, 17333097 Non-human 47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IM; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hypertensi Marley, WS 10567853 Non-human 53 1 Hypertensi Marley, WS 10567853 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59		1 Compensat Wang, Q; H 11380824 Non-human
44 1 Effect of so Maekawa, 8720419 Non-human 45 1 Effect of th Handtrack, 17333097 Non-human 46 1 Effects of p Omogbai, E 15834453 Non-human 47 1 Effects of S Ott, IM; Alt 22900035 Non-human 48 1 Effects of S Ott, IM; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hyperplast Pauletto, P 8156626 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Increased a Turkstra, E; 10523346 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59		• • • • • •
461 Effect of th Handtrack, 17333097 Non-human471 Effects of p Omogbai, E 15834453 Non-human481 Effects of S Ott, IM; Alt 22900035 Non-human491 Endotheliu Pruneau, D 8453977 Non-human501 Hemodyna Abreu, Np; 18293204 Non-human511 Hyperplasti Pauletto, P 8156626 Non-human521 Hypertensi Marley, WS 10567853 Non-human531 Hypervoler Morgan, Tk 16796982 Non-human541 Increased a Turkstra, E; 10523346 Non-human551 Increased a Turkstra, E; 10523346 Non-human561 Inhibition c Wang, XM; 26883268 Non-human575859		
47 1 Effects of p Omogbai, E 15834453 Non-human 48 1 Effects of S Ott, IM; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplasti Pauletto, P 8156626 Non-human 52 1 Hypertensi Marley, WS 10567853 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59		
48 1 Effects of S Ott, IM; Alt 22900035 Non-human 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 8156626 Non-human 52 1 Hypertensi Marley, WS 10567853 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59		
 49 1 Endotheliu Pruneau, D 8453977 Non-human 50 1 Hemodyna Abreu, Np; 18293204 Non-human 51 1 Hyperplast Pauletto, P 815626 Non-human 52 1 Hypertensi Marley, WS 10567853 Non-human 53 1 Hypervoler Morgan, Tk 16796982 Non-human 54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59 		
501 Hemodyna Abreu, Np; 18293204 Non-human511 Hyperplast Pauletto, P8156626 Non-human521 Hypertensi Marley, WS 10567853 Non-human531 Hypervoler Morgan, Tk 16796982 Non-human541 Increased a Turkstra, E; 10523346 Non-human551 Increased a Turkstra, E; 10523346 Non-human561 Inhibition c Wang, XM; 26883268 Non-human575859		
511 Hyperplast Pauletto, P8156626 Non-human521 Hypertensi Marley, WS10567853 Non-human531 Hypervoler Morgan, Tk16796982 Non-human541 Increased a Turkstra, E;10523346 Non-human551 Increased a Turkstra, E;10523346 Non-human561 Inhibition c Wang, XM;26883268 Non-human57585959		
521 Hypertensi Marley, WS 10567853 Non-human531 Hypervoler Morgan, Tk 16796982 Non-human541 Increased a Turkstra, E; 10523346 Non-human551 Inhibition c Wang, XM; 26883268 Non-human575859	51	
531 Hypervoler Morgan, Tk 16796982 Non-human541 Increased a Turkstra, E; 10523346 Non-human551 Inhibition c Wang, XM; 26883268 Non-human575859		
54 1 Increased a Turkstra, E; 10523346 Non-human 55 1 Inhibition c Wang, XM; 26883268 Non-human 56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59		
56 1 Inhibition c Wang, XM; 26883268 Non-human 57 58 59		
57 58 59		
58 59		
	59	For neer review only - http://bmionen.bmi.com/site/about/quidelines.xhtml

1		
2		
3 4		
5		
5 6		
7		
8		
9 10		
10 11		
12		
13		
14		
15		
16 17		
18		
19		
20		
21		
22		
23 24		
24		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36 37		
38		
39		
40		
41		
42 43		
43 44		
45		
46		
47		
48		
49 50		
50		
52		
53		
54		
55 56		
56 57		
58		
59		
60		

1 Inhibition c Eitle, E; Hir	9575805	Non-human	
1 Long-Term Ameer, OZ;	27880955	Non-human	
1 Losartan ar Srisawat, U			
1 Low Blood Kisanuki, Y			
1 Mechanica Prager-Kho			
1 Mediation Sun, DQ; Sa			
1 Metformin Gomes, ME			
1 Mice lackin Cole, JM; K			
1 N-domain ¿Bueno, V; F			
1 Nebivolol t Wang, Y; Zł	23263161	Non-human	
1 Nitric oxide Parekh, N;	8780230	Non-human	
1 Overexpres Liu, XL; Zha	19279555	Non-human	
1 Rat Ace alle Kamilic, J; F	21788250	Non-human	
1 Regulation Kim, SM; Cl			
1 Renal cyst {Fonseca, JN	24429399	Non-human	
1 Role of A(1 Jackson, EK			
1 Role of ang Yang, XH; V			
1 Role of end Moreno, JN	12657567	Non-human	
1 Role of neu Wegner, M	8759244	Non-human	
1 Sodium-Nit Lovell, Hb;	7706899	Non-human	
1 The angiot Laesser, M;	14995942	Non-human	
1 The angiot Hunley, TE;			
1 The genetic Heringer-W	22652430	Non-human	
1 Transfer of Jiang, J; Ste			
1 Advanced (Bondeva, T	24030251	Non-human	
1 AKAP150 is Navedo, M	18174462	Non-human	
1 Altered reg O'Tierney,			
1 An essentia Hisada, Y; S			
1 Angiotensiı Broome, M			
1 Angiotensiı Pupilli, C; L			
1 Angiotensiı Sparks, MA			
1 Angiotensiı Touyz, RM;			
1 Angiotensiı Maeda A, T			
1 Angiotensiı Bohlender			
1 Axl mediat Korshunov,			
1 Sodium-Nit Lovell, Hb;			
1 Calcium/CaPrasad, AM			
1 Cardiac phevan Esch, Jl			
1 Chronic reg Melo, LG; V			
1 Complex in Fellner, SK;			
1 Connexin 4 Machura, K			
1 Connexin 4 Gerl, M; Ku			
1 Contributic Frisbee, JC;			
1 Correction Lumb, MJ;			
1 Cross-speciSun, RX; Ch			
1 Cytoprotec Hegarty, NJ			
1 Developme Lusch, A; Ki			
1 DPP-4 Inhit Alter, ML; (
1 Effect of th Knier, B; Cc			
1 Functional Tonna, S; D	18206321	Non-human	

1	1 Gene Trap; Park, S; Liu, 225	547438 Non-human
2 3	1 Genetic-Co Kim, Hs; Kr 77	
4	1 Human GRI Wang, Z; Ze 266	
5	1 Identificati Bauer, Y; H 213	
6	1 Knockdowr Raison, D; (237	
7		
8	1 Lack of an (Kittikulsuth 244	
9	1 Lack of in v Bonvini, JN 109	
10	1 Loss of Not Ragot, H; N 272	
11	1 Lysine-SpecWilliams, JS 225	
12	1 Macula DerLu, Y; Wei, 266	
13	1 Mechanism Todkar, A; 250	
14	1 mPGES-1 d Jia, ZJ; Liu, 222	
15	1 Natriuretic Demerath, 247	
16	1 Nephron-sı Ramkumar, 259	995108 Non-human
17	1 Nitric oxide Liang, MY; 104	432402 Non-human
18	1 NOS1-depe Hyndman, 253	391901 Non-human
19	1 N-terminal Bodenstein 172	220356 Non-human
20	1 Organizatic Cabral, CM 121	181335 Non-human
21 22	1 Pathophysi Igarashi, K; 252	252154 Non-human
22	1 Physiologic Le, TH; Kim 129	
23	1 Possible ro Ramkumar NA	
25	1 Pressor and Hirooka, Y; 89	
26	1 Reciprocal Kurt, B; Kur 212	
27	1 Regulation Tipsmark, (126	
28	1 Regulation Liu, JL; Zucl 100	
29	1 Renal angic Stoneking, 97	
30	1 Renal redo: Yogi, A; Me 181	
31	-	
32	1 Role of NO: Carlstrom, 189	
33	1 Signal trans Yousif, MH 162	
34	1 Specific pre Bird, IM; M 96	
35	1 Stimulatior Kurtz, A; G 95	
36	1 Strain diffe Smit-van O 119	
37	1 Thromboxa Sparks, MA 231	
38	1 Vascular ar Muller, DN 90	
39 40		178513 Not a case-control study
40 41		473656 Not a case-control study
42	1 Allergic rea Alencar, RC 201	180980 Not a case-control study
43	1 Angiotensii Ng, D; Tai, 158	830182 Not a case-control study
44	1 Antihypert Kuznetsova 109	918550 Not a case-control study
45	1 Association Huang, ZK; 260	000752 Not a case-control study
46	1 Association Ding, W; W 216	607620 Not a case-control study
47	1 Association Ji, LD; Zhan 200	087216 Not a case-control study
48	1 Gastric-Car Straccapan 77	726143 Not a case-control study
49	1 Weber-Chr Sterling, KA 232	216240 Not a case-control study
50		959718 Not a case-control study
51		546528 Not a case-control study
52		971628 Not a case-control study
53		290795 Not a case-control study
54		461232 Not a case-control study
55	-	469810 Not a case-control study
56		
57		
58 59		

	BMJ Open	Page
1 Genetic de Schmidt, S; NA	Not a case-control study	
	97900 Not a case-control study	
	17746 Not a case-control study	
-	93788 Not a case-control study	
	03250 Not a case-control study	
	23141 Not a case-control study	
-	00088 Not a case-control study	
-	53185 Not a case-control study	
	53184 Not a case-control study	
	72145 Not a case-control study	
	27817 Not a case-control study	
-	37993 Not a case-control study	
	28465 Not a case-control study	
	38209 Not a case-control study	
	08016 Not a case-control study	
	18500 Not a case-control study	
1 Varicella-zc Velez, AMANA	Not a case-control study	
	30832 Not a case-control study	
	05355 Not a case-control study	
	13293 Not a case-control study	
Angiotensii Narita, I; Ge 129	L1556 Not a case-control study	
Angiotensii Hopkins, Pl 119	97278 Not a case-control study	
	54166 Not a case-control study	
	59580 Not a case-control study	
Association Akcay, A; S 153	35810 Not a case-control study	
L Contributic Wong, TYH 1143	31175 Not a case-control study	
	34617 Not a case-control study	
	31973 Not a case-control study	
Polymorph Frimat, L; P 110	53482 Not a case-control study	
L Survival in †Padro-Miqi 1903	14923 Not a case-control study	
1 The role of Kelly TN, R፣ 2590	06781 Not a case-control study	
L Major clinic Alderman, NA	Not a case-control study	
L NHLBI Fam Williams, R 1090	54005 Not a case-control study	
1 Germline g Audenet F, 239	11636 Not a renal disease focus	
I Impact of n Pfab T, Stir 175	53539 Not a renal disease focus	
I Insertion/Ede Martino 214	77733 Not a renal disease focus	
1 Polymorph Deckers, IA 249	78482 Not a renal disease focus	
1 The angiot Ebert, MPA 163	55022 Not a renal disease focus	
1 Variants in Andreotti, • 2004	17954 Not a renal disease focus	
Lalpha(1)-Ar Greene, DN 222	15832 Not a renal disease focus	
L VASODILAT DUBEY, RK 810	59847 Not a renal disease focus	
2 NOVEL P(MORIYAM/ 86	56071 Not a renal disease focus	
1 A Computa Guillaud, F; 2068	33640 Not a renal disease focus	
A new thec Eggers, AE 2624	13176 Not a renal disease focus	
1 A Polymorr Sugimoto, 1893	36345 Not a renal disease focus	
1 A study on Chmaisse F 1980	51867 Not a renal disease focus	
-	39537 Not a renal disease focus	
_	36111 Not a renal disease focus	
	79535 Not a renal disease focus	
	53543 Not a renal disease focus	

1	
1 2	1 Alpha-1-pr(O'Donoghu 8296629 Not a renal disease focus
3	1 alpha-addu Clark, CJ; D 11116113 Not a renal disease focus
4	1 Alternative Matamala, 26141700 Not a renal disease focus
5	1 An Erythro Schulz, EG; 21912181 Not a renal disease focus
6	1 Analyses of Berge, KE; I 9298743 Not a renal disease focus
7	1 ANCA-asso Morris, H; I 21821620 Not a renal disease focus
8	1 Angiotensii Tassiulas, IC 9710341 Not a renal disease focus
9	1 Angiotensii Costerouss 9830503 Not a renal disease focus
10	1 Angiotensii Vasku, A; S 9607178 Not a renal disease focus
11	1 Angiotensii Sanderford 11009467 Not a renal disease focus
12	1 Angiotensii Spaanderm 15350256 Not a renal disease focus
13	1 Angiotensii Miller, JA; 1 10969844 Not a renal disease focus
14 15	-
16	1 ANGIOTEN: NAGI, DK; 1 8582133 Not a renal disease focus
17	1 Angiotensii Pedersen-E 19820429 Not a renal disease focus
18	1 Angiotensii Stefansson, 10855732 Not a renal disease focus
19	1 Angiotensii Badr, S; Ral NA Not a renal disease focus
20	1 Association Boomsma 15830186 Not a renal disease focus
21	1 Association Nalbantogl 23151617 Not a renal disease focus
22	1 Association Song SB, Jir 21342026 Not a renal disease focus
23	1 Association Assali, A; G 21570644 Not a renal disease focus
24	1 Association Rabbani M, 18711292 Not a renal disease focus
25	1 Association RodrÃ-gue: 11345362 Not a renal disease focus
26	1 Association Singh, PP; 16621107 Not a renal disease focus
27	1 Association Mokretar, I 26670794 Not a renal disease focus
28	1 Association Meng, N; Z 25359286 Not a renal disease focus
29	1 Association Mayer, NJ; NA Not a renal disease focus
30	1 Association Mashimo, \ 18398332 Not a renal disease focus
31	1 Blunted cG Supaporn, 8914042 Not a renal disease focus
32 33	1 Blunted rer Hopkins, Pl 8728297 Not a renal disease focus
34	1 C-antineut Griffith ME 8671812 Not a renal disease focus
35	1 Clinical and Huang CC, (26313793 Not a renal disease focus
36	1 Compreher Kato, N; Su 10953993 Not a renal disease focus
37	1 Compreher Monico CG 17460142 Not a renal disease focus
38	1 Contributic Mondorf U 9524045 Not a renal disease focus
39	1 Crystal stru Zhang, XX; 12899834 Not a renal disease focus
40	1 CYP3A5 gei Fromm MF 16141800 Not a renal disease focus
41	1 Deep-targe Pescatello, NA Not a renal disease focus
42	1 Detection c Matsumote 11106834 Not a renal disease focus
43	1 Effect of A(Poduri, A; + 18200034 Not a renal disease focus
44	1 Effects of a Kulah, E; Di 17625392 Not a renal disease focus
45	
46	1 Effects of o Maeda, K; I 16678545 Not a renal disease focus
47	1 Efficacy of Kwon, DH; 23717118 Not a renal disease focus
48	1 Elevated ur Clausen, P; 10872702 Not a renal disease focus
49 50	1 Endothelial Page, A; Re 16093452 Not a renal disease focus
50	1 ENHANCED NIELSEN, C 8393795 Not a renal disease focus
52	1 Eprosartan Vase, H; La 18341678 Not a renal disease focus
53	1 Evaluation Rumsby G, 15327387 Not a renal disease focus
55	1 FREQUENC ZEE, RYL; B 7882587 Not a renal disease focus
55	1 Functional Coto E, Pali 20594303 Not a renal disease focus
56	1 Functional Lumb MJ, E 10960483 Not a renal disease focus
57	
58	
59	
60	For peer review only - http://bmiopen.bmi.com/site/about/g

1

2

3

1 Functional Gainer, JV; 15611369 Not a renal disease focus 1 Further stu Danpure CJ 3416563 Not a renal disease focus 1 Genetic po Deuster, P/ 23543093 Not a renal disease focus 1 Genetic po Wu, CK; Tsc 19330904 Not a renal disease focus 1 Genetic pol Olivieri, O; 10567188 Not a renal disease focus 1 Genetic preTousoulis E 23479071 Not a renal disease focus 1 Genetic risl van Onna, | 15326089 Not a renal disease focus 1 Genetic var Ichikawa, N 24549414 Not a renal disease focus 1 Genetic var Hsu, CCC; E 16396964 Not a renal disease focus 1 Genomic a: Turner ST, | 22566498 Not a renal disease focus 1 Genotype-¡ Watkins, W 19770777 Not a renal disease focus 1 Genotypic i Mehri, S; K. 20580725 Not a renal disease focus 1 G-protein k Zagradisnik 15337465 Not a renal disease focus 1 Identificati Purdue PE, 1703535 Not a renal disease focus 1 Increased e Yamani, MI 17097490 Not a renal disease focus 1 Independe Morris, Bj; 8104754 Not a renal disease focus 1 Inhibition c Montgome 9797175 Not a renal disease focus 1 Interaction Bruning TA 7866595 Not a renal disease focus 1 Is the influe Muthumal: 17624939 Not a renal disease focus 1 Lack of ass(Kato, N; Su 9495254 Not a renal disease focus 1 Low-salt di Manunta, F 14684671 Not a renal disease focus 1 Lys(173)Ar; Komiya I, Y 10720581 Not a renal disease focus 1 Middle cer(Thomas, GI 12865608 Not a renal disease focus 1 Molecular (Corvol, P; S 9296068 Not a renal disease focus 1 Molecular- Krieger, Je; NA Not a renal disease focus 1 Mutation-t Coulter-Ma 18282470 Not a renal disease focus 1 No associat Wolf, G; Pa 12147803 Not a renal disease focus 1 No associal Ishikawa, K 9607391 Not a renal disease focus 1 No Evidenc Liktor, B; C: 23370555 Not a renal disease focus 1 Overexpres Coulter-Ma 15802217 Not a renal disease focus 1 Oxidative s CalÃ² LA, Pi 12897089 Not a renal disease focus 1 Peripheral Thomas, GI 14632699 Not a renal disease focus 1 Pharmacol Miyata N, § 25237136 Not a renal disease focus 1 Phenotype Gong L, Chi 24474657 Not a renal disease focus 1 Polymorph Baudin, B 15640279 Not a renal disease focus 1 Polymorph Bofinger, A 11317203 Not a renal disease focus 1 Potential B Grisk, O 23852615 Not a renal disease focus 1 Rab1 Small Zhuang, XL 20861236 Not a renal disease focus 1 Renal chan Marre, M; | 10082486 Not a renal disease focus 1 Renal haen Skov, K; Ma 17083073 Not a renal disease focus 1 Renin-aldo: Hanukoglu, 18634878 Not a renal disease focus 1 Renin-angi BuraczyÅ, s 14502296 Not a renal disease focus 1 Renin-Angi Joyce-Tan, NA Not a renal disease focus 1 Risk given LLi, Q; Sun, I 26391364 Not a renal disease focus 1 Role of ACE Cordonnier 11708761 Not a renal disease focus 1 Role of GRI Chen, K; Fu 24218433 Not a renal disease focus 1 Serum liver Larizza, D; I 10664223 Not a renal disease focus 1 Single nucl Demir AK, I 27936341 Not a renal disease focus 1 Single Strar Bettinaglio, 12270765 Not a renal disease focus 1 SNP Varian Coulter-Ma 25854853 Not a renal disease focus

1	
1 2	1 Somatic VoGilcrease, № 8522307 Not a renal disease focus
3	1 The consen Mesa-Torre 24957194 Not a renal disease focus
4	1 The genetic Stanczuk, C 17653872 Not a renal disease focus
5	1 The interac Gatti, RR; S 22791701 Not a renal disease focus
6	1 The M235T van den Bo 17921816 Not a renal disease focus
7	1 The major (Coulter-Ma 15963748 Not a renal disease focus
8	1 The presen Güngör 21332339 Not a renal disease focus
9	1 The state a Price, DA; [10232494 Not a renal disease focus
10	1 Ubiquitin li Shen Y, Bal 16979136 Not a renal disease focus
11	1 Vitamin B6 Hoyer-Kuhi 24385516 Not a renal disease focus
12	•
13	1 [A study on Nishina M. 9014479 Not written in English or Spanish
14	1 [AGTR1 A1: Yin X, Li H, 23505107 Not written in English or Spanish
15	1 [Arterial hy Ermolenko 7700 Not written in English or Spanish
16	1 [Associatio Xue Y, Cher 11798574 Not written in English or Spanish
17 18	1 [Associatio BuraczyÅ, s 12476891 Not written in English or Spanish
19	1 [Effect of e Kaliuzhin V 24261234 Not written in English or Spanish
20	1 [Genetic pr Bzoma B, D 19112833 Not written in English or Spanish
21	1 [Identificat Savost'ianc 12500539 Not written in English or Spanish
22	1 [Is Pstl poly Grzeszczak 9499204 Not written in English or Spanish
23	1 [Pharmaco: Mormol' IA 25286611 Not written in English or Spanish
24	1 [Polymorpł Chistiakov 10576062 Not written in English or Spanish
25	1 [Polymorpł Kutyrina IN 10420452 Not written in English or Spanish
26	1 [Relationsh Moleda P, I 17941464 Not written in English or Spanish
27	1 [Relationsh Liao L, Lei N 12016801 Not written in English or Spanish
28	1 [Relationsh Wang J, Zh: 10514536 Not written in English or Spanish
29	1 [Renin-ang BuraczyÅ, s 11865575 Not written in English or Spanish
30	1 A-20C angi Nakanishi, 14648325 Paediatric Individuals
31	1 ACE and ATKostic, M; § 15179569 Paediatric Individuals
32	1 ACE gene p Tanaka, R; 9590186 Paediatric Individuals
33	1 ACE gene p Fahmy, ME 18792483 Paediatric Individuals
34 35	1 Angiotensii Pavlovic, M 9950302 Paediatric Individuals
36	1 Angiotensii Pavlovic, M 9354852 Paediatric Individuals
37	1 Angiotensii Siomou, E; 17515833 Paediatric Individuals
38	1 Angiotensii Rigoli, L; Cr 15470205 Paediatric Individuals
39	1 Angiotensii Gallego, PF 18413222 Paediatric Individuals
40	
41	1 Donor and Buscher, R; 21309964 Paediatric Individuals
42	1 Effects of g Tabel, Y; Bε 16525944 Paediatric Individuals
43	1 Gene Polyn Kaplan, I; S 25262176 Paediatric Individuals
44	1 Genetic cor Yim, HE; Ba 17597658 Paediatric Individuals
45	1 Genetic po Elshamaa, I 21859496 Paediatric Individuals
46	1 Genetic pol Frishberg,) 9853248 Paediatric Individuals
47	1 Impact of c Hussein, A; 25939993 Paediatric Individuals
48	1 Polymorph Maruyama, 11354780 Paediatric Individuals
49	1 Polymorph Ece, A; Tek 16109085 Paediatric Individuals
50	1 Renin-angic Papp, F; Fri 12579405 Paediatric Individuals
51 52	1 Renin-angicLiu, DS; Lu, NA Paediatric Individuals
52 53	1 ACE gene p Haszon, I; F 12478352 Paediatric Individuals
54	1 Angiotensii Hohenfelln 10353402 Paediatric Individuals
55	1 Implication Hahn, H; Kt 16133060 Paediatric Individuals
56	1 Renin-angi Pardo, R; N 12579398 Paediatric Individuals
57	
58	
59	
60	For peer review only - http://bmiopen.bmi.com/site/about/guid

1 Renin-angicLiu, KP; Lin, 15045574 Paediatric Individuals 1 Autosomal Geller, DS; 16611713 Paediatric Individuals 1 Genetic po Yim, HE; Ju 14764974 Paediatric Individuals 1 Genetic risl Taranta, A; 19110485 Paediatric Individuals 1 Hemorrhag Levin M, Pi 2783733 Paediatric Individuals 1 Identificati Forino, M; 14673707 Paediatric Individuals 1 Implication Ozen S, Alił 10401028 Paediatric Individuals 1 Low renin-¿Peruzzi, L; I 16006956 Paediatric Individuals 10 1 Posterior u Bajpai, M; I 15643266 Paediatric Individuals 11 1 Renal tubul Lacoste M, 16790508 Paediatric Individuals 12 1 Renin-angi(Ozkaya, O; 16521052 Paediatric Individuals 13 1 The juxtagl Taugner R, 3128915 Paediatric Individuals 14 15 1 Variants of Halkas, AC; 9475086 Paediatric Individuals 16 1 ACE gene p Parving, HF 18199798 Pharmaceutical drug focus 17 1 Angiotensii Cambien, F 9519756 Pharmaceutical drug focus 18 1 Association Kuriyama, 11675943 Pharmaceutical drug focus 19 1 CYP2C9 ger Joy MS, Do 19669737 Pharmaceutical drug focus 20 1 Effects of Ic Argani, H; (18261537 Pharmaceutical drug focus 21 1 Efficacy an Axelsson, A 25533774 Pharmaceutical drug focus 22 1 Enalapril ar Rashtchiza(17222813 Pharmaceutical drug focus 23 1 Exaggerate Simonsen, 21749320 Pharmaceutical drug focus 24 1 High serum Elung-Jense 11881130 Pharmaceutical drug focus 25 26 1 Long-term Andersen S 12716812 Pharmaceutical drug focus 27 1 Losartan de Campistol, 10432413 Pharmaceutical drug focus 28 1 Renin-angi Norooziana 17524880 Pharmaceutical drug focus 29 1 Randomize Amara, AB; 20061926 Pharmaceutical drug focus 30 1 Renal impli Hollenberg 11459212 Pharmaceutical drug focus 31 1 The influen Goyache-G 24241364 Pharmaceutical drug focus 32 1 The influen Luik, PT; Hc 12856080 Pharmaceutical drug focus 33 2 U.K. Prospe Dudley CR, 8587251 No data 34 2 The renin-- Ong-Ajyoot 10511770 No data 35 2 The relatio Shestakova WOS:0002 No data 36 37 2 Relationshi Wang, JJ; Z 11717948 No data 38 2 Polymorph Chistyakov, WOS:0000 No data 39 2 Polymorph Woo, KT; Li 15504143 No data 40 2 Lack of ass Wong, TYH 10352194 No data 41 2 Influence o Bantis, C; Iv 15031629 No data 42 2 Genetic po Buraczyńsk 12898858 No data 43 2 Effects of tl Luther Y, B: 14610337 No data 44 2 Combinatic Osawa 17143591 No data 45 2 Renin-angi Mtiraoui, N 21421655 Incorrect patient group 46 47 2 Angiotensii Gutierrez 9258285 No data 48 3 ACE variant Ahluwalia 1 19108684 < 3 populations reported per SNP 49 3 Analysis of Anbazhaga 19520069 < 3 populations reported per SNP 50 3 Angiotensi Lee KB et a 12950120 < 3 populations reported per SNP 51 3 Angiotensii Reis KA et a 16228848 < 3 populations reported per SNP 52 3 Angiotensii Gnanasamł 26482465 < 3 populations reported per SNP 53 3 Association Pawlik M e⁻ 23681285 < 3 populations reported per SNP 54 3 Association Pei Y et al. 9259580 < 3 populations reported per SNP 55 3 Chronic rer Prasad P et 16672053 < 3 populations reported per SNP 56 57 58 59

1

2

3 4

5

6

7

8

9

BMJ Open

3 Contributic Marre M el 9120002 < 3 populations reported per SNP
3 Gene polynSu SL et al. 22147663 < 3 populations reported per SNP
3 Genes invo Litovkina O 24727057 < 3 populations reported per SNP
3 Genetic po Miura J et a 10499884 < 3 populations reported per SNP
3 Genetic po Zsom M et 22111818 < 3 populations reported per SNP
3 Genetic po Fabris B et 15662219 < 3 populations reported per SNP
3 Genetic var Shaikh R et 24737640 < 3 populations reported per SNP
3 Hypertensi El-Essawy / 11926202 < 3 populations reported per SNP
3 Interaction Stratta P et 14767013 < 3 populations reported per SNP
3 M235T Pol [,] Sarkar S et 25660845 < 3 populations reported per SNP
3 Polymorph Ayed K et a 16635753 < 3 populations reported per SNP
3 Polymorph Sprovieri SI 15934435 < 3 populations reported per SNP
3 Renin-angic Parsa A et a 15789057 < 3 populations reported per SNP
3 Renin-angi Mtiraoui N 21421655 < 3 populations reported per SNP
3 Renin-angi Chen WJ et 24907556 < 3 populations reported per SNP
3 Renin-angi Chen WJ et 24907556 < 3 populations reported per SNP

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2					
3	Exclusion S Title	Authors	PMID	Reason	
4				Gene expression based study	
5	1 Polymorph			No data for AGTR1	
6 7				No data for AGTR1	
8	1 The genetic				
9	1 Angiotensi	-			
10	1 Cardiac ph	-			
11	1 CCN1 expre	Bonda, TA;	23690222	Non-human	
12 13	1 Human GR				
14	1 Losartan ar	-			
15	1 The angiot	Hunley, TE;	10652034	Non-human	
16	1 Mechanism				
17 18	1 Physiologic				
18	1 Specific pre				
20				Not a case-control study	
21	•	-		Not a case-control study	
22		-		Not a case-control study	
23				Not a case-control study	
24 25				Not a case-control study	
26	, .	-		Not a case-control study	
27		-		Not a case-control study	
28	•			Not a case-control study	
29 30				Not a case-control study	
30 31		•		Not a case-control study	
32		-		Not a case-control study	
33				Not a case-control study	
34				Not a case-control study	
35 36	, ,			Not a case-control study	
37				Not a renal disease focus	
38	-			Not a renal disease focus	
39		-		Not a renal disease focus	
40				Not a renal disease focus	
41 42	•			Not a renal disease focus	
43		-		Not a renal disease focus	
44	•			Not a renal disease focus	
45				Not a renal disease focus	
46 47				Not a renal disease focus	
47 48				Not a renal disease focus	
49		-		Not a renal disease focus	
50				Not a renal disease focus	
51	•			Not a renal disease focus	
52 53				Not a renal disease focus	
53 54				Not a renal disease focus	
55	-			Not a renal disease focus	
56	-	•		Not a renal disease focus	
57	-			Not a renal disease focus	
58	1 110 112551		1.01010		

59

BMJ Open

1	Angiotonsi Sporks MA 21242462	Not a ronal disease focus
	L Angiotensiı Sparks, MA 21242463 L Association Conen D, G 18698212	
-	•	
5	L Compreher Kato, N; Su 10953993	
0	L Deep-targe Pescatello, LS; Schifan	
/	L Genetic Clu Krcunovic, Z; Novakov	
	L Polymorph Baudin, B 15640279	
10	L Renin-angicLau YK, Wo 15153745	
11	L [AGTR1 A1: Yin X, Li H, 23505107	0
12	L [Associatio Buraczyńs 12476891	- .
13 ¹	L [Effect of e Kaliuzhin V 24261234	Not written in English or Spanish
	L [Genetic pr Bzoma B, D 19112833	Not written in English or Spanish
15 <u>1</u>	L [Identificat Savost'ianc 12500539	Not written in English or Spanish
16	L [Pharmaco: Mormol' IA 25286611	Not written in English or Spanish
17 18	L [Polymorpł Chistiakov 10576062	Not written in English or Spanish
	L [Renin-ang Buraczyńs 11865575	Not written in English or Spanish
	L ACE gene p Haszon, I; F 12478352	
~ ~	L Renin-angi Papp, F; Fri 12579405	
22 ,	L ACE and AT Kostic, M; § 15179569	
23	L Angiotensii Hohenfelln 10353402	
24	L Angiotensii Gallego, PF 18413222	
	L Donor and Buscher, R; 21309964	
27		
28	L Effects of g Tabel Y, Be 16525944	
29	L Genetic po Yim, HE; Ju 14764974	
50	L Genetic po Elshamaa, 21859496	
	L Genetic po Frishberg, \ 9853248	
22	L Genetic risl Taranta, A; 19110485	
34	L Impact of c Hussein, A; 25939993	
35	L Polymorph Maruyama, 11354780	
36 1	L Polymorph Ece, A; Tek 16109085	Paediatric Individuals
37 1	L Renin-angi(Pardo, R; N 12579398	Paediatric Individuals
	L Renin-angicLiu, KP; Lin, 15045574	Paediatric Individuals
39	Implication Ozen S, Alil 10401028	Paediatric Individuals
40 41	L Mapping caWeber, S; L 20605837	Paediatric Individuals
42 1	L Renin-angi Ozkaya, O; 16521052	Paediatric Individuals
	L Effect of A(Böger CA, 16961167	Pharmaceutical drug focus
	L Chronic rer Prasad P, T 16672053	_
45 /	L CYP2C9 ger Joy MS, Do 19669737	-
46	L Enalapril ar Rashtchiza(17222813	_
77	L Evaluation Palmer, ND 24551085	_
	L Long-term Andersen S 12716812	•
50	L The influen Goyache-G 24241364	_
51	L Genetic po Buraczyńs 12898858	-
52		_
55	L Genotypic i Mehri, S; K. 20580725	-
	2 A polymorr Möllsten A, 21316998	
	2 Association Yoshida T, 19056482	
57	2 Combinatic Osawa N, K 17143591	
58	2 Effects of tl Luther Y, Bi 14610337	No data
59	E	
60	For neer review only - http	o·//hmionen.hmi.com/site/about/quideliu

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 Gene polyn Su, SL; Lu, F 22147663 Overlap in patient group 2 Lack of syn Tarnow L, k 10907125 No data 2 Polymorph Woo, KT; Li 15504143 Overlap in patient group 2 The renin-- Ong-Ajyoot 10511770 No data 3 Polymorph Ayed K et a 16635753 < 3 populations reported per SNP 3 Angiotensii Buraczynsk 12187084 < 3 populations reported per SNP 3 Genetic po Buraczynsk 16384824 < 3 populations reported per SNP 3 Renin-angi Chen WJ et 24907556 < 3 populations reported per SNP 3 Hypertensi El-Essawy / WOS:0001 < 3 populations reported per SNP 3 Genetic po Fabris B et 15662219 < 3 populations reported per SNP 3 Relationshi Fradin S et 11938025 < 3 populations reported per SNP 3 Susceptibili Hanna MO 25316403 < 3 populations reported per SNP 3 Renin-angi Kawada N (WOS:0000 < 3 populations reported per SNP 3 GENETIC CI Krcunovic Z WOS:00021 < 3 populations reported per SNP 3 Angiotensi Lee KB et a 12950120 < 3 populations reported per SNP 3 Genes invo Litovkina O 24727057 < 3 populations reported per SNP 3 Polymorph Losito A et WOS:0001 < 3 populations reported per SNP 3 Contributic Marre M et 9120002 < 3 populations reported per SNP 3 Association Pei Y et al. 9259580 < 3 populations reported per SNP 3 Polymorph Sprovieri SI 15934435 < 3 populations reported per SNP 3 Interaction Stratta P et 14767013 < 3 populations reported per SNP 3 Gene polyn Su SL et al. 22147663 < 3 populations reported per SNP 3 Gene-Gene Su SL et al. 24977181 < 3 populations reported per SNP 3 Association Yoshida T e 19406964 < 3 populations reported per SNP 3 Genetic po Zsom M et 22111818 < 3 populations reported per SNP

1				
2	Supplementary Table	e S3e		
3	Exclusion Stitle	Authors	PMID	Reason
4	1 Associatio	r Pei Y, Scho	9259580	No data for AGTR2
5	1 Synergisti	c Doria A, O	9389421	No data for AGTR2
6	1 Lack of syr	n Tarnow L,	10907125	No data for AGTR2
7	1 Angiotens	i Miller JA, 1	10969844	No data for AGTR2
8	1 Polymorpl	h Frimat L, P	11053482	No data for AGTR2
9 10	1 Altered re	٤O'Tierney,	18192845	No data for AGTR2
10	1 The angiot	t Hunley, TE	10652034	Non-human
12	1 Renin-ang	i Pardo, R; N	12579398	Not a case-control study
13	1 Associatio	r Akcay A, Se	15385810	Not a case-control study
14	1 Whole-ge	n Cordell HJ,	19959718	Not a case-control study
15	1 Associatio	r Laksmi NK	, 20149750	Not a case-control study
16				Not a renal disease focus
17	-			Not a renal disease focus
18				Not a renal disease focus
19				Not a renal disease focus
20				Not a renal disease focus
21				Not written in English or Spanish
22				Paediatric Individuals
23				Paediatric Individuals
24 25		-		Paediatric Individuals
25	-	-		Paediatric Individuals
20				
28	-			Paediatric Individuals Paediatric Individuals
29				
30	2 Angiotens	i Pedersen-i	19820429	Incorrect patient group
31				Incorrect patient group
32				
33				
34				
35				
36				
37				
38				
39 40				
40 41				
41				
43				
44				
45				
46				
47				
48				
49				
50				
51				

Supplementary Table S3f Exclusion S Title	Authors	PMID	Reason
	angiotens Suehiro T, Morita T, Inoue M		
	nonocytic Ulrich, C; Heine, GH; Garcia		•
	angiotens Wakahara, S; Konoshita, T;		•
	hism of C\Nicod J, Bruhin D, Auer L, V		•
	ch to gene Yamamoto, R; Nagasawa, Y		
	igiotensin Mollsten, A; Vionnet, N; Fo		
	and AGTR Shah VN, Cheema BS, Sharr		
• • •			
	ا the RAS Ahluwalia TS, Ahuja M, Rai ا (arnar hal Da Casma, S: Margagliana)		
	/arner hel De Cosmo, S; Margaglione,		
	P11B2)-3 ² Lajer, M; Schjoedt, KJ; Jacol		
	P11B2 Ger Yilmaz, M; Sari, I; Bagci, B; (
	tion polyn Ali A, Vasudevan R, Ismail P		
	in Renin , Anbazhagan, K; Sampathku		
	nzyme ger Yildiz A, Yazici H, Cine N, Ka		
	enzyme ar Gutierrez, C; Vendrell, J; Pa		
	enzyme geSchmidt, S; Ritz, E		No data for REN
	ptor (A11 El-Banawy, H; Bedair, R; Mc		No data for REN
• •	ptor gene Buraczynska, M; Ksiazek, P;		
	nzyme (ACSo, WY; Ma, RCW; Ozaki, R;		
	nzyme pol Ortiz, MA; De Prado, A; Dor		
	enzyme geErgen, HA; Hatemi, H; Agac		No data for REN
1 Angiotensin-II type 1 rece	ptor gene Tarnow L, Cambien F, Rossi	8671962	No data for REN
1 Angiotensinogen gene po	lymorphis Gnanasambandan, R; Elumរ	26482465	No data for REN
1 Angiotensinogen M235T a	and chymaZychma, MJ; Zukowska-Szcz	11096141	No data for REN
1 Apparent Mineralocortico	oid Excess Alzahrani, AS; Aljuhani, N; C	24936560	No data for REN
1 Assessment of matrix Gla	protein, Karsli CeppioÄŸlu S, Yurdun	21859400	No data for REN
1 Association analysis of AD	PRT1, AKI Prasad, P; Tiwari, AK; Kuma	20353610	No data for REN
1 Association between angi	otensin ccUemasu, J; Nakaoka, A; Kav	9180368	No data for REN
1 Association between CCD	C132, FD) Niu D, Ren Y, Xie L, Sun J, Lι	26370181	No data for REN
1 Association of aldosteron	e synthas Pawlik M, Mostowska A, Lia	23681285	No data for REN
1 Association of apolipopro	tein E gen Lahrach H, Essiarab F, Timir	25155022	No data for REN
1 Association of glutathione	e S-transfe Datta SK, Kumar V, Pathak I	20954980	No data for REN
1 Association of plasminoge	en activatcXu F, Liu H, Sun Y.	26616527	No data for REN
1 Association of sequence p	oolymorpł Bai Y, Guo Z, Xu J, Zhang J, (24576051	No data for REN
1 Association of the angiote	ensinogen Reis KA, Ebinç FA, Koç E,	21500980	No data for REN
	: polymor _l Li, X; An, J; Guo, R; Jin, Z; Li,		
1 Association studies betwee	een the HSLavery, GG; McTernan, CL;	11916625	No data for REN
1 Association study of ACE	oolymorpl Gong, AM; Li, XY; Wang, YQ	22729880	No data for REN
	blipoprote Arikan H, Koc M, Sari H, Tug		
	serum an Ozdemir O, Kayatas M, Ceti		
	enes and Kim, SM; Chin, HJ; Oh, YK; K		
	onverting (Anguiano, L; Riera, M; Pasc		
	otensin I-c Amorim, CEN; Nogueira, E;		
. –	enes for tlOsawa, N; Koya, D; Araki, S;		
-	the Progr Nakayama, Y; Nonoguchi, H		

BMJ Open

1	Distribution of ACE I/D Polymorphis Shaikh, R; Shahid, SM; Naw NA	No data for REN
	DNA polymorphisms in the ACE ger Freire, MBS; van Dijk, DJ; Er 9794558	
	DNA repair genes XPD and XRCC1 p Radwan WM, Elbarbary HS, 25310768	
	Effect of ACE gene on diabetic nepł Kuramoto, N; lizuka, T; Ito, 10023638	
	Effect of IL-6 C-572G polymorphism Chen SY, Chen CH, Huang Y 20954977	
	Effects of erythropoietin, angiotens Glicklich, D; Kapoian, T; Mia 10428268	
	Effects of the genetic polymorphisn Luther, Y; Bantis, C; Ivens, K 14610337	
	Endothelial nitric oxide synthase ge Cherney, DZI; Scholey, JW; 19037250	
	Factors affecting progression of ren Locatelli, F; Manzoni, C; Ma 9387138	
	Familial renal glucosuria: SLC5A2 m Calado, J; Loeffler, J; Sakalli 16518345	
	GAS6 intron 8 c.834 + 7G > A gene j Erkoc R, Cikrikcioglu MA, Ai 25869052	
	Gene polymorphisms of angiotensii Su, SL; Lu, KC; Lin, YF; Hsu, ' 22147663	
	Gene-Gene Interactions in Renin-AISu, SL; Yang, HY; Wu, CC; Le NA	No data for REN
	Genes involved in the regulation of Litovkina, O; Nekipelova, E; 24727057	
	Genetic Clues To The Etiology Of Ba Krcunovic, Z; Novakovic, I; INA	No data for REN
	Genetic determination of TNF and r Buraczynska K, Koziol-Mont 15600254	
	Genetic polymorphisms of the renii Buraczynska, M; Ksiazek, P; 16384824	
	Genetic polymorphisms of the renii Huang, HD; Lin, FJ; Li, XJ; W 21163122	
1	Genetic polymorphisms of the renii Buraczynska, M; Ksiazek, P; 16384824	No data for REN
1	Genetic variants of ACE (Insertion/I Shaikh, R; Shahid, SM; Man 24737640	No data for REN
1	High prevalence of ACE DD genotyp Tripathi G, Dharmani P, Kha 17042963	No data for REN
1	Identification of Cathepsin L as a Pc Bauer, Y; Hess, P; Qiu, CB; k 21357272	No data for REN
1	Impact of aldosterone synthase ger Bantis C, Heering PJ, Siekier 21476902	No data for REN
1	Impact of interaction of cigarette sr Yang HY, Lu KC, Fang WH, L 23477970	No data for REN
1	Impact of interferon-gamma and in Masutani, K; Miyake, K; Nal 12552499	No data for REN
1	Impact of nitric oxide synthase Glu2 El-Din Bessa SS, Hamdy SM. 21854353	No data for REN
1	Impact of Polymorphisms of the Ge Jung, ES; Kim, SM; Cha, RH; 21150220	No data for REN
1	Increased frequency of angiotensin Hsieh, MC; Lin, SR; Hsieh, T. 10862639	No data for REN
1	Influence of aldosterone synthase ¿ Bantis, C; Heering, PJ; Stang 21777344	No data for REN
1	Influence of angiotensin converting Ramanathan, G; Ghosh, S; E 27748299	No data for REN
1	Influence of cytokine gene polymor Bantis, C; Heering, PJ; Luthe 15308875	No data for REN
	Influence of the endothelial nitric o Merta M, ReiterovÃi J, Tesa 12212826	
1	Interaction between gene polymor Stratta, P; Bermond, F; Gua 14767013	No data for REN
1	Interleukin 1 receptor antagonist a Shu KH, Cheng CH, Wu MJ, 15717635	No data for REN
1	Lack of association between the an Arfa I, Abid A, Nouira S, Ello 18404607	No data for REN
1	Lack of association between the he Fujita H, Narita T, Meguro F 10586428	No data for REN
	Lack of association between transie Chen WC, Chen SY, Chen CI 20540633	
	Lack Of Relationship Between An In Tarnow, L; Cambien, F; Ros: 7729604	
	Lack of synergism between long-ter Tarnow, L; Kjeld, T; Knudser 10907125	
	Manganese Superoxide Dismutase Mohammedi, K; Bellili-Mun 24819633	
	Manganese superoxide dismutase, Kidir V, Uz E, Yigit A, Altunta 26787049	
	Mthfr C677T, A1298C And Ace I/D FEI-Baz R, Settin A, Ismaeel A 22554825	
	Nodular glomerulosclerosis and rer Wang, M; Zhang, XX; Song, 26973293	
	Non-relation of parathyroid hormo Chen JB, Chou FF, Hsu KT. 15083922	
	Platelet glycoprotein IIb HPA-3 a/b Wu JH, Zhang DW, Cheng X 22880801	
	Polymorphism of angiotensin conve Frimat, L; Philippe, C; Magh 11053482	
	Polymorphism of renin-angiotensin Losito, A; Kalidas, K; Santon 12454231	
1	Torymorphism of renin anglotenism cosito, A, Kanuas, K, Santoli 12434233	
		la 4 l

1 Polymorphism of renin-angiotensin Woo, KT; Lau, YK; Choong, I 15504143 No data for REN 1 Polymorphism of the angiotensin I- Hanyu O, Hanawa H, Nakag 9509566 No data for REN 1 Polymorphisms in NADPH oxidase (Zhou H, Chen M, Zhu Y, Wa 26627442 No data for REN 1 Polymorphisms in the gene encodir Frojdo, S; Sjolind, L; Parkko 16211375 No data for REN 1 Polymorphisms of the renin-angiot Sprovieri, SRS; Sens, YAS 15934435 No data for REN 1 Predicting the development of diab William, J; Hogan, D; Batlle, 15822056 No data for REN 1 Pronatriodilatin gene polymorphisn Nannipieri, M; Penno, G; Pt 10405209 No data for REN 1 Relationship between angiotensino Wang J, Zhu X, Yang L, Liu Y 11717948 No data for REN 1 Relationship between GSTs gene pc Agrawal S, Tripathi G, Khan 18067039 No data for REN 1 Renal clearance of endogenous ery Nowicki M, Kokot F, Kokot I 7759206 No data for REN 1 Renal perfusion and the renal hem Lansang, MC; Hollenberg, N 12086929 No data for REN 1 Renin-aldosterone response, urinar Hanukoglu, A; Edelheit, O; § 18634878 No data for REN 1 Renin-angiotensin system compone Kawada, N; Moriyama, T; Y(NA No data for REN 1 Renin-angiotensin system gene pol Lau YK, Woo KT, Choong HL 15153745 No data for REN 1 Renin-angiotensin-aldosterone syst Chen, WJ; Huang, YL; Shiue 24907556 No data for REN 1 Role of ADDUCIN Gly460Trp, ACE I/ Sancakdar, E; Ates, K; KamaNA No data for REN 1 Role of the alpha-adducin genotype Nicod, J; Frey, BM; Frey, FJ; 11918733 No data for REN 1 Serological and genetic factors in e: Coppo, R; Amore, A; Chiesa 17988266 No data for REN 1 SIRTUIN 1 gene polymorphisms are Shimoyama Y, Mitsuda Y, T: 22200427 No data for REN 1 Structural analysis of the 11 beta-h Zaehner, T; Plueshke, V; Fre 11012876 No data for REN 1 Study of the association of -667 aqi Kang SW, Kim YW, Kim YH, 17763164 No data for REN 1 Study on 3'-UTR length polymorphi Sui W, Zheng C, Yang M, Ou 26554293 No data for REN 1 Survival in type 2 diabetic patients i Padro-Miguel, A; Alia-Ramc 19014923 No data for REN 1 The DD genotype of the ACE gene c Azar, ST; Zalloua, P; Medlej, 11428725 No data for REN 1 The DD genotype of the ACE gene r Vleming, LJ; van der Pijl, JW 10099885 No data for REN 1 The effect of polymorphisms in the Mollsten, A; Kockum, I; Sve 18413189 No data for REN 1 The influence of G-protein beta3-st ReiterovÃj J, Miroslav M, St 15287194 No data for REN 1 The influence of the endothelin-cor ReiterovÃj J, Merta M, Stek 16526315 No data for REN 1 The relationship between genetic a Shestakova, MV; Vikulova, (NA No data for REN 1 The relationship between the TGF-ILi Y, Liu FY, Peng YM, Li J, St 20446778 No data for REN 1 The renin--angiotensin system gen€ Ong-Ajyooth S, Ong-Ajyootl 10511770 No data for REN 1 Toll-like receptor 9 SNPs are suscep Chen YT, Wei CC, Ng KL, Chi 23964786 No data for REN 1 U.K. Prospective Diabetes Study. X\ Dudley CR, Keavney B, Strat 8587251 No data for REN 1 Vitamin D binding protein and the r Speeckaert MM, Glorieux G 18721734 No data for REN 1 Vitamin D receptor genetic variants Tripathi G, Sharma R, Sharn 20722565 No data for REN 1 20-Hydroxyeicosatetraenoic Acid (F Savas, S; Wei, SZ; Hsu, MH; NA Non-human 1 Adenosine A(1) receptor-dependen Gao, X; Peleli, M; Zollbrecht 25251152 Non-human 1 Adrenomedullin gene expression di Caron, K; Hagaman, J; Nishi 17360661 Non-human 1 Altered regulation of renal interstit O'Tierney, PF; Komolova, N 18192845 Non-human 1 Alternative splicing of vitamin D-24 Ren S, Nguyen L, Wu S, Enci 15788398 Non-human 1 An essential role of angiotensin II re Hisada, Y; Sugaya, T; Tanaki 11555672 Non-human 1 Angiotensin converting enzyme (AC Shahid, SM; Fatima, SN; Ma 24035938 Non-human 1 Angiotensin II mesenteric and renal Broome, M; Aneman, A; Ha 11065204 Non-human 1 Angiotensin-converting enzyme inh Jonsson, JR; Clouston, AD; / 11438504 Non-human 1 Angiotensin-li Enhances Norepinep NOSHIRO, T; SHIMIZU, K; WNA Non-human 1 Antihypertensive Role of Tissue Kal Waeckel, L; Potier, L; Cholle 22669897 Non-human 1 Appropriate regulation of renin anc Catanzaro DF, Chen R, Yan ' 9931123 Non-human

1

2 3

4

5

6

BMJ Open

1	Blood pressure and renal hemodyn Kumari, S; Sharma, N; Thak	27350671	Non-human
1	Blood pressure and renin-angioten: Bohlender, J; Bader, M; Me	22728903	Non-human
1	Cardiac angiotensin-(1-12) expressi Ferrario CM, VonCannon J,	26873967	Non-human
	Cardiovascular dysfunction in Zucke Marsh, SA; Powell, PC; Agar		
	Chronic hypertension and altered b Merrill, DC; Thompson, MW		
	Collecting duct-specific knockout of Gao, Y; Stuart, D; Pollock, J		
	Compensatory up-regulation of ang Wang, Q; Hummler, E; Mail		
	Control of renin secretion from kidi Dong Y, Wang M, Nong L, V		
	Cosegregation of spontaneously hy Gao, Y; Stuart, D; Pollock, JS		
	Dendritic cell nuclear protein-1, a n Zhou T, Wang S, Ren H, Qi >		
	Effect Of Angiotensin-Converting Er NOSHIRO, T; WAY, D; MCGI		
	Effect Of Nitric-Oxide On Renin Sec GREENBERG, SG; HE, XR; SC		
	Effect of SWL on renal hemodynam Yilmaz, E; Mert, C; Keskil, Z;		
	Effect of the angiotensinogen geno Handtrack, C; Cordasic, N; k		
	Effects of plasma kallikrein deficien Bird, JE; Smith, PL; Wang, X		
	Elevated blood pressures in mice la Shesely, EG; Maeda, N; Kim		
	Endothelium-Dependent Relaxatior STEPHAN, D; BILLING, A; KR		
1	Functional genetic variation in amir Tonna, S; Dandapani, SV; U:	18206321	Non-human
1	Gene Trapping Uncovers Sex-Specif Park, S; Liu, XB; Davis, DR; S	22547438	Non-human
1	Genetic analysis of the S-A and Na+Lodwick, D; Zagato, L; Kaise	9535139	Non-human
1	GPR48 Increases Mineralocorticoid Wang, J; Li, XY; Ke, YY; Lu, Y	22135314	Non-human
1	Hypertension in unilaterally nephre Marley, WS; Bowen, R; Got:	10567853	Non-human
1	Hypervolemia of pregnancy is not n Morgan, TK; Rohrwasser, A	16796982	Non-human
1	Knockdown of parathyroid hormon Raison, D; Coquard, C; Hock	23720345	Non-human
1	Lack of an effect of collecting duct-Kittikulsuth, W; Stuart, D; V	24431204	Non-human
	Local Renal Circadian Clocks Contro Tokonami, N; Mordasini, D;		
	Low Blood Pressure in Endothelial (Kisanuki, YY; Emoto, N; Ohu		
	Metformin prevents the impairmer Gomes, MB; Cailleaux, S; Ti		
	Mice lacking endothelial ACE - Norr Cole, JM; Khokhlova, N; Sut		
	Mice with targeted disruption of th Langaa, S; Bloksgaard, M; B		
	N-domain angiotensin I-converting Bueno, V; Palos, M; Ronchi,		
	Nebivolol treatment improves resis Wang, Y; Zhang, MS; Liu, Y		
	Nephron-specific deletion of the pr Ramkumar, N; Stuart, D; Ca		
	Parallel regulation of renin and lyso Schmid, J; Oelbe, M; Saftig,		
	Physiological impact of increased e: Le, TH; Kim, HS; Allen, AM;		
	Pituitary adenylate cyclase-activatii Hautmann, M; Friis, UG; De		
	Preserved macula densa-dependen Schweda, F; Wagner, C; Kra		
	Rat Ace allele variation determines Kamilic, J; Hamming, I; Lely,		
	Reciprocal expression of connexin 4 Kurt, B; Kurtz, L; Sequeira-L		
	Regulation of renin secretion and e Kim, SM; Chen, LM; Faulhal		
	Renal cyst growth is the main deter Fonseca, JM; Bastos, AP; Ar		
	Replacement of connexin 40 by cor Kurtz, L; Gerl, M; Kriz, W; W		
1	Role of angiotensin-converting enzy Yang, XH; Wang, YH; Wang,	22580272	Non-human
1	Role of blood pressure and the reni Zhang, MZ; Wang, SW; Yan $_{\mbox{\scriptsize I}}$	22114203	Non-human
1	Role of cGMP-kinase II in the contrc Wagner, C; Pfeifer, A; Ruth,	9788971	Non-human
1	Role of neutral endopeptidase 24.1 Wegner, M; HirthDietrich, C	8759244	Non-human
1	Stimulation of renin release by pro: Schweda, F; Klar, J; Narumi	15113745	Non-human
		· · · ·	

1 Stimulation of renin secretion by ni Kurtz, A; Gotz, KH; Hamann 9539809 Non-human 1 Stimulation of renin secretion by N^IKurtz, A; Gotz, KH; Hamann 9575895 Non-human 1 The angiotensin II receptor blocker Laesser, M; Oi, Y; Ewert, S; 14995942 Non-human 1 The angiotensin type II receptor tor Hunley, TE; Tamura, M; Sto 10652034 Non-human 1 The elevated blood pressure of hun Wang, Z; Armando, I; Asico, 17259440 Non-human 1 The genetic deletion of Mas abolish Heringer-Walther, S; Gemb 22652430 Non-human 1 Thyroid hormones stimulate renal (Pinto, ACOD; Barbosa, CML NA Non-human 1 Transfer of a salt-resistant renin all Jiang, J; Stec, DE; Drummor 9040448 Non-human 1 Vascular and renal effects of vasop Cheng, ZJ; Gronholm, T; Lou 16093923 Non-human 1 Vascular angiotensin-converting en Muller, DN; Bohlender, J; H 9039087 Non-human 1 A female with X-linked Alport syndr Mohammad, M; Nanra, R; (24337245 Not a case-control stuc 1 A Genetic Variant in the Distal Enha Makino, Y; Konoshita, T; On 26366736 Not a case-control stuc 1 A Synergistic Association of ACE I/D Rodriguez-Perez, JC; Macia: 19546528 Not a case-control stuc 1 ACE gene polymorphism in focal se Kuzmanic, D; Jelakovic, B; BNA Not a case-control stuc 1 Alport Syndrome in Women and Gi Savige, J; Colville, D; Rheaul 27287265 Not a case-control stuc 1 Angiotensin converting enzyme ger Miller, JA; Scholey, JW; Tha 8995725 Not a case-control stuc 1 Angiotensin-converting enzyme ger Beige, J; Scherer, S; Weber, 9259361 Not a case-control stuc 1 Angiotensin-converting enzyme ger Akcay, A; Ozdemir, FN; Atac 15013293 Not a case-control stuc 1 Angiotensin-converting-enzyme ins Beige, J; Offermann, G; Dist 9550656 Not a case-control stuc 1 Angiotensinogen concentrations an Bohlender J, Ménard J, G 10720595 Not a case-control stuc 1 Angiotensinogen gene variation an(Narita, I; Goto, S; Saito, N; § 12911556 Not a case-control stuc 1 Antihypertensive treatment modul: Kuznetsova, T; Staessen, JA 10918550 Not a case-control stuc 1 Assessing genetic susceptibility to c Tanaka, N; Babazono, T 16174281 Not a case-control stuc 1 Association between Angiotensin I- Huang, ZK; Wu, B; Tao, J; H; 26000752 Not a case-control stuc 1 Association between two genetic p Ding, W; Wang, FR; Fang, Q 21607620 Not a case-control stuc 1 Association of angiotensinogen gen Pei, Y; Scholey, J; Thai, K; Su 9259580 Not a case-control stuc 1 Association of the genetic polymor Akcay, A; Sezer, S; Ozdemir 15385810 Not a case-control stuc 1 Bilateral high origins of testicular a Geller, DS; Zhang, JH; Zenna 16611713 Not a case-control stuc 1 Catalase activity, allelic variations ir Mohammedi, K; Patente, T/ 24057136 Not a case-control stuc 1 Contribution of gene polymorphism Anguiano, L; Riera, M; Pasc 25813276 Not a case-control stuc 1 Correlates of ACE activity in macroa Amorim, CEN; Nogueira, E; 23362199 Not a case-control stuc 1 Deletion insertion polymorphism of Bjorck, S; Blohme, G; Sylver 9269704 Not a case-control stuc 1 Diabetes, nephropathy, and the rer Hollenberg, NK 16601578 Not a case-control stuc 1 Diagnosis of a case of Gitelman's sy Kageyama, K; Terui, K; Shoj 16370563 Not a case-control stuc 1 Disorders of mineralocorticoid synt Connell, JMC; Fraser, R; Dav 11469810 Not a case-control stuc 1 Epidemiology and genetics of calcif O'Brien, KD 17963677 Not a case-control stuc 1 Expert Guidelines for the Manager Savige, J; Gregory, M; Gross 23349312 Not a case-control stuc 1 Frequencies of apolipoprotein E all Su YY, Zhang YF, Yang S, Wa 25707516 Not a case-control stuc 1 Gene Polymorphisms of the Renin-, Zhang, G; Wang, H; Wang, I 17984617 Not a case-control stuc 1 Genetic determinants of diabetic reSchmidt, S; Ritz, E NA Not a case-control stuc 1 Genetic polymorphisms of renin-an BuraczyÅ, ska M, Grzebalsk 12898858 Not a case-control stuc 1 Genetics and the prediction of com Marre, M 10097900 Not a case-control stuc 1 Genetics of diabetic nephropathy Rippin, JD; Patel, A; Bain, SC 11554775 Not a case-control stuc 1 Genome-Wide Association Analysis Musani, SK; Fox, ER; Kraja, / 25561047 Not a case-control stuc 1 Identification of a novel mutation ir Riepe, FG; Krone, N; Morlot 12679457 Not a case-control stuc 1 Impact of genetic polymorphisms o Siekierka-Harreis, M; Kuhr, 19681973 Not a case-control stuc 1 Impact of polymorphisms in the rer Orenes-Pinero, E; Hernand € 21507890 Not a case-control stuc

59 60

1

2 3

4

5

6

7

8 9

10

11

12

13 14

15

16

17

18

19

20 21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

52

53

54 55

56

57

BMJ Open

1	
2	1 Increased left ventricular mass in n-Sato, A; Tarnow, L; Parving, 9727905 Not a case-control stuc
3	1 Influence of cytokine gene polymor Bantis C, Heering P, Aker S, 18300111 Not a case-control stuc
4	1 Influence of genetic polymorphism: Bantis, C; Ivens, K; Kreusser 15031629 Not a case-control stuc
5	1 Is there a role of angiotensin-conve Isbir, CS; Akgun, S; Yilmaz, F 11525534 Not a case-control stuc
6 7	1 Juxtaglomerular cell tumor of the k Endoh, Y; Motoyama, T; Ha 9211527 Not a case-control stuc
8	1 Normative genetic profiles of RAAS Prasad, P; Thelma, BK 18027817 Not a case-control stuc
9	1 Novel mutations in the inverted for Xie J, Hao X, Azeloglu EU, R(26039629 Not a case-control stuc
10	
11	1 Prognostic role of serum ACE activit Wong, TYH; Szeto, CC; Chov 11979350 Not a case-control stuc
12	1 Randomized Controlled Trial: Lisino Amara, AB; Sharma, A; Alex 20061926 Not a case-control stuc
13	1 Rapid detection and quantification Zhou H, Hoek M, Yi P, Rohn 24591025 Not a case-control stuc
14	1 Relationships between HLA-A, -B, -I Ozdemir BH, Izdemir FN, Cc 15354972 Not a case-control stuc
15	1 Renal angiomyolipoma - Further im Stone, CH; Lee, MW; Amin, 11371226 Not a case-control stuc
16 17	1 Renal Tubular Dysgenesis in Israel: Moldavsky, M 19344005 Not a case-control stuc
18	1 Renin-angiotensin system gene pol [,] Parsa, A; Lovett, DH; Peden 15789057 Not a case-control stuc
19	1 Renoprotective efficacy of renin-an Narita, I; Goto, S; Saito, N; § 14684698 Not a case-control stuc
20	1 Rho kinase polymorphism influence Seasholtz, TM; Wessel, J; Ra 16585408 Not a case-control stuc
21	1 Risk of developing diabetic nephror Savage, DA; Feeney, SA; For 10328465 Not a case-control stuc
22	1 Role Of The Deletion Polymorphism YOSHIDA, H; MITARAI, T; K/ 7593601 Not a case-control stuc
23	1 Successful treatment of decompener Csatary, LK; Schnabel, R; Ba 10216467 Not a case-control stuc
24 25	1 The deletion/insertion polymorphis Staessen, JA; Wang, JG; Gin 9488209 Not a case-control stuc
26	1 The effects of angiotensin-converti Draman, CR; Kong, NCT; Ga 19037561 Not a case-control stuc
27	1 The Epithelial Sodium Channel gam Busst, CJ; Bloomer, LDS; Sci 22006290 Not a case-control stuc
28	
29	
30	1 The role of renin-angiotensin-aldos Kelly TN, Raj D, Rahman M, 25906781 Not a case-control stuc
31	1 Tip lesion variant of primary focal a Mungan S, Turkmen E, Aydi 25857429 Not a case-control stuc
32	1 Tip variant of focal segmental glom Trivedi M, Pasari A, Chowdł 25721429 Not a case-control stuc
33 34	1 Twenty-one additional cases of farr Calado, J; Sznajer, Y; Metzg 18622023 Not a case-control stuc
35	1 [Possible pathogenetic role of 11 be Morales MA, Carvajal CA, O 18769825 Not a renal disease foc
36	1 A clinical phenotype mimicking esse Rossi E, Farnetti E, Nicoli D, 21525970 Not a renal disease foc
37	1 A Computational Model of the Circi Guillaud, F; Hannaert, P 🦰 20683640 Not a renal disease foc
38	1 A functional variant of the NEDD4L Svensson-Färbom P, Wahl 21052022 Not a renal disease foc
39	1 A new mutation, R563Q, of the bet Rayner, BL; Owen, EP; King, 12714866 Not a renal disease foc
40	1 A new theory of essential hyperten Eggers, AE 26243176 Not a renal disease foc
41 42	1 A role for CETP TaqIB polymorphisn Asselbergs, FW; Moore, JH; 16623947 Not a renal disease foc
42	1 ACE and PC-1 gene polymorphisms de Azevedo, MJ; Dalmaz, C/ 12126783 Not a renal disease foc
44	1 ACE gene insertion/deletion polym Lee, YJ; Tsai, JCR 12032106 Not a renal disease foc
45	1 Activation of the hypothalamic-pitu Walker BR, Andrew R, Escol 24712576 Not a renal disease foc
46	
47	1 ADAM33: a newly identified gene ir Holgate ST, Davies DE, Pow 16257631 Not a renal disease foc
48	1 Adsorption of cytotoxic anti-HLA ar DeVito LD, Sollinger HW, Bu 2186524 Not a renal disease foc
49 50	1 Albuminuria and the renin-angioter Thomas, GN; Critchley, JAJF 11200871 Not a renal disease foc
51	1 Alpha Adducin G460T Variant is a R Soualmia, H; Ben Romdhan 27349000 Not a renal disease foc
52	1 Alpha-adducin polymorphism in hy Barlassina C, Norton GR, Sa 10912759 Not a renal disease foc
53	1 alpha-Adducin polymorphisms and Manunta, P; Cusi, D; Barlas: 9607177 Not a renal disease foc
54	1 Amelioration of genetic hypertensi، Sanada, H; Yatabe, J; Midor 16636192 Not a renal disease foc
55	1 Amiloride, a specific drug for hyper Baker EH, Duggal A, Dong Y 12105131 Not a renal disease foc
56	1 Androgen-Sensitive Hypertension A Wu, CC; Mei, SJ; Cheng, J; C 23641057 Not a renal disease foc
57	1 Angiotensin converting enzyme ger Fernandez-Llama, P; Poch, 1 9607207 Not a renal disease foc
58 59	
59 60	For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

1 Angiotensin II sensitivity in nonpreg Spaanderman, MEA; Ekhart 15350256 Not a renal disease foc 1 Angiotensin II type 1 receptor gene Miller, JA; Thai, K; Scholey, 10969844 Not a renal disease foc 1 Angiotensin II Type 1A Receptors in Sparks, MA; Parsons, KK; St 21242463 Not a renal disease foc 1 Angiotensin II type 2 receptor gene Yoneda, A; Cascio, S; Green 12187255 Not a renal disease foc 1 Angiotensin II-dependent chronic h Touyz, RM; Mercure, C; He, 15753233 Not a renal disease foc 1 Angiotensin-converting enzyme (ACMansoor Q, Javaid A, Bilal N 22607040 Not a renal disease foc 1 Angiotensin-converting enzyme ger Wipff J, Gallier G, Dieude P, 19132786 Not a renal disease foc 1 Angiotensin-converting enzyme ger Stefansson, B; Ricksten, A; I 10855732 Not a renal disease foc 1 Angiotensin-converting enzyme ger Singh M, Singh AK, Singh S, 27030424 Not a renal disease foc 1 Angiotensin-converting enzyme ger Uhm, WS; Lee, HS; Chung, \ 12043886 Not a renal disease foc 1 ANGIOTENSIN-CONVERTING ENZYN LACHURIE, ML; AZIZI, M; GL 7796503 Not a renal disease foc 1 Angiotensin-converting enzyme ger Prkacin I, Novak B, Sertić J 11505631 Not a renal disease foc 1 Angiotensinogen and angiotensin II Lee, KB; Kim, UK 12950120 Not a renal disease foc 1 Angiotensinogen genotype affects I Hopkins, PN; Hunt, SC; Jeur 11997278 Not a renal disease foc 1 Angiotensinogen T235 and ACE inst Young, RP; Chan, JCN; Critcl 9540028 Not a renal disease foc 1 Apparent mineralocorticoid excess: Mantero, F; Palermo, M; Pe 8732999 Not a renal disease foc 1 Association between plasma activit Boomsma F, Pedersen-Bjer, 15830186 Not a renal disease foc 1 Association Between Polymorphism Li, Y; Li, NF; Yao, XG; Heizat 27555048 Not a renal disease foc 1 Association between polymorphism Sprovieri, SRS; Sens, YA; Ma 16047641 Not a renal disease foc 1 Association between RAS gene poly Nalbantoglu, S; Tabel, Y; Mi 23151617 Not a renal disease foc 1 Association between renin-angiote Song SB, Jin HS, Hong KW, L 21342026 Not a renal disease foc 1 Association of ACE gene D polymor Bahramali, E; Rajabi, M; Jan 26861937 Not a renal disease foc 1 Association of angiotensin-converti Zhou, J; Zheng, SC; Wang, Z 26823847 Not a renal disease foc 1 Association of angiotensinogen M2 RodrÃ-guez-Pérez JC, Roc 11345362 Not a renal disease foc 1 Association of hypertension with T^c Baker, EH; Dong, YB; Sagnel 9593408 Not a renal disease foc 1 Association of Polymorphisms in En Mokretar, K; Velinov, H; Po: 26670794 Not a renal disease foc 1 Association of renin-angiotensin an Conen D, Glynn RJ, Buring J 18698212 Not a renal disease foc 1 Associations between the human ir Frossard PM, Parvez SH, Le: 14647005 Not a renal disease foc 1 Atrial Natriuretic Peptide Locally Cc Nakagawa, H: Oberwinkler, 25027872 Not a renal disease foc 1 Beneficial role of D allele in control Kumari, S; Sharma, N; Thak 27350671 Not a renal disease foc 1 Biochemical and genetic characteri: Ozdemir O, Kayatas M, Ceti 25394530 Not a renal disease foc 1 Blunted renal vascular response to Hopkins, PN; Lifton, RP; Hol 8728297 Not a renal disease foc 1 CARD8 rs2043211 polymorphism is Chen Y, Ren X, Li C, Xing S, F 25790751 Not a renal disease foc 1 Cardiovascular effects of aldostero: Escoubet B, Couffignal C, La 23852419 Not a renal disease foc 1 Clinical and laboratory characteriza Dong Y, Wang M, Nong L, V 25824806 Not a renal disease foc 1 Common genetic variants and hapk Barlassina, C; Dal Fiume, C; 17510212 Not a renal disease foc 1 Common genetic variants in the chi Yu L, Jiang L, Zhou XJ, Zhu L 20113265 Not a renal disease foc 1 Common variation in KLKB1 and es: Lu, XF; Zhao, WY; Huang, JF 17318641 Not a renal disease foc 1 Comprehensive analysis of the reni Kato, N; Sugiyama, T; Morit 10953993 Not a renal disease foc 1 Connexin 40 is dispensable for vasc Machura, K; Neubauer, B; N 25241776 Not a renal disease foc 1 Connexin 43 is not essential for the Gerl, M; Kurt, B; Kurtz, A; W 24062052 Not a renal disease foc 1 Contribution of angiotensin I conve Mondorf UF, Russ A, Wiese 9524045 Not a renal disease foc 1 CYP2C9 genotype modifies activity Osawa, N; Koya, D; Araki, S; 17143591 Not a renal disease foc 1 CYP3A5 and ABCB1 genes and hype Bochud, M; Bovet, P; Burnie 19290795 Not a renal disease foc 1 CYP3A5 genotype is associated witl Fromm MF, Schmidt BM, Pc 16141800 Not a renal disease foc 1 Deletion polymorphism of the angi Gharavi AG, Lipkowitz MS, I 8677872 Not a renal disease foc 1 Detection of the association betwe Matsumoto, A; Iwashima, Y 11106834 Not a renal disease foc

1

2 3

4

5

6

7

8 9

10

11

12

13

14 15

16

17

18

19 20

21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37

38

39

40

41

42 43

44

45

46

47

BMJ Open

1	Effect of the placminagen placmin (Knier, B. Cordecic, N. Klank,	21610512	Not a ropal d	icoaco foc
	Effect of the plasminogen-plasmin (Knier, B; Cordasic, N; Klank)			
	Efficacy of large doses of IL-2-activa Cao S, Wang YL, Ren XB, Yu			
	Endothelial nitric oxide synthase ge Page, A; Reich, H; Zhou, J; L			
	Evaluation of risk factors for the de Barnas, U; Schmidt, A; Illiev			
	Evaluation Of The Sa Locus In Huma Nabika, T; Bonnardeaux, A;		Not a renal d	
1	Exaggerated natriuresis during clan Simonsen, JA; Rasmussen, I	21749320	Not a renal d	isease foc
1	Extensive personal experience - Exa Dave-Sharma, S; Wilson, RC	9661590	Not a renal d	isease foc
1	Frequencies Of Variants Of Candida Zee, Ryl; Bennett, Cl; Schrac	7882587	Not a renal d	isease foc
1	Gene polymorphism of vascular en Yang, JW; Hutchinson, IV; S	21080079	Not a renal d	isease foc
1	Genetic polymorphism of Na-K cotr Cusi D, Stella P, Pozzoli E, B	2258861	Not a renal d	isease foc
1	Genetic polymorphisms of the renii Olivieri, O; Trabetti, E; Graz	10567188	Not a renal d	isease foc
1	Genetic polymorphisms of the renii Fabris, B; Bortoletto, M; Ca	15662219	Not a renal d	isease foc
1	Genetic risk of atherosclerotic rena van Onna, M; Kroon, AA; H	15326089	Not a renal d	isease foc
1	Genetic variant of the renin-angiot (Ichikawa, M; Konoshita, T; I	24549414	Not a renal d	isease foc
1	Genetic variants in five novel loci in Jiang DK, Ma XP, Yu H, Cao	25802187	Not a renal d	isease foc
1	Genetic variants in hypertensive pa Szperl, M; Dzielinska, Z; Ros	19043368	Not a renal d	isease foc
1	Genetic variants in the inositol pho Tan J, Yu CY, Wang ZH, Che	25683757	Not a renal d	isease foc
	Genetic variation in the KCNMA1 p(Tomas, M; Vazquez, E; Fern			
	Genetic variation of the renin-angic Hsu, CCC; Bray, MS; Kao, W			
	Genetic-Control Of Blood-Pressure Kim, Hs; Krege, Jh; Kluckma			
	Genomic association analysis identi Turner ST, Bailey KR, Schwa			
	Genotype-phenotype analysis of an Watkins, WS; Hunt, SC; Will			
	Genotypic interactions of renin-ang Mehri, S; Koubaa, N; Hamm			
	Haplotype-based case-control study Kobayashi, Y; Nakayama, T;			
	High aldosterone-to-renin variants Escher G, Cristiano M, Caus			
	Higher thrombin activatable fibrino Bavbek N, Ceri M, Akdeniz I			
	Identification of diuretic non-respo Yang, YY; Lin, HC; Lin, MW;			
	Impact of maternal angiotensinoge Pfab T, Stirnberg B, Sohn A,			
	Incidence of renal failure and neph Temme J, Peters F, Lange K,			
	Inefficient arterial hypertension cor Morales-Suarez-Varela, MN			
	Inhibition of tissue angiotensin con Montgomery HE, Kiernan L			
	Insertion-deletion polymorphism in Bayoumi, RA; Simsek, M; Ya			
	Is angiotensin-converting enzyme ii Mao, YQ; Xu, X; Wang, X; Zł			
	Is the influence of variation in the A Muthumala, A; Gable, DR; F			
	Juxtaglomerular cell tumor: A morp Kuroda, N; Maris, S; Monzo			
	Liver pyruvate kinase polymorphisn Wang H, Chu W, Das SK, Re			
1	Long-term follow-up of patients witPuricelli E, Bettinelli A, Bors	20219833	Not a renal d	isease foc
1	Low-salt diet and diuretic effect on Manunta, P; Bianchi, G	14684671	Not a renal d	isease foc
1	Lys(173)Arg and -344T/C variants o Komiya I, Yamada T, Takara	10720581	Not a renal d	isease foc
1	Malignant Nephrosclerosis in a Pati Yamanouchi, M; Ubara, Y; I	26466703	Not a renal d	isease foc
1	Mechanisms of suppression of rena Shimamoto K, Masuda A, A	2676859	Not a renal d	isease foc
1	Melatonin prevents maternal fruct Tain, YL; Leu, S; Wu, KLH; Le	24867192	Not a renal d	isease foc
1	Middle cerebral artery stenosis in t Thomas, GN; Lin, JW; Lam,	12865608	Not a renal d	isease foc
	miR149 rs71428439 polymorphism Wang Z, Wei M, Ren Y, Liu I			
	Molecular genetics of the renin-ang Corvol, P; Soubrier, F; Jeune			
	Molecular variants of the sodium/hZhu, HD; Sagnella, GA; Don			
		NA	Not a renal d	
			-	

1 Natriuretic peptides buffer renin-de Demerath, T; Staffel, J; Schr 24717731 Not a renal disease foc 1 No Evidence for the Expression of R Liktor, B; Csomor, P; Szasz, 23370555 Not a renal disease foc 1 Nonmodulation and essential hype Hollenberg, NK; Williams, G 16672145 Not a renal disease foc 1 Novel SLC12A3 mutations in Chines Shao L, Ren H, Wang W, Zhi 18287808 Not a renal disease foc 1 Oxidative stress-related factors in E CalÃ² LA, Pagnin E, Davis PA 12897089 Not a renal disease foc 1 Papillary renal cell carcinoma: a clir Liu K, Ren Y, Pang L, Qi Y, Ji 26339402 Not a renal disease foc 1 Peripheral vascular disease in type Thomas, GN; Critchley, JAJF 14632699 Not a renal disease foc 1 Pharmacogenetic association of the Arnett, DK; Davis, BR; Ford, 15967849 Not a renal disease foc 1 Phenotype-genotype interactions o Song, XY; Lee, SY; Ma, RCW 19479237 Not a renal disease foc 1 Polymorphism in angiotensin II rece Baudin, B 15640279 Not a renal disease foc 1 Polymorphism of the aldosterone s Ko, GJ; Kang, YS; Lee, MH; S 18771471 Not a renal disease foc 1 Polymorphisms in genes of the reni Deckers, IA; van den Brandt 24978482 Not a renal disease foc 1 Polymorphisms of the renin-angiot Bofinger, A; Hawley, C; Fish 11317203 Not a renal disease foc 1 Possible role for nephron-derived a Ramkumar, N; Stuart, D; Ca NA Not a renal disease foc 1 Prevalence of angiotensin convertir Shanmuganathan R, Kumar 26440392 Not a renal disease foc 1 Randomised controlled trial of dual Mogensen, CE; Neldam, S; ⁻ 11110735 Not a renal disease foc 1 Recurrence of the R947X mutation Fernandes-Rosa FL, de Cast 16757525 Not a renal disease foc 1 Renal ACE immunohistochemical lo Mizuiri, S; Yoshikawa, H; Ta 9469501 Not a renal disease foc 1 Renal genetic mechanisms of essen Manunta, P; Cerutti, R; Beri 9377722 Not a renal disease foc 1 Renal haemodynamics are not relat Skov, K; Madsen, JK; Hansel 17083073 Not a renal disease foc 1 Renal Mechanisms of Association b Tomaszewski, M; Eales, J; D 25918036 Not a renal disease foc 1 Renal redox-sensitive signaling, but Yogi, A; Mercure, C; Touyz, 18195161 Not a renal disease foc 1 Renin in blood vessels in human pu Taylor GM, Cook HT, Sheffie 2450464 Not a renal disease foc 1 Renin Production In Congenital Me TSUCHIDA, Y; SHIMIZU, K; F 8385325 Not a renal disease foc 1 Renin-angiotensin system gene pol[,] BuraczyÅ, ska M, Pijanowsk 14502296 Not a renal disease foc 1 Renin-Angiotensin System Gene Va Joyce-Tan, SM; Zain, SM; SaNA Not a renal disease foc 1 Renin-Angiotensin System Polymor Forman, JP; Fisher, NDL; Po 18550936 Not a renal disease foc 1 Risk given by AGT polymorphisms ii Li, Q; Sun, LJ; Du, J; Ran, PZ; 26391364 Not a renal disease foc 1 Role of ACE inhibitors in patients w Cordonnier, DJ; Zaoui, P; Hz 11708761 Not a renal disease foc 1 Role of GRK4 in the Regulation of A Chen, K; Fu, CJ; Chen, CY; Li 24218433 Not a renal disease foc 1 Serum paraoxonase-1 gene polymo Atar A, Gedikbasi A, Sonme 26795139 Not a renal disease foc 1 Single Strand Conformation Polymc Bettinaglio, P; Galbusera, A 12270765 Not a renal disease foc 1 Synergistic effect of alpha-adducin Barlassina, C; Schork, NJ; M 10720960 Not a renal disease foc 1 Systemic nitric oxide clamping in nc Simonsen, JA; Rasmussen, I 19785629 Not a renal disease foc 1 TGF-beta1 gene polymorphisms an Ebinç FA, Derici U, Göne 18197538 Not a renal disease foc 1 The alpha-adducin Gly460Trp polyn Pescatello LS, Blanchard BE 17472579 Not a renal disease foc 1 The association between vitamin D Maia, J; da Silva, AS; do Car 27536155 Not a renal disease foc 1 The association of the R563Q genol Jones ES, Owen EP, Rayner 22895453 Not a renal disease foc 1 The brain and salt-sensitive hypert (Leenen, FHH; Ruzicka, M; H 11884268 Not a renal disease foc 1 The cardiovascular system in famili Jakobsen, NFB; Laugesen, ENA Not a renal disease foc 1 The Connexin40 A96S Mutation Cai Lubkemeier, I; Machura, K; 21597036 Not a renal disease foc 1 The interaction of AGT and NOS3 g(Gatti, RR; Santos, PS; Sena, 22791701 Not a renal disease foc 1 The M235T polymorphism in thean van den Born, BJH; van Moi 17921816 Not a renal disease foc 1 The presence of PAI-1 4G/5G and A Güngör Y, KayataÅŸ M, ` 21332339 Not a renal disease foc 1 The state and responsiveness of the Price, DA; De'Oliveira, JMF; 10232494 Not a renal disease foc 1 Transforming growth factor-beta(1 Suthanthiran, M; Li, BG; Soi 10725360 Not a renal disease foc 1 Trientine and renin-angiotensin sys Moya-Olano L, Milne HM, F 22029676 Not a renal disease foc

59 60

1

2 3

4

5

6

7

8 9

10

11

12

13

14 15

16

17

18

19

20 21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37

38

39

40

41

42

43 44

45

46

47

48 49

50

51

52

53

54 55

56

57

1 1 Unclassified renal cell carcinoma: a Hu ZY, Pang LJ, Qi Y, Kang X 25120763 Not a renal disease foc 2 3 1 Urinary UMOD excretion and chron Wu CH, Lee CT, Lee CH, Ch€ 21332338 Not a renal disease foc 4 1 Vitamin D Deficiency in the Pathoge Rostand, SG 24929953 Not a renal disease foc 5 1 Vitamin D receptor gene polymorpl Cottone S, Guarino L, Arsen 25500899 Not a renal disease foc 6 1 Wilms' tumor protein (-KTS) modul: Steege, A; Fahling, M; Palie: 18496514 Not a renal disease foc 7 1 [A novel COL4A5 splicing mutation Tang Z, Dai Y, Wan Z, Zhan 19065523 Not English or Spanish 8 9 1 [Angiotensin-converting enyme inst Krajina-AndriceviÄ[‡] M, Ziba 23120809 Not English or Spanish 10 1 [Angiotensin-converting enzyme ge Guan T, Liu Z, Chen Z. 10436947 Not English or Spanish 11 1 [Arterial hypertension and chronic | Ermolenko VM, Lifshits NL, 7700 Not English or Spanish 12 1 [Association of single nucleotide po Wang ZH, Chen N, Pan XX, F 16796905 Not English or Spanish 13 1 [Association of the renin-angiotens BuraczyÅ, ska M, Ksiazek P, 12476891 Not English or Spanish 14 15 1 [Correlation between HLA-DQA1 all Ren S, Tong L, Xilin G, Sui J, 11836690 Not English or Spanish 16 1 [Correlation of cyclin D1 overexpre: Ren YY, Du LJ, Feng ZQ, Len 16480581 Not English or Spanish 17 1 [Gene mutation analysis of X-linked Song Y, Ma HW, Li F, Hu M, 24229582 Not English or Spanish 18 1 [Genetic predisposition to systemic Bzoma B, Debska-SlizieÅ, A 19112833 Not English or Spanish 19 1 [Is PstI polymorphism of the angiot Grzeszczak W, Zychma M, Z 9499204 Not English or Spanish 20 21 1 [Morphofunctional characteristics (Sokolova RI, Bobusheva GS, 2678677 Not English or Spanish 22 1 [Mutations in NPHS2 in familial ster Fu R, Chen XM, Wang QH, C 19099831 Not English or Spanish 23 1 [Relationship between I/D polymor Moleda P, Majkowska L, Sa 17941464 Not English or Spanish 24 1 [Renin-angiotensin system genes in BuraczyÅ, ska M, JÅ³Å²wiak 11865575 Not English or Spanish 25 26 1 [Study on the association between Yang HY, Tai WL, Yuan HY, > 15192842 Not English or Spanish 27 1 Genomics of type 1 diabetes melliti Nosikov, VV NA Not English or Spanish 28 1 A rare case of juvenile hypertensior Paragliola, RM; Capoluongc 26084817 Paediatric individuals 29 1 ACE and AT1 receptor gene polymo Kostic, M; Stankovic, A; Zivk 15179569 Paediatric individuals 30 1 ACE gene insertion/deletion polym Serdaroglu, E; Mir, S; Berde 16208534 Paediatric individuals 31 32 1 ACE gene polymorphism and renal Haszon, I; Friedman, AL; Pa 12478352 Paediatric individuals 33 1 ACE gene polymorphism in Egyptial Fahmy, ME; Fattouh, AM; H 18792483 Paediatric individuals 34 1 ACE gene polymorphism in Turkish Celik US, Noyan A, Bayazit / 16825089 Paediatric individuals 35 1 ACE I/D gene polymorphism in prim Oktem, F; Sirin, A; Bilge, I; E 14986085 Paediatric individuals 36 37 1 An insertion/deletion ACE polymor Kaczmarczyk, M; Loniewska 22674971 Paediatric individuals 38 1 Angiotensin converting enzyme ger Bajpai, M; Pratap, A; Somite 14713838 Paediatric individuals 39 1 Angiotensin-converting enzyme ger Al-Eisa, A; Haider, MZ; Sriva 10986863 Paediatric individuals 40 1 Angiotensinogen gene T235 variant Gallego, PH; Shephard, N; E 18413222 Paediatric individuals 41 1 Association of angiotensin converti Narasimhan, KL; Madhu, K; NA Paediatric individuals 42 43 1 Association of angiotensin type 2 re Miranda, DM; Dos Santos, / 24995698 Paediatric individuals 44 1 Autosomal dominant pseudohypoa Geller, DS; Zhang, JH; Zenn; 16611713 Paediatric individuals 45 1 DD Genotype of ACE Gene in Boys: Alasehirli, B; Balat, A; Buyul 22017506 Paediatric individuals 46 1 Donor and recipient ACE I/D genoty Buscher, R; Nagel, D; Finkel 21309964 Paediatric individuals 47 1 Earlier Onset of Complications in Yc Dart, AB; Martens, PJ; Rigat 24130346 Paediatric individuals 48 49 1 Effect of angiotensin-converting en Saber-Ayad M, Sabry S, Abc 20418353 Paediatric individuals 50 1 Effects of genetic polymorphisms o Tabel, Y; Berdeli, A; Mir, S; 16525944 Paediatric individuals 51 1 Genetic polymorphism of the renin Yim, HE; Jung, MI; Choi, BM 14764974 Paediatric individuals 52 1 Genetic polymorphisms of the renii Frishberg, Y; Becker-Cohen, 9853248 Paediatric individuals 53 1 Genetic risk factors in typical haem Taranta, A; Gianviti, A; Paln 19110485 Paediatric individuals 54 55 1 Heterozygous Loss-of-Function SEC Bolar, NA; Golzio, C; Zivna, 27392076 Paediatric individuals 56 1 Impact of ACE I/D gene polymorphi Hohenfellner, K; Wingen, A 11354781 Paediatric individuals 57 1 Impact of common functional polyr Hussein, A; Elderwy, AA; As 25939993 Paediatric individuals 58

1

2 3

4

5

6

7

8 9

10

11

12

13

14 15

16

17

18

19

20 21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37

38

39

40

41

42

43 44

45

46

47

48 49

60

1 Implication of genetic variations in Hahn, H; Ku, SE; Kim, KS; Pa 16133060 Paediatric individuals 1 Implications of certain genetic poly Ozen S, Alikasifoglu M, Saat 10401028 Paediatric individuals 1 Increased HLA- A*11 in Chinese chi Cheung W, Ren EC, Chan SF 11956863 Paediatric individuals 1 Low renin-angiotensin system activ Peruzzi, L; Lombardo, F; Am 16006956 Paediatric individuals 1 Mapping candidate regions and ger Weber, S; Landwehr, C; Rer 20605837 Paediatric individuals 1 MCP1 2518 A/G polymorphism affe Besbas N, Kalyoncu M, Cil C 26335292 Paediatric individuals 1 Nitric oxide synthase gene polymor Balat A, Alasehirli B, Oguzka 17365914 Paediatric individuals 1 NPHS2 variation in Chinese souther Dai Y, Yang H, Gao P, Liu W 25112471 Paediatric individuals 1 Polymorphisms of renin-angiotensi Maruyama, K; Yoshida, M; I 11354780 Paediatric individuals 1 Posterior urethral valves: Prelimina Bajpai, M; Pratap, A; Tripatl 15643266 Paediatric individuals 1 Prioritization and burden analysis o Nicolaou, N; Pulit, SL; Nijma 26489027 Paediatric individuals 1 Renal tubular dysgenesis, a not unc Lacoste M, Cai Y, Guicharna 16790508 Paediatric individuals 1 Renin-angiotensin gene polymorph Papp, F; Friedman, AL; Bere 12579405 Paediatric individuals 1 Renin-angiotensin system gene pol¹ Liu, DS; Lu, F; Zhai, SH; Wei, NA Paediatric individuals 1 Renin-angiotensin system gene pol Ozkaya, O; Soylemezoglu, C 16521052 Paediatric individuals 1 Renin-angiotensin system polymory Pardo, R; Malaga, S; Coto, E 12579398 Paediatric individuals 1 Renin-angiotensin system polymory Liu, KP; Lin, CY; Chen, HJ; W 15045574 Paediatric individuals 1 Risk factors for loss of residual rena Ha, IS; Yap, HK; Munarriz, R 25874598 Paediatric individuals 1 The juxtaglomerular apparatus in B Taugner R, Waldherr R, Sey 3128915 Paediatric individuals 1 The role of vitamin D receptor gene Goknar N, A–ktem F, Torun 26908058 Paediatric individuals 1 Add-on angiotensin receptor block: Agarwal, R 11380832 Pharmaceutical drug fc 1 Antiproteinuric effect of candesart; Haneda, M; Kikkawa, R; Sak 15364166 Pharmaceutical drug fc 1 Application of Direct Renin Inhibitic Mende, CW 20490905 Pharmaceutical drug fc 1 Captopril enhances transforming gr Di Paolo S, Schena A, Stallo 12499886 Pharmaceutical drug fc 1 DPP-4 Inhibition on Top of Angioter Alter, ML; Ott, IM; von Wet 23171828 Pharmaceutical drug fc 1 Effects of losartan and enalapril on Argani, H; Ghorbanihaghjo, 18261537 Pharmaceutical drug fc 1 Enalapril and losartan affect lipid p(Rashtchizadeh, N; Aghaeish 17222813 Pharmaceutical drug fc 1 Losartan decreases plasma levels o Campistol, JM; Inigo, P; Jim 10432413 Pharmaceutical drug fc 1 Pentoxifylline for Renoprotection ir Navarro-Gonzalez, JF; Murc 21144773 Pharmaceutical drug fc 1 Renal implications of angiotensin re Hollenberg, NK 11459212 Pharmaceutical drug fc 1 Renin-angiotensin system polymor; Noroozianavval, M; Argani, 17524880 Pharmaceutical drug fc 1 The influence of renin-angiotensin : Goyache-Goni, B; Aranda-L; 24241364 Pharmaceutical drug fc 1 The influence of the ACE (I/D) polyr Luik, PT; Hoogenberg, K; Ke 12856080 Pharmaceutical drug fc 1 Thiazolidinediones and the renal ar Goenka, N; Kotonya, C; Pen 18230694 Pharmaceutical drug fc 2 Relationship between the renin-angi Wu S, Xiang K, Zheng T, St 11776100 No data 3 Chronic renal insufficiency among A Prasad P et al. 16672053 < 3 populations reporte 3 M235T polymorphism in the AGT ge Sarkar S, Gupta V, Kumar A 25660845 < 3 populations reported 3 Plasma renin and prorenin and reni Deinum J et al. 10462269 < 3 populations reporte 3 Renin gene rs1464816 polymorphis Ramanathan G, Elumalai R. 26753721 < 3 populations reporte 3 Renin–angiotensin–aldosterone sys Mtiraoui N et al. 21421655 < 3 populations reporte

1 2 3 4 I study 5 I study 6 I study 7 I study 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	
57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	2
3	3
4	ŀ
5	5
6	5
7	7
8	3
ç	
	0
1	
1	
	3
	4
	5
1	6
1	6 7
1	8
	9
1	9 20
	21
4	22
	23
2	24
	25
2	26
	27
	28
	29
3	80
	81
3	32
3	33
	34
3	85
3	86

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer terren only

$ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ $	
29 30 31	
32 33	
34 35	
36 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48	


2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7 8
1	Q
	0
1	9
1 2	9 0
1 2 2	9 0 1
1 2 2 2	9 0 1 2
1 2 2 2 2	9 0 1 2 3
1 2 2 2 2 2	9 0 1 2 3 4
1 2 2 2 2 2	9 0 1 2 3 4 5
1 2 2 2 2 2	9 0 1 2 3 4 5
1 2 2 2 2 2	9 0 1 2 3 4 5
1 2 2 2 2 2 2 2 2 2 2 2	9012345678
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90123456789
1 2 2 2 2 2 2 2 2 2 2 3	901234567890
1 2 2 2 2 2 2 2 2 2 2 2 2 3 3	9012345678901
1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	90123456789012
1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3	901234567890123
1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	901234567890123

tor oper terren ont

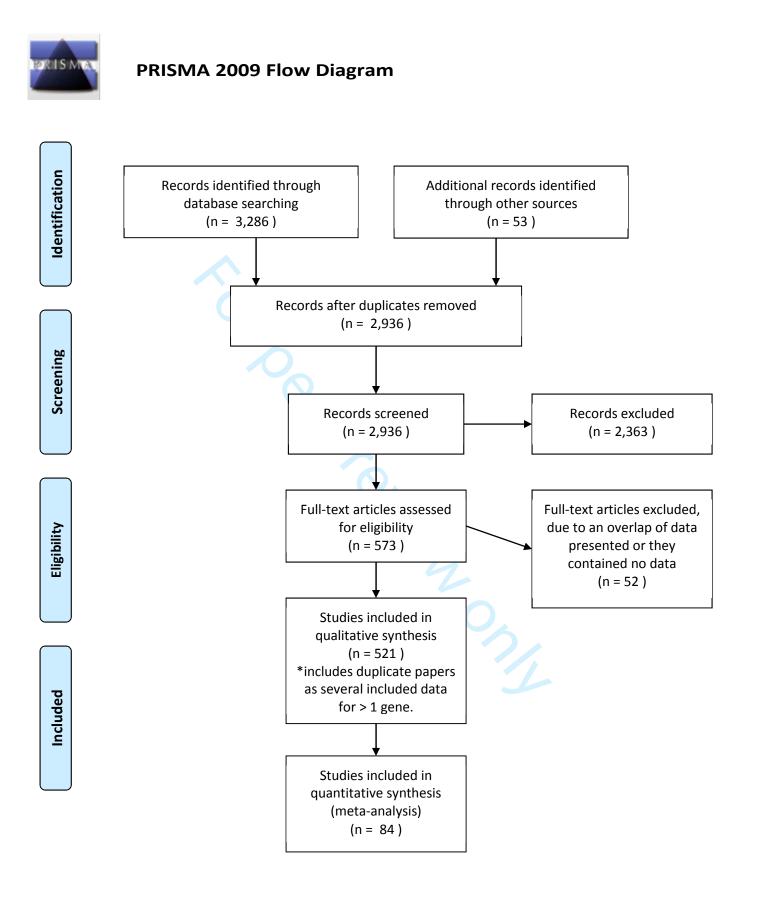
łу

łу

6		
6 7		
8		
9		
10		
11		
12		
13		
14	ły	
15 16	ły	
16	ły	
17		
18	ly the	
19	ły	
20	ły	
21	ły	
22	ły	
23	ły	
24		
25	ły	
26 27	ły	
27 28	ły	
28 29	ły	
30	ły	
31	ły	
32	ly vi	
33		
34	ły	
35	ły	
36	ły	
37	ły	
38	ły	
39	ły	
40		
41	ły	
42	ły	
43	ły	
44	ły	
45	ły	
46	ły	
47	ly y	
48 49		
49 50	ły	
50 51	ły	
52	ły	
53	ły	
54	ły	
55	ły	
56	iv	

us

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1		
2	us	
4	us	
5	us	
6	us	
7	us	
2 3 4 5 6 7 8 9	us	
9 10	us	
10	us	
12	us	
13	us	
14	us	
15	us	
16 17	us	
17 18	us	
19	us	
20	us	
21	us	
22	us	
23	us	
24 25	us	
26	us	
27	us	
28	us	
29	us	
30	us	
31 32	us	
33	us	
34	us	
35	us	
36	us	
37 38	us	
39	us	
40	us	
41	us	
42	us	
43	us	
44 45	us	
46	us	
47	us	
48	us	
49	us	
50	us	
51 52	us	
52	us	
54	us	
55	us	
56	us	
57	us	
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
1	us	
2 3 4 5 6 7 8 9	us	
4	us	
5		
6	us	
7	us	
8 0	us	
10	us us	
11		
12	us	
13 14	us	
14	us us	
16		
17	us	
18	us	
19 20	us	
20 21	us	
22	us	
23	us	
24	us	
25 26	us	
20	us	
28	us	
29	us	
30	us	
31 32	us	
33	us	
34	us	
35	us	
36 37	us	
38	us	
39	us	
40	us us	
41		
42 43	us	
43	us	
45	us us	
46		
47	us	
48 49	us	
50	us	
51	us	
52	us	
53	us	
54 55	us	
55 56	us	
57	us	
58	us	
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xhthi

$\begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 5 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 42 \\ 43 \\ 44 \\ 5 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 42 \\ 43 \\ 44 \\ 5 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 41 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 15 \\ 25 \\ 31 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$			
50 51			

1			
1 2 3 4 5 6 7 8 9			
4			
5 6			
7			
8 9			
9 10			
11			
12 13			
14			
15 16			
17			
18 10			
19 20			
21			
22 23			
24			
25			
26 27	ocus ocus		
28	Cus		
29 30	ocus		
31	ocus		
32 33	ocus		
34	CUS		
35	ocus ocus		
36 37	Cus		
38	ocus		
39 40	ocus		
41	CUS		
42 43	CUS		
44	ed per SNP		
45 46	ed per SNP		
46 47	ed per SNP		
48	ed per SNP		
49 50	ed per SNP		
51			
52 53			
53 54			
55			
56 57			
58			
50			

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit <u>www.prisma-statement.org</u>.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	<u> </u>		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1&2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2&3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	1&3
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3-4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	3
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	3
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4

PRISMA 2009 Checklist

Page 1 of 2

Section/topic	#	Checklist item	Reported on page #	
Risk of bias across studies		Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	4	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5	
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	4&5	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	4-6	
Results of individual studies 20		For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	5&6	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	5&6	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA	
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	7-9	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8-9	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	7-9	
FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	9	

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Reporting checklist for meta-analysis of observational studies.

Based on the MOOSE guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the MOOSE reporting guidelines, and cite them as:

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283(15):2008-2012.

33 34		Reporting Item	Page Number
35 36 37	<u>#1</u>	Identify the study as a meta-analysis of observational research	1
38 39 40 41 42 43 44 45 46 47	<u>#2</u>	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number (From PRISMA checklist)	1&2
48 49	<u>#3a</u>	Problem definition	3
50 51	<u>#3b</u>	Hypothesis statement	2
52 53	<u>#3c</u>	Description of study outcomes	3
54 55 56	<u>#3d</u>	Type of exposure or intervention used	3
57 58	<u>#3e</u>	Type of study designs used	3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

		<u>#3f</u>	Study population	3
	Search strategy	<u>#4a</u>	Qualifications of searchers (eg, librarians and investigators)	3-4
		<u>#4b</u>	Search strategy, including time period included in the synthesis and keywords	4
) <u>2</u> }		<u>#4c</u>	Effort to include all available studies, including contact with authors	4
1 5		<u>#4d</u>	Databases and registries searched	3
) 7 })		<u>#4e</u>	Search software used, name and version, including special features used (eg, explosion)	4
) 2		<u>#4f</u>	Use of hand searching (eg, reference lists of obtained articles)	3
5		<u>#4g</u>	List of citations located and those excluded, including justification	3
) 7 }		<u>#4h</u>	Method of addressing articles published in languages other than English	4
))		<u>#4i</u>	Method of handling abstracts and unpublished studies	4
- 3 1		<u>#4j</u>	Description of any contact with authors	NA
5 7 8		<u>#5a</u>	Description of relevance or appropriateness of studies gathered for assessing the hypothesis to be tested	3&4
) 		<u>#5b</u>	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	3&4
- 3 1 5		<u>#5c</u>	Documentation of how data were classified and coded (eg, multiple raters, blinding, and interrater reliability)	3&4
5 7 3 9		<u>#5d</u>	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	4
) 2 3 4		<u>#5e</u>	Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study results	4
5		<u>#5f</u>	Assessment of heterogeneity	4
3))		<u>#5g</u>	Description of statistical methods (eg, complete description of For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4-5

Page 133 of 13	33	BMJ Open	
1 2 3 4 5		fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose- response models, or cumulative meta-analysis) in sufficient detail to be replicated	
6 7 8 9	<u>#5h</u>	Provision of appropriate tables and graphics	4-6 & additional materials
10 11 12 13 14 15	<u>#6a</u>	Graphic summarizing individual study estimates and overall estimate	Figures & Supplementary Figures
16 17	<u>#6b</u>	Table giving descriptive information for each study included	ST4-ST6
18 19	<u>#6c</u>	Results of sensitivity testing (eg, subgroup analysis)	5
20 21 22	<u>#6d</u>	Indication of statistical uncertainty of findings	4-6
23 24	<u>#7a</u>	Quantitative assessment of bias (eg. publication bias)	4-6
25 26 27 28	<u>#7b</u>	Justification for exclusion (eg, exclusion of non–English- language citations)	3
29 30	<u>#7c</u>	Assessment of quality of included studies	3-6
31 32	<u>#8a</u>	Consideration of alternative explanations for observed results	7-8
33 34 35 36	<u>#8b</u>	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	8-9
37 38 39	<u>#8c</u>	Guidelines for future research	8-9
40 41	<u>#8d</u>	Disclosure of funding source	9
42 43 44 45 46 Action Ac	al Associa	h permission from JAMA. 2000. 283(15):2008-2012. Copyright © a ation. All rights reserved.This checklist can be completed online us <u>dreports.org/</u> , a tool made by the <u>EQUATOR Network</u> in collabora	sing

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Genetic associations between genes in the reninangiotensin-aldosterone system and renal disease: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026777.R1
Article Type:	Research
Date Submitted by the Author:	28-Jan-2019
Complete List of Authors:	Smyth, Laura; Queen's University Belfast Centre for Public Health, Epidemiology and Public Health Research Group Cañadas-Garre, Marisa; Queen's University Belfast Centre for Public Health, Epidemiology and Public Health Research Group Cappa, Ruaidhri; Queen's University Belfast Centre for Public Health, Epidemiology and Public Health Research Group Maxwell, Alexander; Queen's University Belfast Centre for Public Health, Centre for Public Health; Belfast City Hospital, Regional Nephrology Unit McKnight, Amy; Queen's University Belfast, Centre for Public Health
Primary Subject Heading :	Genetics and genomics
Secondary Subject Heading:	Renal medicine, Public health
Keywords:	CKD, NEPHROLOGY, RAAS, Meta-analysis, Renin-angiotensin-aldosterone system, Kidney

SCHOLARONE[™] Manuscripts

1 2		
2 3 4 5	1 2	Genetic associations between genes in the renin-angiotensin-aldosterone system and renal disease: a systematic review and meta-analysis
6 7 8	3 4	Laura J. Smyth [*] , Marisa Cañadas-Garre, Ruaidhri C. Cappa, Alexander P. Maxwell, Amy Jayne McKnight
9 10	5 6	Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
11 12 13	7	
13 14 15	8	*Corresponding author email: laura.smyth@qub.ac.uk
16 17	9	
18 19	10	SHORT TITLE
20 21	11	A meta-analysis of RAAS gene variants and CKD
22 23	12	
24	13	WORD COUNT (excluding Abstract, Keywords, References, Figures, Tables, Statements and
25 26	14	Contributions)
27 28	15	3,599
29	16	
30 31	17	ABSTRACT
32 33	18	Background
34	19	Chronic kidney disease (CKD) is defined by abnormalities in kidney structure and/or function present
35 36	20	for more than three months. Worldwide, both the incidence and prevalence rates of CKD are
37	21	increasing. The renin-angiotensin-aldosterone system (RAAS) regulates fluid and electrolyte balance
38	22	through the kidney. RAAS activation is associated with hypertension, which is directly implicated in
39 40	23	causation and progression of CKD. RAAS blockade, using drugs targeting individual RAAS mediators
41	24	and receptors, has proven to be reno-protective.
42 43	25	Objectives
44	26	To assess genomic variants present within RAAS genes; ACE, ACE2, AGT, AGTR1, AGTR2 and REN, for
45 46	27	association with CKD.
47 48	28	Design and Data Sources
49	29	A systematic review and meta-analysis of observational research was performed to evaluate the RAAS
50	30	gene polymorphisms in CKD using both PubMed and Web of Science databases with publication date
51 52	31	between the inception of each database and 31/12/2018. Eligible articles included case-control
53	32	studies of a defined kidney disease and included genotype counts.
54 55	33	Eligibility Criteria
56	34	Any paper was removed from the analysis if it was not written in English or Spanish, was a non-human
57 58	35	study, was a paediatric study, was not a case-control study, did not have a renal disease phenotype,
58 59	36	did not include data for the genes, was a gene expression based study or had a pharmaceutical drug
60	37	focus.

38 Results

A total of 3,531 studies were identified, 114 of which met the inclusion criteria. Genetic variants
reported in at least three independent publications for populations with the same ethnicity were
determined and quantitative analyses performed.

Three variants returned significant results in populations with different ethnicities at p<0.05; ACE
 insertion, AGT rs699-T allele, and AGTR1 rs5186-A allele; each variant was associated with a reduced
 risk of CKD development.

45 Conclusions

46 Further biological pathway and functional analyses of the RAAS gene polymorphisms will help define47 how variation in components of the RAAS pathway contribute to CKD.

49 Keywords

50 CKD, kidney, meta-analysis, RAAS, renin-angiotensin-aldosterone system

52 ARTICLE SUMMARY

53 Strengths and limitations of the study

- Strength: Individuals with microalbuminuria were excluded from both the case and control definitions to improve the discrimination between individuals with and without renal disease as microalbuminuria may regress, remain stable or progress to macroalbuminuria.
 - Strength: Due to previously reported heterogeneity between different ethnic groups, we included this as a risk factor and performed each analysis per ethnicity.
- Limitation: Some studies in our search could not be included in quantitative analysis as they lacked information relating to genotype counts and had an unclear measure and definition of albuminuria for both cases and controls.

62 Hypothesis statement

• We hypothesise that there will be an association between genetic variants within RAAS genes and CKD.

65 INTRODUCTION

Chronic kidney disease (CKD) is defined as a progressive loss of renal function measured as a reduction in glomerular filtration rate (GFR) to <60 mL/min/1.73m², or the presence of persistent urinary abnormalities including albuminuria and/or structural alterations which have been present for at least three months(1). CKD is an increasing public health issue given its associated morbidities, premature mortality and management of advanced CKD is a significant burden on health care budgets worldwide(2,3). There is substantial evidence that inherited genetic variants(4), the presence of diabetes(5) or hypertension(6) and an individual's ethnicity(7,8) directly influence the development of various CKD phenotypes.

The renin-angiotensin-aldosterone system (RAAS) is a homeostatic endocrine system which is of
critical importance to the regulation of blood pressure and maintenance of fluid and electrolyte
balance(9,10). Renin, secreted from the juxtaglomerular apparatus in response to reduced renal

BMJ Open

perfusion pressure, catalyses the conversion of angiotensinogen to angiotensin I(11). Subsequently,

angiotensin I converting enzyme (ACE) cleaves angiotensin I to generate angiotensin II, which

regulates heart and kidney function by binding to and activating angiotensin II receptors (type I and

type II)(11,12). The angiotensin II type I receptors are responsible for multiple biologic actions of RAAS

- Increased RAAS activation is linked to progression of CKD of different aetiologies, especially diabetic nephropathy (DN)(11,15–18), and is mediated by hypertensive injury(17) and accelerated renal fibrosis(19). The physiological relevance of this pathway in the progression of CKD has focused attention on RAAS components including ACE, angiotensin I converting enzyme 2 (ACE2), angiotensinogen (AGT), angiotensin II receptor type 1 (AGTR1), angiotensin II receptor type 2 (AGTR2) and renin (REN), as candidate genes for various CKD-related phenotypes. Multiple studies have implicated RAAS gene variants in the progression of CKD(20–26).

including vasoconstriction and sodium reabsorption(11–14).

- This manuscript describes a systematic review and meta-analysis to examine published data reporting genetic variants present within six of the RAAS candidate genes: ACE, ACE2, AGT, AGTR1, AGTR2 and REN, for a range of CKD phenotypes and ethnicities, to help define their putative roles as risk factors for CKD.

METHODS

Search Strategy: A systematic search was undertaken following recognised methods, the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines(27), by two investigators. PubMed and Web of Science online databases were searched for studies published between the inception of each database and 31st December 2018. All search terms are detailed in Supplementary Table S1.

The general strategy of the searches was to follow the structure; (all alternative versions of each gene name, separated by the boolean operator OR) AND (kidney OR nephrology OR nephropathy OR renal) AND (SNP OR polymorphism OR variant OR allele OR genotype). For each search term, where an appropriate MeSH term was available, the query included the quoted search term OR the MeSH term. Additional filters including English OR Spanish languages, human studies, case control studies, not clinical trials, not review articles, not a case report, not a meta-analysis were applied.

Reference lists from included publications were also manually searched. Two authors (LJS and MCG) independently conducted the literature search, screened the articles and extracted the data. In the case of any disagreement, a third author (RCC) considered the articles. A range of CKD phenotypes were included in this analysis, the case and control definitions are included in Table 1.

Table 1: Phenotypic comparisons included in this analysis

Case Group	Control Group
Autosomal dominant polycystic kidney disease	Healthy controls
Atherosclerotic renal artery stenosis	Healthy controls
Balkan endemic nephropathy	Healthy controls
Chronic glomerulonephritis	Healthy controls
Chronic kidney disease	Healthy controls
Diabetic nephropathy*	Diabetes mellitus
Diabetic nephropathy*	Healthy controls
End-stage renal disease	Healthy controls

	End-stage renal disease	Type 1 diabetes mellitus
	Focal segmental glomerulosclerosis	Healthy controls
	Glomerulonephritis	Healthy controls
	Hypertension-related renal disease	Healthy controls with hypertension
	Hypertension-related renal disease	Healthy controls
	IgA Nephropathy	Healthy controls
0	Interstitial nephritis	Healthy controls
1 2	Lupus nephritis	Systemic lupus erythematosus
2 3	Lupus nephritis	Healthy controls
4	Minimal change nephrotic syndrome	Healthy controls
5	Non-Balkan endemic nephropathy	Healthy controls
5	Nephroangiosclerosis	Healthy controls
7	Polycystic kidney disease	Healthy controls
8 9	Primary membranous glomerulonephritis	Healthy controls
)	Primary membranous glomerulonephritis	Organ donors
	Renal transplant recipients	Healthy controls
2	Renal transplant recipients	Kidney Donors
3	Type 1 diabetic nephropathy*	Type 1 diabetes mellitus
↓ -	Type 1 diabetic nephropathy linked to end-stage renal disease	Healthy controls
5	Type 1 diabetic nephropathy linked to end-stage renal disease	Type 1 diabetes mellitus
7	Type 2 diabetic nephropathy*	Type 2 diabetes mellitus
3	Type 2 diabetic nephropathy linked to end-stage renal disease	Healthy controls
Ð	Type 2 diabetic nephropathy linked to end-stage renal disease	Type 2 diabetes mellitus
) 111	* In the studies including diabetic nephropathy as cases,	only individuals with reported
¹ 112	macroalbuminuria or proteinuria were included. Individuals with n	nicroalbuminuria woro ovcludod

Inclusion/Exclusion Criteria: Inclusion criteria were judged against a standardised list of agreed criteria (LJS, MCG and AJM), whereby the English or Spanish language publication described an adult, human case-control study, of a defined kidney disease. In the rare instances when suspected duplicate data was identified within two or more included articles, only the article either published first, or that with the larger number of participants was included.

Articles were excluded if they included paediatric subjects, were a pharmacological based study
 reporting clinical trials of medications, did not contain genotypic data for the correct gene or were
 non-human studies.

Data extraction: Where available, the size of each study, case group disease definition and number of individuals, control group definition and number of individuals, ethnicity, genetic variant, genotype in the format of allele one-heterozygote-allele two and allele counts were recorded and calculated in spreadsheets by two authors (LIS and MCG). Articles were re-assessed where any disagreement occurred and a third reviewer was employed. Ethnicities were recorded from the articles and re-coded following the International Genome Sample Resources' online guidance(28). Where any population did not align to a listed population code, a new one was created for the purposes of this study. All ethnicity codes are available in Supplementary Table S2. The data collected was divided into disease phenotype groups to ensure a high level of homogeneity.

Statistical Analysis: Each genetic variant which had been investigated and reported in at least three
 independent publications for the same ethnicity and phenotype was included in quantitative statistical
 analyses. Review Manager (RevMan) 5.3 (The Cochrane Collaboration, The Nordic Cochrane Centre,
 Copenhagen, Denmark) was employed to facilitate the analysis of allele frequencies. For each SNP,

the total number of alleles were recorded per case and control group. Hardy Weinberg equilibrium was calculated for all included studies, for cases and controls separately. Statistical analyses were performed using the random effects model as heterogeneity was expected. For each SNP, this analysis provided the P value, odds ratio (OR) and 95% confidence intervals (CI). It also facilitated the assessment of the heterogeneity level using the I² statistic(29). Forest plots and funnel plots were generated automatically to assess publication bias and the significance value was set at P<0.05 (LIS and RCC).

The genotyping quality of the studies was assessed by reported genotype completion rate and Hardy Weinberg equilibrium. Phenotypes included in this analysis are shown in Table 1; individuals with microalbuminuria were excluded alongside the studies that focused on disease progression. No sensitivity analysis was performed. All study methodology conformed to the MOOSE criteria(27). No published protocol is available for this review. The workflow followed a consistent pattern for each gene. A summary of this is included in Figure 1.

Figure 1: Workflow pattern

Patient and public involvement: Neither patients nor the public were directly involved in the design of this study, which analysed previously published data available in the public domain.

RESULTS

The database searches returned 3,531 results, 144 of which remained following the application of inclusion and exclusion criteria and the removal of any SNP which was not reported on at least three occasions. Several articles included data for more than one gene, signifying that they have emerged multiple times throughout the database searches; the total number of individual articles was therefore 114. The search strategies are included as Supplementary Figures S1a-f. All excluded studies are listed in Supplementary Tables S3a-f

The total number of subjects analysed within these studies (n=114) was 18,231 individuals with renal disease and 21,887 individuals acting as controls. For SNPs in three of the RAAS genes, ACE2, AGTR2 and REN, there were less than three independent populations studied. A summary table detailing the main results is included as Table 2.

42 43	162
44 45	163
46 47	164
48 49	165
50 51	166
52 53	167
54	168
55 56	169
57 58	170
59 60	

Table 2: Summary of the most significant result for each included gene

Gene	Articles	Articles	Max.	Most significant	P Value	OR (95% CL)	l ² (%)	Allele	Average Allele
	returned	analysed (n)	individuals in	result					Frequency - Controls
	(n)		analysis (n)						
ACE	380	95	33,247	I/D (EAS)	0.008	0.80 (0.67, 0.94)	68	Insertion	0.62
ACE2	1556	0	NA		NA	NA	NA	NA	NA
AGT	693	33	13,234	rs699 (EUR)	0.002	0.84 (0.76, 0.94)	0	Т	0.57
AGTR1	200	16	6917	rs5186 (SAS)	0.001	0.71 (0.58, 0.87)	37	Α	0.81
AGTR2	29	0	NA		NA	NA	NA	NA	NA
REN	673	0	NA		NA	NA	NA	NA	NA

174 Abbreviations: EAS, East Asian; EUR, European; NA, Not Applicable; SAS, South Asian.

אA, Not Applicable; کمی, ک

1 2		
3	176	ACE
4 5 6 7 8 9 10 11 12 13 14 15	177 178 179 180 181 182 183 184 185	A total of 15 quantitative analyses were completed for the insertion / deletion (I/D) polymorphism located within <i>ACE</i> in eight phenotypes, details of which are included in Supplementary Table S4. Three quantitative analyses returned a significant result. The first analysis comprised 11 publications, each studying an East Asian population with T2DN (type 2 diabetes and nephropathy) and compared with T2DM (type 2 diabetes mellitus without nephropathy). Figure 2a displays these results, P= 0.009; OR= 0.74; 95% CI= 0.59, 0.93, I ² = 55%, showing that the presence of the insertion variant at this <i>ACE</i> locus was significantly associated with this phenotype. The insertion provides a lower risk of developing T2DN in an East Asian population as demonstrated in five studies, which contributed to 51.5% of the weight in this analysis. Figure 2b shows the associated funnel plot for this analysis.
16 17 18 19 20	186 187 188	Figure 2a: Forest plot - <i>ACE</i> I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (<i>ACE</i> insertion compared to deletion).
21 22 23 24 25 26	189 190 191 192	Figure 2b: Funnel plot - <i>ACE</i> I/D investigation, individuals with type 2 diabetes and nephropathy compared to individuals with type 2 diabetes mellitus (without nephropathy) in an East Asian population (<i>ACE</i> insertion compared to deletion).
20 27 28 29 30 31 32 33	193 194 195 196 197	The ACE insertion variant was similarly significantly associated with a lower risk of T2DN compared with T2DM in a South Asian population, despite the presence of a high level of heterogeneity (P= 0.01; OR= 0.57; 95% CI= 0.37, 0.87; I^2 = 89%). This was consistent with the direction of effect in four studies, which contributed to 67.7% of the weight in this analysis (Figure 2c). The funnel plot for this analysis is displayed within Figure 2d.
34 35 36 37	198 199 200	Figure 2c: Forest plot - <i>ACE</i> I/D investigation, individuals with type 2 diabetes and nephropathy compared to individuals with type 2 diabetes mellitus (without nephropathy) in a South Asian population (<i>ACE</i> insertion compared to deletion).
38 39 40 41 42	201 202 203 204	Figure 2d: Funnel plot - <i>ACE</i> I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a South Asian population (<i>ACE</i> insertion compared to deletion).
43 44 45 46 47 48 49 50	205 206 207 208 209	The comparison of East Asian individuals with end-stage renal disease (ESRD) compared to a healthy population with no evidence of renal disease also showed a significant association with moderate levels of heterogeneity (P= 0.008; OR= 0.8; 95% CI= 0.67, 0.94; I ² = 68%). Four studies, supporting 69.7% of the weight in the analysis had shown this effect (Figure 2e). Figure 2f shows the associated funnel plot for this analysis.
50 51 52 53	210 211	Figure 2e: Forest plot - <i>ACE</i> I/D investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian population (<i>ACE</i> insertion compared to deletion).
54 55 56 57	212 213 214	Figure 2f: Funnel plot - <i>ACE</i> I/D investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian population (<i>ACE</i> insertion compared to deletion).
58 59 60	215 216	In each analysis (T2DN vs. T2DM; ESRD vs. normal), the presence of the ACE insertion was associated with a lower risk of developing the CKD phenotype in the respective populations. The non-significant

- ³ 217 forest plots are included in Supplementary Figures S2a-S2I and the associated funnel plots within
 ⁴ 218 Supplementary Figures S3a-S3I.
- 6 219

AGT

Seven quantitative analyses were completed for rs699, where the T allele was compared to the C allele. Details of each of these comparisons are included in Supplementary Table S5. One significant result was identified - the comparison of ESRD with healthy controls in a European population. The results were (P=0.002; OR= 0.84; 95% CI= 0.76, 0.94; I²= 0%) and are shown in Figure 2g. Only the study with population size over 2000 patients, supporting 46.2% of the weight in the meta-analysis, had achieved significance with the original figures. These results indicate that the presence of the T allele is associated with a lower risk of developing ESRD in this population. The funnel plot for this analysis is displayed within Figure 2h. The forest plots containing the non-significant results are included in Supplementary Figures S4a-S4f, and the associated funnel plots within Supplementary Figures S5a-S5f.

Figure 2g: Forest plot - AGT rs699 investigation, individuals with end-stage renal disease compared
 to healthy controls in a European population (AGT rs699 T allele compared to C allele).

Figure 2h: Funnel plot - AGT rs699 investigation, individuals with end-stage renal disease compared
 to healthy controls in a European population (AGT rs699 T allele compared to C allele).

29 235

31 236 **AGTR1**

Four quantitative analyses were performed for AGTR1 rs5186, comparing the A allele with the C. Details of these comparisons are included within Supplementary Table S6. One of the four studies returned a significant result for association, the comparison of T2DN with T2DM in a South Asian population (P= 0.001; OR= 0.71; 95% CI= 0.58, 0.87; I²= 37%). This result resembled the findings of two of the three studies which contributed 87% of the weight in the meta-analysis, as shown in Figure 2i. Figure 2j contains the associated funnel plot. These results indicate that the presence of the A allele is associated with a lower risk of developing T2DN in this population. The non-significant results in forest plot format are included in Supplementary Figures S6a-S6c and in funnel plot format within Supplementary Figures S7a-S7c.

- Figure 2i: Forest plot AGTR1 rs5186 investigation, individuals with type 2 diabetic nephropathy
 compared to individuals with type 2 diabetes mellitus in a South Asian population (AGTR1 rs5186 A
 allele compared to C allele).
- Figure 2j: Funnel plot AGTR1 rs5186 investigation, individuals with type 2 diabetes and nephropathy
 compared to individuals with type 2 diabetes mellitus (without nephropathy) in a South Asian
 population (AGTR1 rs5186 A allele compared to C allele).
- 53 252

Studies not complying with Hardy Weinberg equilibrium are shown in Supplementary Table S7. Allele
 frequencies for healthy control populations included in this analysis were assessed. None showed
 signs of bias in any included study, in comparison to all available dbSNP reported frequencies as shown
 in Supplementary Data File S1.

258 DISCUSSION

Investigations into RAAS genetic variants previously reported to have been associated with a range of CKD phenotypes were undertaken. A total of 3,531 studies were identified, 114 of which met the inclusion criteria. Subsequently, 26 quantitative analyses were completed for three RAAS genes where there were at least three independent population studies of the RAAS gene variants. Five significant results within three genes were obtained at the significance level p<0.05, each revealing an association with CKD.

ACE is encoded by DCP1 and is a key component of the RAAS. It catalyses the modification of angiotensin I to II, which is more biologically active(30). ACE is the most frequently studied gene of the RAAS(31). First sequenced in 1992(32), this 287 bp ALU repetitive element at intron 16(32) is located on chromosome 17 and is represented by four individual SNPs, rs4646994, rs1799752, rs4340 and rs13447447. Further understanding of its genetic architecture and disease associations may enable patient groups to benefit from targeted therapies with ACE inhibitors(33).

Since 1994, the association of ACE and DN has been rigorously investigated(33,34), with studies returning conflicting results. A meta-analysis undertaken in 2005 by Ng and colleagues(35) reported a statistically significant result wherein the ACE insertion was associated with protection from development of diabetic nephropathy in Asians and Caucasians. A second meta-analysis undertaken in 2012 also identified an association between the ACE I/D polymorphism and the development of diabetic nephropathy to ESRD, in that the presence of the deletion was associated with ESRD susceptibility(36). Despite having differences in the inclusion criteria to our meta-analysis, in that these investigations did not include any article published since 2011(35,36) and included individuals with microalbuminuria as cases(35), we returned similar results to the 2005 previous meta-analysis. Including individuals with microalbuminuria in the control population may cause challenges with phenotype definition as microalbuminuria may regress, remain stable, or progress to macroalbuminuria(37-39) over time. Individuals with microalbuminuria were therefore excluded from both case and control definitions to clarify the phenotypes in our review.

In our meta-analysis of ACE, which comprised 15,265 individuals with CKD and 18,474 individuals as controls from 98 population groups, we identified three significant associations of the ACE I/D polymorphism with CKD. Due to previously reported heterogeneity between different ethnic groups(35), we included this as a risk factor and performed each analysis per ethnicity (Table S2). Despite some of the allele frequency distributions varying across different ethnicities, the direction of the effect was consistent among the different ethnicities: where population had different MAFs, they often reported similar odds ratios in the meta-analysis.

Firstly, comparisons between T2DN and T2DM in East Asian and South Asian populations returned significant results highlighting a protective effect of the ACE insertion in the development of diabetic nephropathy (P=0.009 and P=0.01 respectively). This result was mimicked in the comparison of individuals with ESRD, which was not caused by diabetic nephropathy, and healthy control individuals in an East Asian population (P=0.008). The ACE I/D polymorphism remains a well characterised genetic locus associated with the progression of diabetic nephropathy.

AGT encodes the AGT glycoprotein, which is created in the liver and facilitates the creation of angiotensin I(11,40). It is located on chromosome 1. Several investigations have been conducted into the AGT gene variants and their association with risk of CKD(40-43). Among these, Zhou and colleagues undertook a meta-analysis investigation into AGT rs699 and its association with ESRD(40). The results of this study are agreement with ours in relation to the European ethnicity. Our meta-

BMJ Open

3 302 analysis encompassing 5, 463 individuals with renal disease and 6,385 individuals without; the T allele
 303 provided a protective effect in ESRD development (P=0.002) within this European population.

In European and Middle Eastern populations, the allele distribution of rs699 were very similar for the
 comparison of T2DN vs T2DM, yet different from the East Asian population. This may have had an
 impact on the results, potentially limiting the robustness of association analyses across ethnicities.

The AGTR1 gene has been shown to be involved in the regulation of blood pressure, fluid and electrolyte balance(11). It may also have a role in inflammation and vasoconstriction(44). SNP rs5186, an AC nucleotide substitution at position 1166 in the 3' untranslated region of chromosome 3, is reportedly able to be recognised by microRNA-155. When the A allele is present at this locus, microRNA-155 is able to undergo complementary base-pairing with AGTR1 messenger RNA to suppress translation. However this is not possible when the alternative C allele is present, resulting in increased AGTR1 protein levels(45). This interplay may affect blood pressure regulation and warrants further investigation(45).

21315Previous studies have identified associations between rs5186 in AGTR1 and diseases including22316coronary artery disease(46), systemic lupus erythematosus(47) and cancer(48). Several smaller23317studies had also been undertaken to assess links between this gene and renal disease(25,49–54). We25318conducted this study to provide a clearer understanding of the effect of this SNP on CKD.

This meta-analysis of *AGTR1* variants included 3,197 individuals with renal disease and 3,720 controls
 investigating rs5186. One significant result was identified; that the presence of an A allele at this locus
 provided a lower risk of developing T2DN in a South Asian population (P=0.001).

30
 31
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 33
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 34
 3

The three remaining RAAS genes included in this meta-analysis, ACE2, AGTR2 and REN, have not been researched as extensively as the ACE, AGT and AGTR1 for associations with renal disease. Very few articles were identified describing genetic association studies for these genes at the data extraction stage of the analysis, and those that were, were removed prior to the quantitative analysis stage, mainly due to the inclusion of paediatric individuals or non-human approaches, as outlined in Figures S1b, S1e and S1f. Further research into the ACE2, AGTR2 and REN genes and their polymorphisms should be undertaken to elucidate their role in CKD and ESRD.

Some studies in our search could not be included in quantitative analysis as they lacked information relating to genotype counts and had an unclear measure and definition of albuminuria for both cases and controls, which could constitute a limitation. Results from GWAS studies would have strengthened the analysis, but unfortunately they usually only report significant SNPs. Absolute frequencies are not usually reported at individual SNP level for such large-scale studies. Publication bias was reported in two of our quantitative analyses, but was not found in the analyses which provided our significant results. Lack of clarity in phenotype definitions, along with unclear descriptions of ethnicities, inherently challenge the use of meta-analyses of different populations as a valid instrument to uncover robust associations. CKD itself has a range of causes including glomerular damage and declining eGFR without albuminuria. Other confounding factors such as hypertension and cardiovascular disease, and a lack of prospective follow up of included individuals, which would ensure phenotypes are robust and stable, may also cause conflicting results.

59 344

CONCLUSION

This meta-analysis of the RAAS pathway genes and their association with renal disease has provided evidence for five significant associations with individually small effect sizes that may cumulatively contribute to dysfunction of the RAAS pathway leading to kidney disease. The insertion in ACE I/D polymorphism was a protection factor for the development of diabetic nephropathy in individuals with type 2 diabetes mellitus from both East and South Asian origin, and for ESRD in an East Asian population. In Europeans, the T allele of the AGT rs699 conferred a lower risk of ESRD development in healthy population. The A allele in AGTR1 rs5186 acted as a protection factor for renal disease development in South Asian population.

ities an ding invess, nway in kidney volved ultimately w Further study into the specific ethnicities and investigations into a broader range of RAAS linked genes, or a deeper analysis of them including investigations of more variants, may pinpoint the molecular basis underlying the role of pathway in kidney disease. Network analysis and functional studies enlightening the mechanisms involved ultimately will be required to complete the picture of RAAS variation in renal traits.

BMJ Open

2		
3 4	361	STATEMENTS AND CONTRIBUTIONS
5 6	362	
7 8	363	Acknowledgements and Funding
9	364	This work has been partly funded by the Medical Research Council (Award reference MC_PC_15025)
10	365	and the Public Health Agency R&D Division (Award Reference STL/4760/13). LJS is the recipient of a
11	366	Northern Ireland Kidney Research Fund Fellowship. MCG is funded by a Science Foundation Ireland-
12	367	Department for the Economy (SFI-DfE) Investigator Program Partnership Award (15/IA/3152). RCC is
13	368	the recipient of a Department for the Economy (DfE) PhD studentship. None of the funding bodies
14 15	369	had a role in the study design or analysis.
15 16	370	
17 18	371	Statement of competing interests
19 20	372	The authors declare that they have no competing interests.
21	373	
22		
23 24	374	Availability of data and material
25	375	The datasets generated and/or analysed during the current study are available from the
26 27	376	corresponding author on reasonable request.
27 28 29	377	
30 31	378	Author contributions
32 33	379 380	LIS formulated the research plan, conducted the analysis, interpreted the data, drafted the manuscript and revised the manuscript.
34 35	381	MCG conducted the analysis, interpreted the data and revised the manuscript.
36 37	382	RCC conducted the analysis, interpreted the data and revised the manuscript.
38 39	383	APM acquired the funding, interpreted the data, managed the project and revised the manuscript.
40 41 42	384 385	AJM acquired the funding, formulated the research plan, interpreted the data, managed the project and revised the manuscript.
43 44	386	and revised the manuscript. All authors read and approved the final manuscript.
45 46		
47 48		
49		
50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

2 3	388	REFE	RENCES
4 5	389	1.	Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012 Jan 14;379(9811):165–80.
6 7 8	390 391	2.	Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13(2):104–14.
9 10 11 12	392 393 394	3.	Mills KT, Xu Y, Zhang W, Bundy JD, Chen C-S, Kelly TN, et al. A systematic analysis of world- wide population-based data on the global burden of chronic kidney disease in 2010 HHS Public Access. Kidney Int. 2015;88(5):950–7.
13 14 15	395 396	4.	Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol. 2014;307(7):F757-76.
16 17 18 19	397 398 399	5.	Brancati FL, Whelton PK, Randall BL, Neaton JD, Stamler J, Klag MJ. Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Multiple Risk Factor Intervention Trial. JAMA. 1997;278(23):2069–74.
20 21 22	400 401	6.	Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334(1):13–8.
23 24 25 26	402 403 404	7.	Cowie CC, Port FK, Wolfe RA, Savage PJ, Moll PP, Hawthorne VM. Disparities in Incidence of Diabetic End-Stage Renal Disease According to Race and Type of Diabetes. N Engl J Med. 1989;321(16):1074–9.
27 28 29 30	405 406 407	8.	Mathur R, Dreyer G, Yaqoob MM, Hull SA. Ethnic differences in the progression of chronic kidney disease and risk of death in a UK diabetic population: an observational cohort study. BMJ Open. 2018;8(3):e020145.
31 32 33	408 409	9.	Velez JCQ. The importance of the intrarenal renin-angiotensin system. Nat Clin Pr Nephrol. 2009;5(2):89–100.
34 35 36 37	410 411 412	10.	Nishiyama A, Kim-Mitsuyama S. New Approaches to Blockade of the Renin–Angiotensin– Aldosterone System: Overview of Regulation of the Renin–Angiotensin–Aldosterone System. J Pharmacol Sci. 2010;113(4):289–91.
38 39 40	413 414	11.	Remuzzi G, Perico N, Macia M, Ruggenenti P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl. 2005;68(99):S57–65.
41 42 43	415 416	12.	Nishiyama A, Kobori H. Independent regulation of renin–angiotensin–aldosterone system in the kidney. Clin Exp Nephrol. 2018;doi: 10.1007/s10157-018-1567-1.
44 45 46	417 418	13.	Carey RM. The intrarenal renin-angiotensin system in hypertension. Adv Chronic Kidney Dis. 2015;22(3):204–10.
47 48 49	419 420	14.	Zhang F, Liu H, Liu D, Liu Y, Li H, Tan X, et al. Effects of RAAS Inhibitors in Patients with Kidney Disease. Curr Hypertens Rep. 2017;19(9):72.
50 51 52 53	421 422 423	15.	Coll E, Campos B, González-Núñez D, Botey A, Poch E. Association between the A1166C polymorphism of the angiotensin II receptor type 1 and progression of chronic renal insufficiency. J Nephrol. 2003;16(3):357–64.
54 55 56 57	424 425 426	16.	Bermejo S, García CO, Rodríguez E, Barrios C, Otero S, Mojal S, et al. The renin-angiotensin- aldosterone system blockade in patients with advanced diabetic kidney disease. Nefrologia. 2017;32(2):197–206.
58 59 60	427 428	17.	Yamout H, Lazich I, Bakris GL. Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21(3):281–6.

2			
3 4 5	429 430	18.	Rahimi Z. The Role of Renin Angiotensin Aldosterone System Genes in Diabetic Nephropathy. Can J Diabetes. 2016;40(2):178–83.
6 7 8	431 432	19.	Mezzano S a, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38(3 Pt 2):635–8.
9 10 11 12 13	433 434 435 436	20.	Kelly TN, Raj D, Rahman M, Kretzler M, Kallem RR, Ricardo AC, et al. The role of renin- angiotensin-aldosterone system genes in the progression of chronic kidney disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol Dial Transplant. 2015;30(10):1711–8.
14 15 16 17	437 438 439	21.	Ramanathan G, Elumalai R, Periyasamy S, Lakkakula BVKS. Renin gene rs1464816 polymorphism contributes to chronic kidney disease progression in ADPKD. J Biomed Sci. 2016;23(1):1–7.
18 19 20 21	440 441 442	22.	Kawada N, Moriyama T, Yokoyama K, Yamauchi A, Ando A, Mikami H, et al. Renin-angiotensin system component gene polymorphisms in Japanese maintenance haemodialysis patients. Nephrology. 1997;3(4):521–6.
22 23 24 25	443 444 445	23.	Parsa A, Lovett DH, Peden EA, Zhu L, Seldin MF, Criswell LA. Renin-angiotensin system gene polymorphisms predict the progression to renal insufficiency among Asians with lupus nephritis. Genes Immun. 2005;6(3):217–24.
26 27 28 29	446 447 448	24.	Özkaya O, Söylemezoğlu O, Gönen S, Misirlioğolu M, Tuncer S, Kalman S, et al. Renin- angiotensin system gene polymorphisms: Association with susceptibility to Henoch-Schonlein purpura and renal involvement. Clin Rheumatol. 2006;25(6):861–5.
30 31 32 33	449 450 451	25.	Lau YK, Woo KT, Choong HL, Zhao Y, Tan HB, Chong SMCF, et al. Renin-angiotensin system gene polymorphisms: Its impact on IgAN and its progression to end-stage renal failure among Chinese in Singapore. Nephron - Physiol. 2004;97(1):1–9.
34 35 36 37	452 453 454	26.	Mtiraoui N, Ezzidi I, Turki A, Chaieb M, Mahjoub T, Almawi WY. Renin-angiotensin- aldosterone system genotypes and haplotypes affect the susceptibility to nephropathy in type 2 diabetes patients. J Renin Angiotensin Aldosterone Syst. 2011;12(4):572–80.
38 39 40 41	455 456 457	27.	Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.
42 43 44	458 459	28.	International Genome Population [Internet]. Available from: www.internationalgenome.org/category/population
45 46 47	460 461	29.	Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327(7414):557–60.
48 49 50	462 463	30.	Rieder MJ, Taylor SL, Clark AG, Nickerson DA. Sequence variation in the human angiotensin converting enzyme. Nat Genet. 1999;22(1):59–62.
51 52 53	464 465	31.	Moon JY. Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press. 2013;11(2):41–5.
54 55 56 57	466 467 468	32.	Rigat B, Hubert C, Corvol P, Soubrier R. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992;20(6):1433.
57 58 59 60	469 470	33.	Ha S-K. ACE Insertion/Deletion Polymorphism and Diabetic Nephropathy: Clinical Implications of Genetic Information. J Diabetes Res. 2014;2014:1–8.

1 2			
2 3 4 5 6	471 472 473	34.	Marre M, Bernadet P, Gallois Y, Savagner F, Guyene TT, Hallab M, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes. 1994;43(3):384–8.
7 8 9 10 11	474 475 476 477	35.	Ng DPK, Tai BC, Koh D, Tan KW, Chia KS. Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: A meta-analysis of studies reported between 1994 and 2004 and comprising 14,727 subjects. Diabetologia. 2005;48(5):1008–16.
12 13 14 15	478 479 480	36.	Yu Z-Y, Chen L-S, Zhang L-C, Zhou T-B. Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic nephropathy. Nephrology (Carlton). 2012;17(5):480–7.
16 17 18	481 482	37.	Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: Is albumin excretion rate sufficient? Diabetes. 2000;49(9):1399–408.
19 20 21	483 484	38.	Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.
22 23 24	485 486	39.	Zelmanovitz T, Gerchman F, Balthazar AP, Thomazelli FC, Matos JD, Canani LH. Diabetic nephropathy. Diabetol Metab Syndr. 2009;1(1):10.
25 26 27	487 488	40.	Zhou T-B, Yin S-S, Qin Y-H. Association of angiotensinogen M235T gene polymorphism with end-stage renal disease risk: a meta-analysis. Mol Biol Rep. 2013;40(2):765–72.
28 29 30 31	489 490 491	41.	Turgut S, AkIn F, AkcIlar R, Ayada C, Turgut G. Angiotensin converting enzyme I/D, angiotensinogen M235T and AT1-R A/C1166 gene polymorphisms in patients with acromegaly. Mol Biol Rep. 2011;38(1):569–76.
32 33 34	492 493	42.	Wang YJ, Pan Y. Angiotensinogen gene M235T polymorphism and risk of coronary artery disease: a meta-analysis. Mol Med Rep. 2012;6(4):884–8.
35 36	494 495	43.	Lin R, Lei Y, Yuan Z, Ju H, Li D. Angiotensinogen Gene M235T and T174M Polymorphisms and Susceptibility of Pre-Eclampsia: A Meta-Analysis. Ann Hum Genet. 2012;76(5):377–86.
37 38 39	496 497	44.	Chow BSM, Allen TJ. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci. 2016;130(15):1307–26.
40 41 42 43	498 499 500	45.	Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24(2):241–6.
44 45 46 47	501 502 503	46.	Duan LJ, Wang XD. Analysis of correlations between coronary heart disease and haplotypes of the angiotensin II receptor type 1 (AGTR1) gene. Genet Mol Res. 2016;15(1):doi: 10.4238/gmr.15017457.
48 49 50 51	504 505 506	47.	Baniamerian H, Bahrehmand F, Vaisi-Raygani A, Rahimi Z, Pourmotabbed T. Angiotensin type 1 receptor A1166C polymorphism and systemic lupus erythematosus: correlation with cellular immunity and oxidative stress markers. Lupus. 2017;26(14):1534–9.
52 53 54	507 508	48.	Pringle KG, Delforce SJ, Wang Y, Ashton KA, Proietto A, Otton G, et al. Renin–angiotensin system gene polymorphisms and endometrial cancer. Endocr Connect. 2016;5(3):128–35.
55 56 57 58	509 510 511	49.	Gao J, Yu Q-L, Fu R-G, Wei L-T, Wang M, Dong F-M, et al. Lack of Association Between Polymorphisms in AGT and ATR1 and IgA Nephropathy in a Chinese Population. Genet Test Mol Biomarkers. 2015;19(12):710–3.
59 60	512	50.	Huang HD, Lin FJ, Li XJ, Wang LR, Jiang GR. Genetic polymorphisms of the renin-angiotensin-

- aldosterone system in Chinese patients with end-stage renal disease secondary to IgA nephropathy. Chin Med J (Engl). 2010;123(22):3238-42.
- Kim SM, Chin HJ, Oh YK, Kim YS, Kim S, Lim CS. Blood pressure-related genes and the 51. progression of IgA nephropathy. Nephron Clin Pr. 2009;113(4):c301-8.
- 52. Savage DA, Feeney SA, Fogarty DG, Maxwell AP. Risk of developing diabetic nephropathy is not associated with synergism between the angiotensin II (type 1) receptor C1166 allele and poor glycaemic control. Nephrol Dial Transpl. 1999;14(4):891-4.
- 53. Van Ittersum FJ, De Man AME, Thijssen S, De Knijff P, Slagboom E, Smulders Y, et al. Genetic polymorphisms of the renin-angiotensin system and complications of insulin-dependent diabetes mellitus. Nephrol Dial Transplant. 2000;15(7):1000-7.
- 54. Prasad P, Tiwari AK, Kumar KP, Ammini A, Gupta A, Gupta R, et al. Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med Genet. 2006;7(1):42.
- 55. Braliou GG, Grigoriadou AMG, Kontou PI, Bagos PG. The role of genetic polymorphisms of the Renin-Angiotensin System in renal diseases: A meta-analysis. Comput Struct Biotechnol J. 2014;10(7):1-7.

1	
2	
3	
4	
5	
6	
7	
8	Electronic Database Search
9	PubMed and Web of Science Databases were searched yielding 3,531 results in total for
10	RAAS genes (ACE, ACE2, AGT, AGTR1, AGTR2 and REN)
11	
12	
13	Duplicate Papers Removed
14	419 duplicate papers were removed from each gene search. Duplicates remained
15	between genes as several articles contained data for several genes.
16	
17	
18	Abstract Screening
19	2,888 articles were removed as they did not meet the inclusion criteria.*
20	+
21	Full Text Screening
22	50 articles were removed as they included overlaps in patient groups published
23	elsewhere or contained no data.
24	
25	· · · · · · · · · · · · · · · · · · ·
26	Inclusion of Articles Identified from Bibliographies
27	53 papers were identified from bibliographies during full-text screening.
28	
29	Final Study Calentian for Data Extraction
30	Final Study Selection for Data Extraction
31	529** papers met the inclusion criteria for all genes and were included for data
32	extraction. 227 individual articles.
33	
34	Final Study Selection for Quantitative Analysis
35	
36	83 articles were removed as the data provided did not generate at least three populations with the same ethnicity per SNP. 144 papers were included in the quantitative analysis.
37	
38	*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or
39	Spanish, was a non-human study, was a paediatric study, was not a case-control study, did not have
40	a renal disease phenotype, did not include data for the gene of interest, was a gene expression
41	based study or had a pharmaceutical drug focus.
42	**Final selection: Several papers provided data for > 1 gene, so this figure includes duplicates.
43	
44	
45	Figure 1: Workflow pattern
46	
47	55x76mm (300 x 300 DPI)
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	For some version operation of the design of the second state of th
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

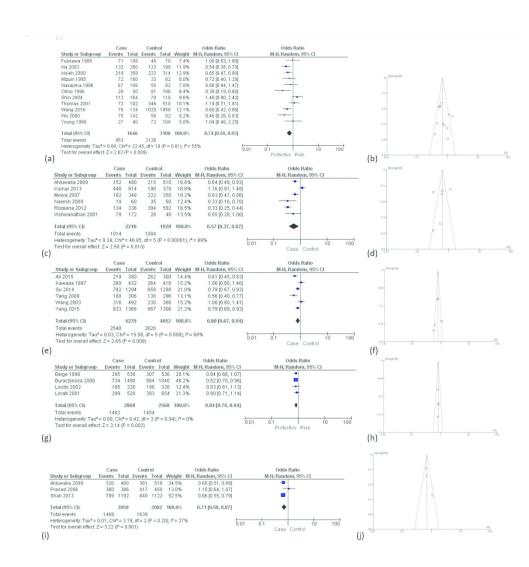
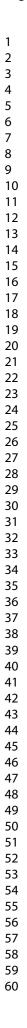
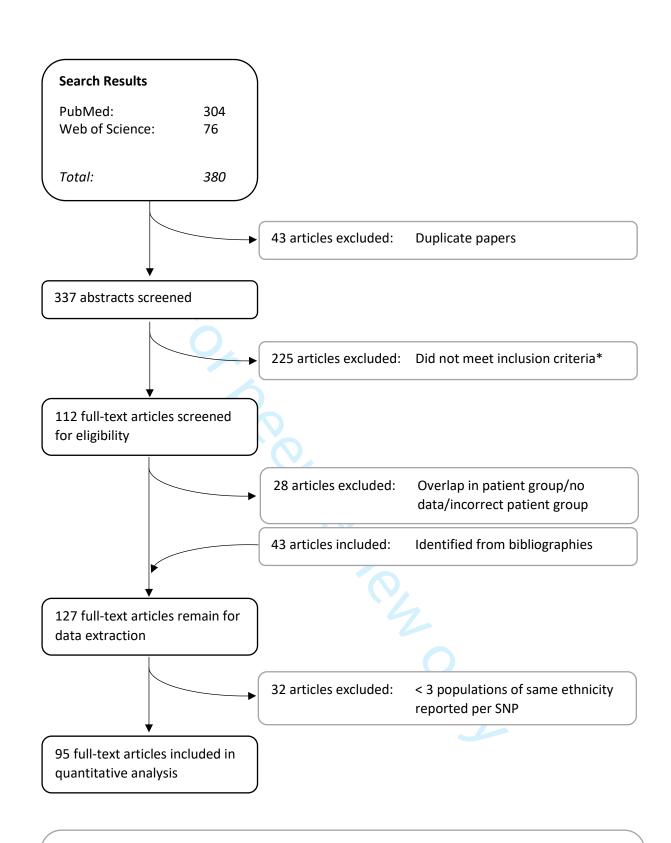
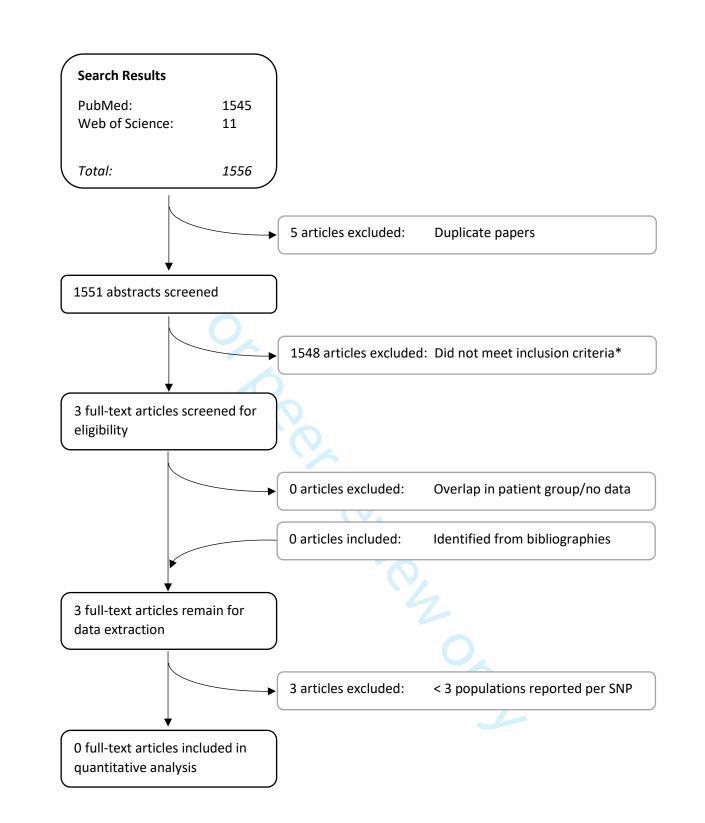
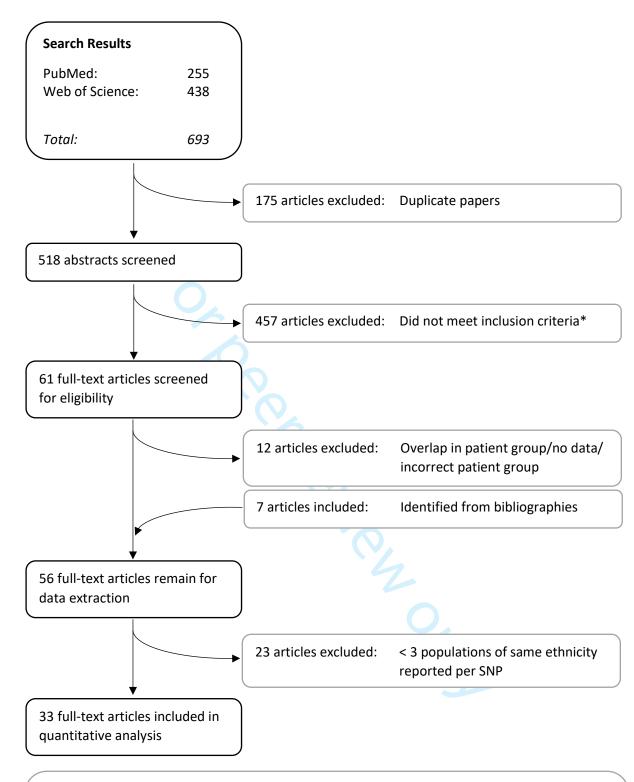




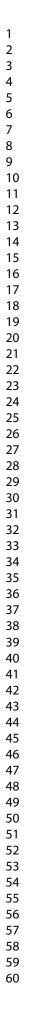
Figure 2: Forest and funnel plots for statistically significant results

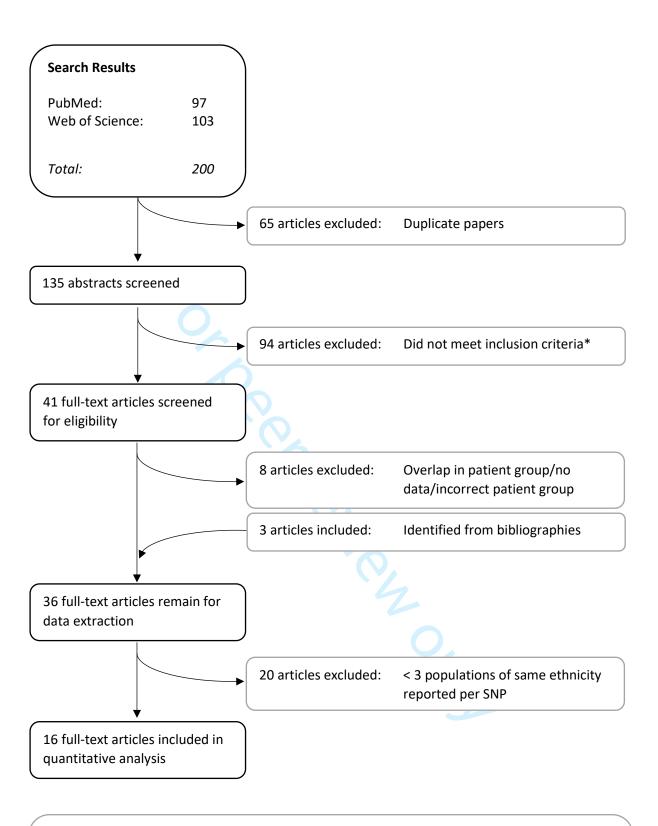
119x124mm (300 x 300 DPI)


Page 19 of 304

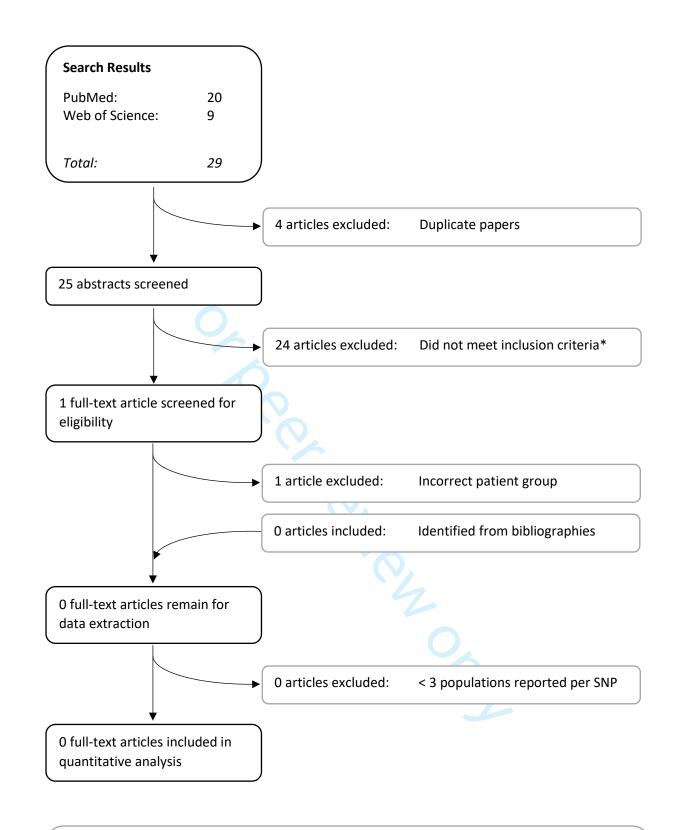

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=20), was a non-human study (n=5), was a paediatric study (n=52), was not a casecontrol study (n=36), did not have a renal disease phenotype (n=90), did not include data for ACE (n=13) or had a pharmaceutical drug focus (n=9)

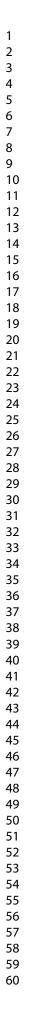
Supplementary Figure S1a: ACE Study Flow Diagram

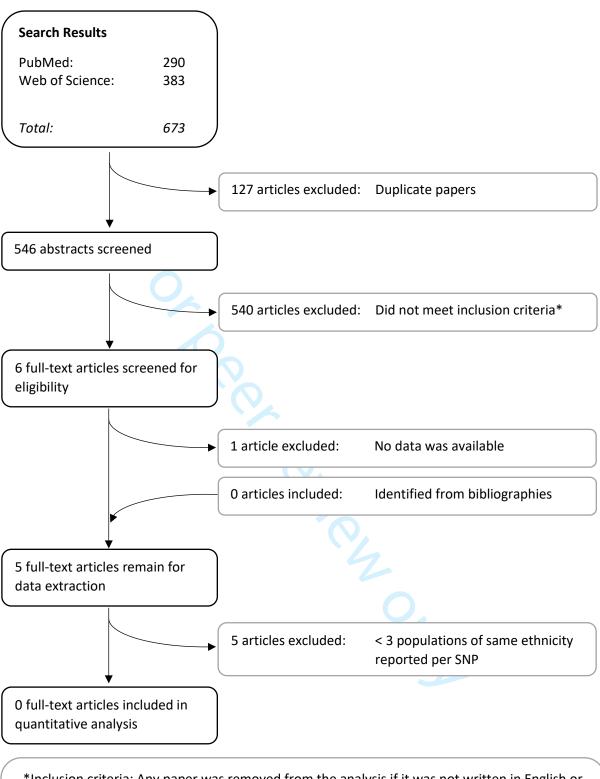

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=55), was a non-human study (n=119), was a paediatric study (n=149), was not a case-control study (n=53), did not have a renal disease phenotype (n=693), did not include data for ACE2 (n=435) or had a pharmaceutical drug focus (n=44)


Supplementary Figure S1b: ACE2 Study Flow Diagram

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=16), was a non-human study (n=121), was a paediatric study (n=40), was not a casecontrol study (n=54), did not have a renal disease phenotype (n=134), did not include data for *AGT* (n=75), was a gene expression based study (n=1) or had a pharmaceutical drug focus (n=16)


Supplementary Figure S1c: AGT Study Flow Diagram


*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=8), was a non-human study (n=13), was a paediatric study (n=21), was not a casecontrol study (n=14), did not have a renal disease phenotype (n=25), did not include data for *AGTR1* (n=3), was a gene expression based study (n=1) or had a pharmaceutical drug focus (n=9)


Supplementary Figure S1d: AGTR1 Study Flow Diagram

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=1), was a non-human study (n=2), was a paediatric study (n=6), was not a casecontrol study (n=4), did not have a renal disease phenotype (n=5) or did not include data for AGTR2 (n=6)

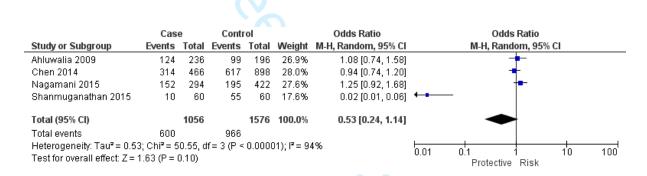
Supplementary Figure S1e: AGTR2 Study Flow Diagram

*Inclusion criteria: Any paper was removed from the analysis if it was not written in English or Spanish (n=17), was a non-human study (n=76), was a paediatric study (n=47), was not a casecontrol study (n=71), did not have a renal disease phenotype (n=175), did not include data for *REN* (n=137), was a gene expression based study (n=3) or had a pharmaceutical drug focus (n=14)

Supplementary Figure S1f: REN Study Flow Diagram

1	
2	
2	
-	
4	
J	
6	
7	
8	
9	
1	0
1	1
1	
1	
1	
1	5
1	6
1	7
	8
1	9
	0
	1
2	
2	3
2	
2	5
2	6
2	7
	8
	9
~	2
3	0
3 3	0 1
3 3 3	0 1 2
3 3	0 1 2
3 3 3 3	0 1 2
3 3 3 3 3	0 1 2 3
3 3 3 3 3	0 1 2 3 4 5
3 3 3 3 3 3 3	0 1 2 3 4 5 6
3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7
3 3 3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7 8 9
3 3 3 3 3 3 3 3 3 3 4	0 1 2 3 4 5 6 7 8 9 0
3 3 3 3 3 3 3 3 3 4 4	0 1 2 3 4 5 6 7 8 9 0 1
3 3 3 3 3 3 3 3 3 4 4 4 4	0123456789012
3 3 3 3 3 3 3 3 4 4 4 4	01234567890123
3 3 3 3 3 3 3 3 4 4 4 4	0123456789012
3333333344444	01234567890123
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	0123456789012345
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4	01234567890123456
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	012345678901234567
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	0123456789012345678
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4	01234567890123456789
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5	012345678901234567890
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5	0123456789012345678901
3333333334444444445555	01234567890123456789012
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5	01234567890123456789012
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5	01234567890123456789012
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5	012345678901234567890123
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

	Cas	е	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Barnas 1997	45	100	51	80	4.0%	0.47 [0.25, 0.85]	
Chowdhury 1996	204	484	143	332	10.6%	0.96 [0.73, 1.28]	+
Currie 2010	603	1380	696	1460	15.8%	0.85 [0.73, 0.99]	+
De Cosmo 1999	125	350	89	272	8.9%	1.14 [0.82, 1.60]	+
Demurov 1997	35	112	72	152	5.2%	0.51 [0.30, 0.84]	_ _
Hadjadj 2001	4	12	208	502	1.2%	0.71 [0.21, 2.38]	
Hibberd 1997	60	144	57	172	6.0%	1.44 [0.91, 2.28]	+
Marre 1994	43	124	58	124	5.2%	0.60 [0.36, 1.01]	
Ringel 1997	130	268	208	452	9.9%	1.11 [0.82, 1.50]	+
Schmidt 1995 A	86	228	101	266	8.1%	0.99 [0.69, 1.42]	
Shestakova 2006	65	126	78	132	5.5%	0.74 [0.45, 1.21]	+-
Tarnow 1995	175	396	169	380	10.5%	0.99 [0.74, 1.31]	+
van Ittersum 2000	33	60	192	376	4.7%	1.17 [0.68, 2.02]	
Walder 1998	49	110	40	88	4.5%	0.96 [0.55, 1.69]	
Total (95% CI)		3894		4788	100.0%	0.91 [0.79, 1.04]	•
Total events	1657		2162				
Heterogeneity: Tau ² =	0.02; Chi	i ^z = 22.1	72, df = 1	3 (P = 0	0.05); I ^z =	43%	

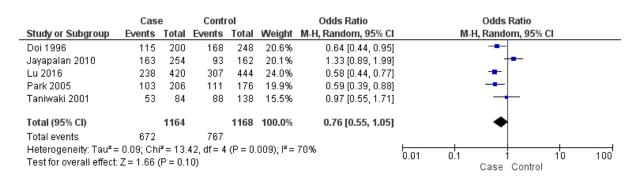

Supplementary Figure S2a: Forest plot - *ACE* I/D investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European population (*ACE* insertion compared to deletion).

	Cas	е	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Dudley 1995	147	326	246	534	21.8%	0.96 [0.73, 1.27]	
Fradin 2002	34	78	94	236	16.9%	1.17 [0.70, 1.96]	
Ng 2006	242	582	147	334	21.9%	0.91 [0.69, 1.19]	-
Nikzamir 2009	21	96	159	290	16.5%	0.23 [0.13, 0.39]	_
Schmidt 1997 B	251	622	278	694	22.8%	1.01 [0.81, 1.26]	+
Total (95% CI)		1704		2088	100.0%	0.78 [0.54, 1.15]	•
Total events	695		924				
Heterogeneity: Tau ² =	= 0.15; Ch	* = 27.	08, df = 4	(P < 0.	0001); I ř :	= 85%	
Test for overall effect	Z=1.26	(P = 0.2	21)				0.01 0.1 1 10 100 Protective Risk

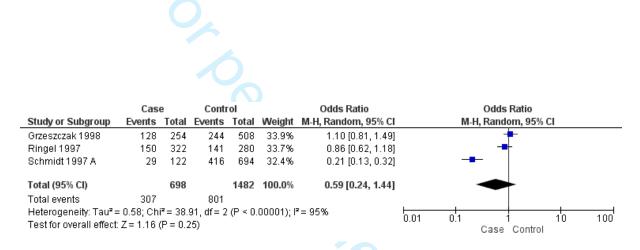
Supplementary Figure S2b: Forest plot - *ACE* I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European population (*ACE* insertion compared to deletion).

	Cas	е	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Al-Harbi 2011	63	220	125	392	12.7%	0.86 [0.60, 1.23]]
Alharbi 2017	31	122	47	122	10.2%	0.54 [0.31, 0.94]]
Araz 2001	52	124	103	246	11.7%	1.00 [0.65, 1.55]] –
El-Baz 2012	66	204	82	200	12.1%	0.69 [0.46, 1.03]]
Ergen 2004	21	50	31	100	8.4%	1.61 [0.80, 3.26]] +
Eroglu 2008	43	92	50	112	10.2%	1.09 [0.63, 1.89]]
Felehgari 2011	42	136	60	144	11.0%	0.63 [0.38, 1.02]]
Rahimi 2012	42	136	60	144	11.0%	0.63 [0.38, 1.02]]
Sancakdar 2015	180	388	62	200	12.7%	1.93 [1.34, 2.76]]
Total (95% CI)		1472		1660	100.0%	0.91 [0.67, 1.22]	. ♦
Total events	540		620				
Heterogeneity: Tau ² =	= 0.15; Ch	i² = 29.	48, df = 8	(P = 0.	0003); I ^z :	= 73%	
Test for overall effect:	Z=0.65	(P = 0.5	52)				0.01 0.1 1 10 100 Case Control

Supplementary Figure S2c: Forest plot - *ACE* I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern population (*ACE* insertion compared to deletion).


Supplementary Figure S2d: Forest plot - *ACE* I/D investigation, individuals with chronic kidney disease compared to healthy controls in a South Asian population (*ACE* insertion compared to deletion).

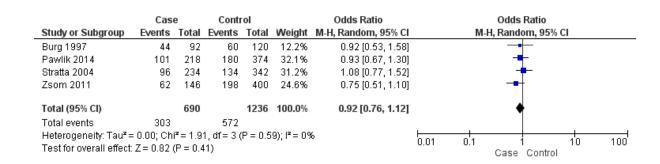
	Cas	е	Contr	ol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl
Aucella 2003	315	922	916	2614	15.6%	0.96 [0.82, 1.13]		+
Buraczynska 2006	688	1490	492	1040	15.6%	0.96 [0.82, 1.12]		+
Dixit 2002	32	52	17	44	2.4%	2.54 [1.11, 5.80]		
Losito 2002	135	320	128	338	9.7%	1.20 [0.88, 1.64]		
McLaughlin 1996	654	1644	353	742	14.9%	0.73 [0.61, 0.87]		-
Nicod 2002	282	520	261	520	12.1%	1.18 [0.92, 1.50]		+-
Ortiz 2003	68	234	80	258	7.7%	0.91 [0.62, 1.34]		
Schmidt 1996	105	212	80	190	7.5%	1.35 [0.91, 2.00]		+
van der Sman-de Beer 2005	400	830	459	944	14.4%	0.98 [0.82, 1.18]		+
Total (95% CI)		6224		6690	100.0%	1.01 [0.88, 1.16]		•
Total events	2679		2786					
Heterogeneity: Tau ² = 0.02; Ch	ni ^z = 22.57	. df = 8	(P = 0.00)	04); I ^z =	65%		0.01	0.1 1 10


Supplementary Figure S2e: Forest plot - *ACE* I/D investigation, individuals with end-stage renal disease compared to healthy controls in a European population (*ACE* insertion compared to deletion).

	Protec	tive	Ris	ĸ		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abuaisha 2018	37	172	50	200	34.8%	0.82 [0.51, 1.33]	
Rahimi 2017	64	190	89	234	50.9%	0.83 [0.55, 1.23]	
Zaare Nahandi 2017	23	60	21	54	14.3%	0.98 [0.46, 2.08]	
Total (95% CI)		422		488	100.0%	0.85 [0.64, 1.13]	•
Total events	124		160				
Heterogeneity: Tau ² = I	0.00; Chi ^z	= 0.16,	df = 2 (P	= 0.92)); I ^z = 0%		
Test for overall effect: 2	Z = 1.15 (F	P = 0.25)				0.01 0.1 1 10 100 Protective Risk

Supplementary Figure S2f: Forest plot - *ACE* I/D investigation, individuals with end-stage renal disease compared to healthy controls in a Middle Eastern population (*ACE* insertion compared to deletion).

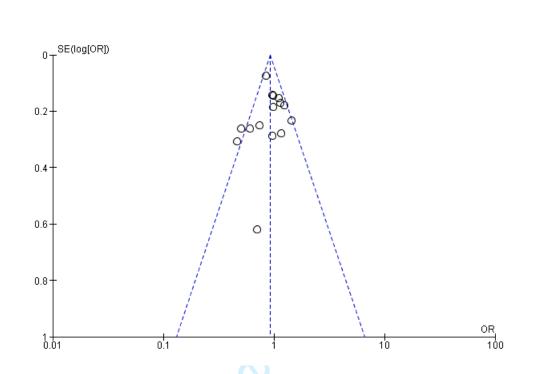
Supplementary Figure S2g: Forest plot - *ACE* I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (*ACE* insertion compared to deletion).

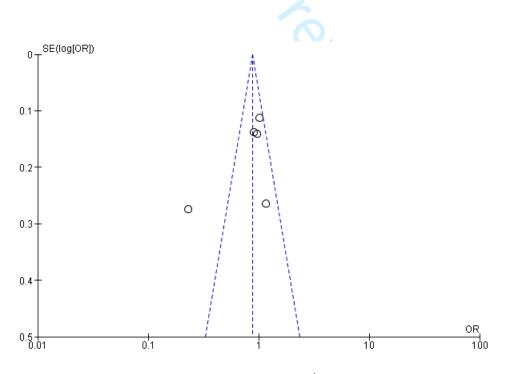

Supplementary Figure S2h: Forest plot - *ACE* I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European population (*ACE* insertion compared to deletion).

	Cas	е	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Guo 2016	54	90	42	90	6.5%	1.71 [0.95, 3.10]	
Huang 2010	155	260	168	240	12.5%	0.63 [0.44, 0.92]	
Jung 2010	298	522	360	600	19.2%	0.89 [0.70, 1.13]	
Lau 2004	154	236	137	188	10.7%	0.70 [0.46, 1.06]	
Suzuki 2004	378	638	328	540	19.5%	0.94 [0.74, 1.19]	+
Yoon 2002	204	382	268	466	17.2%	0.85 [0.64, 1.11]	
Yorioka 1995	67	96	139	206	7.8%	1.11 [0.66, 1.88]	_
Yoshida 1995	57	106	62	92	6.7%	0.56 [0.32, 1.00]	
Total (95% CI)		2330		2422	100.0%	0.86 [0.72, 1.02]	•
Total events	1367		1504				
Heterogeneity: Tau ² =	= 0.02; Chi	r = 12.	42, df = 7	(P = 0.	$(09); I^2 = 4$	4% <u>–</u>	0.1 1 10 11

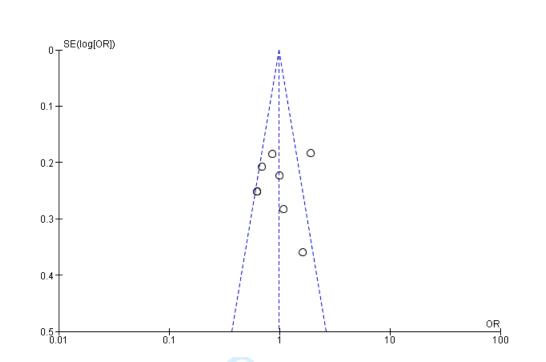
Supplementary Figure S2i: Forest plot - *ACE* I/D investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian population (*ACE* insertion compared to deletion).

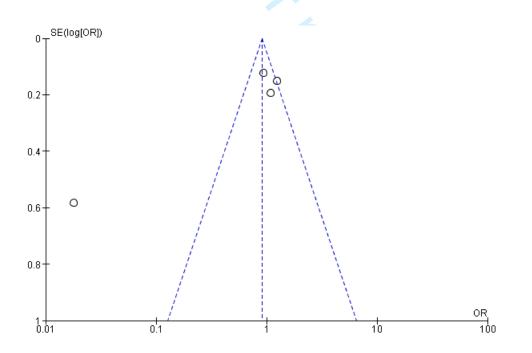
	Cas	е	Conti	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Burg 1997	26	54	60	120	5.6%	0.93 [0.49, 1.77]] _+
Drouet 2002	78	250	54	154	12.8%	0.84 [0.55, 1.29]	j +
Harden 1995	79	200	76	196	14.3%	1.03 [0.69, 1.54]] +
Pawlik 2014	25	62	180	374	7.8%	0.73 [0.42, 1.26]]+
Pei 1997	145	336	91	200	18.7%	0.91 [0.64, 1.29]] –
Schmidt 1995 A	168	408	197	468	32.0%	0.96 [0.74, 1.26]] 🗕 🕂
Stratta 1999	62	162	38	100	8.8%	1.01 [0.61, 1.69]	1 -+-
Total (95% CI)		1472		1612	100.0%	0.93 [0.80, 1.08]	. ♦
Total events	583		696				
Heterogeneity: Tau ² =	= 0.00; Ch	i ^z = 1.4	2, df = 6 ((P = 0.9	l6); l² = 09	6	
Test for overall effect	: Z = 0.97	(P = 0.3	33)				0.01 0.1 1 10 100 Case Control

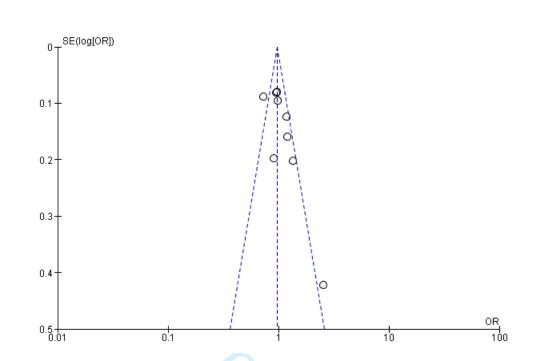

Supplementary Figure S2j: Forest plot - *ACE* I/D investigation, individuals with IgA nephropathy compared to healthy controls in a European population (*ACE* insertion compared to deletion).

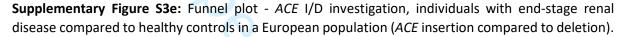

Supplementary Figure S2k: Forest plot - *ACE* I/D investigation, individuals with primary glomerulonephritis compared to healthy controls in a European population (*ACE* insertion compared to deletion).

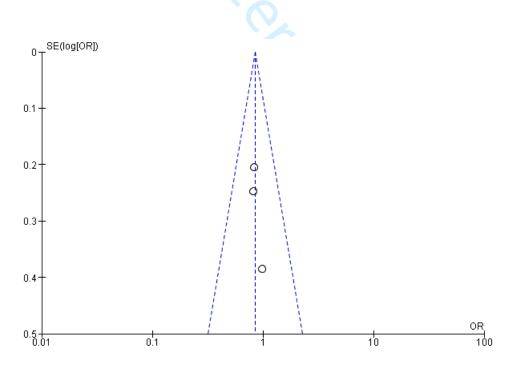
	Cas	е	Contr	rol		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95%	CI		
Beige 1997	251	538	244	538	27.2%	1.05 [0.83, 1.34]		+			
El-Essawy 2002	246	588	170	362	24.7%	0.81 [0.62, 1.06]		-=			
Hueso 2004	122	360	96	226	18.2%	0.69 [0.49, 0.98]					
Stratta 2008	122	338	112	338	20.0%	1.14 [0.83, 1.57]		+			
Viklický 2001	28	60	599	1306	9.9%	1.03 [0.61, 1.73]		-+-			
Total (95% CI)		1884		2770	100.0%	0.93 [0.77, 1.11]		•			
Total events	769		1221								
Heterogeneity: Tau ² :	= 0.02; Ch	i² = 6.5	9, df = 4 ((P = 0.1	6); I ^z = 39	1%			-		
Test for overall effect	: Z = 0.80	(P = 0.4	2)	-			0.01 0.1	Case Control	10	100	

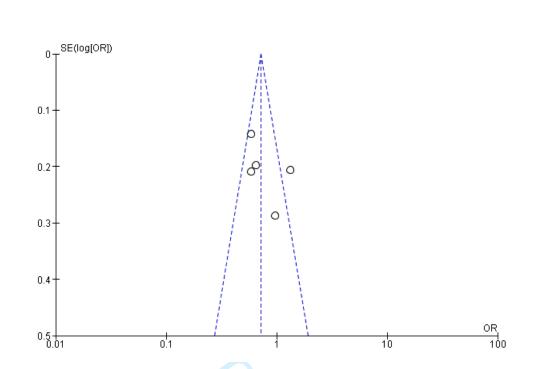

Supplementary Figure S2I: Forest plot - *ACE* I/D investigation, individuals who have had renal transplants compared to healthy controls in a European population (*ACE* insertion compared to deletion).

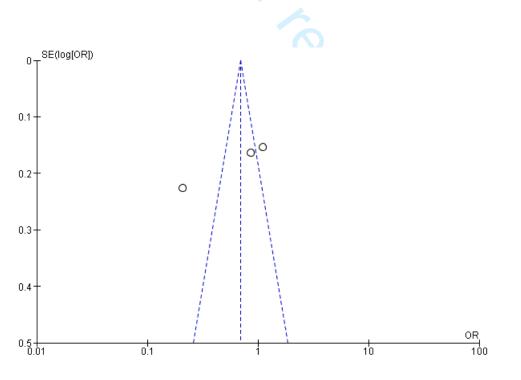

Supplementary Figure S3a: Funnel plot - *ACE* I/D investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European population (*ACE* insertion compared to deletion).

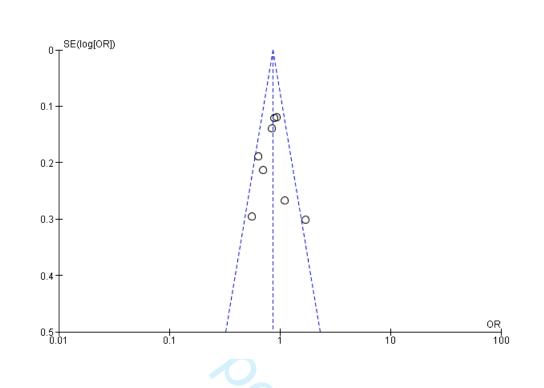

Supplementary Figure S3b: Funnel plot - *ACE* I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European population (*ACE* insertion compared to deletion).

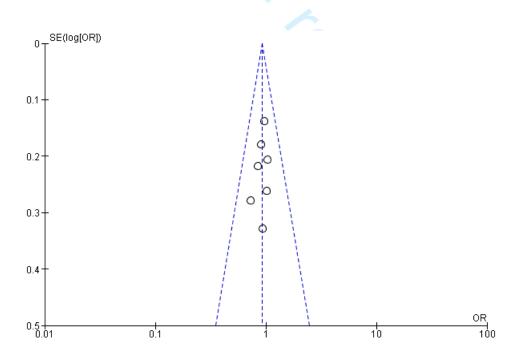


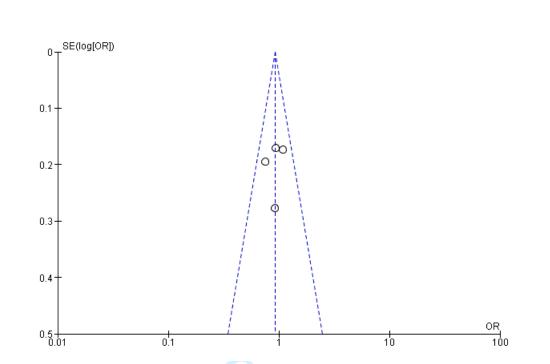

Supplementary Figure S3c: Funnel plot - *ACE* I/D investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern population (*ACE* insertion compared to deletion).

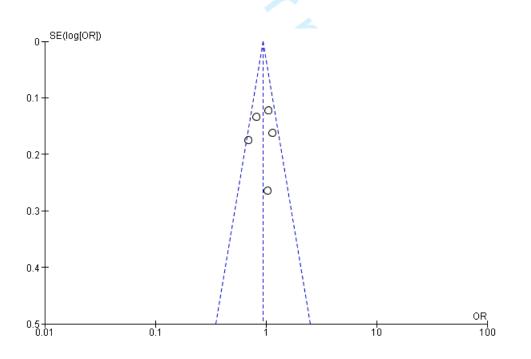

Supplementary Figure S3d: Funnel plot - *ACE* I/D investigation, individuals with chronic kidney disease compared to healthy controls in a South Asian population (*ACE* insertion compared to deletion).




Supplementary Figure S3f: Funnel plot - *ACE* I/D investigation, individuals with end-stage renal disease compared to healthy controls in a Middle Eastern population (*ACE* insertion compared to deletion).


Supplementary Figure S3g: Funnel plot - *ACE* I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (*ACE* insertion compared to deletion).


Supplementary Figure S3h: Funnel plot - *ACE* I/D investigation, individuals with end-stage renal disease linked to type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European population (*ACE* insertion compared to deletion).

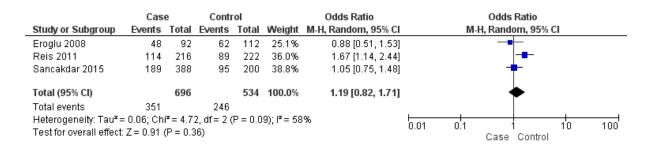

Supplementary Figure S3i: Funnel plot - *ACE* I/D investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian population (*ACE* insertion compared to deletion).

Supplementary Figure S3j: Funnel plot - *ACE* I/D investigation, individuals with IgA nephropathy compared to healthy controls in a European population (*ACE* insertion compared to deletion).

Supplementary Figure S3k: Funnel plot - *ACE* I/D investigation, individuals with primary glomerulonephritis compared to healthy controls in a European population (*ACE* insertion compared to deletion).

Supplementary Figure S3I: Funnel plot - *ACE* I/D investigation, individuals who have had renal transplants compared to healthy controls in a European population (*ACE* insertion compared to deletion).

	Cas	е	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Doria 1996	158	278	96	150	15.1%	0.74 [0.49, 1.12]	
Fogarty 1996	114	190	129	200	15.1%	0.83 [0.55, 1.24]	
Möllsten 2008	62	96	220	394	13.2%	1.44 [0.91, 2.29]	
Ringel 1997	145	268	257	452	19.5%	0.89 [0.66, 1.21]	
Schmidt 1996	121	216	132	240	16.6%	1.04 [0.72, 1.51]	· •
van Ittersum 2000	31	60	238	376	10.8%	0.62 [0.36, 1.07]	−- +
Walder 1998	60	110	63	88	9.6%	0.48 [0.26, 0.86]	· -•-
Total (95% CI)		1218		1900	100.0%	0.85 [0.68, 1.06]	▲
Total events	691		1135				
Heterogeneity: Tau ² =	= 0.04; Ch	i ^z = 11.	57, df = 6	i (P = 0.	07); I ^z = 48	3%	
Test for overall effect:	Z=1.43	(P = 0.1	15)				Case Control

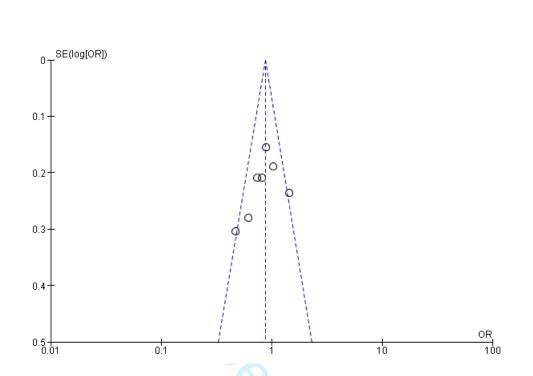

Supplementary Figure S4a: Forest plot - *AGT* rs699 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European population (*AGT* rs699 T allele compared to C allele).

	Cas	е	Contr	rol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl
Ohno 1996	16	50	25	106	16.8%	1.52 [0.72, 3.21]		- + •
Oue 1999	6	42	13	60	11.8%	0.60 [0.21, 1.74]		
Thomas 2001	18	102	79	510	20.4%	1.17 [0.67, 2.05]		_
Wang 2016	19	194	154	946	21.6%	0.56 [0.34, 0.92]		
Wu 2000	21	142	26	82	18.5%	0.37 [0.19, 0.72]		_
Young 1998	4	40	25	108	11.0%	0.37 [0.12, 1.14]		
Total (95% CI)		570		1812	100.0%	0.69 [0.43, 1.11]		•
Total events	84		322					
Heterogeneity: Tau ² =	= 0.21; Ch	i ^z = 13.	02, df = 5	(P = 0.	02); I ^z = 6	2%	0.01	
Test for overall effect	Z=1.54	(P = 0.1	2)				0.01	0.1 1 10 10 Case Control

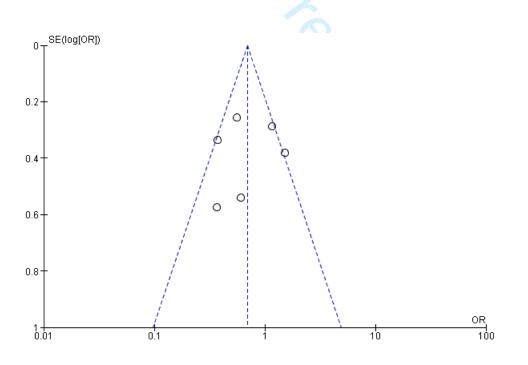
Supplementary Figure S4b: Forest plot - *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (*AGT* rs699 T allele compared to C allele).

	Cas	е	Contr	ol		Odds Ratio		Odds Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-I	H, Random, 95% C	3				
Fradin 2002	45	78	139	236	7.5%	0.95 [0.57, 1.60]		-					
Freire 1998	134	230	148	236	14.5%	0.83 [0.57, 1.20]							
Makuc 2017	294	552	394	750	41.4%	1.03 [0.83, 1.28]		+					
Schmidt 1996	149	254	117	214	14.9%	1.18 [0.81, 1.70]							
Zychma 2000	133	254	242	486	21.8%	1.11 [0.82, 1.50]		+					
Total (95% CI)		1368		1922	100.0%	1.03 [0.89, 1.18]		+					
Total events	755		1040										
Heterogeneity: Tau ² =	= 0.00; Chi	i ^z = 2.1	1, df = 4 (P = 0.7	2); I ² = 09	6	0.01 0.1		10	100			
Test for overall effect:	Z = 0.39 ((P = 0.7	'0)				0.01 0.1	Case Control	10	100			

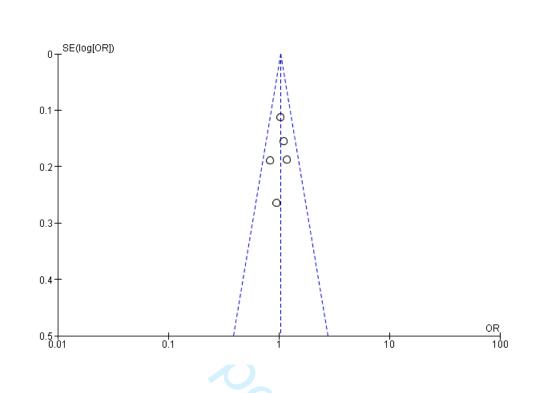
Supplementary Figure S4c: Forest plot - *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European population (*AGT* rs699 T allele compared to C allele).

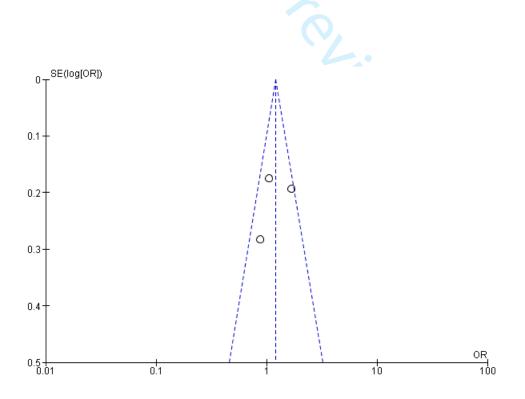

Supplementary Figure S4d: Forest plot - *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern population (*AGT* rs699 T allele compared to C allele).

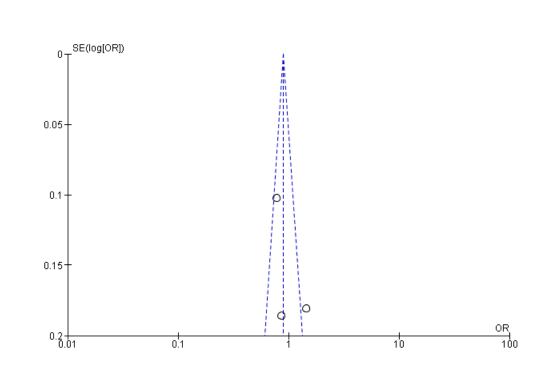
	Protec	tive	Ris	ĸ		Odds Ratio		Odds R		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl		
Kawada 1997	91	424	64	404	31.1%	1.45 [1.02, 2.07]			-	
Su 2017	194	1268	279	1478	38.3%	0.78 [0.63, 0.95]		-		
Wang 2003	76	492	64	366	30.6%	0.86 [0.60, 1.24]				
Total (95% CI)		2184		2248	100.0%	0.97 [0.67, 1.41]		•		
Total events	361		407							
Heterogeneity: Tau ² =	= 0.08 [,] Ch	i² = 9.1 i	6 df= 2 (P = 0.0	1) [,] I ² = 78	%	L	0.1 1) 10

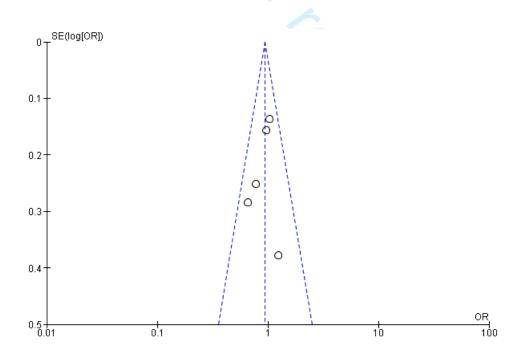

Supplementary Figure S4e: Forest plot - *AGT* rs699 investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian population (*AGT* rs699 T allele compared to C allele).

	Case Control					Odds Ratio	Odds Ratio
Study or Subgroup	Events Tota		Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Gao 2015	144	700	125	620	41.2%	1.03 [0.78, 1.34]	+
Guo 2016	19	90	16	90	5.4%	1.24 [0.59, 2.60]	
Huang 2010	35	260	40	240	12.3%	0.78 [0.48, 1.27]	-++
Kim 2009	89	476	115	600	31.5%	0.97 [0.71, 1.32]	+
Lau 2004	27	236	31	188	9.6%	0.65 [0.38, 1.14]	
Total (95% CI)		1762		1738	100.0%	0.94 [0.79, 1.12]	•
Total events	314		327				

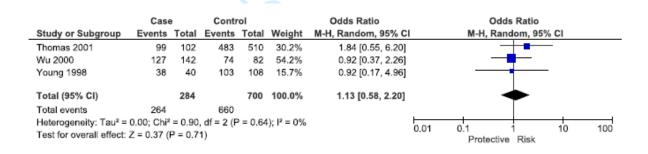

Supplementary Figure S4f: Forest plot - *AGT* rs699 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian population (*AGT* rs699 T allele compared to C allele).


Supplementary Figure S5a: Funnel plot - *AGT* rs699 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European population (*AGT* rs699 T allele compared to C allele).


Supplementary Figure S5b: Funnel plot - *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (*AGT* rs699 T allele compared to C allele).

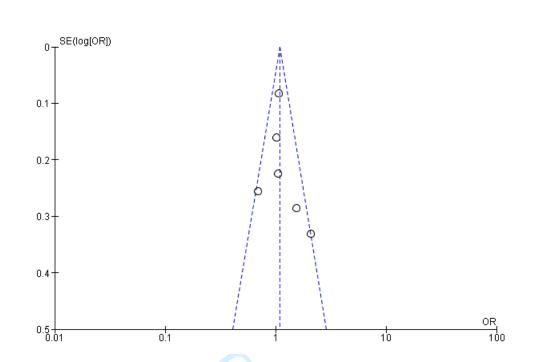

 Supplementary Figure S5c: Funnel plot - *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a European population (*AGT* rs699 T allele compared to C allele).

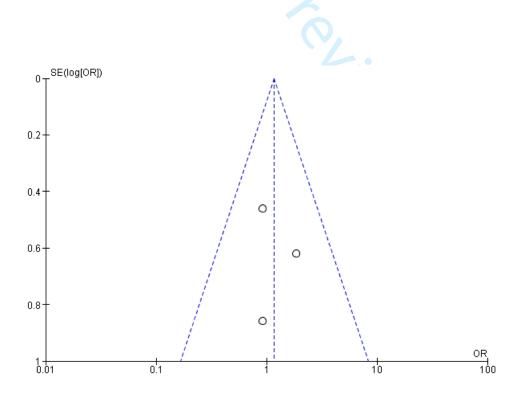
Supplementary Figure S5d: Funnel plot - *AGT* rs699 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in a Middle Eastern population (*AGT* rs699 T allele compared to C allele).


Supplementary Figure S5e: Funnel plot - *AGT* rs699 investigation, individuals with end-stage renal disease compared to healthy controls in an East Asian population (*AGT* rs699 T allele compared to C allele).

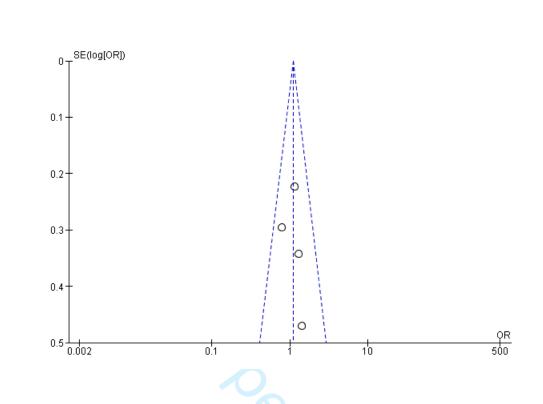
Supplementary Figure S5f: Funnel plot - *AGT* rs699 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian population (*AGT* rs699 T allele compared to C allele).

	Cas	е	Conti	ol		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95%	CI
Currie 2010	1029	1414	1052	1470	33.2%	1.06 [0.90, 1.25]		+	
Doria 1997	99	146	119	158	12.2%	0.69 [0.42, 1.14]			
Möllsten 2008	78	96	290	394	10.4%	1.55 [0.89, 2.72]		+	
Savage 1999	136	190	137	194	14.5%	1.05 [0.67, 1.63]		-+	
Tarnow 1996	287	396	274	380	21.4%	1.02 [0.74, 1.40]		+	
van Ittersum 2000	47	60	238	376	8.3%	2.10 [1.10, 4.01]			
Total (95% CI)		2302		2972	100.0%	1.10 [0.89, 1.35]		•	
Total events	1676		2110						
Heterogeneity: Tau ² =	= 0.03; Ch	i² = 8.8	9, df = 5 ((P = 0.1	1); I ² = 44	%	L I 0.01	1 1	10 100
Test for overall effect	Z = 0.87	(P = 0.3	38)				0.01 0.	Case Control	10 100


Supplementary Figure S6a: Forest plot - *AGTR1* rs5186 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European population (*AGTR1* rs5186 A allele compared to C allele).


Supplementary Figure S6b: Forest plot - *AGTR1* rs5186 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (*AGTR1* rs5186 A allele compared to C allele).

	Case	е	Contr	ol		Odds Ratio		Odds Ra	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random	, 95% CI	
Gao 2015	659	702	577	620	45.1%	1.14 [0.74, 1.77]		-#-		
Huang 2010	243	260	220	240	19.1%	1.30 [0.66, 2.54]		-+	_	
Kim 2009	452	476	576	600	25.7%	0.78 [0.44, 1.40]				
Lau 2004	227	236	178	188	10.1%	1.42 [0.56, 3.56]				
Total (95% CI)		1674		1648	100.0%	1.09 [0.81, 1.46]		•		
Total events	1581		1551							
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.85	, df = 3 (F	P = 0.60	0); I ² = 0%		0.01		10	100
Test for overall effect:	Z = 0.55 (P = 0.5	8)				0.01	0.1 1 Protective Ri	10 sk	100


Supplementary Figure S6c: Forest plot - *AGTR1* rs5186 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian population (*AGTR1* rs5186 A allele compared to C allele).

Supplementary Figure S7a: Funnel plot - *AGTR1* rs5186 investigation, individuals with type 1 diabetic nephropathy compared to individuals with type 1 diabetes mellitus in a European population (*AGTR1* rs5186 A allele compared to C allele).

Supplementary Figure S7b: Funnel plot - *AGTR1* rs5186 investigation, individuals with type 2 diabetic nephropathy compared to individuals with type 2 diabetes mellitus in an East Asian population (*AGTR1* rs5186 A allele compared to C allele).

Supplementary Figure S7c: Funnel plot - *AGTR1* rs5186 investigation, individuals with IgA nephropathy compared to healthy controls in an East Asian population (*AGTR1* rs5186 A allele compared to C allele).

terez oni

Supplementary Table S1: Search Terms

Gene	Search Terms
ACE	Angiotensin I Converting Enzyme
	Angiotensin I Converting Enzyme (Peptidyl-Dipeptidase A) 1
	Dipeptidyl Carboxypeptidase I
	CD143 Antigen
	Kininase II
	DCP1
	DCP
	Angiotensin I Converting Enzyme Peptidyl-Dipeptidase A 1
	Transcript
	Angiotensin Converting Enzyme, Somatic Isoform
	Peptidyl-Dipeptidase A
	Carboxycathepsin
	Testicular ECA
	Peptidase P
	EC 3.4.15.1
	EC 3.2.1
	CD143
	MVCD3
	ACE1
	ACE
	ICH
	AND
	Kidney
	Nephrology
	Nephropathy
	Renal
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
ACE2	Angiotensin I Converting Enzyme 2
	Angiotensin I Converting Enzyme (Peptidyl-Dipeptidase A) 2
	Angiotensin-Converting Enzyme Homolog
	ACE-Related Carboxypeptidase
	Metalloprotease MPROT15
	Peptidyl-Dipeptidase A
	ACEH
	EC 3.4.17.23
	EC 3.4.17
	ACE2
	AND

	Kidney
	Nephrology
	Nephropathy
	Renal
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
AGT	Angiotensinogen
	Angiotensinogen (Serpin Peptidase Inhibitor, Clade A, Member 8)
	Serpin Peptidase Inhibitor, Clade A, Member 8
	Serpin A8
	SERPINA8
	Serine (Or Cysteine) Proteinase Inhibitor
	Alpha-1 Antiproteinase, Antitrypsin
	Alpha-1 Antiproteinase
	Pre-Angiotensinogen
	Angiotensin II
	Angiotensin I
	Antitrypsin
	ANHU
	AGT
	AND Kidney Nephrology Nephropathy
	AND
	Kidney
	Nephrology
	Nephropathy
	Renal
	AND SNP Polymorphism
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
AGTR1	Angiotensin II Receptor Type 1
	Angiotensin II Receptor, Type 1
	AGTR1B
	AT1AR
	AT1BR
	AT2R1
	AT1
	Type-1B Angiotensin II Receptor
	Angiotensin II Type-1 Receptor
	Angiotensin Receptor 1B

	AGTR1A
	AT2R1B
	HAT1R
	AG2S
	AT1B
	AT1R
	AGTR1
	AT2R1A
	AND
	Kidney
	Nephrology
	Nephropathy
	Renal
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
AGTR2	
AGTKZ	Angiotensin II Receptor Type 2 Angiotensin II Receptor, Type 2
	Angiotensin II Type-2 Receptor
	AT2
	Angiotensin Receptor 2
	ATGR2
	MRX88
	AND
	\frown
	Kidney
	Nephrology
	Nephropathy
	Nephrology Nephropathy Renal
	AND
	SNP
	Polymorphism
	Variant
	Allele
	Genotype
REN	Renin
	Angiotensinogenase
	EC 3.4.23.15
	Angiotensin-Forming Enzyme
	Angiotensin-Forming Enzyme Renin Precursor, Renal
	Renin Precursor, Renal

2	
3	
4	
5	
6	
-	
7	
8	
9	
10	
11	
10	
12	
12 13 14 15 16 17	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	

added to database searches	Case / Control studies Not clinical trials Not review articles Not a case report Not a meta-analysis
Additional filters	English / Spanish language Human studies
	SNP Polymorphism Variant Allele Genotype
	Renal <u>AND</u>
	Kidney Nephrology Nephropathy
	AND
	HNFJ2 REN

Supplementary Table S2: Ethnicity Codes

Population Code
AMR
AFR
EAS
EUR
ME
MIX
NA
SAS

BMJ Open

Supplementary Table S3a: Excluded studies from the ACE search

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1a)

Exclusion Stage	Title	Authors	Pubmed ID or WoS ID if Pubmed ID not available	Reason
	Angiotensin I - Converting enzyme gene polymorphism modulates the consequences of in utero growth retardation on plasma insulin			
1	in young adults	Cambien F et al.	9519756	No data for ACE
1	Clinical utility of chitotriosidase enzyme activity in nephropathic cystinosis.	Elmonem MA et al.	25407738	No data for ACE
1	Polymorphisms in the gene encoding angiotensin I converting enzyme 2 and diabetic nephropathy	Frojdo S et al.	16211375	No data for ACE
1	Effects of erythropoietin, angiotensin II, and angiotensin-converting enzyme inhibitor on erythroid precursors in patients with posttransplantation erythrocytosis.	Glicklich D et al.	10428268	No data for ACE
1	DDOST, PRKCSH and LGALS3, which encode AGE-receptors 1, 2 and 3, respectively, are not associated with diabetic nephropathy in type 1 diabetes.	Hoverfelt A et al.	20490454	No data for ACE
1	Neuropeptide YY1 receptor polymorphism as a prognostic predictor in Japanese patients with IgA nephropathy	Ito H et al.	10363627	No data for ACE
1	Manganese superoxide dismutase gene polymorphism (V16A) is associated with stages of albuminuria in Korean type 2 diabetic patients.	Lee SJ et al.	16324912	No data for ACE
1	Impact of the preintervention rate of renal function decline on outcome of renoprotective intervention.	Lely AT et al.	18077786	No data for ACE

	Kinin-dependent hypersensitivity reactions in hemodialysis:			
1	metabolic and genetic factors.	Molinaro G et al.	17003818	No data for ACE
	Effect of a polymorphism of endothelial nitric oxide synthase gene			
1	in Japanese patients with IgA nephropathy.	Morita T et al.	10543322	No data for ACE
	Nephropathy in type 1 diabetes: a manifestation of insulin			
	resistance and multiple genetic susceptibilities? Further evidence			
1		Orchard TJ et al.	12164879	No data for ACE
	Role of glycaemic control in development of microalbuminuria in			
1	patients with insulin dependent diabetes.	Powrie JK et al.	7819935	No data for ACE
	Association of TNF-1±-308 G > A and ACE I/D gene polymorphisms			
1	in hemodialysis patients with arteriovenous fistula thrombosis.	Sener EF et al.	24126814	No data for ACE
	N-domain angiotensin I-converting enzyme expression in renal			
1		Bueno V et al.	15194348	Non-human stud
	Kallikrein and amylase contents in tissues from a mutant mouse			
1		Catanzaro OL et al.	6186886	Non-human stuc
	Connexin 43 is not essential for the control of renin synthesis and			
1		Gerl M et al.	24062052	Non-human stuc
	Multi-species comparative analysis of the equine ACE gene		$\overline{\Omega}$	
	identifies a highly conserved potential transcription factor binding			
1	site in intron 16.	Hamilton NA et al.	23408978	Non-human stud
	Renal angiotensin converting enzyme promotes renal damage			
1	during ureteral obstruction	Stoneking BJ et al.	9719278	Non-human stud
	Angiotensin-converting enzyme genotype is a predictive factor in			Not a case-contr
1		Akcay A et al.	15013293	study
	Association of the genetic polymorphisms of the renin-angiotensin			
	system and endothelial nitric oxide synthase with chronic renal			Not a case-contr
1	transplant dysfunction.	Akcay A et al.	15385810	study

Page 52 of 304

1 2 3	
4 5 6	
7 8 9	
10 11	
12 13 14	
15 16	
17 18 19	
20 21	
22 23 24	
25 26 27	
28 29	
30 31 32	
33	
34 35 36 37	
38 39 40	
41 42	
43 44	
45	
46	

1	PAI-1 4G/5G and ACE I/D gene polymorphisms and the occurrence of myocardial infarction in patients on intermittent dialysis.	Aucella F et al.	12748347	Not a case-contro study
	Angiotensin-converting-enzyme insertion/deletion genotype and			Not a case-contro
1	long-term renal allograft survival.	Beige J et al.	9550656	study
	Deletion insertion polymorphism of the angiotensin converting			Not a case-contro
1	enzyme gene and progression of diabetic nephropathy.	Bjorck S et al.	9269704	study
		Costerousse O et		Not a case-contro
1	Genetics of angiotensin I-converting enzyme	al.	9247746	study
	Captopril enhances transforming growth factor (TGF)-beta1			
	expression in peripheral blood mononuclear cells: a mechanism			
	independent from angiotensin converting enzyme inhibition? A			Not a case-contro
1	study in cyclosporine-treated kidney-transplanted patients.	Di Paolo S et al.	12499886	study
	Insertion/deletion polymorphism of the angiotensin-converting			
	enzyme predicts left ventricular hypertrophy after renal			Not a case-contro
1	transplantation.	Fedor R et al.	21620105	study
	Antiproteinuric effect of candesartan cilexetil in Japanese subjects			Not a case-contro
1	with type 2 diabetes and nephropathy.	Haneda M et al.	15364166	study
	Association between Angiotensin I-Converting Enzyme			
	Insertion/Deletion Polymorphism and Prognosis of Kidney			Not a case-contr
1	Transplantation: A Meta-Analysis	Huang ZK et al.	26000752	study
	Is there a role of angiotensin-converting enzyme gene			
	polymorphism in the failure of arteriovenous femoral shunts for			Not a case-contro
1	hemodialysis?	Isbir CS et al.	11525534	study
	Smoking has no impact on survival and it is not associated with ACE			Not a case-contr
1	gene I/D polymorphism in hemodialysis patients.	Kiss I et al.	28058974	study
-			2000071	
	Antihypertensive treatment modulates the association between the			
	D/I ACE gene polymorphism and left ventricular hypertrophy: a			Not a case-contr
1	meta-analysis	Kuznetsova T et al.	10918550	study

1	Genetics and the prediction of complications in type 1 diabetes	Marre M	10097900	Not a case-control study
I	deneties and the prediction of complications in type 1 diabetes		10057500	Not a case-control
1	Hereditary factors in the development of diabetic renal disease	Marre M et al.	10922971	
1		Ividite ivi et di.	10922971	study
	The effect of angiotensin receptor blockade ARB on the regression			
	of left ventricular hypertrophy in hemodialysis patients: comparison			
	between patients with D allele and non-D allele ACE gene			Not a case-control
1	polymorphism.	Nakayama M et al.	16312263	study
	Role of ACE and IL-1 ² Gene Polymorphisms in Erythropoeitin			Not a case-control
1	Hyporesponsive Patients with Chronic Kidney Disease with Anemia.	Nand N et al.	28457029	study
	Angiotensin-I converting enzyme insertion/deletion polymorphism			
	and its association with diabetic nephropathy: a meta-analysis of			
	studies reported between 1994 and 2004 and comprising 14,727			Not a case-control
1	subjects	Ng D et al.	15830182	study
	Is the presence of retinopathy of practical value in defining cases of			
	diabetic nephropathy in genetic association studies? The			
	, .			Not a casa control
1	experience with the ACE insertion/deletion polymorphism in 53		10522141	Not a case-control
1		Ng DPK et al.	18523141	study
	Correlates of ACE activity in macroalbuminuric type 2 diabetic		17006176	Not a case-control
1		Nikzamir A et al.	17986476	study
	Insertion/deletion polymorphism in intron 16 of the ACE gene and		ΔI	
	left ventricular hypertrophy in patients with end-stage renal			Not a case-control
1	disease.	Osono E et al.	9820440	study
	Risk factors for the progression of microalbuminuria in Japanese			Not a case-control
1		Oue T et al.	10580616	study
1			1000010	Judy
	Survival in type 2 diabetic patients in dialysis and the number of risk	Padro-Miquel A et		Not a case-control
1	alleles in polymorphisms of the renin-angiotensin system genes.	al.	19014923	study

BMJ Open

Page 54	of 304
---------	--------

1	Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme: observational follow up study.	Parving HH et al.	8806248	Not a case-contro study
1	Altered activities of kininase II, an angiotensin converting enzyme, prekallikrein, and nitric oxide in Kuwaiti patients with type 2 diabetes	Sharma JN et al.	25964383	Not a case-contro study
1	Impact of genetic polymorphisms of the renin-angiotensin system and of non-genetic factors on kidney transplant functiona single- center experience.	Siekierka-Harreis M et al.	19681973	Not a case-contro study
1	Angiotensin-converting enzyme (ACE) inhibition in type 2, diabetic patients interaction with ACE insertion/deletion polymorphism.	So WY et al.	16395257	Not a case-contro study
1	Microfluidic chip-based method for genotyping microsatellites, VNTRs and insertion/deletion polymorphisms.	Sohni YR et al.	12554058	Not a case-contro study
1	M235T angiotensinogen gene polymorphism and cardiovascular renal risk	Staessen JA et al.	10100088	Not a case-contro study
1	Mistyping of the human angiotensin-converting enzyme gene polymorphism: Frequency, causes and possible methods to avoid errors in typing	Ueda S et al.	8863184	Not a case-contro study
1	Association between angiotensin-converting-enzyme gene polymorphism and failure of renoprotective therapy.	van Essen GG et al.	8538349	Not a case-contro study
1	Contribution of gene polymorphisms in the renin-angiotensin system to macroangiopathy in patients with diabetic nephropathy.	Wong TY et al.	11431175	Not a case-contro study
1	Disease progression, response to ACEI/ATRA therapy and influence of ACE gene in IgA nephritis.	Woo KT et al.	17601378	Not a case-contro study
1	Angiotensin-converting enzyme inhibitor versus angiotensin 2 receptor antagonist therapy and the influence of angiotensin- converting enzyme gene polymorphism in IgA nephritis.	Woo KT et al.	18536822	Not a case-contro study

1	Angiotensin converting enzyme gene polymorphism and		12022741	Not a case-contro
1		Yildiz A et al.	12832741	study
	Gene polymorphisms of the renin-angiotensin-aldosterone system			.
	and angiotensin II type 1-receptor activating antibodies in renal			Not a case-contro
1	,	Zhang G et al.	17984617	study
	Angiotensin-converting enzyme gene polymorphism in Kuwaiti	Al-Awadhi AM et		Not a renal disea
1	patients with systemic lupus erythematosus.	al.	17631741	focus
	Association of Angiotensin Converting Enzyme Insertion-Deletion			
	Polymorphism with Hypertension in Emiratis with Type 2 Diabetes			Not a renal disea
1		Alsafar H et al.	26491214	focus
	Association of ACE gene D polymorphism with left ventricular			
	hypertrophy in patients with diastolic heart failure: a case-control			Not a renal disea
1		Bahramali E et al.	26861937	focus
	A novel human heparanase splice variant, T5, endowed with	Barnanian E et al.	20001337	Not a renal disea
1		Barash U et al.	20007507	focus
1		Dardsh U et al.	2000/30/	TOCUS
	Synergistic effect of alpha-adducin and ACE genes causes blood			Not a renal disea
1	pressure changes with body sodium and volume expansion.	Barlassina C et al.	10720960	focus
	Isolated polycystic liver disease genes define effectors of polycystin-		20275457	Not a renal disea
1		Besse W et al.	28375157	focus
	Association between plasma activities of semicarbazide-sensitive		h	
	amine oxidase and angiotensin-converting enzyme in patients with			Not a renal disea
1	type 1 diabetes mellitus.	Boomsma F et al.	15830186	focus
	CCL18: a urinary marker of Gaucher cell burden in Gaucher			Not a renal disea
1	patients.	Boot RG et al.	16736095	focus
1			10/30093	
4	Renin-angiotensin system gene polymorphisms: assessment of the	Buraczynska M et	14500000	Not a renal disea
1	risk of coronary heart disease.	al.	14502296	focus
	Angiotensin-converting enzyme (ACE) haplotypes and cyclosporine			
	A (CsA) response: a model of the complex relationship between ACE			Not a renal disea

Page 56 of 304

1 2 3	
4 5	
6 7	
8	
9 10	
11	
12 13	
14 15	
16	
17 18	
19 20	
20 21	
22 23	
24 25	
26	
27 28	
29 30	
31	
32 33	
34 35	
36	
37 38	
39 40	
41	
42 43	
44	
45 46	

	A study on the association between angiotensin-I converting			Not a renal disease
1	enzyme I/D dimorphism and type-2 diabetes mellitus.	Chmaisse HN et al.	19861867	focus
	alpha-adducin and angiotensin I-converting enzyme polymorphisms			Not a renal disease
1	in essential hypertension	Clark CJ et al.	11116113	focus
	Elevated urinary albumin excretion is not linked to the angiotensin			
	I-converting enzyme gene polymorphism in clinically healthy			Not a renal disease
1	subjects	Clausen P et al.	10872702	focus
	Association of renin-angiotensin and endothelial nitric oxide			
	synthase gene polymorphisms with blood pressure progression and			Not a renal disease
1	incident hypertension: prospective cohort study.	Conen D et al.	18698212	focus
	Angiotensin I-converting enzyme (kininase II) in cardiovascular and	Costerousse O et		Not a renal disease
1	renal regulations and diseases	al.	9830503	focus
	ACE and PC-1 gene polymorphisms in normoalbuminuric Type 1	de Azevedo MJ et		Not a renal disease
1	diabetic patients: a 10-year prospective study.	al.	12126783	focus
	Insertion/Deletion Polymorphism of Angiotensin I-converting	de Martino M et		Not a renal disease
1	Enzyme Gene Is Linked With Chromophobe Renal Cell Carcinoma	al.	21477733	focus
	Polymorphisms in genes of the renin-angiotensin-aldosterone			
	system and renal cell cancer risk: interplay with hypertension and			Not a renal disease
1	intakes of sodium, potassium and fluid.	Deckers IA et al.	24978482	focus
	ACE gene insertion/deletion polymorphism modulates capillary			Not a renal disease
1	permeability in hypertension	Dell'omo G et al.	16889537	focus
			225 42002	Not a renal disease
1	Genetic polymorphisms associated with exertional rhabdomyolysis	Deuster PA et al.	23543093	focus
	Distribution of different HLA antigens in Greek hypertensives	Diamantopoulos EJ		Not a renal disease
1	according to the angiotensin-converting enzyme genotype.	et al.	10821349	focus
	Are the angiotensin-converting enzyme gene and activity risk			Not a renal disease
1	factors for stroke?	Dikmen M et al.	16791358	focus
	Angiotensin-converting enzyme (insertion/deletion) and endothelial			
	nitric oxide synthase polymorphisms in patients with systemic lupus			Not a renal disease
1	erythematosus.	Douglas G et al.	15338496	focus

1	Abnormal hepatocystin caused by truncating PRKCSH mutations leads to autosomal dominant polycystic liver disease.	Drenth JP et al.	15057895	Not a renal diseas focus
	The angiotensin I-converting enzyme gene insertion/deletion			Not a renal diseas
1	polymorphism is linked to early gastric cancer	Ebert MPA et al.	16365022	focus
	Association of chitotriosidase enzyme activity and genotype with	Elmonem MA et		Not a renal disea
1	the risk of nephropathy in type 2 diabetes.	al.	26589000	focus
	Relationship of bradykinin B2 receptor gene polymorphism with			Not a renal disea
1	essential hypertension and left ventricular hypertrophy.	Fu Y et al.	15894833	focus
1	Deletion polymorphism of the angiotensin-converting enzyme gene is independently associated with left ventricular mass and	Gharavi AG et al.	8677872	Not a renal disea focus
T	geometric remodeling in systemic hypertension.	Gliaravi AG et al.	0077072	TOCUS
1	The presence of PAI-1 4G/5G and ACE DD genotypes increases the risk of early-stage AVF thrombosis in hemodialysis patients.	Gungor Y et al.	21332339	Not a renal disea focus
1	The Captopril Prevention Project (CAPPP) in hypertensionbaseline		21552555	Not a renal disea
1	data and current status.	Hansson L et al.	9495662	focus
1	Relationship of eNOS gene variants to diseases that have in		5455002	Not a renal disea
1	common an endothelial cell dysfunction.	Heltianu C et al.	15784171	focus
	· ·	Heitianu C et al.	13784171	10003
	Relationship of the angiotensin-converting enzyme gene polymorphism to glucose intolerance, insulin resistance, and			Not a renal disea
1		Huang XH et al.	9544854	focus
1	Distribution of human leukocyte antigen alleles in systemic lupus	nualig An et al.	9544654	TOCUS
	erythematosus patients with angiotensin converting enzyme			Not a renal disea
1	insertion/deletion polymorphism.	Hussain N et al.	23448612	focus
±			23440012	
	Comprehensive analysis of the renin-angiotensin gene		40050000	Not a renal disea
1		Kato N et al.	10953993	focus
	Association of clinical manifestations with HLA-B alleles in Takayasu			Not a renal disea
1	arteritis	Kitamura H et al.	9951811	focus
	Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients			Not a renal disea
			1	

	Effects of angiotensin-converting enzyme gene polymorphism and serum vitamin D levels on ambulatory blood pressure measurement			Not a renal disease
1	, .	Kulah E et al.	17625392	focus
1	Efficacy of Korean Red Ginseng by Single Nucleotide Polymorphism in Obese Women: Randomized, Double-blind, Placebo-controlled Trial	Kwon DH et al.	23717118	Not a renal disease
1	Angiotensin-Converting Enzyme Gene Polymorphism Has No Influence On The Circulating Renin-Angiotensin-Aldosterone System	Lachurie MI et al.	7796503	Not a renal disease focus
1	Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease.	Li A et al.	12529853	Not a renal disease focus
1		Mansoor Q et al.	22607040	Not a renal disease focus
1	Renal changes on hyperglycemia and angiotensin-converting enzyme in type 1 diabetes	Marre M et al.	10082486	Not a renal disease focus
1	Detection of the association between a deletion polymorphism in the gene encoding angiotensin I-converting enzyme and advanced diabetic retinopathy	Matsumoto A et al.	11106834	Not a renal disease focus
1	Association of the D allele of the angiotensin I converting enzyme polymorphism with malignant vascular injury	Mayer NJ et al.	11836444	Not a renal disease focus
1		Mehler M et al.	9923	Not a renal disease focus
1	Association of polymorphisms of angiotensin I converting enzyme 2 with retinopathy in type 2 diabetes mellitus among Chinese individuals	Meng N et al.	25359286	Not a renal disease focus
1	Angiotensin converting enzyme gene polymorphism and renal hemodynamic function in early diabetes.	Miller JA et al.	8995725	Not a renal disease focus

1	Genetic risk for renal artery stenosis: association with deletion polymorphism in angiotensin 1-converting enzyme gene.	Missouris CG et al.	8821841	Not a renal disease focus
1	Renal ACE immunohistochemical localization in NIDDM patients with nephropathy.	Mizuiri S et al.	9469501	Not a renal diseas focus
T		iviizuiri S et di.	9409501	TOCUS
1	Association of B2 receptor polymorphisms and ACE activity with ACE inhibitor-induced angioedema in black and mixed-race South Africans.	Moholisa RR et al.	23730990	Not a renal diseas focus
1	Renal outcome and vascular morbidity in systemic lupus erythematosus (SLE): lack of association with the angiotensin- converting enzyme gene polymorphism.	Molad Y et al.	11071585	Not a renal diseas
1	Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension.	Mondorf UF et al.	9524045	Not a renal diseas focus
1	Inhibition of tissue angiotensin converting enzyme activity prevents malignant hypertension in TGR(mREN2)27.	Montgomery HE et al.	9797175	Not a renal diseas focus
1	Independent, Marked Associations Of Alleles Of The Insulin- Receptor And Dipeptidyl Carboxypeptidase-I Genes With Essential- Hypertension	Morris Bj et al.	8104754	Not a renal diseas focus
1	Increased D allele frequency of the angiotensin-converting enzyme gene in pulmonary fibrosis.	Morrison CD et al.	11381371	Not a renal diseas focus
1	Angiotensin converting enzyme (ACE) insertion/deletion (I/D) polymorphism, and diabetic retinopathy in subjects with IDDM and NIDDM.	Nagi DK et al.	8582133	Not a renal diseas focus
1	Angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism is not a risk factor for hypertension in SLE nephritis.	Negi VS et al.	25957879	Not a renal diseas focus
1	Carotid intima-media thickness and ACE-gene polymorphism in hemodialysis patients.	Nergizoglu G et al.	10493570	Not a renal diseas focus
	Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with metabolic syndrome in			Not a renal diseas
1	Iranians with type 2 diabetes mellitus.	Nikzamir A et al.	18154415	focus

BMJ Open

	Angiotensin Converting Enzyme Gene Insertion/Deletion Variant			Not a renal diseas
1	and Familial Mediterranean Fever-related Amyloidosis.	Nursal AF et al.	29891744	focus
	Pharmacogenetic analysis of the effect of angiotensin-converting			
	enzyme inhibitor on restenosis after percutaneous transluminal			Not a renal diseas
1	coronary angioplasty.	Okamura A et al.	10535720	focus
	Genetic polymorphisms of the renin-angiotensin system and			Not a renal disea
1	atheromatous renal artery stenosis.	Olivieri O et al.	10567188	focus
	Different impact of deletion polymorphism of gene on the risk of			Not a renal disea
1	renal and coronary artery disease.	Olivieri O et al.	11791024	focus
	Increased frequency of the angiotensin-converting enzyme gene D-			
	allele is associated with noninfectious pulmonary dysfunction			Not a renal disea
1	following allogeneic stem cell transplant.	Onizuka M et al.	16044138	focus
	Hepatocystin is Essential for TRPM7 Function During Early			Not a renal disea
1	Embryogenesis.	Overton JD et al.	26671672	focus
	Angiotensin-converting enzyme and angiotensin II receptor subtype			
	2 genotypes in type 1 diabetes and severe hypoglycaemia requiring	Pedersen-		Not a renal disea
1	emergency treatment: a case cohort study.	Bjergaard U et al.	19820429	focus
	Impact of maternal angiotensinogen M235T polymorphism and			
	angiotensin-converting enzyme insertion/deletion polymorphism			
	on blood pressure, protein excretion and fetal outcome in			Not a renal disea
1	pregnancy.	Pfab T et al.	17563539	focus
	Renovascular disease: effect of ACE gene deletion polymorphism			Not a renal disea
1	and endovascular revascularization.	Pizzolo F et al.	14718831	focus
	Angiotensin-converting enzyme gene polymorphism in patients			Not a renal disea
1		Prkacin I et al.	11505631	focus
1	The relationship between ACE/AGT gene polymorphisms and the		11505051	10003
	risk of diabetic retinopathy in Chinese patients with type 2			Not a renal disea
1	diabetes.	Qiao YC et al.	29378484	focus
			25576464	10003
	Association of angiotensin-converting enzyme gene dimorphisms			Not a renal disea
1	with severity of lupus disease.	Rabbani MA et al.	18711292	focus

1	Leukocyte beta-glucosidase in homozygotes and heterozygotes for Gaucher disease.	Raghavan SS et al.	6770675	Not a renal diseas focus
	Association of angiotensinogen M235T and A(-6)G gene polymorphisms with coronary heart disease with independence of	5		
	essential hypertension: the PROCAGENE study. Prospective Cardiac	Rodriquez-Perez		Not a renal diseas
1	Gene.	JC et al.	11345362	focus
	Testing of potential glycan-based heparanase inhibitors in a			
	fluorescence activity assay using either bacterial heparinase II or	Schoenfeld AK et		Not a renal diseas
1	human heparanase.	al.	24667567	focus
	Angiotensin-converting enzyme gene I/D polymorphism increases			
	the susceptibility to hypertension and additive diseases: A study on			Not a renal diseas
1	North Indian patients.	Singh M et al.	27030424	focus
	Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with			Not a renal diseas
1	type 2 diabetes mellitus in North West India 🛛 🔪 👝	Singh PP et al.	16621107	focus
	Angiotensin-converting enzyme gene I/D polymorphism in 🦊 💦			Not a renal diseas
1	malignant hypertension.	Stefansson B et al.	10855732	focus
	Increased amount of the angiotensin-converting enzyme (ACE)			Not a renal diseas
1	mRNA originating from the ACE allele with deletion.	Suehiro T et al.	15164285	focus
	Genetic variants in hypertensive patients with coronary artery	Suchino r ct di.	15104205	Not a renal diseas
1	disease and coexisting atheromatous renal artery stenosis.	Szperl M et al.	19043368	focus
1	- · · ·	Szperi Wiet al.	13043308	10003
	Angiotensin I converting enzyme gene polymorphisms in systemic lupus erythematosus: decreased prevalence of DD genotype in			Not a renal diseas
1	African American patients	Tassiulas IO et al.	9710341	focus
1	Albuminuria and the renin-angiotensin system gene polymorphisms		5710541	Not a renal diseas
1	in type-2-diabetic and in normoglycemic hypertensive Chinese.	Thomas GN et al.	11200871	focus
I	Peripheral vascular disease in Type 2 diabetic Chinese patients:	momas un et al.	112008/1	Tocus
	associations with metabolic indices, concomitant vascular disease			Not a renal diseas
1	and genetic factors.	Thomas GN et al.	14632699	focus
	Angiotensin-converting enzyme gene polymorphism and vascular		1.002000	Not a renal diseas
1	manifestations in Korean patients with SLE.	Uhm WS et al.	12043886	focus
T	mannestations in Korean patients with SLE.	onin wo et al.	12043880	IUCUS

Page 62 of 304

1	Genetic risk of atherosclerotic renal artery disease: the candidate gene approach in a renal angiography cohort.	van Onna M et al.	15326089	Not a renal diseas focus
	Angiotensin I-converting enzyme and angiotensinogen gene			Not a renal diseas
1		Vasku A et al.	9607178	focus
	Association between ACE gene polymorphisms and Alzheimer's			Not a renal disea
1		Wang XL et al.	WOS:000412148800122	focus
	COL4A1 mutations in patients with sporadic late-onset			Not a renal disea
1		Weng YC et al.	22522439	focus
	Increased expression of angiotensin II type 1 receptor (AGTR1) in			Not a renal disea
1	heart transplant recipients with recurrent rejection.	Yamani MH et al.	17097490	focus
	No association between deletion-type angiotensin-converting			
	enzyme gene polymorphism and left-ventricular hypertrophy in			Not a renal disea
1	hemodialysis patients.	Yildiz A et al.	10657713	focus
	Frequencies Of Variants Of Candidate Genes In Different Age-			Not a renal disea
1	Groups Of Hypertensives	Zee Ryl et al.	7882587	focus
	9	Buraczynska M et		Not English or
1	[Renin-angiotensin system genes in chronic glomerulonephritis].	al.	11865575	Spanish
	[Association of the renin-angiotensin system gene polymorphism	Buraczynska M et		Not English or
1	with nephropathy in type II diabetes].	al.	12476891	Spanish
	[Genetic predisposition to systemic complications of arterial			Not English or
1	hypertension in maintenance haemodialysis patients].	Bzoma B et al. 📃	19112833	Spanish
	[Is Pstl polymorphism of the angiotensin I converting enzyme gene			
	associated with nephropathy development in non-insulin-	Grzeszczak W et		Not English or
1	dependent diabetes mellitus (preliminary study)].	al.	9499204	Spanish
	[Angiotensin-converting enzyme gene polymorphism and the			Not English or
1	clinical pathological features and progression in lupus nephritis].	Guan T et al.	10436947	Spanish
	[I/D relationship between polymorphism of ACE gene and			Not English or
1	progression of chronic glomerulonephritis].	Kaliev RR et al.	16078593	Spanish
	[Association of the complex of polymorphic markers of ACE genes,			
	aldosteron synthetase and endothelial synthetase of nitric oxide	Kamysheva ES et		Not English or
1	with progression of chronic glomerulonephritis].	, al.	15532370	Spanish

	[Angiotensin-converting enyme insertion/deletion polymorphism	Krajina-Andricevic		Not English o
1		M et al.	23120809	Spanish
	[Polymorphism studies of angiotensin converting enzyme gene in		40400450	Not English o
1		Kutyrina IM et al.	10420452	Spanish
	[Relationship between serum angiotensin I-converting enzyme			Not English o
1	activity and diabetic nephropathy in patients with type II diabetes].	Liao L et al.	12016801	Spanish
	[Study on candidate genes of benazepril related cough in Chinese			Not English o
1	hypertensives].	Lu J et al.	12848919	Spanish
	[Association of alpha-adducin and angiotensin converting enzyme			
	gene polymorphisms with salt-sensitive hypertension and early			Not English o
1	renal injury].	Lu LH et al.	18393230	Spanish
	[Association between insertion-deletion polymorphism of the			
	angiotensin-converting enzyme gene and development of			
	angiopathies in patients with non-insulin dependent diabetes	Miloserdova OV et		Not English o
1	mellitus from the Chuvash Republic].	al.	11234416	Spanish
	[Relationship between I/D polymorphism of angiotensin I			
	converting enzyme gene and microvascular complications in type 2			Not English o
1	diabetic patients].	Moleda P et al.	17941464	Spanish
	[A study on angiotensin-I converting enzyme polymorphism in CAPD			Not English o
1	patients].	Nishina M	9014479	Spanish
				Not English o
1	[Arterial hypertension in glomerulonephritis].	Oko A et al.	14974362	Spanish
	[Association between angiotensin-converting enzyme 2 gene			Not English o
1		Qiu MY et al.	25815490	•
		• • • •		
	[Association between ACE gene polymorphism and therapeutic			Not English o
1		Wang L et al.	10923445	
	[Relationship between angiotensin 1 converting enzyme gene			Not English o
1	polymorphism and diabetic nephropathy].	Wu S et al.	9596955	Spanish

1	[Correlative study between angiotensin-converting enzyme gene polymorphism and hepatorenal syndrome].	Wu XX et al.	15698501	Not English or Spanish
1	DD genotype of ACE gene in boys: may it be a risk factor for minimal change nephrotic syndrome?	Alasehirli B et al.	22017506	Paediatric individuals
1	Angiotensin-converting enzyme gene insertion/deletion	al-Eisa A et al.	10986863	Paediatric individuals
1	Angiotensin converting enzyme gene insertion/deletion polymorphism in idiopathic nephrotic syndrome in Kuwaiti Arab	Al-Eisa A et al.	11487079	Paediatric individuals
1	Polymorphisms in angiotensin-converting enzyme gene and severity of renal disease in Henoch-Schoenlein patients. Italian Group of Renal Immunopathology.	Amoroso A et al.	9870486	Paediatric individuals
1	Angiotensin converting enzyme gene polymorphism in Asian Indian children with congenital uropathies.	Bajpai M et al.	14713838	Paediatric individuals
1	Late effects on renal glomerular and tubular function in childhood cancer survivors.	Bardi E et al.	15390293	Paediatric individuals
1	Angiotensin-converting enzyme genotype is not a significant genetic risk factor for idiopathic nephrotic syndrome in Croatian children.	Batinc D et al.	25997642	Paediatric individuals
1	HPSE2 mutations in urofacial syndrome, non-neurogenic neurogenic bladder and lower urinary tract dysfunction.	Bulum B et al.	25924634	Paediatric individuals
1	ACE gene polymorphism in Turkish children with nephrotic syndrome.	Celik US et al.	16825089	Paediatric individuals
1	Glycosphingolipid levels in an unusual neurovisceral storage disease characterized by lactosylceramide galactosyl hydrolase deficiency: lactosylceramidosis.	Dawson G	5016302	Paediatric individuals
1	Association of ACE and MDR1 Gene Polymorphisms with Steroid Resistance in Children with Idiopathic Nephrotic Syndrome.	Dhandapani MC et al.	26154535	Paediatric individuals
1	Polymorphisms of the angiotensin converting enzyme and angiotensin II type 1 receptor genes and renal scarring in non- uropathic children with recurrent urinary tract infection.	Ece A et al.	16109085	Paediatric individuals

Page 6	5 of 304
--------	----------

	Is ACE gene polymorphism a risk factor for renal scarring with low-		45400070	Paediatric
1		Erdogan H et al.	15138870	
	ACE gene polymorphism in Egyptian children with idiopathic			Paediatric
1	nephrotic syndrome.	Fahmy ME et al.	18792483	individuals
	Genetic polymorphisms of the renin-angiotensin system and the			Paediatric
1	outcome of focal segmental glomerulosclerosis in children.	Frishberg Y et al.	9853248	individuals
	Angiotensinogen gene T235 variant: a marker for the development			
	of persistent microalbuminuria in children and adolescents with			Paediatric
1	type 1 diabetes mellitus	Gallego PH et al.	18413222	individuals
	Implication of genetic variations in congenital obstructive			Paediatric
1	nephropathy.	Hahn H et al.	16133060	individuals
	Angiotensin-converting enzyme insertion/deletion gene			
	polymorphism in Egyptian children with systemic lupus			Paediatric
1	erythematosus: a possible relation to proliferative nephritis.	Hammad A et al.	27956582	individuals
	ACE gene polymorphism and renal scarring in primary			Paediatric
1	vesicoureteric reflux.	Haszon I et al.	12478352	individuals
	ACE I/D gene polymorphism predicts renal damage in congenital	Hohenfellner K et		Paediatric
1	uropathies.	al.	10452281	individuals
	Impact of ACE I/D gene polymorphism on congenital renal	Hohenfellner K et		Paediatric
1	malformations.	al.	11354781	individuals
	Significance of ACE genotypes and medical treatments in childhood			Paediatric
1	focal glomerulosclerosis.	Hori C et al.	11474225	individuals
	Impact of common functional polymorphisms in renin angiotensin			
	system genes on the risk of renal parenchymal scarring following			Paediatric
1	childhood urinary tract infection.	Hussein A et al.	25939993	individuals
	Gene polymorphisms of adducin GLY460TRP, ACE I/D, AND AGT			Paediatric
1		Kaplan I et al.	25262176	individuals
	ACE serum level and I/D gene polymorphism in children with			
	obstructive uropathies and other congenital anomalies of the	Kostadinova ES et		Paediatric
1	kidney and urinary tract.	al.	27206329	individuals

Page 66 of 304

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 8 9 20 21 22 34 25 26 27 28 9 30 31 23 34 35 37 8 9 30 31 23 34 35 37 8 9 30 31 23 34 35 36 37 8 9 30 31 23 34 35 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
29
40
41
42
43
44
45
46

	ACE and AT1 receptor gene polymorphisms and renal scarring in			Paediatric
1	urinary bladder dysfunction	Kostic M et al.	15179569	individuals
	Association of angiotensin converting enzyme and angiotensin type			
	2 receptor gene polymorphisms with renal damage in posterior			Paediatric
1	urethral valves.	Laksmi NK et al.	20149750	individuals
	Renin-angiotensin system polymorphisms in Taiwanese primary			Paediatric
1	vesicoureteral reflux.	Liu KP et al.	15045574	individuals
	Polymorphisms of renin-angiotensin system genes in childhood IgA			Paediatric
1	nephropathy.	Maruyama K et al.	11354780	individuals
	Angiotensin-Converting Enzyme Gene Polymorphism in Children	Monajemzadeh M		Paediatric
1	with Idiopathic Nephrotic Syndrome, Effect on Biopsy Findings.	et al.	28481137	individuals
	ACE I/D gene polymorphism in primary FSGS and steroid-sensitive			Paediatric
1	nephrotic syndrome.	Oktem F et al.	14986085	individuals
	Implications of certain genetic polymorphisms in scarring in 🌽			Paediatric
1	vesicoureteric reflux: importance of ACE polymorphism. 🔍 🦳 .	Ozen S et al.	10401028	individuals
	Renin-angiotensin system gene polymorphisms: association with			Paediatric
1	susceptibility to Henoch-Schonlein purpura and renal involvement	Ozkaya O et al.	16521052	individuals
	Renin-angiotensin gene polymorphism in children with uremia and			Paediatric
1	essential hypertension.	Papp F et al.	12579405	individuals
			6	Paediatric
1	Renin-angiotensin system polymorphisms and renal scarring.	Pardo R et al.	12579398	individuals
	Angiotensin converting enzyme gene polymorphism in Indian			Paediatric
1	children with steroid sensitive nephrotic syndrome.	Patil SJ et al.	16272677	individuals
	Angiotensin I-converting enzyme-gene-polymorphism: Relationship			
	to albumin excretion and blood pressure in pediatric patients with			Paediatric
1	type-I-diabetes mellitus	Pavlovic M et al.	9354852	individuals
	Angiotensin I converting enzyme and angiotensinogen gene			
	polymorphisms related to 24-h blood pressure in paediatric type I			Paediatric
1	diabetes mellitus	Pavlovic M et al.	9950302	individuals

	Low renin-angiotensin system activity gene polymorphism and			Paediatric
1	dysplasia associated with posterior urethral valves.	Peruzzi L et al.	16006956	individuals
	Modification of epigenetic patterns in low birth weight children:			Paediatric
1	importance of hypomethylation of the ACE gene promoter.	Rangel M et al.	25170764	individuals
	Angiotensin-converting enzyme and angiotensin type 2 receptor			
	gene genotype distributions in Italian children with congenital			Paediatric
1	uropathies 💦	Rigoli L et al.	15470205	individuals
	Effect of angiotensin-converting enzyme gene insertion/deletion			
	polymorphism on steroid resistance in Egyptian children with	Saber-Ayad M et		Paediatric
1	idiopathic nephrotic syndrome.	al.	20418353	individuals
	ACE gone polymorphism in children with postion and reasoning the			Paediatric
1	ACE gene polymorphism in children with nephrotic syndrome in the Indonesian population.	Sacangka TU at al	16421456	
1		Sasongko TH et al.	10421430	
1	Polymorphisms of the TNF-alpha and ACE genes, and renal scarring	Souridou A at al	20022040	Paediatric
1	· · · · · · · · · · · · · · · · · · ·	Savvidou A et al.	20022049	individuals Paediatric
1	ACE gene insertion/deletion polymorphism and renal scarring in a children with uninent tract infections	Sekerli E et al.	19603195	
1	children with urinary tract infections.	Sekern E et al.	19003195	
	ACE gene insertion/deletion polymorphism in childhood idiopathic			Paediatric
1	nephrotic syndrome.	Serdaroglu E et al.	16208534	
	Association of the ACE-II genotype with the risk of nephrotic			Paediatric
1	syndrome in Pakistani children.	Shahid S et al.	22033511	individuals
	ACE gene polymorphism in childhood IgA nephropathy: association			Paediatric
1	with clinicopathologic findings.	Tanaka R et al.	9590186	
	Role of platelet-activating factor acetylhydrolase gene mutation in			Paediatric
1	Japanese childhood IgA nephropathy.	Tanaka R et al.	10430976	
	Angiotensin-converting enzyme gene polymorphism in children			Paediatric
1	with idiopathic nephrotic syndrome.	Tsai IJ et al.	16645262	
	Angiotensin-converting enzyme gene insertion/deletion			Paediatric
1	polymorphism in children with Henoch-Schonlein purpua nephritis.	Zhou J et al.	15315169	individuals
	Estimation of the relationship between the polymorphisms of			
	selected genes: ACE, AGTR1, TGFÎ ² 1 and GNB3 with the occurrence	Zyczkowski M et		Paediatric
1	of primary vesicoureteral reflux.	al.	27988909	individuals

Page 68 of 304

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
17	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
2 3 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 35 37 8 9	
26	
27	
20 20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
29	
40	
41 42	
42 42	
43 44	
44 45	
45 46	
70	

1	Long-term renoprotective effects of losartan in diabetic	Anderson Cot el	1271(012	Pharmaceutical
1	nephropathy: interaction with ACE insertion/deletion genotype?	Andersen S et al.	12716812	drug focus
		Elung-Jensen T et		Pharmaceutical
1	High serum enalaprilat in chronic renal failure	al.	11881130	drug focus
	Randomized placebo-controlled trial of perindopril in			
	normotensive, normoalbuminuric patients with type 1 diabetes			Pharmaceutica
1	mellitus.	Kvetny J et al.	11181984	drug focus
	The influence of the ACE (I/D) polymorphism on systemic and renal			
	vascular responses to angiotensins in normotensive,			Pharmaceutica
1	normoalbuminuric Type 1 diabetes mellitus.	Luik PT et al.	12856080	drug focus
	Renin-angiotensin system polymorphisms and hemoglobin level in			
	renal allografts: a comparative study between losartan and	Noroozianavval M		Pharmaceutica
1	enalapril.	et al.	17524880	drug focus
			17524000	Pharmaceutica
1	ACE gene polymorphism and losartan treatment in type 2 diabetic	Doming III of al	18100708	
1	patients with nephropathy	Parving HH et al.	18199798	drug focus
	Effect of angiotensin-converting enzyme (ACE) gene polymorphism	10.		
	on progression of renal disease and the influence of ACE inhibition			
	in IDDM patients: findings from the EUCLID Randomized Controlled			Pharmaceutica
1	Trial. EURODIAB Controlled Trial of Lisinopril in IDDM.	Penno G et al.	9726242	drug focus
	Enalapril and losartan affect lipid peroxidation in renal transplant	Rashtchizadeh N		Pharmaceutica
1	recipients with renin-angiotensin system polymorphisms.	et al.	17222813	drug focus
	Chronic proteinuric nephropathies. II. Outcomes and response to			
	treatment in a prospective cohort of 352 patients: differences			
	between women and men in relation to the ACE gene			
	polymorphism. Gruppo Italiano di Studi Epidemologici in Nefrologia			Pharmaceutica
1		Ruggenenti P et al.	10616844	drug focus
	The DD genotype of the ACE gene polymorphism is associated with			Incorrect patier
2	diabetic nephropathy in the type-1 diabetics.	Azar ST et al.	11428725	group

	Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the			Incorrect patien
2	DCCT/EDIC Genetics Study.	Boright AP et al.	15793268	group
	ACE, PAI-1, decorin and Werner helicase genes are not associated			
	with the development of renal disease in European patients with			Incorrect patier
2	type 1 diabetes.	De Cosmo S et al.	10495473	group
	Genetic Predisposition To Diabetic Nephropathy - Evidence For A			Incorrect patier
2	Role Of The Angiotensin I-Converting Enzyme Gene	Doria A et al.	7909524	
Ζ	Role Of the Anglotensin i-converting Enzyme Gene	Dona A et al.	/909524	group
	Polymorphism of angiotensin converting enzyme, angiotensinogen,			
	and angiotensin II type 1 receptor genes and end-stage renal failure			Incorrect patier
2	in IgA nephropathy: IGARAS - A study of 274 men	Frimat L et al.	11053482	group .
	Polymorphism of the angiotensin I-converting enzyme gene in			
	diabetic nephropathy in type II diabetic patients with proliferative			Incorrect patier
2	retinopathy Normal State Stat	Hanyu O et al.	9509566	group
	The angiotensin I-converting enzyme (ACE) locus is strongly			
	associated with age and duration of diabetes in patients with type I			Incorrect patier
2	diabetes	Hibberd ML et al.	9025006	group
	Hypertensive nephropathy and the gene for angiotensin-converting			Incorrect patier
2	enzyme.	Kario K et al.	9081678	group
	Effect of ACE gene on diabetic nephropathy in NIDDM patients with		n	Incorrect patier
2	insulin resistance.	Kuramoto N et al.	10023638	group
	Relationships between angiotensin I converting enzyme gene			Incorrect patier
2	polymorphism and renal complications in Korean IDDM patients.	Oh TG et al.	8854649	group
	The frequency of factor V Leiden mutation, ACE gene			
	polymorphism, serum ACE activity and response to ACE inhibitor			
	and angiotensin II receptor antagonist drugs in Iranians type II			Incorrect patier
2	diabetic patients with microalbuminuria.	Rahimi Z et al.	20853144	group
	Interaction of MTHFR 1298C with ACE D allele augments the risk of			Incorrect patier
2	diabetic nephropathy in Western Iran.	Rahimi Z et al.	21942443	group

	The ACE insertion/deletion polymorphism has no influence on			
	progression of renal function loss in autosomal dominant polycystic			Incorrect patien
2	kidney disease.	van Dijk MA et al.	10831637	group
	Genetic polymorphisms of renin-angiotensin system and	Buraczynska M et		
2	progression of interstitial nephritis.	al.	12898858	No data
	Frequency of angiotensin-converting enzyme gene polymorphism in			
2	Turkish type 2 diabetic patients.	Degirmenci I et al.	16178979	No data
	Association of the DD genotype and development of Japanese type			
2	2 diabetic nephropathy.	Gohda T et al.	11770799	No data
	Angiotensin I converting enzyme and angiotensinogen gene			
	polymorphisms in non-insulin-dependent diabetes mellitus. Lack of			
	relationship with diabetic nephropathy and retinopathy in a			
2	Caucasian Mediterranean population	Gutierrez C et al.	9258285	No data
	Association between angiotensin-converting enzyme gene			
	polymorphisms and diabetic nephropathy: case-control, haplotype,			
2		Hadjadj S et al.	17376814	No data
	Prognostic value of the insertion/deletion polymorphism of the ACE			
	gene in type 2 diabetic subjects: results from the Non-insulin-			
	dependent Diabetes, Hypertension, Microalbuminuria or			
	Proteinuria, Cardiovascular Events, and Ramipril (DIABHYCAR),			
2	Diabete de type 2, Nephropathie et Genetique (DIAB2NEP	Hadjadj S et al.	18523145	No data
	Angiotensin-converting enzyme gene polymorphism in non-insulin			
	dependent diabetes mellitus and its relationship with diabetic			
2	nephropathy.	Jeffers BW et al.	9264004	No data
	Genetic polymorphisms of the renin-angiotensin-aldosterone			
2	system in end-stage renal disease.	Lovati E et al.	11422735	No data
	Effects of the genetic polymorphisms of the renin-angiotensin			
2	system on focal segmental glomerulosclerosis.	Luther Y et al.	14610337	No data
	The reninangiotensin system gene polymorphisms and	Ong-Ajyooth S et		
2	clinicopathological correlations in IgA nephropathy.	al.	10511770	No data

	Combinational effect of genes for the renin-angiotensin system in			
2	conferring susceptibility to diabetic nephropathy.	Osawa N et al.	17143591	No data
2	Association of a uteroglobin polymorphism with rate of progression in patients with IgA nephropathy.	Szelestei T et al.	10977777	No data
۷.	Lack of synergism between long-term poor glycaemic control and		10577777	No data
	three gene polymorphisms of the renin angiotensin system on risk			
2	of developing diabetic nephropathy in type I diabetic patients.	Tarnow L et al.	10907125	No data
	ACE gene polymorphism and disease progression of IgA			Overlap in patier
2		Lau YK et al.	12119485	group
	Polymorphism of renin-angiotensin system genes in IgA			Overlap in patie
2	nephropathy	Woo KT et al.	15504143	group
	Angiotensin-converting enzyme (ACE) serum levels and gene			
	polymorphism in Egyptian patients with systemic lupus 👝			< 3 populations
3	erythematosus.	Abbas D et al.	21976404	reported per SN
	Association of an insertion polymorphism of angiotensin-converting			< 3 populations
3		Akai Y et al.	10099886	reported per SN
	Clinical impact of an angiotensin I-converting enzyme			
	insertion/deletion and kinin B2 receptor +9/-9 polymorphisms in			< 3 populations
3		Amorim et al.	23362199	reported per SN
	Lack of association between the angiotensin-converting enzyme			< 2 nonulations
3	gene (I/D) polymorphism and diabetic nephropathy in Tunisian type 2 diabetic patients.	Arfa I et al.	18404607	< 3 populations reported per SN
J			10404007	
_	Polymorphism of the angiotensin-converting enzyme gene in end-			< 3 populations
3		Aucella F et al.	10773756	reported per SN
_	Polymorphism of the renin–angiotensin–aldosterone system in			< 3 populations
3	patients with chronic allograft dysfunction	Ayed K et al.	16635753	reported per SN
	The presence of allele D of angiotensin-converting enzyme			• 2
2	polymorphism is associated with diabetic nephropathy in patients	Cononi III at al	10100044	< 3 populations
3	with less than 10 years duration of Type 2 diabetes.	Canani LH et al.	16108844	reported per SN

3	Identification of specific angiotensin-converting enzyme variants and haplotypes that confer risk and protection against type 2 diabetic nephropathy.	Ezzidi I et al.	19787680	< 3 populations reported per SNP
3	Genetic polymorphisms of the renin-angiotensin-aldosterone system and renal insufficiency in essential hypertension	Fabris B et al.	15662219	< 3 populations reported per SNP
3	Angiotensin converting enzyme gene I/D polymorphism in essential hypertension and nephroangiosclerosis.	Fernández-Llama P et al.	9607207	< 3 populations reported per SNP
3	DNA polymorphisms in the ACE gene, serum ACE activity and the risk of nephropathy in insulin-dependent diabetes mellitus	Freire MBS et al.	9794558	< 3 populations reported per SNP
3	Association between genetic polymorphisms of ACE & eNOS and diabetic nephropathy.	Huo P et al.	25227524	< 3 populations reported per SNP
3	Genetic Clues To The Etiology Of Balkan Endemic Nephropathy: Investigating The Role Of Ace And At1R Polymorphisms	Krcunovic Z et al.	WOS:000287217500011	< 3 populations reported per SNP
3	Angiotensin-I Converting Enzyme Polymorphism and Diabetic	Kumar A et al.	NA	< 3 populations reported per SNP
3	Angiotensin-converting enzyme gene polymorphism in patients with minimal-change nephrotic syndrome and focal segmental glomerulosclerosis.	Lee DY et al.	9434071	< 3 populations reported per SNP
3	Association of the genetic polymorphisms of the ACE gene and the eNOS gene with lupus nephropathy in northern Chinese population.	Li X et al.	20540812	< 3 populations reported per SNP
3	Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulonephritis	Litovkina O et al.	24727057	< 3 populations reported per SNP
3	Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin- dependent diabetes	Marre M et al.	9120002	< 3 populations reported per SNP
3	Influence of the alpha-adducin and ACE gene polymorphism on the progression of autosomal-dominant polycystic kidney disease.	Merta M et al.	12697976	< 3 populations reported per SNP

	Genetic polymorphism of renin-angiotensin system is not			
	associated with diabetic vascular complications in Japanese			< 3 populations
3	subjects with long-term insulin dependent diabetes mellitus.	Miura J et al.	10499884	reported per SN
	The effect of polymorphisms in the renin-angiotensin-aldosterone			< 3 populations
3	system on diabetic nephropathy risk.	Möllsten A et al.	18413189	reported per SN
	[Angiotensin-1 converting enzyme insertion/deletion gene	Ortega-Pierres LE		< 3 populations
3	polymorphism in a Mexican population with diabetic nephropathy].	et al.	17570179	reported per SN
	Influence of genetic variability at the ACE locus in intron 16 on	Parchwani DN et		< 3 populations
3	Diabetic Nephropathy in T1DM patients.	al.	26214998	reported per SN
	Renin-angiotensin system gene polymorphisms predict the			
	progression to renal insufficiency among Asians with lupus			< 3 populations
3	nephritis.	Parsa A et al.	15789057	reported per SN
	Chronic renal insufficiency among Asian Indians with type 2			< 3 populations
3	diabetes: I. Role of RAAS gene polymorphisms	Prasad P et al.	WOS:000238369400001	reported per SN
	Influence of angiotensin converting enzyme (ACE) gene rs4362			
	polymorphism on the progression of kidney failure in patients with	Ramanathan G et		< 3 populations
3	autosomal dominant polycystic kidney disease (ADPKD) 💦 👘 🖉	al.	27748299	reported per SN
	Genetic variants of ACE (Insertion/Deletion) and AGT (M268T)	10.		< 3 populations
3	genes in patients with diabetes and nephropathy.	Shaikh R et al.	24737640	reported per SN
	Polymorphisms of the renin-angiotensin system genes in Brazilian			< 3 populations
3	patients with lupus nephropathy.	Sprovieri SR et al.	15934435	reported per SN
	Gene polymorphisms of angiotensin-converting enzyme and			
	angiotensin II Type 1 receptor among chronic kidney disease			< 3 populations
3	patients in a Chinese population	Su SL et al.	22147663	reported per SN
	Genetic risk factors for renal failure among north Indian ESRD			< 3 populations
3	patients.	Tripathi G et al.	18242170	reported per SN
	Association between angiotensin converting enzyme gene			
	polymorphism and clinical features in autosomal dominant			< 3 populations
3	polycystic kidney disease.	Uemasu J et al.	9180368	reported per SN
	The DD genotype of the ACE gene polymorphism is associated with			
	progression of diabetic nephropathy to end stage renal failure in			< 3 populations
3	IDDM.	Vleming LJ et al.	10099885	reported per SN

BMJ Open

Supplementary Table S3b: Excluded studies from the ACE2 search

 *Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1b)

Exclusion Stage	Title	Authors	Pubmed ID or WoS ID if Pubmed ID not available	Reason
1	Angiotensin converting enzyme gene I/D polymorphism in essential hypertension and nephroangiosclerosis	Fernandez-Llama P et al.	9607207	No data for ACE2
1	Genetic predisposition to Balkan endemic nephropathy: ability to hydroxylate debrisoquine as a host risk factor.	Nikolov IG et al.	1820343	No data for ACE2
1	Immunoglobulin C mu gene restriction fragment length polymorphisms associated with chronic renal failure.	Demaine AG et al.	2985495	No data for ACE2
1	Genetic polymorphism of C3 and Bf in IgA nephropathy.	Rambausek M et al.	3118258	No data for ACE2
1	Factor B subtypes in Japanese patients with IgA nephropathy and with idiopathic membranous nephropathy.	Nishimukai H et al.	3272818	No data for ACE2
1	Major-histocompatibility-complex extended haplotypes in membranoproliferative glomerulonephritis.	Welch TR et al.	3458025	No data for ACE2
1	A simultaneous study of the polymorphism of five proteins in the serum and the urine of nephrotic patients.	Papacostas S et al.	6688659	No data for ACE2
1	Identification of mutants of pyruvate kinase from red blood cells by means of trypsinization, electrophoresis, kinetic properties and immunological methods.	Jacobasch G et al.	7315101	No data for ACE2
1	Angiotensin-converting enzyme polymorphism and development of diabetic nephropathy in non-insulin-dependent diabetes mellitus.	Mizuiri S et al.	7477652	No data for ACE2
1	No association of converting enzyme insertion/deletion polymorphism with immunoglobulin A glomerulonephritis.	Schmidt S et al.	7485124	No data for ACE2
1	Protein loss and genetic polymorphism of apolipoprotein(a) modulate serum lipoprotein(a) in CAPD patients.	Wanner C et al.	7724034	No data for ACE2

	Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-converting enzyme gene and diabetic nephropathy and			
1		Tarnow L et al.	7729604	No data for ACE
1	Role of glycaemic control in development of microalbuminuria in patients with insulin dependent diabetes.	Powrie JK et al.	7819935	No data for ACE2
1	The N-acetyltransferase (NAT) gene: an early risk marker for diabetic nephropathy in Japanese type 2 diabetic patients?	Neugebauer S et al.	7851073	No data for ACE
1	Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin Iconverting enzyme gene.	Doria A et al.	7909524	No data for ACE
1	Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications.	Marre M et al.	8314010	No data for ACE
1	Elevated plasma concentrations of lipoprotein(a) in patients with end- stage renal disease are not related to the size polymorphism of apolipoprotein(a).	Dieplinger H et al.	8432847	No data for ACE
1	Polymorphism of the angiotensin converting enzyme gene and clinical aspects of IgA nephropathy.	Yorioka T et al.	8529313	No data for ACE
1	Association between angiotensin-converting-enzyme gene polymorphism and failure of renoprotective therapy.	van Essen GG et al.	8538349	No data for ACE
1	Association analyses of the polymorphisms of angiotensin-converting enzyme and angiotensinogen genes with diabetic nephropathy in Japanese non-insulin-dependent diabetics.	Ohno T et al.	8596493	No data for ACE
1	Association between a polymorphism in the angiotensin-converting enzyme gene and microvascular complications in Japanese patients with NIDDM.	Doi Y et al.	8720609	No data for ACE
1	Angiotensin-converting enzyme polymorphism in patients with terminal renal failure.	Schmidt A et al.	8785402	No data for ACE
1	Relationships between angiotensin I converting enzyme gene polymorphism and renal complications in Korean IDDM patients.	Oh TG et al.	8854649	No data for ACE

Page 76 of 304

1	
2	
3 4	
5 6	
7	
8 9	
8 9 10 11	
11	
12	
13 14	
15 16	
16	
17	
18 19	
19 20	
21	
22 23	
23 24	
25	
25 26	
27 20	
28 29	
29 30	
31	
32 33	
33 34	
34 35	
36	
37 38	
30 39	
40	
41	
42 43	
43 44	
45	
46	

1	The angiotensin I-converting enzyme (ACE) locus is strongly associated with age and duration of diabetes in patients with type I diabetes.	Hibberd ML et al.	9025006	No data for ACE
1	Hypertensive nephropathy and the gene for angiotensin-converting enzyme.	Kario K et al.	9081678	No data for ACE
1	Evaluation of risk factors for the development of nephropathy in patients with IDDM: insertion/deletion angiotensin converting enzyme gene polymorphism, hypertension and metabolic control.	Barnas U et al.	9084972	No data for ACE
1	Association between angiotensin converting enzyme gene polymorphism and clinical features in autosomal dominant polycystic kidney disease.	Uemasu J et al.	9180368	No data for ACE
1	Angiotensin-converting enzyme genotype and renal allograft survival.	Beige J et al.	9259361	No data for ACE
1	Association of angiotensinogen gene T235 variant with progression of immunoglobin A nephropathy in Caucasian patients.	Pei Y et al.	9259580	No data for ACE
1	Angiotensin-converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus and its relationship with diabetic nephropathy.	Jeffers BW et al.	9264004	No data for ACE
1	Angiotensin I converting enzyme gene polymorphism and diabetic nephropathy in type II diabetes.	Schmidt S et al.	9269698	No data for ACI
1	Deletion insertion polymorphism of the angiotensin converting enzyme gene and progression of diabetic nephropathy.	Bjorck S et al.	9269704	No data for ACE
1	Genetic regulation of the impaired immune response to hepatitis-B vaccine associated with low TCR density in end stage renal disease patients: contribution of complement C4 and factor B alleles.	Kramer J et al.	9334852	No data for ACI
1	Gene-polymorphisms of angiotensin converting enzyme and endothelial nitric oxide synthase in patients with primary glomerulonephritis.	Burg M et al.	9352153	No data for ACI
1	Angiotensin-converting enzyme gene polymorphism in patients with minimal-change nephrotic syndrome and focal segmental glomerulosclerosis.	Lee DY et al.	9434071	No data for ACE
1	Genetic variants of microsomal metabolism and susceptibility to hydrocarbon-associated glomerulonephritis.	Pai P et al.	9474350	No data for ACI

1	Polymorphism of the angiotensin I-converting enzyme gene in diabetic nephropathy in type II diabetic patients with proliferative retinopathy.	Hanyu O et al.	9509566	No data for AC
1	Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease.	Yu H et al.	9535413	No data for AC
1	Relationship of the angiotensin-converting enzyme gene polymorphism to glucose intolerance, insulin resistance, and hypertension in NIDDM.	Huang XH et al.	9544854	No data for AC
1	Angiotensin-converting-enzyme insertion/deletion genotype and long- term renal allograft survival.	Beige J et al.	9550656	No data for AC
1	A new polymorphic restriction site in the human 11 beta-hydroxysteroid dehydrogenase type 2 gene.	Smolenicka Z et al.	9589699	No data for AC
1	Angiotensin I converting enzyme gene polymorphisms in systemic lupus erythematosus: decreased prevalence of DD genotype in African American patients.	Tassiulas IO et al.	9710341	No data for AC
1	Angiotensin I-converting enzyme gene polymorphisms: relationship to nephropathy in patients with non-insulin dependent diabetes mellitus.	Grzeszczak W et al.	9727375	No data for AC
1	The serum paraoxonase activity in patients with chronic renal failure and hyperlipidemia.	Paragh G et al.	9736814	No data for AC
1	Homocysteine, B vitamins, and vascular-access thrombosis in patients treated with hemodialysis.	Tamura T et al.	9740165	No data for AC
1	DNA polymorphisms in the ACE gene, serum ACE activity and the risk of nephropathy in insulin-dependent diabetes mellitus.	Freire MB et al.	9794558	No data for AC
1	Insertion/deletion polymorphism in intron 16 of the ACE gene and left ventricular hypertrophy in patients with end-stage renal disease.	Osono E et al.	9820440	No data for AC
1	The C825T polymorphism in the human G-protein beta3 subunit gene is not associated with diabetic nephropathy in Type I diabetes mellitus.	Fogarty DG et al.	9833937	No data for AC
1	Effect of ACE gene on diabetic nephropathy in NIDDM patients with insulin resistance.	Kuramoto N et al.	10023638	No data for AC
1	The DD genotype of the ACE gene polymorphism is associated with progression of diabetic nephropathy to end stage renal failure in IDDM.	Vleming LJ et al.	10099885	No data for AC

1	Increased frequency of G-protein beta 3-subunit 825 T allele in dialyzed patients with type 2 diabetes.	Bluthner M et al.	10200987	No data for ACE2
1	Lack of association of angiotensin-converting enzyme (DD/II) and angiotensinogen M235T gene polymorphism with renal function among Chinese patients with type II diabetes.	Wong TY et al.	10352194	No data for ACE2
1	Angiotensin I-converting enzyme genotype significantly affects progression of IgA glomerulonephritis in an italian population.	Stratta P et al.	10352195	No data for ACE2
1	Lipoprotein(a) and apolipoprotein(a) isoforms and proteinuria in patients with moderate renal failure.	Sechi LA et al.	10469373	No data for ACE2
1	ACE, PAI-1, decorin and Werner helicase genes are not associated with the development of renal disease in European patients with type 1 diabetes.	De Cosmo S et al.	10495473	No data for ACE2
1	The reninangiotensin system gene polymorphisms and clinicopathological correlations in IgA nephropathy.	Ong-Ajyooth S et al.	10511770	No data for ACE2
1	Effect of a polymorphism of endothelial nitric oxide synthase gene in Japanese patients with IgA nephropathy.	Morita T et al.	10543322	No data for ACE2
1	Endothelial nitric oxide synthase gene polymorphism in intron 4 affects the progression of renal failure in non-diabetic renal diseases.	Wang Y et al.	10570094	No data for ACE2
1	Risk factors for the progression of microalbuminuria in Japanese type 2 diabetic patientsa 10 year follow-up study.	Oue T et al.	10580616	No data for ACE2
1	Chronic proteinuric nephropathies. II. Outcomes and response to treatment in a prospective cohort of 352 patients: differences between women and men in relation to the ACE gene polymorphism. Gruppo Italiano di Studi Epidemologici in Nefrologia (Gisen)	Ruggenenti P et al.	10616844	No data for ACE2
1	Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism.	Zanchi A et al.	10652017	No data for ACE2
1	HDL cholesterol and TaqIB cholesteryl ester transfer protein gene polymorphism in renal transplant recipients.	Radeau T et al.	10754410	No data for ACE2

1	Polymorphism of the angiotensin-converting enzyme gene in end-stage renal failure patients.	Aucella F et al.	10773756	No data for ACE2
	The ACE insertion/deletion polymorphism has no influence on progression of renal function loss in autosomal dominant polycystic			
1	kidney disease.	van Dijk MA et al.	10831637	No data for ACE
1	Increased frequency of angiotensin-converting enzyme DD genotype in patients with type 2 diabetes in Taiwan.	Hsieh MC et al.	10862639	No data for ACE
1	Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes.	Neugebauer S et al.	10868974	No data for ACE
1	Lack of synergism between long-term poor glycaemic control and three gene polymorphisms of the renin angiotensin system on risk of developing diabetic nephropathy in type I diabetic patients.	Tarnow L et al.	10907125	No data for ACE
1	Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation.	Shankland SJ et al.	10916090	No data for ACE
1	G-Protein beta(3) subunit C825T variant, nephropathy and hypertension in patients with type 2 (Non-insulin-dependent) diabetes mellitus.	Zychma MJ et al.	10970984	No data for ACE
1	Association of a uteroglobin polymorphism with rate of progression in patients with IgA nephropathy.	Szelestei T et al.	10977777	No data for ACE
1	Deregulated platelet-activating factor levels and acetylhydrolase activity in patients with idiopathic IgA nephropathy.	Denizot Y et al.	10978389	No data for ACE
1	Structural analysis of the 11beta-hydroxysteroid dehydrogenase type 2 gene in end-stage renal disease.	Zaehner T et al.	11012876	No data for ACE
	Polymorphism of angiotensin converting enzyme, angiotensinogen, and angiotensin II type 1 receptor genes and end-stage renal failure in IgA			
1	nephropathy: IGARASa study of 274 Men.	Frimat L et al.	11053482	No data for ACE
1	Genetic analysis of nitric oxide and endothelin in end-stage renal disease.	Freedman BI et al.	11071967	No data for ACE
	Angiotensinogen M235T and chymase gene CMA/B polymorphisms are not associated with nephropathy in type II diabetes.	Zychma MJ et al.		No data for ACE

BMJ Open

	Acception between evenient in the 11 between budgewistersid			
1	Association between a variant in the 11 beta-hydroxysteroid dehydrogenase type 2 gene and primary hypertension.	Melander O et al.	11114699	No data for ACE2
1	Polymorphisms of human paraoxonase 1 gene (PON1) and susceptibility to diabetic nephropathy in type I diabetes mellitus.	Araki S et al.	11151764	No data for ACE2
1	Posttransplantation relapse of FSGS is characterized by glomerular epithelial cell transdifferentiation.	Bariety J et al.	11158216	No data for ACE2
1	Membranous nephropathy, hydrocarbon exposure and genetic variants of hydrocarbon detoxification.	Gradden CW et al.	11181983	No data for ACE2
1	Albuminuria and the renin-angiotensin system gene polymorphisms in type-2-diabetic and in normoglycemic hypertensive Chinese.	Thomas GN et al.	11200871	No data for ACE2
1	Paraoxonase2 polymorphisms are associated with nephropathy in Type II diabetes.	Pinizzotto M et al.	11206400	No data for ACE2
1	ACE gene polymorphism and long-term renal graft function.	Viklicky O et al.	11239522	No data for ACE2
1	The C825T polymorphism in the G-protein beta3 subunit gene and diabetic complications in IDDM patients.	Shcherbak NS et al.	11322658	No data for ACE2
1	Polymorphisms in the hANP (human atrial natriuretic peptide) gene, albuminuria, and hypertension.	Nannipieri M et al.	11408388	No data for ACE2
1	Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease.	Lovati E et al.	11422735	No data for ACE2
1	The DD genotype of the ACE gene polymorphism is associated with diabetic nephropathy in the type-1 diabetics.	Azar ST et al.	11428725	No data for ACE2
1	Contribution of gene polymorphisms in the renin-angiotensin system to macroangiopathy in patients with diabetic nephropathy.	Wong TY et al.	11431175	No data for ACE2
1	Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control.	Sozmen EY et al.	11440784	No data for ACE2
1	Serum paraoxonase and arylesterase activities in hemodialysis patients.	Itahara T et al.	11480456	No data for ACE2
1	Influence of Bsml vitamin D receptor gene polymorphism on the response to a single bolus of calcitrol in hemodialysis patients.	Marco MP et al.	11522087	No data for ACE2

1	Is there a role of angiotensin-converting enzyme gene polymorphism in the failure of arteriovenous femoral shunts for hemodialysis?	Isbir CS et al.	11525534	No data for ACE2
1	Endothelial nitric oxide synthase intron 4 polymorphism influences the progression of renal disease.	Asakimori Y et al.	11549906	No data for ACE2
1	Dinucleotide repeat polymorphism of matrix metalloproteinase-9 gene is associated with diabetic nephropathy.	Maeda S et al.	11576356	No data for ACE2
1	Angiotensin-converting enzyme gene polymorphism and microvascular complications in Turkish type 2 diabetic patients.	Araz M et al.	11640993	No data for ACE2
1	Effect of human OGG1 1245C>G gene polymorphism on 8-hydroxy-2'- deoxyguanosine levels of leukocyte DNA among patients undergoing chronic hemodialysis.	Tarng DC et al.	11675410	No data for ACE2
1	Association of the DD genotype and development of Japanese type 2 diabetic nephropathy.	Gohda T et al.	11770799	No data for ACE2
1	Different impact of deletion polymorphism of gene on the risk of renal and coronary artery disease.	Olivieri O et al.	11791024	No data for ACE2
1	Gene mutations in lymphoproliferative disorders of T and NK/T cell phenotypes developing in renal transplant patients.	Hoshida Y et al.	11896204	No data for ACE2
1	Association of a functional inducible nitric oxide synthase promoter variant with complications in type 2 diabetes.	Morris BJ et al.	11907646	No data for ACE2
1	Association studies between the HSD11B2 gene (encoding human 11beta-hydroxysteroid dehydrogenase type 2), type 1 diabetes mellitus and diabetic nephropathy.	Lavery GG et al.	11916625	No data for ACE2
1	Polymorphism in ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene (ENPP1/PC-1) and early development of advanced diabetic nephropathy in type 1 diabetes.	Canani LH et al.	11916943	No data for ACE2
1	Role of the alpha-adducin genotype on renal disease progression.	Nicod J et al.	11910943	No data for ACE2
	Hypertension after renal transplantation and polymorphism of genes	Basset el-EA et		
1	involved in essential hypertension: ACE, AGT, AT1 R and ecNOS.	al.	11926202	No data for ACE2

1	ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients.	Lee YJ et al.	12032106	No data for ACE2
1	Angiotensin-converting enzyme gene polymorphism and vascular manifestations in Korean patients with SLE.	Uhm WS et al.	12043886	No data for ACE2
1	Parathyroid hormone gene polymorphism and secondary hyperparathyroidism in hemodialysis patients.	Gohda T et al.	12046039	No data for ACE2
1	Endothelial nitric oxide synthase affects the progression of autosomal dominant polycystic kidney disease.	Reiterova J et al.	12077489	No data for ACE2
1	ACE gene polymorphism and disease progression of IgA nephropathy in Asians in Singapore.	Lau YK et al.	12119485	No data for ACE2
1	T(-786)>C polymorphism of the endothelial nitric oxide synthase gene influences the progression of renal disease.	Asakimori Y et al.	12138283	No data for ACE2
1	The role of PC-1 and ACE genes in diabetic nephropathy in type 1 diabetic patients: evidence for a polygenic control of kidney disease progression.	De Cosmo S et al.	12147786	No data for ACE2
1	Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study.	Orchard TJ et al.	12164879	No data for ACE2
1	Influence of the endothelial nitric oxide synthase polymorphism on the progression of autosomal dominant polycystic kidney disease and IgA nephropathy.	Merta M et al.	12212826	No data for ACE2
1	Serum paraoxonase (PON1) concentration in patients undergoing hemodialysis.	Suehiro T et al.	12226554	No data for ACE2
1	Genetic determinants of delayed graft function after kidney transplantation.	St Peter SD et al.	12364860	No data for ACE2
1	Endothelial nitric oxide synthase gene polymorphism in dialysis patients.	de Prado A et al.	12402580	No data for ACE2
1	Endothelial nitric oxide synthase gene and the development of diabetic nephropathy.	Shimizu T et al.	12413777	No data for ACE2

1	G-protein beta-3-subunit and eNOS gene polymorphism in transplant recipients with long-term renal graft function.	Viklicky O et al.	12424427	No data for ACE
1	Microfluidic chip-based method for genotyping microsatellites, VNTRs and insertion/deletion polymorphisms.	Sohni YR et al.	12554058	No data for ACE
1	The role of ACE gene polymorphism in rapidity of progression of focal segmental glomerulosclerosis.	Dixit M et al.	12571380	No data for ACE
1	The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy.	Hodgkinson AD et al.	12606529	No data for ACE
1	Epidermal growth factor receptor polymorphism and autosomal dominant polycystic kidney disease.	Magistroni R et al.	12653106	No data for ACE
1	Cardiac hypertrophy and remodeling in relation to ACE and angiotensinogen genes genotypes in Chinese dialysis patients.	Wang AY et al.	12675870	No data for ACE
1	Nitric oxide synthase gene polymorphisms and diabetic nephropathy.	Rippin JD et al.	12687343	No data for ACE
1	Influence of the alpha-adducin and ACE gene polymorphism on the progression of autosomal-dominant polycystic kidney disease.	Merta M et al.	12697976	No data for ACE
1	Association of ecNOS gene polymorphisms with end stage renal diseases.	Nagase S et al.	12701818	No data for ACE
1	PAI-1 4G/5G and ACE I/D gene polymorphisms and the occurrence of myocardial infarction in patients on intermittent dialysis.	Aucella F et al.	12748347	No data for ACE
1	Paraoxonase activity and paraoxonase 1 gene polymorphism in patients with uremia.	Biasioli S et al.	12790379	No data for ACE
1	Evaluation of genetic variation and association in the matrix metalloproteinase 9 (MMP9) gene in ESRD patients.	Hirakawa S et al.	12830465	No data for ACE
1	Angiotensin converting enzyme gene polymorphism and development of post-transplant erythrocytosis.	Yildiz A et al.	12832741	No data for ACE
1	Identification of a common risk haplotype for diabetic nephropathy at the protein kinase C-beta1 (PRKCB1) gene locus.	Araki S et al.	12874455	No data for ACE
1	Genotypic and phenotypic properties of coagulase-negative staphylococci causing dialysis catheter-related sepsis.	Spare MK et al.	12919757	No data for ACE

1	Elevation of IgG antibodies against tissue transglutaminase as a diagnostic tool for coeliac disease in selective IgA deficiency.	Korponay-Szabo IR et al.	14570724	No data for ACE2
1	Association of the p22phox component of NAD(P)H oxidase with susceptibility to diabetic nephropathy in patients with type 1 diabetes.	Hodgkinson AD et al.	14578247	No data for ACE2
1	Effects of the genetic polymorphisms of the renin-angiotensin system on focal segmental glomerulosclerosis.	Luther Y et al.	14610337	No data for ACE2
1	Interaction between gene polymorphisms of nitric oxide synthase and renin-angiotensin system in the progression of membranous glomerulonephritis.	Stratta P et al.	14767013	No data for ACE2
1	Angiotensin-converting enzyme polymorphism gene and evolution of nephropathy to end-stage renal disease.	Ortiz MA et al.	15012717	No data for ACE2
1	Angiotensin-converting enzyme genotype is a predictive factor in the peak panel-reactive antibody response.	Akcay A et al.	15013293	No data for ACE2
1	Quantitative polymorphism of complement receptor type 1 (CR1) in patients undergoing haemodialysis.	Tamano M et al.	15069174	No data for ACE2
1	Renin-angiotensin system gene polymorphisms: its impact on IgAN and its progression to end-stage renal failure among Chinese in Singapore.	Lau YK et al.	15153745	No data for ACE2
1	Role of alpha-adducin DNA polymorphisms in the genetic predisposition to diabetic nephropathy.	Conway BR et al.	15187197	No data for ACE2
1	Estrogen receptor is significantly associated with the epithelioid variants of renal angiomyolipoma: a clinicopathological and immunohistochemical study of 67 cases.	Cho NH et al.	15189505	No data for ACE2
1	Paraoxonase 192 polymorphism and its relationship to serum lipids in Turkish renal transplant recipients.	Agachan B et al.	15251338	No data for ACE2
1	Angiotensin converting enzyme genotype and chronic allograft nephropathy in protocol biopsies.	Hueso M et al.	15284309	No data for ACE2
1	The influence of G-protein beta3-subunit gene and endothelial nitric oxide synthase gene in exon 7 polymorphisms on progression of autosomal dominant polycystic kidney disease.	Reiterova J et al.	15287194	No data for ACE2

1	Endothelial nitric oxide synthase gene intron 4 polymorphism in patients with end-stage renal disease.	Buraczynska M et al.	15299097	No data for ACE2
1	Low prevalence of nonconservative mutations of serum and glucocorticoid-regulated kinase (SGK1) gene in hypertensive and renal	Trochen N et al.	15204560	
1		Trochen N et al.	15304560	No data for ACE2
1	Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy.	Shin Shin Y et al.	15331206	No data for ACE2
1	Angiotensin-converting enzyme (insertion/deletion) and endothelial nitric oxide synthase polymorphisms in patients with systemic lupus erythematosus.	Douglas G et al.	15338496	No data for ACE2
	Angiotensin-I converting enzyme gene polymorphism in Turkish type 2	Arzu Ergen H et	10000100	
1		al.	15365253	No data for ACE2
	Identification of NQO1 and GSTs genotype frequencies in Bulgarian	Toncheva DI et		
1		al.	15365958	No data for ACE2
	Balkan endemic nephropathy and genetic variants of glutathione S-	Andonova IE et		
1		al.	15365959	No data for ACE2
1	Association of the genetic polymorphisms of the renin-angiotensin system and endothelial nitric oxide synthase with chronic renal transplant dysfunction.	Akcay A et al.	15385810	No data for ACE2
1	Genetic polymorphisms of cytochrome P450 among patients with Balkan	Atanasova SY et	15565610	
1		al.	15708542	No data for ACE2
	Evidence for association of endothelial cell nitric oxide synthase gene polymorphism with earlier progression to end-stage renal disease in a	Lamnissou K et	J.	
1	cohort of Hellens from Greece and Cyprus.	al.	15727257	No data for ACE2
1	Mutation analysis of autosomal dominant polycystic kidney disease genes in Han Chinese.	Zhang S et al.	15775720	No data for ACE2
	Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the			
1	DCCT/EDIC Genetics Study.	Boright AP et al.	15793268	No data for ACE2

		1	ſ	
1	Nitric oxide- and EDHF-mediated arteriolar tone in uremia is unaffected by selective inhibition of vascular cytochrome P450 2C9.	Passauer J et al.	15840038	No data for ACE2
1	Association between vitamin D receptor FokI. Polymorphism and serum parathyroid hormone level in patients with chronic renal failure.	Vigo Gago E et al.	15887856	No data for ACE2
1	Polymorphisms of the renin-angiotensin system genes in Brazilian patients with lupus nephropathy.	Sprovieri SR et al.	15934435	No data for ACE2
1	Effect of hepatic lipase -514C->T polymorphism and its interactions with apolipoprotein C3 -482C->T and apolipoprotein E exon 4 polymorphisms on the risk of nephropathy in chinese type 2 diabetic patients.	Baum L et al.	15983323	No data for ACE2
1	The impact of thiopurine s-methyltransferase polymorphism on azathioprine-induced myelotoxicity in renal transplant recipients.	Kurzawski M et al.	16044099	No data for ACE2
1	Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1.	Janssen B et al.	16046297	No data for ACE2
1	Impact of polymorphisms in the genes encoding xylosyltransferase I and a homologue in type 1 diabetic patients with and without nephropathy.	Schon S et al.	16164625	No data for ACE2
1	Frequency of angiotensin-converting enzyme gene polymorphism in Turkish type 2 diabetic patients.	Degirmenci I et al.	16178979	No data for ACE2
1	Haplotype analysis of NAD(P)H oxidase p22 phox polymorphisms in end- stage renal disease.	Doi K et al.	16215641	No data for ACE2
1	The effect of angiotensin receptor blockade ARB on the regression of left ventricular hypertrophy in hemodialysis patients: comparison between patients with D allele and non-D allele ACE gene polymorphism.	Nakayama M et al.	16312263	No data for ACE2
1	Manganese superoxide dismutase gene polymorphism (V16A) is associated with stages of albuminuria in Korean type 2 diabetic patients.	Lee SJ et al.	16324912	No data for ACE2
1	Hidden population substructures in an apparently homogeneous population bias association studies.	Berger M et al.	16333311	No data for ACE2
1	Relationship of p22phox C242T polymorphism with nephropathy in type 2 diabetic patients.	Santos KG et al.	16358232	No data for ACE2

1	Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease.	Buraczynska M et al.	16384824	No data for ACE2
1	Angiotensin-converting enzyme (ACE) inhibition in type 2, diabetic patients interaction with ACE insertion/deletion polymorphism.	So WY et al.	16395257	No data for ACE
1	The influence of the endothelin-converting enzyme-1 gene polymorphism on the progression of autosomal dominant polycystic kidney disease.	Reiterova J et al.	16526315	No data for ACE
1	Aldosterone synthase (CYP11B2) -344T/C polymorphism is not associated with the initiation and progression of diabetic nephropathy in Caucasian Type 1 diabetic patients.	Lajer M et al.	16759311	No data for ACE
1	Novel sequence variants in the human xylosyltransferase I gene and their role in diabetic nephropathy.	Bahr C et al.	16759312	No data for ACE
1	Relationship between common functional polymorphisms of the p22phox gene (-930A > G and +242C > T) and nephropathy as a result of Type 2 diabetes in a Chinese population.	Lim SC et al.	16922713	No data for ACE
1	A disease haplotype for advanced nephropathy in type 2 diabetes at the ACE locus.	Ng DP et al.	16936219	No data for ACE
1	Efficient screening method of the thiopurine methyltransferase polymorphisms for patients considering taking thiopurine drugs in a Chinese Han population in Henan Province (central China).	Zhang LR et al.	16952345	No data for ACE
1	Kinin-dependent hypersensitivity reactions in hemodialysis: metabolic and genetic factors.	Molinaro G et al.	17003818	No data for ACE
1	High prevalence of ACE DD genotype among north Indian end stage renal disease patients.	Tripathi G et al.	17042963	No data for ACE
1	Sirolimus population pharmacokinetic/pharmacogenetic analysis and bayesian modelling in kidney transplant recipients.	Djebli N et al.	17048977	No data for ACE
1	Glu298Asp and NOS4ab polymorphisms in diabetic nephropathy.	Mollsten A et al.	17101543	No data for ACE

1	Combinational effect of genes for the renin-angiotensin system in conferring susceptibility to diabetic nephropathy.	Osawa N et al.	17143591	No data for ACE2
1	The emergence of cytomegalovirus resistance to ganciclovir therapy in kidney transplant recipients.	Nogueira E et al.	17161359	No data for ACE2
1	Paraoxonase gene polymorphism and serum activity in progressive IgA nephropathy.	Kovacs TJ et al.	17173245	No data for ACE2
1	A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy.	Mollsten A et al.	17192491	No data for ACE2
1	A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans.	Freedman BI et al.	17205963	No data for ACE2
1	Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy.	Li GS et al.	17228361	No data for ACE2
1	Resequencing of genes for transforming growth factor beta1 (TGFB1) type 1 and 2 receptors (TGFBR1, TGFBR2), and association analysis of variants with diabetic nephropathy.	McKnight AJ et al.	17319955	No data for ACE2
1	Association between angiotensin-converting enzyme gene polymorphisms and diabetic nephropathy: case-control, haplotype, and family-based study in three European populations.	Hadjadj S et al.	17376814	No data for ACE2
1	Association of endothelial nitric oxide synthase gene intron 4 polymorphism with end-stage renal disease.	Bellini MH et al.	17498125	No data for ACE2
1	[Angiotensin-1 converting enzyme insertion/deletion gene polymorphism in a Mexican population with diabetic nephropathy].	Ortega-Pierres LE et al.	17570179	No data for ACE2
1	Disease progression, response to ACEI/ATRA therapy and influence of ACE gene in IgA nephritis.	Woo KT et al.	17601378	No data for ACE2
1	Relationship of angiotensin-converting enzyme gene polymorphism with nephropathy associated with Type 2 diabetes mellitus in Asian Indians.	Movva S et al.	17616353	No data for ACE2
1	Impact of ENPP1 genotype on arterial calcification in patients with end- stage renal failure.	Eller P et al.	17848394	No data for ACE2

1	Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Genetics study.	Al-Kateb H et al.	17914031	No data for ACE2
1	Association between vitamin D receptor gene polymorphisms and susceptibility to chronic kidney disease and periodontitis.	de Souza CM et al.	17914260	No data for ACE2
1	Gene polymorphisms of the renin-angiotensin-aldosterone system and angiotensin II type 1-receptor activating antibodies in renal rejection.	Zhang G et al.	17984617	No data for ACE2
1	Correlates of ACE activity in macroalbuminuric type 2 diabetic patients treated with chronic ACE inhibition.	Nikzamir A et al.	17986476	No data for ACE2
1	Genotyping with a dried blood spot method: a useful technique for application in pharmacogenetics.	Wijnen PA et al.	18028890	No data for ACE2
1	Relationship between GSTs gene polymorphism and susceptibility to end stage renal disease among North Indians.	Agrawal S et al.	18067039	No data for ACE2
1	Polymorphism of the endothelial nitric oxide synthase gene is associated with diabetic retinopathy in a cohort of West Africans.	Chen Y et al.	18079690	No data for ACE2
1	Association of the distal region of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene with type 2 diabetes in an African-American population enriched for nephropathy.	Keene KL et al.	18184924	No data for ACE2
1	Genetic risk factors for renal failure among north Indian ESRD patients.	Tripathi G et al.	18242170	No data for ACE2
1	Donor DNA is detected in recipient blood for years after kidney transplantation using sensitive forensic medicine methods.	Rutkowska J et al.	18290564	No data for ACE2
1	Anti-glutathione S-transferase T1 antibody-mediated rejection in C4d- positive renal allograft recipients.	Aguilera I et al.	18308775	No data for ACE2
1	Endothelial nitric oxide synthase polymorphisms are associated with hypertension and cardiovascular disease in renal transplantation.	Bhandary UV et al.	18331440	No data for ACE2
1	Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians.	Ahluwalia TS et al.	18401556	No data for ACE2

1	Lack of association between the angiotensin-converting enzyme gene (I/D) polymorphism and diabetic nephropathy in Tunisian type 2 diabetic patients.	Arfa I et al.	18404607	No data for ACE2
1	Association of the angiotensinogen M235T and angiotensin-converting enzyme insertion/deletion gene polymorphisms in Turkish type 2 diabetic patients with and without nephropathy.	Eroglu Z et al.	18413162	No data for ACE2
1	Oxidative stress pathway genes and chronic renal insufficiency in Asian Indians with Type 2 diabetes.	Tiwari AK et al.	18413200	No data for ACE2
1	Association of endothelial nitric oxide synthase Glu298Asp, 4b/a, and - 786T>C gene variants with diabetic nephropathy.	Ezzidi I et al.	18413207	No data for ACE2
1	The number of activating KIR genes inversely correlates with the rate of CMV infection/reactivation in kidney transplant recipients.	Stern M et al.	18444913	No data for ACE2
1	Prognostic value of the insertion/deletion polymorphism of the ACE gene in type 2 diabetic subjects: results from the Non-insulin-dependent Diabetes, Hypertension, Microalbuminuria or Proteinuria, Cardiovascular Events, and Ramipril (DIABHYCAR), Diabete de type 2, Nephropathie et Genetique (DIAB2NEP	Hadjadj S et al.	18523145	No data for ACE2
1	Angiotensin-converting enzyme inhibitor versus angiotensin 2 receptor antagonist therapy and the influence of angiotensin-converting enzyme gene polymorphism in IgA nephritis.	Woo KT et al.	18536822	No data for ACE2
1	Calpain 10 SNP-44 gene polymorphism affects susceptibility to type 2 diabetes mellitus and diabetic-related conditions.	Demirci H et al.	18554168	No data for ACE2
1	Association of angiotensin-converting enzyme and endothelial Nitric Oxide synthase gene polymorphisms with vascular disease in ESRD patients in a Chinese population.	Tang FY et al.	18629615	No data for ACE2
1	Exclusion of polymorphisms in carnosinase genes (CNDP1 and CNDP2) as a cause of diabetic nephropathy in type 1 diabetes: results of large case- control and follow-up studies.	Wanic K et al.	18753673	No data for ACE2

1	Polymorphism of the aldosterone synthase gene is not associated with progression of diabetic nephropathy, but associated with hypertension in type 2 diabetic patients.	Ko GJ et al.	18771471	No data for ACE
1	Association of endothelial nitric oxide synthase Glu298Asp polymorphism with end-stage renal disease.	Thaha M et al.	18793530	No data for ACE
1	MYH9 is associated with nondiabetic end-stage renal disease in African Americans.	Kao WH et al.	18794854	No data for ACE
1	MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis.	Kopp JB et al.	18794856	No data for ACE
1	Characterization of the transcriptional regulation of the human MT1- MMP gene and association of risk reduction for focal-segmental glomerulosclerosis with two functional promoter SNPs.	Munkert A et al.	18927121	No data for ACE
1	The manganese superoxide dismutase Val16Ala polymorphism is associated with decreased risk of diabetic nephropathy in Chinese patients with type 2 diabetes.	Liu L et al.	18989629	No data for ACE
1	Survival in type 2 diabetic patients in dialysis and the number of risk alleles in polymorphisms of the renin-angiotensin system genes.	Padro-Miquel A et al.	19014923	No data for ACE
1	ACE genotype, body weight changes and target organ damage in renal transplant recipients.	Stratta P et al.	19034872	No data for ACE
1	Relationships between thiopurine S-methyltransferase polymorphism and azathioprine-related adverse drug reactions in Chinese renal transplant recipients.	Xin HW et al.	19048245	No data for ACE
1	Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients.	Quteineh L et al.	19067682	No data for ACE
1	Tripterygium wilfordii hook f increase the blood concentration of tacrolimus.	Wen J et al.	19100464	No data for ACE
1	ACE variants interact with the RAS pathway to confer risk and protection against type 2 diabetic nephropathy.	Ahluwalia TS et al.	19108684	No data for ACE
1	A novel method for monitoring glucocorticoid-induced changes of the glucocorticoid receptor in kidney transplant recipients.	Chen Y et al.	19162184	No data for ACE

1 2 3
4 5 6
6 7 8
9 10 11
12 13
14 15 16
17 18
19 20 21
22
24 25 26
27 28
29 30 31
32 33 34 35 36 37 28
34 35 36
20
39 40 41
42 43
44 45
46

1	Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with end-stage renal disease historically attributed to hypertension in African Americans.	Freedman BI et al.	19177153	No data for AC
1	Matrix metalloproteinase-1 and matrix metalloproteinase-3 gene promoter polymorphisms are associated with mortality in haemodialysis patients.	Cozzolino M et al.	19221176	No data for A(
1	TPMT but not ITPA gene polymorphism influences the risk of azathioprine intolerance in renal transplant recipients.	Kurzawski M et al.	19229528	No data for AC
1	Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy.	Pirulli D et al.	19229831	No data for A
1	The endothelial nitric oxide synthase gene and risk of diabetic nephropathy and development of cardiovascular disease in type 1 diabetes.	Mollsten A et al.	19246226	No data for AC
1	Association of genetic variants with chronic kidney disease in Japanese individuals with type 2 diabetes mellitus.	Yoshida T et al.	19288030	No data for AC
1	The PTPN22 C1858T (R620W) functional polymorphism in kidney transplantation.	Sfar I et al.	19328948	No data for AC
1	Elevated MBL concentrations are not an indication of association between the MBL2 gene and type 1 diabetes or diabetic nephropathy.	Kaunisto MA et al.	19366862	No data for AC
1	The influence of carnosinase gene polymorphisms on diabetic nephropathy risk in African-Americans.	McDonough CW et al.	19373489	No data for AC
1	Endothelial nitric oxide synthetase, methylenetetrahydrofolate reductase polymorphisms, and cardiovascular complications in Tunisian patients with nondiabetic renal disease.	Kerkeni M et al.	19376104	No data for AC
1	Association of genetic variants with chronic kidney disease in Japanese individuals.	Yoshida T et al.	19406964	No data for A
1	Microarray analysis of multiple candidate genes and associated plasma proteins for nephropathy secondary to type 2 diabetes among Chinese individuals.	Lim SC et al.	19415232	No data for A

1	Association of gene polymorphisms with chronic kidney disease in high- or low-risk subjects defined by conventional risk factors.	Yoshida T et al.	19424605	No data for ACE2
1	Influence of genetic polymorphisms in GSTM1, GSTM3, GSTT1 and GSTP1 on allograft outcome in renal transplant recipients.	Singh R et al.	19486347	No data for ACE2
1	Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARgamma and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes.	Wu LS et al.	19506043	No data for ACE
1	Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD.	Freedman BI et al.	19567477	No data for ACE
1	Association of genetic variants with chronic kidney disease in individuals with different lipid profiles.	Yoshida T et al.	19578796	No data for ACE
1	A HindIII polymorphism of fibronectin gene is associated with nephrolithiasis.	Onaran M et al.	19616291	No data for ACE
1	Impact of genetic polymorphisms of the renin-angiotensin system and of non-genetic factors on kidney transplant functiona single-center experience.	Siekierka-Harreis M et al.	19681973	No data for ACE
1	Association between inosine triphosphate pyrophosphohydrolase deficiency and azathioprine-related adverse drug reactions in the Chinese kidney transplant recipients.	Xiong H et al.	19682085	No data for ACE
1	The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients.	Sanchez- Fructuoso AI et al.	19715905	No data for ACE
1	Association of gene polymorphisms with chronic kidney disease in Japanese individuals.	Yoshida T et al.	19724895	No data for ACE
1	A rare haplotype of the vitamin D receptor gene is protective against diabetic nephropathy.	Martin RJ et al.	19783860	No data for ACE

1	
2 3	
4	
5	
6 7	
7 8	
8 9 10	
11	
12	
13 14	
15	
16	
17 18	
19 20	
20 21	
21 22 23	
23	
24 25	
26	
27	
28 29	
30	
31 32	
33	
34 35	
35 36	
37	
38 39	
39 40	
41	
42 43	
43 44	
45	
46	

1	Identification of specific angiotensin-converting enzyme variants and haplotypes that confer risk and protection against type 2 diabetic nephropathy.	Ezzidi I et al.	19787680	No data for AC
1	Xbal GLUT1 gene polymorphism and the risk of type 2 diabetes with nephropathy.	Stefanidis I et al.	19822956	No data for AC
1	The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes.	Mollsten A et al.	19834686	No data for AC
1	Time of drug administration, CYP3A5 and ABCB1 genotypes, and analytical method influence tacrolimus pharmacokinetics: a population pharmacokinetic study.	Musuamba FT et al.	19855314	No data for AC
1	Impact of donor-dependent genetic factors on long-term renal graft function.	Krajewska M et al.	19857655	No data for AC
1	Uromodulin levels associate with a common UMOD variant and risk for incident CKD.	Kottgen A et al.	19959715	No data for AC
1	Endothelial nitric oxide synthase (eNOS) gene polymorphism in early term chronic allograft nephropathy.	Yilmaz E et al.	20005399	No data for AC
1	Circulating methylarginine levels and the decline in renal function in patients with chronic kidney disease are modulated by DDAH1 polymorphisms.	Caplin B et al.	20010544	No data for AC
1	Dense mapping of MYH9 localizes the strongest kidney disease associations to the region of introns 13 to 15.	Nelson GW et al.	20124285	No data for AC
1	African ancestry allelic variation at the MYH9 gene contributes to increased susceptibility to non-diabetic end-stage kidney disease in Hispanic Americans.	Behar DM et al.	20144966	No data for AC
1	Pharmacogenetics of immunosuppressant polymorphism of CYP3A5 in renal transplant recipients.	Larriba J et al.	20172323	No data for AC
1	Patients with Epstein-Fechtner syndromes owing to MYH9 R702 mutations develop progressive proteinuric renal disease.	Sekine T et al.	20200500	No data for AC

1	Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes.	Prasad P et al.	20353610	No data for ACE2
1	Optimization of initial tacrolimus dose using pharmacogenetic testing.	Thervet E et al.	20393454	No data for ACE2
1	Identification of GDNF gene sequence variations in patients with medullary sponge kidney disease.	Torregrossa R et al.	20448065	No data for ACE2
1		Bostrom MA et al.	20466664	No data for ACE2
1	DDOST, PRKCSH and LGALS3, which encode AGE-receptors 1, 2 and 3, respectively, are not associated with diabetic nephropathy in type 1 diabetes.	Hoverfelt A et al.	20490454	No data for ACE2
1	The acetyl-coenzyme A carboxylase beta (ACACB) gene is associated with nephropathy in Chinese patients with type 2 diabetes.	Tang SC et al.	20519229	No data for ACE2
1	Association of trypanolytic ApoL1 variants with kidney disease in African Americans.	Genovese G et al.	20647424	No data for ACE2
1	A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9.	Genovese G et al.	20668430	No data for ACE2
1	ACE gene polymorphism and serum ACE activity in Iranians type II diabetic patients with macroalbuminuria.	Felehgari V et al.	20830509	No data for ACE2
1	Endothelial nitric oxide genotypes and haplotypes are not associated with end-stage renal disease.	Marson BP et al.	20849252	No data for ACE2
1	The frequency of factor V Leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in Iranians type II diabetic patients with microalbuminuria.	Rahimi Z et al.	20853144	No data for ACE2
1	Association of glutathione S-transferase M1 and T1 gene polymorphism with oxidative stress in diabetic and nondiabetic chronic kidney disease.	Datta SK et al.	20954980	No data for ACE2
1	Toward personalized medicine in renal transplantation.	Lampreabe I et al.	20970553	No data for ACE2

1	Relation between development of cardiovascular disease and the C242T CYBA polymorphism of the NADPH oxidase in ESRD patients.	Tang FY et al.	21045268	No data for ACE2
1	Association analysis of Notch pathway signalling genes in diabetic nephropathy.	Kavanagh D et al.	21103979	No data for ACE2
1	[Clinical and genetic basis of hypertensive nephrosclerosis. NEFROSEN Study].	Diez Ojea B et al.	21113220	No data for ACE2
1	Impact of polymorphisms of the genes encoding angiotensin II-forming enzymes on the progression of IgA nephropathy.	Jung ES et al.	21150220	No data for ACE2
1	Genetic polymorphisms of the renin-angiotensin-aldosterone system in Chinese patients with end-stage renal disease secondary to IgA nephropathy.	Huang HD et al.	21163122	No data for ACE2
1	Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium.	Jacobson PA et al.	21206424	No data for ACE2
1	Angiotensin-converting enzyme gene polymorphisms and T2DM in a case-control association study of the Bahraini population.	Al-Harbi EM et al.	21207118	No data for ACE2
1	Polymorphisms in the nonmuscle myosin heavy chain 9 gene (MYH9) are associated with the progression of IgA nephropathy in Chinese.	Cheng W et al.	21245129	No data for ACE2
1	Association of eNOS gene polymorphisms with renal disease in Caucasians with type 2 diabetes.	Santos KG et al.	21255858	No data for ACE2
1	Genetic variation in the matrix metalloproteinase genes and diabetic nephropathy in type 1 diabetes.	Kure M et al.	21277817	No data for ACE2
1	Tacrolimus dosing in Chinese renal transplant recipients: a population- based pharmacogenetics study.	Li L et al.	21331500	No data for ACE2
1	Analysis of insertion/deletion polymorphisms of the angiotensin converting enzyme gene in Malaysian end-stage renal disease patients.	Ali A et al.	21421653	No data for ACE2
1	In vivo activity of epoxide hydrolase according to sequence variation affects the progression of human IgA nephropathy.	Lee JP et al.	21429967	No data for ACE2
1	Impact of aldosterone synthase gene C-344T polymorphism on IgA nephropathy.	Bantis C et al.	21476902	No data for ACE2

1	Expression of CYP3A5 and P-glycoprotein in renal allografts with histological signs of calcineurin inhibitor nephrotoxicity.	Metalidis C et al.	21544031	No data for ACE2
1	Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes.	Ahluwalia TS et al.	21573905	No data for ACE
1	Insertion/deletion polymorphism of the angiotensin-converting enzyme predicts left ventricular hypertrophy after renal transplantation.	Fedor R et al.	21620105	No data for ACE
1	Polymorphisms of pon1 and pon2 genes in hemodialyzed patients.	Rajkovic MG et al.	21620813	No data for ACE
1	A polymorphism of NADPH oxidase p22 phox is associated with reduced susceptibility to acute rejection in renal allograft recipients.	Bhandary UV et al.	21624462	No data for ACE
1	Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome.	Sanna-Cherchi S et al.	21697813	No data for ACE
1	Differential effects of MYH9 and APOL1 risk variants on FRMD3 Association with Diabetic ESRD in African Americans.	Freedman BI et al.	21698141	No data for ACE
1	Influence of aldosterone synthase gene C-344T polymorphism on focal segmental glomerulosclerosis.	Bantis C et al.	21777344	No data for ACE
1	Thiopurine S-methyltransferase polymorphism in Iranian kidney transplant recipients.	Aghdaie MH et al.	21819368	No data for ACE
1	Sickle cell trait is not independently associated with susceptibility to end- stage renal disease in African Americans.	Hicks PJ et al.	21849968	No data for ACE
1	Association between CYP3A5 polymorphisms and blood pressure in kidney transplant recipients receiving calcineurin inhibitors.	Ferraresso M et 🧹 al.	21851254	No data for ACE
1	Impact of nitric oxide synthase Glu298Asp polymorphism on the development of end-stage renal disease in type 2 diabetic Egyptian patients.	El-Din Bessa SS et al.	21854353	No data for ACE
1	Assessment of matrix Gla protein, Klotho gene polymorphisms, and oxidative stress in chronic kidney disease.	Karsli Ceppioglu S et al.	21859400	No data for ACE
1	Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients.	Provenzani A et al.	21922127	No data for ACE

1	Interaction of MTHFR 1298C with ACE D allele augments the risk of diabetic nephropathy in Western Iran.	Rahimi Z et al.	21942443	No data for ACE
1	Association of genetic variants in the promoter region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus.	Vieira SM et al.	21962117	No data for ACE
1	Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans.	Cooke JN et al.	21968013	No data for ACE
1	Angiotensin-converting enzyme (ACE) serum levels and gene polymorphism in Egyptian patients with systemic lupus erythematosus.	Abbas D et al.	21976404	No data for ACE
1	Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD.	Boger CA et al.	21980298	No data for ACE
1	APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy.	Papeta N et al.	21997397	No data for ACE
1	Genetic and functional effects of membrane metalloendopeptidase on diabetic nephropathy development.	Zhang D et al.	22024547	No data for ACE
1	The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation.	Stratta P et al.	22101623	No data for ACE
1	Genetic polymorphisms and the risk of progressive renal failure in elderly Hungarian patients.	Zsom M et al.	22111818	No data for ACE
1	Glutathione S-transferases T1 null genotype is associated with susceptibility to aristolochic acid nephropathy.	Chen B et al.	22116675	No data for ACE
1	Nosocomial Pneumocystis jirovecii pneumonia: lessons from a cluster in kidney transplant recipients.	Phipps LM et al.	22129760	No data for ACE
1	Gene polymorphisms of angiotensin-converting enzyme and angiotensin II type 1 receptor among chronic kidney disease patients in a Chinese population.	Su SL et al.	22147663	No data for ACE
1	Clinical and genetic factors affecting tacrolimus trough levels and drug- related outcomes in Korean kidney transplant recipients.	Kim IW et al.	22183771	No data for ACE

	SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis	Shimoyama Y et		
1	patients.	al.	22200427	No data for ACE2
1	Association of UDP-glucuronosyltransferase 1A9 (UGT1A9) gene polymorphism with kidney allograft function.	Pazik J et al.	22210424	No data for ACE2
1	The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals.	Geng F et al.	22227166	No data for ACE2
1	BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population.	Zhang H et al.	22245613	No data for ACE2
1	Matrix metalloproteinase (MMP)-2 genetic variants modify the circulating MMP-2 levels in end-stage kidney disease.	Marson BP et al.	22302011	No data for ACE2
1	Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients.	Cho JH et al.	22310591	No data for ACE2
1	Endothelial nitric oxide synthase gene polymorphisms and the risk of diabetic nephropathy in type 2 diabetes mellitus.	Shoukry A et al.	22313046	No data for ACE2
1	MTHFR C677T, A1298C and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients.	El-Baz R et al.	22554825	No data for ACE2
1	Paraoxonase 1 polymorphisms in patients with primary glomerulonephritis: a single-center study in Turkey.	Eren Z et al.	22555481	No data for ACE2
1	Association of base excision repair gene polymorphisms with ESRD risk in a Chinese population.	Cai Z et al.	22720119	No data for ACE2
1	Base excision repair gene polymorphisms are associated with inflammation in patients undergoing chronic hemodialysis.	Cai Z et al.	22780951	No data for ACE2
1	Relationship between antioxidant enzyme genotype and activity and kidney function: a case-control study.	Crawford A et al.	22790458	No data for ACE2

2	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 8 9 20 21 22 34 25 26 27 28 9 0 31 23 34 35 6 7 8 9 30 31 23 34 35 6 7 8 9 30 31 23 34 35 6 7 8 9 30 31 23 34 35 6 7 8 9 30 31 23 34 35 6 7 8 9 30 31 23 34 35 6 7 8 9 30 31 20 31 32 3 34 32 3 34 35 36 37 30 31 20 31 20 31 20 31 20 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 31 32 33 34 35 36 37 30 30 31 32 3 34 35 36 37 30 31 32 3 34 35 36 37 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
22	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1	Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study.	Jimenez-Sousa MA et al.	22817530	No data for AC
1	Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans.	Lipkowitz MS et al.	22832513	No data for AC
1	Donor age and ABCB1 1199G>A genetic polymorphism are independent factors affecting long-term renal function after kidney transplantation.	De Meyer M et al.	22835948	No data for AC
1	The effect of glutathion S-transferase polymoprhisms and anti-GSTT1 antibodies on allograft functions in recipients of renal transplant.	Akgul SU et al.	22841242	No data for AC
1	Primary hyperoxaluria type 1, a too often missed diagnosis and potentially treatable cause of end-stage renal disease in adults: results of the Dutch cohort.	van der Hoeven SM et al.	22844106	No data for AC
1	Genetic and functional analyses of MRAS and HNF1A genes in diabetes and diabetic nephropathy.	Horova E et al.	22849862	No data for AC
1	Genetic variation in thrombin-activatable fibrinolysis inhibitor is associated with the risk of diabetic nephropathy.	Xu CW et al.	22932273	No data for AC
1	Genetic variation in APOL1 and MYH9 genes is associated with chronic kidney disease among Nigerians.	Tayo BO et al.	22956460	No data for AC
1	Glutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients.	Suvakov S et al.	23034843	No data for AC
1	Association of vitamin D receptor FokI and ApaI polymorphisms with human cytomegalovirus disease in the first three months following kidney transplantation.	Zhao YG et al.	23044313	No data for AC
1	Vitamin D receptor gene Bsml, Fokl, Apal and Taql polymorphisms and the risk of systemic lupus erythematosus.	Mostowska A et al.	23065277	No data for AC
1	ACACÎ ² gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes.	Shah VN et al.	23081748	No data for AC

1	Chronic renal impairment and DDAH2-1151 A/C polymorphism determine ADMA levels in type 2 diabetic subjects.	Marra M et al.	23129820	No data for ACE2
1	Relationship of Bsml polymorphism of vitamin D receptor gene with left ventricular hypertrophy and atherosclerosis in hemodialysis patients.	El-Shehaby AM et al.	23198772	No data for ACE2
1	CYP3A4 genetic polymorphisms predict cyclosporine-related clinical events in Chinese renal transplant recipients.	Wang YY et al.	23217392	No data for ACE2
1	Clinical impact of an angiotensin I-converting enzyme insertion/deletion and kinin B2 receptor +9/-9 polymorphisms in the prognosis of renal transplantation.	Amorim CE et al.	23362199	No data for ACE2
1	The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis.	Pelusi S et al.	23433094	No data for ACE
1	Identification of chromosome 3q28 and ALPK1 as susceptibility loci for chronic kidney disease in Japanese individuals by a genome-wide association study.	Yamada Y et al.	23539754	No data for ACE
1	Replication study for the association of 3 SNP loci identified in a genome- wide association study for diabetic nephropathy in European type 1 diabetes with diabetic nephropathy in Japanese patients with type 2 diabetes.	Maeda S et al.	23543049	No data for ACE
1	eNOS 4a/b polymorphism and its interaction with eNOS G894T variants in type 2 diabetes mellitus: modifying the risk of diabetic nephropathy.	Rahimi Z et al.	23594559	No data for ACE
1	Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.	Siddarth M et al.	23619522	No data for ACE
1	Influence of GSTO2 (N142D) genetic polymorphism on acute renal rejection.	Nekooie- Marnany N et al.	23649768	No data for ACE
1	Association of aldosterone synthase (CYP11B2) gene -344T/C polymorphism with the risk of primary chronic glomerulonephritis in the Polish population.	Pawlik M et al.	23681285	No data for ACE
1	Association of POL1, MALT1, MC4R, PHLPP and DSEL single nucleotide polymorphisms in chromosome 18q region with type 2 diabetes in Tunisians.	Turki A et al.	23727064	No data for ACE

1	ADAMTS13 predicts renal and cardiovascular events in type 2 diabetic patients and response to therapy.	Rurali E et al.	23733198	No data for ACE2
1	Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V).	Armstrong SP et al.	23762448	No data for ACE2
1	Distribution of dimethylarginine-dimethylaminohydrolase-II (DDAH2) gene polymorphism in hemodialysis patients.	Thaha M et al.	23770786	No data for ACE2
1	Genetic predisposition for development of nephropathy in type 2 diabetes mellitus.	Kumar R et al.	23846111	No data for ACE2
1	CYP2C9 and ABCG2 polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking fluvastatin: a case- control study.	Mirosevic Skvrce N et al.	24024895	No data for ACE2
1	Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism.	de Jonge H et al.	24024898	No data for ACE2
1	Suppressed soluble Fms-like tyrosine kinase-1 production aggravates atherosclerosis in chronic kidney disease.	Matsui M et al.	24048373	No data for ACE2
1	Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines.	Elens L et al.	24052064	No data for ACE2
1	Association of TNF-α -308 G > A and ACE I/D gene polymorphisms in hemodialysis patients with arteriovenous fistula thrombosis.	Sener EF et al.	24126814	No data for ACE2
1	Association of E-selectin gene polymorphism and serum PAPP-A with carotid atherosclerosis in end-stage renal disease.	Issac MS et al.	24151105	No data for ACE2
1	MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations.	Pecci A et al.	24186861	No data for ACE2
1	Increased level of organochlorine pesticides in chronic kidney disease patients of unknown etiology: role of GSTM1/GSTT1 polymorphism.	Siddarth M et al.	24216264	No data for ACE2

1	An integrative study of the genetic, social and environmental determinants of chronic kidney disease characterized by tubulointerstitial damages in the North Central Region of Sri Lanka.	Nanayakkara S et al.	24351856	No data for ACI
	Immune response following liver transplantation compared to kidney transplantation: usefulness of monitoring peripheral blood CD4+ adenosine triphosphate activity and cytochrome P450 3A5 genotype			
1	assay. Relationship of CYP3A5 genotype and ABCB1 diplotype to tacrolimus disposition in Brazilian kidney transplant patients.	Nobuoka Y et al. Cusinato DA et al.	24454479 24528196	
1	Evaluation of candidate nephropathy susceptibility genes in a genome- wide association study of African American diabetic kidney disease.	Palmer ND et al.	24551085	No data for AC
1	Identification of novel mutations of PKD1 gene in Chinese patients with autosomal dominant polycystic kidney disease by targeted next-generation sequencing.	Yang T et al.	24582653	No data for AC
1	Association of BH3 interacting domain death agonist (BID) gene polymorphisms with proteinuria of immunoglobulin A nephropathy.	Park HJ et al.	24621205	No data for AC
1	Association studies of cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1) gene polymorphisms with acute rejection in kidney transplantation recipients.	Kim SK et al.	24654912	No data for AC
1	MYH9 and APOL1 gene polymorphisms and the risk of CKD in patients with lupus nephritis from an admixture population.	Colares VS et al.	24658608	No data for AC
1	Cys327Cys polymorphism of the PAPP-A gene (pregnancy associated plasma protein A) is related to mortality of long term hemodialysis patients.	Kalousova M et al.	24667032	No data for AC
1	Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulonephritis.	Litovkina O et al.	24727057	No data for AC
1	Lack of serologic evidence to link IgA nephropathy with celiac disease or immune reactivity to gluten.	Moeller S et al.	24732864	No data for AC
1	Genetic variants of ACE (Insertion/Deletion) and AGT (M268T) genes in patients with diabetes and nephropathy.	Shaikh R et al.	24737640	No data for AC

No data for ACE2

1	Single nucleotide polymorphisms at erythropoietin, superoxide dismutase 1, splicing factor, arginine/serin-rich 15 and plasmacytoma variant translocation genes association with diabetic nephropathy.	Alwohhaib M et al.	248211
1	NOS3 tagSNPs does not modify the chronic kidney disease progression in autosomal dominant polycystic kidney disease.	Ramanathan G et al.	248243
1	Renin-angiotensin-aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease.	Chen WJ et al.	249075
1	Gene-gene interactions in renin-angiotensin-aldosterone system contributes to end-stage renal disease susceptibility in a Han Chinese population.	Su SL et al.	249771
1	Polymorphisms in oxidative stress pathway genes and risk of diabetic nephropathy in South Indian type 2 diabetic patients.	Narne P et al.	250415
1	Rare mutations associating with serum creatinine and chronic kidney disease.	Sveinbjornsson G et al.	2508282
1	Is increased susceptibility to Balkan endemic nephropathy in carriers of common GSTA1 (*A/*B) polymorphism linked with the catalytic role of GSTA1 in ochratoxin a biotransformation? Serbian case control study and in silico analysis.	Reljic Z et al.	251113
1	Association between genetic polymorphisms of ACE & eNOS and diabetic nephropathy.	Huo P et al.	252275
1	DNA repair genes XPD and XRCC1 polymorphisms and risk of end-stage renal disease in Egyptian population.	Radwan WM et al.	253107
1	Clinical utility of chitotriosidase enzyme activity in nephropathic cystinosis.	Elmonem MA et al.	2540773
1	Synergism between asymmetric dimethylarginine (ADMA) and a genetic marker of uric acid in CKD progression.	Testa A et al.	2543533
	The functional Q84R polymorphism of TRIB3 gene is associated with diabetic nephropathy in Chinese type 2 diabetic patients.	Zhang W et al.	254478

1

43

	Circulating angiotensin-converting enzyme 2 activity in patients with			
1	chronic kidney disease without previous history of cardiovascular disease	Anguiano L et al.	25813276	No data for ACE
	Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney			
1		Patente TA et al.	25862415	No data for ACE
	Associations between INSR and MTOR polymorphisms in type 2 diabetes			
	mellitus and diabetic nephropathy in a Northeast Chinese Han			
1	population.	Zhu AN et al.	25867326	No data for AC
	Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood			
1	level.	Nair SS et al.	25894154	No data for AC
1	Copy Number Variation at the APOL1 Locus.	Ruchi R et al.	25933006	No data for AC
	Aldosterone Synthase CYP11B2 Gene Promoter Polymorphism in a			
1	Turkish Population With Chronic Kidney Disease.	Yilmaz M et al.	25957425	No data for AC
	Is Klotho F352V Polymorphism the Missing Piece of the Bone Loss Puzzle			
1	in Renal Transplant Recipients?	Ozdem S et al.	26022923	No data for AC
	Identification of new susceptibility loci for IgA nephropathy in Han			
1	Chinese.	Li M et al.	26028593	No data for AC
	Association between C1GALT1 variants and genetic susceptibility to IgA			
1	nephropathy in Uygur.	Li WL et al.	26125729	No data for AC
	Estimated glomerular filtration rate (eGFR), 25(OH) D3, chronic kidney			
	disease (CKD), the MYH9 (myosin heavy chain 9) gene in old and very	Otero Gonzalez A		
1	elderly people.	et al.	26152646	No data for AC
	Influence of genetic variability at the ACE locus in intron 16 on Diabetic	Parchwani DN et		
1	Nephropathy in T1DM patients.	al.	26214998	No data for AC
	How to handle missed or delayed doses of tacrolimus in renal transplant	Saint-Marcoux F		
1		et al.	26316426	No data for AC
	Re-Sequencing of the APOL1-APOL4 and MYH9 Gene Regions in African			
1		Hawkins GA et al.	26343748	No data for AC

4 5 7 8 9 10 11 12 13 14
8 9 10 11 12 13 14
11 12 13 14
14
15 16 17
18 19 20
21 22 23
24 25 26 27
28 29 30
31 32 33
34 35 36 37
37 38 39 40
41 42 43
44 45 46

1	Prevalence of angiotensin converting enzyme (ACE) gene insertion/deletion polymorphism in South Indian population with hypertension and chronic kidney disease.	Shanmuganathan R et al.	26440392	No data for ACE2
1	RAGE and CYBA polymorphisms are associated with microalbuminuria and end-stage renal disease onset in a cohort of type 1 diabetes mellitus patients over a 20-year follow-up.	Franko B et al.	26607824	No data for ACE2
1	Polymorphisms in NADPH oxidase CYBA gene modify the risk of ESRD in patients with chronic glomerulonephritis.	Zhou H et al.	26627442	No data for ACE2
1		Yaowakulpatana K et al.	26635230	No data for ACE2
1	Relationship between rs1047763 polymorphism of the C1GALT1 gene and susceptibility to immunoglobulin A nephropathy in Xinjiang Uyghur people.	Xue JN et al.	26782518	No data for ACE2
1	Manganese superoxide dismutase, glutathione peroxidase and catalase gene polymorphisms and clinical outcomes in acute kidney injury.	Kidir V et al.	26787049	No data for ACE2
1	Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome.	Szarvas N et al.	26826462	No data for ACE2
1	A Lack of Significant Effect of POR*28 Allelic Variant on Tacrolimus Exposure in Kidney Transplant Recipients.	Jannot AS et al.	26829596	No data for ACE
1	Association of RAC1 Gene Polymorphisms with Primary End-Stage Renal Disease in Chinese Renal Recipients.	Liu Y et al.	26841219	No data for ACE
1	Nodular glomerulosclerosis and renin angiotensin system in Chinese patients with type 2 diabetes	Wang M et al.	26973293	No data for ACE
1	Genome-Wide Association Study of Acute Renal Graft Rejection.	Ghisdal L et al.	27272414	No data for ACE
1	The angiotensin-I converting enzyme gene I/D variation contributes to end-stage renal disease risk in Chinese patients with type 2 diabetes receiving hemodialysis.	Lu M et al.	27633502	No data for ACE

1	Pin1 and secondary hyperparathyroidism of chronic kidney disease: gene polymorphisms and protein levels.	Zhao Y et al.	27876426	No data for ACE2
1	Lysine 63 ubiquitination is involved in the progression of tubular damage in diabetic nephropathy.	Pontrelli P et al.	27881486	No data for ACE2
1	Mutational Analysis of Agxt in Tunisian Population with Primary Hyperoxaluria Type 1.	M'dimegh S et al.	27935012	No data for ACE2
1	Mutation screening of ACKR3 and COPS8 in kidney cancer cases from the CONFIRM study.	Mahmoodi M et al.	28063109	No data for ACE2
1	Glutathione Peroxidase 1 Gene Polymorphism in Nephrolithiasis Patients From South of Iran.	Aghakhani R et al.	28174350	No data for ACE2
1	Association of MMP-9 gene polymorphisms with nephrolithiasis patients.	Mehde AA et al.	28205286	No data for ACE2
1	Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1.	Gale DP et al.	28209808	No data for ACE2
1	Relationship of Serum Klotho Level With ACE Gene Polymorphism in Stable Kidney Allograft Recipients.	Zaare Nahandi M et al.	28270648	No data for ACE2
1	GSTM1 genotype is an independent prognostic factor in clear cell renal cell carcinoma.	Coric VM et al.	28284893	No data for ACE2
1	Effect of AMP-activated protein kinase subunit alpha 2 (PRKAA2) genetic polymorphisms on susceptibility to type 2 diabetes mellitus and diabetic nephropathy in a Chinese population.	Li Q et al.	28322508	No data for ACE2
1	Transcriptional Coactivator p300 and Silent Information Regulator 1 (SIRT1) Gene Polymorphism Associated with Diabetic Kidney Disease in a Chinese Cohort.	Tang K et al.	28444663	No data for ACE2
1	Association of polymorphic variants of PTPN22, TNF and VDR genes in children with lupus nephritis: A study in Colombian family triads.	Garavito G et al.	28527290	No data for ACE2
1	The Contribution of MMP-7 Promoter Polymorphisms in Renal Cell Carcinoma.	Liao CH et al.	28652430	No data for ACE2
1	MDR-1 and CYP3A5 Polymorphisms in Pediatric Idiopathic Nephrotic Syndrome: Impact on Susceptibility and Response to Steroids (Preliminary Results).	Moussa A et al.	28792718	No data for ACE2

1	
2	
3	
4	
5	
5 6	
7	
8	
9	
8 9 10 11	
11	
12	
13	
14	
12 13 14 15 16	
16	
17	
18	
19	
20	
19 20 21	
22 23	
23	
24 25	
25 26	
20	
28	
29 30	
30	
31	
32	
33	
34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1	CYP3A genotypes of donors but not those of the patients increase the risk of acute rejection in renal transplant recipients on calcineurin	Comuniti C et al	20042207	
1		Gervasini G et al.	29043387	No data for ACE
1		Ma L et al.	29629376	No data for ACE
1	Systemic redox biomarkers and their relationship to prognostic risk markers in autosomal dominant polycystic kidney disease and IgA nephropathy.	Tariq A et al.	29655960	No data for ACE
1	Collagenase-1 (-1607 1G/2G), Gelatinase-A (-1306 C/T), Stromelysin-1 (- 1171 5A/6A) functional promoter polymorphisms in risk prediction of type 2 diabetic nephropathy.	Gantala SR et al.	29883760	No data for ACE
1	Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant.	Ciftci HS et al.	30012031	No data for ACE
1	CpG island in the region of an autosomal dominant polycystic kidney disease locus defines the 5' end of a gene encoding a putative proton channel.	Gillespie GA et al.	1709739	Non-human stu
1	Recombinant human acetylcholinesterase is secreted from transiently transfected 293 cells as a soluble globular enzyme.	Velan B et al.	1849451	Non-human stu
1	Enhanced acetaminophen toxicity in rats with bilirubin glucuronyl transferase deficiency.	de Morais SM et al.	2501210	Non-human stu
1		Shaws TB et al.	4856818	Non-human stu
1	Kallikrein and amylase contents in tissues from a mutant mouse model for human cystic fibrosis.	Catanzaro OL et al.	6186886	Non-human stu
1	Effect of phosphate supplementation on the expression of the mutant phenotype in murine X-linked hypophosphatemic rickets.	Tenenhouse HS et al.	7873297	Non-human stu
1	Purification and characterization of UDP-GlcNAc:IV3 beta Gal-Gb4Cer beta-1,6-GlcNAc transferase from mouse kidney.	Sekine M et al.	7983056	Non-human stu
1	Production and characterization of recombinant Goodpasture antigen in insect cells.	Turner N et al.	8006020	Non-human stu

Page	109	of 304	
------	-----	--------	--

	Expression of a dominant allele of human ARF1 inhibits membrane traffic			
1	in vivo.	Zhang CJ et al.	8294513	Non-human stud
1	Testosterone modulation of N-acetylation in mouse kidney.	Smolen TN et al.	8437129	Non-human stud
1	Evidence that syntaxin 1A is involved in storage in the secretory pathway.	Bittner MA et al.	8626670	Non-human stud
	Role of the ceramide-signaling pathway in cytokine responses to P-			
1	fimbriated Escherichia coli.	Hedlund M et al.	8642245	Non-human stud
	Tissue-specific imprinting of the mouse insulin-like growth factor II			
	receptor gene correlates with differential allele-specific DNA			
1	methylation.	Hu JF et al.	9482664	Non-human stud
	Chronic renal failure in a mouse model of human adenine	Stockelman MG		
1	phosphoribosyltransferase deficiency.	et al.	9689017	Non-human stud
	Renal angiotensin converting enzyme promotes renal damage during	Stoneking BJ et		
1	ureteral obstruction	al.	9719278	Non-human stud
	Detection of mutation(s) or polymorphic loci in the genome of			
	experimental animal and human cancer tissues by RAPD/AP-PCR depend			
1	on DNA polymerase.	Singh KP et al.	10087325	Non-human stud
	Truncated human leptin (delta133) associated with extreme obesity	0.		
	undergoes proteasomal degradation after defective intracellular			
1	transport.	Rau H et al.	10098508	Non-human stud
	The mll-AF9 gene fusion in mice controls myeloproliferation and specifies			
1	acute myeloid leukaemogenesis.	Dobson CL et al.	10393173	Non-human stud
	Nitric oxide-dependent renal vasodilatation is not altered in rat with			
1	rHuEpo-induced hypertension.	Migliori M et al.	10394113	Non-human stud
	Decreased matrix metalloproteinase activity in the kidneys of hereditary			
1	nephrotic mice (ICGN strain).	Uchio K et al.	11014984	Non-human stud
	p300 interacts with the nuclear proto-oncoprotein SYT as part of the			
1	active control of cell adhesion.	Eid JE et al.	11030627	Non-human stud

1 2	
3 4 5	
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
45 46	

	Telomerase inhibition in RenCa, a murine tumor cell line with short telomeres, by overexpression of a dominant negative mTERT mutant, reveals fundamental differences in telomerase regulation between	Sachsinger J et		
1		al.	11454711	Non-human stu
1	An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells.	Wang Y et al.	11786430	Non-human stu
	Three novel sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 isoforms. Expression, regulation, and function of the membranes of the			
1		Martin V et al.	11956212	Non-human stu
1		Marion E et al.	12086927	Non-human stu
1	Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs.	Cabral CM et al.	12181335	Non-human stu
1	Metabolic fate of pitavastatin (NK-104), a new inhibitor of 3-hydroxy-3- methyl-glutaryl coenzyme A reductase. Effects on drug-metabolizing systems in rats and humans.	Fujino H et al.	12442637	Non-human stu
1	Modulation of splicing events in histone deacetylase 3 by various extracellular and signal transduction pathways.	Gray SG et al.	12691522	Non-human stu
1	Use of the tetracycline system for inducible protein synthesis in the kidney.	Gallagher AR et al.	12874458	Non-human stu
1	Implications of glucose transporter protein type 1 (GLUT1)- haplodeficiency in embryonic stem cells for their survival in response to hypoxic stress.	Heilig C et al.	14578187	Non-human stu
1	Susceptibility to vascular neoplasms but no increased susceptibility to	Kleymenova E et al.	14604887	Non-human stu
1	Gain-of-function polymorphism in mouse and human Ltk: implications for	Li N et al.	14695357	Non-human stu
1	Cytotoxicity of RNases is increased by cationization and counteracted by K(Ca) channels.	llinskaya ON et al.	14733942	Non-human stu
1	N-Domain angiotensin I-converting enzyme expression in renal artery of Wistar, Wistar Kyoto, and spontaneously hypertensive rats.	Bueno V et al.	15194348	Non-human sti

	Fluorescence resonance energy transfer reports properties of syntaxin1a			
1	interaction with Munc18-1 in vivo.	Liu J et al.	15489225	Non-human stuc
1	Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction.	Basson MA et al.	15691764	Non-human stud
	Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for			
1	the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis.	Ren S et al.	15788398	Non-human stud
	Hypoxia induces a functionally significant and translationally efficient			
1	neuronal NO synthase mRNA variant.	Ward ME et al.	16276418	Non-human stud
	Luteinizing hormone receptor ectodomain splice variant misroutes the			
	full-length receptor into a subcompartment of the endoplasmic			
1	reticulum.	Apaja PM et al.	16495341	Non-human stud
	N-terminal residues control proteasomal degradation of RGS2, RGS4, and	Bodenstein J et		
1	RGS5 in human embryonic kidney 293 cells.	al.	17220356	Non-human stud
	Characterization of transcriptional regulation of neurogranin by nitric			
	oxide and the role of neurogranin in SNP-induced cell death: implication			
1	of neurogranin in an increased neuronal susceptibility to oxidative stress.	Gui J et al.	17389928	Non-human stu
	Fecal carriage of Escherichia coli O157:H7 and carcass contamination in			
1	cattle at slaughter in northern Italy.	Alonso S et al.	17661289	Non-human stud
	Generation and functional characterization of mice with a disrupted			
1	glutathione S-transferase, theta 1 gene.	Fujimoto K et al.	17827337	Non-human stud
	Functional genetic variation in aminopeptidase A (ENPEP): lack of clear			
1	association with focal and segmental glomerulosclerosis (FSGS).	Tonna S et al.	18206321	Non-human stue
4	Hepatitis C virus replication is inhibited by 22beta-methoxyolean-12-ene-		40450456	
1	3beta, 24(4beta)-diol (ME3738) through enhancing interferon-beta.	Hiasa Y et al. 🛛 🗸	18459156	Non-human stud
	Characterization of a novel cardiac isoform of the cell cycle-related kinase		40500765	
1	that is regulated during heart failure.	Qiu H et al.	18508765	Non-human stu
1	Increased insulin action in SKIP heterozygous knockout mice.	Ijuin T et al.	18573875	Non-human stud
1	Mitochondrial dysfunction in mut methylmalonic acidemia.	Chandler RJ et al.	19088183	Non-human stud
	Overexpression of cytochrome P450 4F2 in mice increases 20-			
1	hydroxyeicosatetraenoic acid production and arterial blood pressure.	Liu X et al.	19279555	Non-human stud

	Kallikrein genes are associated with lupus and glomerular basement			
1	membrane-specific antibody-induced nephritis in mice and humans.	Liu K et al.	19307730	Non-human stud
	p38MAPK controls expression of multiple cell cycle inhibitors and islet			
1	proliferation with advancing age.	Wong ES et al.	19619499	Non-human stud
	Blocking the salt-inducible kinase 1 network prevents the increases in cell			
	sodium transport caused by a hypertension-linked mutation in human	Stenstrom K et		
1	alpha-adducin.	al.	19657284	Non-human stud
	Maitotoxin converts the plasmalemmal Ca(2+) pump into a Ca(2+)-			
1	permeable nonselective cation channel.	Sinkins WG et al.	19794142	Non-human stud
1	MyoD control of SKIP expression during pig skeletal muscle development.	Xiong Q et al.	20336382	Non-human stud
	Targeted deletion of the Nesp55 DMR defines another Gnas imprinting			
	control region and provides a mouse model of autosomal dominant PHP-			
1	lb.	Frohlich LF et al.	20427744	Non-human stud
	Autosomal recessive polycystic kidney disease epithelial cell model			
	reveals multiple basolateral epidermal growth factor receptor sorting			
1	pathways.	Ryan S et al.	20519437	Non-human stud
	The activating mutation R201C in GNAS promotes intestinal			
	tumourigenesis in Apc(Min/+) mice through activation of Wnt and			
1	ERK1/2 MAPK pathways.	Wilson CH et al.	20531296	Non-human stud
1		Wilson Chiet al.	20551250	
1	Pitchfork regulates primary cilia disassembly and left-right asymmetry.	Kinzel D et al.	20643351	Non-human stud
	Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding			
1	protein p68 and steroid receptor RNA activator SRA.	Yao H et al.	20966046	Non-human stud
	A common polymorphism in the human aromatase gene alters the risk			
1	for polycystic ovary syndrome and modifies aromatase activity in vitro.	Wang H et al.	21282199	Non-human stud
	Transgenic overexpression of the extra-large Gsl [±] variant XLl [±] s enhances			
1	Gsl [±] -mediated responses in the mouse renal proximal tubule in vivo.	Liu Z et al.	21303955	Non-human stud
	Rat Ace allele variation determines susceptibility to AngII-induced renal			
1	damage	Kamilic J et al.	21788250	Non-human stud
	Carnosine treatment largely prevents alterations of renal carnosine			
1	metabolism in diabetic mice.	Peters V et al.	21833769	Non-human stud

1	YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation.	Stiburek L et al.	22262461	Non-human stud
1	Primary hyperoxaluria in Coton de Tulear.	Vidgren G et al.	22486513	Non-human stud
1	Role of angiotensin-converting enzyme (ACE and ACE2) imbalance on tourniquet-induced remote kidney injury in a mouse hindlimb ischemia-reperfusion model	Yang XH et al.	22580272	Non-human stud
1	Tubule-specific ablation of endogenous î ² -catenin aggravates acute kidney injury in mice.	Zhou D et al.	22622501	Non-human stuc
1	α1,3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation.	Park JY et al.	22775484	Non-human stuc
1		Mitrea IL et al.	23075460	Non-human stuc
1	First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats.	Gandolfi B et al.	23285264	Non-human stuc
1	Identification of aldo-keto reductases as NRF2-target marker genes in human cells.	Jung KA et al.	23305850	Non-human stud
1	An inducible transgenic mouse model for familial hypertension with hyperkalaemia (Gordon's syndrome or pseudohypoaldosteronism type II).	Chowdhury JA et al.	23336180	Non-human stud
1	Presence of N-glycosylated transthyretin in plasma of V30M carriers in familial amyloidotic polyneuropathy: an escape from ERAD.	Teixeira AC et al.	23387326	Non-human stuc
1	Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.	Hamilton NA et al.	23408978	Non-human stuc
1	Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure.	Hyndman KA et al.	23608660	Non-human stud
1	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling.	Gee HY et al.	23867502	Non-human stud

1	
2	
3 4	
5 6	
7	
8 9	
8 9 10 11	
11	
12	
13 14	
15 16	
16	
17	
18 19	
19 20	
21	
22 23	
23 24	
25	
25 26	
27 20	
28 29	
29 30	
31	
32 33	
33 34	
34 35	
36	
37 38	
30 39	
40	
41	
42 43	
43 44	
45	
46	

	A knock-in mouse model of human PHD2 gene-associated erythrocytosis	Arsenault PR et		
1	establishes a haploinsufficiency mechanism.	al.	24121508	Non-human stud
	The Pex1-G844D mouse: a model for mild human Zellweger spectrum			
1	disorder.	Hiebler S et al.	24503136	Non-human stud
	Holocarboxylase synthetase interacts physically with nuclear receptor co-			
	repressor, histone deacetylase 1 and a novel splicing variant of histone			
1	deacetylase 1 to repress repeats.	Liu D et al.	24840043	Non-human stue
	Factor VIIa binding to endothelial cell protein C receptor protects			
1	vascular barrier integrity in vivo.	Sundaram J et al.	24977291	Non-human stu
	Atrial natriuretic peptide locally counteracts the deleterious effects of	Nakagawa H et		
1		al.	25027872	Non-human stu
	The T309G murine double minute 2 gene polymorphism is an	de Martino M et		
1	independent prognostic factor for patients with renal cell carcinoma.	al.	25415135	Non-human stu
	Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated			
1	genome editing.	Roy A et al.	25477473	Non-human stu
	PTPN2 controls differentiation of CD4â• º T cells and limits intestinal	Spalinger MR et		
1	inflammation and intestinal dysbiosis.	al.	25492475	Non-human stu
	A functional 12T-insertion polymorphism in the ATP1A1 promoter			
	confers decreased susceptibility to hypertension in a male Sardinian			
1	population.	Herrera VL et al.	25615575	Non-human stu
	BAP1 missense mutation c.2054 A>T (p.E685V) completely disrupts			
	normal splicing through creation of a novel 5' splice site in a human			
1	mesothelioma cell line.	Morrison A et al.	25830670	Non-human stu
1	Identification of a receptor for extracellular renalase.	Wang L et al.	25906147	Non-human stu
	Mammalian target of rapamycin signaling inhibition ameliorates vascular	U U	-	
1	calcification via Klotho upregulation.	Zhao Y et al.	26061549	Non-human stu
	TNFα Amplifies DNasel Expression in Renal Tubular Cells while IL-1Î ²			
	Promotes Nuclear DNasel Translocation in an Endonuclease-Inactive	Thiyagarajan D et		
1	Form.	al.	26065428	Non-human stu
	DAPIT Over-Expression Modulates Glucose Metabolism and Cell			
1	Behaviour in HEK293T Cells.	Kontro H et al.	26161955	Non-human stu

	Allelic Variants in Arhgef11 via the Rho-Rock Pathway Are Linked to Epithelial-Mesenchymal Transition and Contributes to Kidney Injury in			
1	the Dahl Salt-Sensitive Rat.	Jia Z et al.	26172442	Non-human stud
1	Human GRK4Î ³ 142V Variant Promotes Angiotensin II Type I Receptor- Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.	Wang Z et al.	26667412	Non-human stuc
1	Dynamin-2 is a novel NOS1Î ² interacting protein and negative regulator in the collecting duct.	Hyndman KA et al.	26791826	Non-human stud
1	Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice.	Davies B et al.	26840484	Non-human stud
1	Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene.	Ferrario CM et al.	26873967	Non-human stud
1	From man to fish: What can Zebrafish tell us about ApoL1 nephropathy?	Olabisi O et al.	27509583	Non-human stud
1	Cabozantinib inhibits tumor growth and metastasis of a patient-derived	Zhao H et al.	27715452	Non-human stud
1	Renin-angiotensin system transgenic mouse model recapitulates pathophysiology similar to human preeclampsia with renal injury that may be mediated through VEGF.	Denney JM et al.	27927648	Non-human stud
1	Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho.	Wu YL et al.	27979597	Non-human stud
1	Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion.	Roeder SS et al.	27998643	Non-human stud
1	Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression.	Streets AJ et al.	28077374	Non-human stud
1	Targeting mTOR Signaling Can Prevent the Progression of FSGS.	Zschiedrich S et al.	28270414	Non-human stud
1	The leukotriene B(4)-leukotriene B(4) receptor axis promotes cisplatin- induced acute kidney injury by modulating neutrophil recruitment.	Deng B et al.	28318626	Non-human stud
1	DNase-active TREX1 frame-shift mutants induce serologic autoimmunity in mice.	Sakai T et al.	28325644	Non-human stud
1	Human SR-BII mediates SAA uptake and contributes to SAA pro- inflammatory signaling in vitro and in vivo.	Baranova IN et al.	28423002	Non-human stud

1	
2	
2	
3 4	
5	
6	
/	
8	
8 9 10	
10	
11	
12	
13	
14	
15	
15 16	
17	
18	
19	
19 20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
27	
34 35	
35 36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

	Bim gene dosage is critical in modulating nephron progenitor survival in	Cerqueira DM et		
1	the absence of microRNAs during kidney development.	al.	28446592	Non-human stud
	DBA/2J Haplotype on Distal Chromosome 2 Reduces Mertk Expression,	Kayashima Y et		
1	Restricts Efferocytosis, and Increases Susceptibility to Atherosclerosis.	al.	28473436	Non-human stud
	Inhibition of HDAC enhances STAT acetylation, blocks NF-κB, and			
	suppresses the renal inflammation and fibrosis in Npr1 haplotype male			
1	mice.	Kumar P et al.	28566502	Non-human stud
	The regulatory 1α subunit of protein kinase A modulates renal			
1	cystogenesis.	Ye H et al.	28615245	Non-human stud
	Functional analysis of human aromatic amino acid transporter			
1	MCT10/TAT1 using the yeast Saccharomyces cerevisiae.	Uemura S et al.	28754537	Non-human stud
	Kindlin-2 Association with Rho GDP-Dissociation Inhibitor 1± Suppresses			
1	Rac1 Activation and Podocyte Injury.	Sun Y et al.	28775002	Non-human stud
	Interference with Gsî±-Coupled Receptor Signaling in Renin-Producing	Lachmann P et		
1	Cells Leads to Renal Endothelial Damage.	al.	28775003	Non-human stud
	Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-			
1	Binding Protein).	Tassi E et al.	29158353	Non-human stud
	Caspase-independent programmed cell death triggers Ca(2)PO(4)	0.		
1	deposition in an in vitro model of nephrocalcinosis.	Priante G et al.	29208768	Non-human stud
	Knockout of the interleukin-36 receptor protects against renal ischemia-	Nishikawa H et		
1	reperfusion injury by reduction of proinflammatory cytokines.	al.	29241623	Non-human stud
	Xyloketal B exerts antihypertensive effect in renovascular hypertensive			
1	rats via the NO-sGC-cGMP pathway and calcium signaling.	Zhao LY et al.	29595193	Non-human stud
	Mice Carrying a Dominant-Negative Human PI3K Mutation Are Protected	Solheim MH et		
1	From Obesity and Hepatic Steatosis but Not Diabetes.	al.	29724723	Non-human stud
	A homozygous KAT2B variant modulates the clinical phenotype of ADD3			
1	deficiency in humans and flies.	Goncalves S et al.	29768408	Non-human stud
	Haploinsufficiency of the Mouse Atp6v1b1 Gene Leads to a Mild Acid-			
1	Base Disturbance with Implications for Kidney Stone Disease.	Bourgeois S et al.	29843146	Non-human stud
	RFLP-DR beta and serological HLA-DR typing of 200 kidney recipients and			Not a case-contr
1	1000 controls.	Mytilineos J et al.	1975140	study

1	Superoxide dismutase isozymes in different human tissues, their genetic control and intracellular localization.	Beckman G et al.	4775457	Not a case-contro study
1	Genetic counselling in lethal X-linked disorders.	Emery AE et al.	4976958	Not a case-contro study
1	DNA-based presymptomatic diagnosis for the von Hippel-Lindau disease by linkage analysis.	Olschwang S et al.	7552140	Not a case-contro study
1	Role of the deletion of polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy.	Yoshida H et al.	7593601	Not a case-contro study
1	Mistyping of the human angiotensin-converting enzyme gene polymorphism: frequency, causes and possible methods to avoid errors in typing.	Ueda S et al.	8863184	Not a case-contro study
1	Analysis of linkage disequilibrium between polymorphisms in the KCNJ9 gene with type 2 diabetes mellitus in Pima Indians.	Wolford JK et al.	11350189	Not a case-contro study
1	A family of autosomal dominant hypocalcemia with a positive correlation between serum calcium and magnesium: identification of a novel gain of function mutation (Ser(820)Phe) in the calcium-sensing receptor.	Nagase T et al.	12050233	Not a case-contro study
1	Captopril enhances transforming growth factor (TGF)-beta1 expression in peripheral blood mononuclear cells: a mechanism independent from angiotensin converting enzyme inhibition? A study in cyclosporine-treated kidney-transplanted patients.	Di Paolo S et al.	12499886	Not a case-contro
1	Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients.	Sato N et al.	15001591	Not a case-contro study
1	The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients.	Haufroid V et al.	15167702	Not a case-contro study
1	Antiproteinuric effect of candesartan cilexetil in Japanese subjects with type 2 diabetes and nephropathy.	Haneda M et al.	15364166	Not a case-contr study
1	An unusual association of contralateral congenital small kidney, reduced renal function and hyperparathyroidism in sponge kidney patients: on the track of the molecular basis.	Gambaro G et al.	15814540	Not a case-contrastudy

	Presentation and role of transplantation in adult patients with type 1			
	primary hyperoxaluria and the I244T AGXT mutation: Single-center			Not a case-contro
1	experience.	Lorenzo V et al.	16912707	study
				Not a case-contro
1	Familial nonsyndromic pheochromocytoma.	Opocher G et al.	17102081	study
	Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2			
	in human renal tissue and confounding effects of hypertension on the			Not a case-contr
1	ACE to ACE2 ratio	Wakahara et al.	17303661	study
	Verification of consumers' experiences and perceptions of genetic	Barlow-Stewart K		Not a case-contr
1	discrimination and its impact on utilization of genetic testing.	et al.	19287242	study
		Schneider-Yin X		Not a case-contr
1	Porphyria in Switzerland, 15 years experience.	et al.	19350426	study
	Whole general linkage and acceptation scan in primary pensyndromic			Not a case-contr
1	Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux.	Cordell HJ et al.	19959718	study
1	Identification of a gene for renal-hepatic-pancreatic dysplasia by	Fiskerstrand T et	19959710	Not a case-contr
1			20007846	
1	microarray-based homozygosity mapping.	al.	20007840	study
	Bardet-Biedl syndrome in Denmarkreport of 13 novel sequence	Hjortshoj TD et		Not a case-contr
1	variations in six genes.	al.	20120035	study
	Chromosome 7p linkage and association study for diabetes related traits			••••
	and type 2 diabetes in an African-American population enriched for			Not a case-contr
1	nephropathy.	Leak TS et al.	20144192	study
	MYH9 genetic variants associated with glomerular disease: what is the			Not a case-contr
1	role for genetic testing?	Kopp JB et al. 🛛 🗸	20807613	study
	A prospective, open-label, observational clinical cohort study of the			
	association between delayed renal allograft function, tacrolimus			Not a case-contr
1	exposure, and CYP3A5 genotype in adult recipients.	Kuypers DR et al.	21118736	study
	Acute kidney injury reduces the hepatic metabolism of midazolam in			Not a case-contr
1	critically ill patients.	Kirwan CJ et al.	22005822	study
	ABCB1 polymorphisms are associated with cyclosporine-induced			Not a case-contr
1	nephrotoxicity and gingival hyperplasia in renal transplant recipients.	Garcia M et al.	22886152	study

	Novel SMARCAL1 bi-allelic mutations associated with a chromosomal			Not a case-contro
1		Simon AJ et al.	24197801	study
	Brief Report: identification of MTMR3 as a novel susceptibility gene for			
	lupus nephritis in northern Han Chinese by shared-gene analysis with IgA			Not a case-contro
1	nephropathy.	Zhou XJ et al.	24943867	study
	An efficient and comprehensive strategy for genetic diagnostics of	Eisenberger T et		Not a case-contr
1	polycystic kidney disease. 📃	al.	25646624	study
	ABCB1 (MDR-1) pharmacogenetics of tacrolimus in renal transplanted			Not a case-contr
1	patients: a Next Generation Sequencing approach.	Tavira B et al.	25781547	study
	Novel mutations in the inverted formin 2 gene of Chinese families			Not a case-contr
1		Xie J et al.	26039629	study
	A Novel von Hippel Lindau Gene Intronic Variant and Its Reclassification			Not a case-contr
1		Sexton A et al.	26323595	study
	Genome-wide Association Studies Identify Genetic Loci Associated With			Not a case-contr
1		Teumer A et al.	26631737	study
	Updated genetic testing of Italian patients referred with a clinical			Not a case-contr
1	diagnosis of primary hyperoxaluria.	Pelle A et al.	26946417	study
	Polypoid urothelial tumor with inverted growth pattern in the renal 🛛 🦯 🌈	0.		
	pelvis: morphologic and molecular characteristics of a unique diagnostic 📏			Not a case-contr
1	entity.	Wobker SE et al.	27574810	study
	Haploinsufficiency in tumor predisposition syndromes: altered genomic			
	transcription in morphologically normal cells heterozygous for VHL or TSC			Not a case-contr
1	mutation.	Peri S et al. 👘 🧹	27682873	study
	CYP3A4*1G and CYP3A5*3 genetic polymorphisms alter the			
	antihypertensive efficacy of amlodipine in patients with hypertension			Not a case-contr
1	following renal transplantation .	Huang Y et al.	27841150	study
	Clinical, Genetic and Innate Immunity Characteristics of Melanoma in			Not a case-contr
1	Organ Transplant Recipients.	Brocard A et al.	27868139	study
	Clinical impact of the CYP3A5 6986A>G allelic variant on kidney			Not a case-contr
1	transplantation outcomes.	Flahault A et al.	27977332	study
	Smoking has no impact on survival and it is not associated with ACE gene			Not a case-contr
1	I/D polymorphism in hemodialysis patients.	Kiss I et al.	28058974	study

Page 120 of 304

1 2	
3	
4 5	
6 7	
8	
9 10	
11	
12 13	
14	
15 16	
16 17	
18 19 20	
20 21	
21 22 23	
23 24	
23 24 25	
26 27	
28 29	
29 30	
31 32	
33	
30 31 32 33 34 35 36 37	
36	
37 38	
39 40	
41	
42 43	
44	
45 46	
υT	

1	Evaluation of Glutathione Peroxidase and KCNJ11 Gene Polymorphisms in Patients with New Onset Diabetes Mellitus After Renal Transplantation.	Yalin GY et al.	28073131	Not a case-contro study
-	The CYP3A biomarker 4 ¹² -hydroxycholesterol does not improve		20070101	Not a case-contro
1		Storset E et al.	28146606	study
	Prograf produces more benefits for CYP3A5 low expression patients in			Not a case-contro
1		Fan B et al.	28157649	study
-	The genetic and clinical spectrum of a large cohort of patients with distal	Turb et un	2010/010	Not a case-contro
1		Palazzo V et al.	28233610	study
	Impact of the CYP3A5 genotype on the distributions of dose-adjusted			
	trough concentrations and incidence of rejection in Japanese renal			Not a case-contro
1		Niioka T et al.	28271256	study
	Influence of ABCC2, CYP2C8, and CYP2J2 Polymorphisms on Tacrolimus			
	and Mycophenolate Sodium-Based Treatment in Brazilian Kidney	Genvigir FDV et		Not a case-contro
1		al.	28316087	study
	Role of ACE and IL-1 ² Gene Polymorphisms in Erythropoeitin			Not a case-contro
1	Hyporesponsive Patients with Chronic Kidney Disease with Anemia.	Nand N et al.	28457029	study
	Pretransplant 4î ² -hydroxycholesterol does not predict tacrolimus			
	exposure or dose requirements during the first days after kidney			Not a case-contro
1	transplantation.	Vanhove T et al.	28603840	study
	Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with			Not a case-contro
1	cholestasis revealed a high number of different genetic variants.	Droge C et al.	28733223	study
		Lipska-		
	Low renal but high extrarenal phenotype variability in Schimke immuno-	Zietkiewicz BS et		Not a case-contro
1	osseous dysplasia.	al.	28796785	study
	Wuzhi Tablet (Schisandra sphenanthera Extract) is a Promising			
	Tacrolimus-Sparing Agent for Renal Transplant Recipients Who are			Not a case-contro
1		Li J et al.	28864749	study
	Crizotinib achieves long-lasting disease control in advanced papillary			
	renal-cell carcinoma type 1 patients with MET mutations or amplification.			Not a case-contro
1	EORTC 90101 CREATE trial.	Schoffski P et al.	29149761	study

	Cost-effectiveness analysis of elbasvir-grazoprevir regimen for treating hepatitis C virus genotype 1 infection in stage 4-5 chronic kidney disease	Maunoury F et		Not a case-contro
1	patients in France.	al.	29543897	study
	Late-onset acid maltase deficiency. Detection of patients and			Not a renal diseas
1	heterozygotes by urinary enzyme assay.	Mehler M et al.	9923	focus
	Differential inhibition of the products of the human alkaline phosphatase			Not a renal disea
1	loci.	Mulivor RA et al.	686677	focus
	A classification of tumor development based on an analysis of enzymes in	Wachsmuth ED		Not a renal disea
1	tissue sections of hypernephroid carcinoma in man.	et al.	1016198	focus
	Identification of mutations associated with peroxisome-to-mitochondrion			
	mistargeting of alanine/glyoxylate aminotransferase in primary			Not a renal disea
1	hyperoxaluria type 1.	Purdue PE et al.	1703535	focus
	Concentrations of ochratoxin A in the urine of endemic nephropathy			
	patients and controls in Bulgaria: lack of detection of 4-	Castegnaro M et		Not a renal disea
1	hydroxyochratoxin A.	al.	1820331	focus
	T-cell receptor beta-subunit gene polymorphism and autoimmune			Not a renal disea
1	disease.	Niven MJ et al.	1969400	focus
	Role of P450IID6, the target of the sparteine-debrisoquin oxidation			Not a renal disea
1	polymorphism, in the metabolism of imipramine.	Brosen K et al.	2060250	focus
	Immunological heterogeneity of hepatic alanine:glyoxylate			Not a renal disea
1	aminotransferase in primary hyperoxaluria type 1.	Wise PJ et al.	2443389	focus
	Renin in blood vessels in human pulmonary tumors. An			Not a renal disea
1	immunohistochemical and biochemical study.	Taylor GM et al.	2450464	focus
	Elevated concentrations of brain-type glycogen phosphorylase in renal			Not a renal disea
1	cell carcinoma.	Takashi M et al.	2515181	focus
	Origin of rare Ha-ras alleles: relationship of VTR length to a 5'			Not a renal disea
1	polymorphic Xho I site.	Baxter GD et al.	2558964	focus
		Sithanandam G		Not a renal disea
1	Loss of heterozygosity at the c-raf locus in small cell lung carcinoma.	et al.	2566144	focus
	Mechanisms of suppression of renal kallikrein activity in low renin	Shimamoto K et		Not a renal disea
1	essential hypertension and renoparenchymal hypertension.	al.	2676859	focus

Page 122 of 304

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 9 30 132 33 4 5 6 7 8 9 10 11 22 32 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	
3	
4	
5	
6	
7	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
25 24	
2 4 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
32	
39	
40	
41	
42	
43	
44	
45	
46	

	Reduced expression of multiple forms of the alpha subunit of the			Not a renal dise
1	stimulatory GTP-binding protein in pseudohypoparathyroidism type Ia.	Carter A et al.	2890163	focus
	The beta-subunit of follicle-stimulating hormone is deleted in patients			
	with aniridia and Wilms' tumour, allowing a further definition of the			Not a renal dise
1	WAGR locus.	Glaser T et al.	3014343	focus
	Further studies on the activity and subcellular distribution of			
	alanine:glyoxylate aminotransferase in the livers of patients with primary			Not a renal dise
1	hyperoxaluria type 1.	Danpure CJ et al.	3416563	focus
	Acetylator genotype-dependent metabolic activation of carcinogenic N-			
	hydroxyarylamines by S-acetyl coenzyme A-dependent enzymes of inbred			Not a renal dise
1	hamster tissue cytosols: relationship to arylamine N-acetyltransferase.	Hein DW et al.	3677303	focus
1	Persistence of streptococcal group A antibody in patients with rheumatic valvular disease.	Dudding DA at al	F C 0 2 0 4 1	Not a renal dise
1	valvular uisease.	Dudding BA et al.	5682941	focus Not a renal dise
1	Studies of an obnormal corum albumin unstable upon storage	Rousseaux J et al.	6215100	
1	Studies of an abnormal serum albumin unstable upon storage.	Rousseaux J et al.	6215190	focus
	Allotypes of properdin factor B(Bf) and lymphocytotoxic antibody			Not a renal dise
1	production.	Davidson JA et al.	6399879	focus
				Not a renal dise
1	Control of serum C3 levels by beta 1H and C3b inactivator.	Wyatt RJ et al.	6445926	focus
	Leukocyte beta-glucosidase in homozygotes and heterozygotes for	Raghavan SS et		Not a renal dise
1	Gaucher disease.	al.	6770675	focus
	Structural organization of the human neuronal nitric oxide synthase gene			Not a renal dise
1	(NOS1).	Hall AV et al.	7528745	focus
	Analysis of meningiomas by methylation- and transcription-based			Not a renal dise
1	clonality assays.	Zhu J et al.	7641206	focus
	Cytochrome P4501A1 gene polymorphism and homozygous deletion of			Not a renal dise
1	the glutathione S-transferase M1 gene in urothelial cancer patients.	Katoh T et al.	7697828	focus
				Not a renal dise
1	Distribution of MHC class II alleles in primary systemic vasculitis.	Zhang L et al.	7731160	focus

	Angiotensin-converting enzyme gene polymorphism has no influence on			
	the circulating renin-angiotensin-aldosterone system or blood pressure in	Lachurie ML et		Not a renal diseas
1	normotensive subjects	al.	7796503	focus
				Not a renal diseas
1	p53 mutations and MDM-2 amplification in renal cell cancers.	Imai Y et al.	7824511	focus
	Frequencies of variants of candidate genes in different age groups of			Not a renal diseas
1	hypertensives.	Zee RY et al.	7882587	focus
	Independent, marked associations of alleles of the insulin receptor and			Not a renal disea
1	dipeptidyl carboxypeptidase-I genes with essential hypertension.	Morris BJ et al.	8104754	focus
	Increased expression of vascular permeability factor (vascular endothelial			Not a renal disea
1	growth factor) and its receptors in kidney and bladder carcinomas.	Brown LF et al.	8238242	focus
	Alpha-1-proteinase inhibitor and pulmonary haemorrhage in systemic	O'Donoghue DJ		Not a renal disea
1	vasculitis.	et al.	8296629	focus
	Expression of NAD(P)H:quinone oxidoreductase and glutathione S-			
	transferases alpha and pi in human renal cell carcinoma and in kidney	Eickelmann P et		Not a renal disea
1	cancer-derived cell lines.	al.	8313512	focus
	A homoallelic Gly317>Asp mutation in ALPL causes the perinatal (lethal)	Greenberg CR et		Not a renal disea
1	form of hypophosphatasia in Canadian mennonites.	al.	8406453	focus
	Angiotensin converting enzyme (ACE) insertion/deletion (I/D)			
	polymorphism, and diabetic retinopathy in subjects with IDDM and			Not a renal disea
1	NIDDM.	Nagi DK et al.	8582133	focus
	Characterization of Gas6, a member of the superfamily of G domain-			Not a renal disea
1	containing proteins, as a ligand for Rse and Axl.	Mark MR et al.	8621659	focus
	C-antineutrophil cytoplasmic antibody positivity in vasculitis patients is			
	associated with the Z allele of alpha-1-antitrypsin, and P-antineutrophil			Not a renal disea
1	cytoplasmic antibody positivity with the S allele.	Griffith ME et al.	8671812	focus
	Absence of mutations in parathyroid hormone (PTH)/PTH-related protein			
	receptor complementary deoxyribonucleic acid in patients with			Not a renal disea
1	pseudohypoparathyroidism type Ib.	Fukumoto S et al.	8675577	focus
	Deletion polymorphism of the angiotensin-converting enzyme gene is			
	independently associated with left ventricular mass and geometric			Not a renal disea
1	remodeling in systemic hypertension.	Gharavi AG et al.	8677872	focus

	Azathioprine pharmacogenetics: the relationship between 6-thioguanine			
	nucleotides and thiopurine methyltransferase in patients after heart and			Not a renal disease
1	kidney transplantation.	Schutz E et al.	8721407	focus
	Examination of the role of nitric oxide synthase and renal kallikrein as			Not a renal disease
1	candidate genes for essential hypertension.	Friend LR et al.	8800585	focus
	Genetic risk for renal artery stenosis: association with deletion	Missouris CG et		Not a renal disease
1	polymorphism in angiotensin 1-converting enzyme gene.	al.	8821841	focus
	Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2			Not a renal disease
1	and H19 in human tissues and Wilms' tumors.	Chung WY et al.	8842727	focus
	Germline mutations in glial cell line-derived neurotrophic factor (GDNF)			Not a renal disease
1	and RET in a Hirschsprung disease patient.	Angrist M et al.	8896568	focus
	Germline mutations of the RET ligand GDNF are not sufficient to cause			Not a renal disease
1	Hirschsprung disease.	Salomon R et al.	8896569	focus
	Increased expression of the insulin-like growth factor-II gene in Wilms'			
	tumor is not dependent on loss of genomic imprinting or loss of			Not a renal disease
1	heterozygosity.	Wang WH et al.	8910385	focus
	Genetic analysis of the NAT2 and CYP2D6 polymorphisms in white			Not a renal disease
1	patients with non-insulin-dependent diabetes mellitus.	Agundez JA et al.	8946479	focus
	Renal cell carcinoma of end-stage renal disease: a histopathologic and	Hughson MD et		Not a renal disease
1	molecular genetic study.	al.	8959640	focus
	Reduced expression of the cyclin-dependent kinase inhibitor gene	Thompson JS et		Not a renal disease
1		al.	8971182	focus
	Angiotensin converting enzyme gene polymorphism and renal			Not a renal disease
1	hemodynamic function in early diabetes.	Miller JA et al.	8995725	focus
	Somatic inactivation of the VHL gene in Von Hippel-Lindau disease			Not a renal disease
1	tumors.	Prowse AH et al.	9106522	focus
	Association of diabetic neuropathy with Na/K ATPase gene			Not a renal disease
1	polymorphism.	Vague P et al.	9165217	focus
	Angiotensin I-converting enzyme and angiotensinogen gene			
	polymorphisms in non-insulin-dependent diabetes mellitus. Lack of			
	relationship with diabetic nephropathy and retinopathy in a Caucasian			Not a renal disease
1	Mediterranean population.	Gutierrez C et al.	9258285	focus

1	Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with long-term high occupational exposure to trichloroethene.	Pruning T of al	9285043	Not a renal diseas focus
1		Bruning T et al.	9203043	
1	FHIT gene and the FRA3B region are not involved in the genetics of renal	Durant Datial	0200040	Not a renal diseas
1		Bugert P et al.	9290948	focus
	Isolation and characterization of UGT2B15(Y85): a UDP-			Not a renal diseas
1		Levesque E et al.	9295060	focus
	Analyses of mutations in the human renal kallikrein (hKLK1) gene and			
	their possible relevance to blood pressure regulation and risk of			Not a renal disea
1	myocardial infarction.	Berge KE et al.	9298743	focus
	Coding mutations in p57KIP2 are present in some cases of Beckwith-			Not a renal disea
1	Wiedemann syndrome but are rare or absent in Wilms tumors.	O'Keefe D et al.	9311733	focus
	Loss of heterozygosity of the nm23-H1 gene in human renal cell			Not a renal disea
1	carcinomas.	Bosnar MH et al.	9341897	focus
	Biological monitoring of workers exposed to low levels of 2-			Not a renal disea
1	butoxyethanol.	Haufroid V et al.	9342622	focus
	Renal ACE immunohistochemical localization in NIDDM patients with			Not a renal disea
1	nephropathy.	Mizuiri S et al.	9469501	focus
	The Captopril Prevention Project (CAPPP) in hypertensionbaseline data			Not a renal disea
1	and current status.	Hansson L et al.	9495662	focus
	Angiotensin I-converting enzyme gene polymorphism modulates the			
	consequences of in utero growth retardation on plasma insulin in young			Not a renal disea
1		Cambien F et al.	9519756	focus
	Contribution of angiotensin I converting enzyme gene polymorphism and			
	angiotensinogen gene polymorphism to blood pressure regulation in	Mondorf UF et		Not a renal disea
1		al.	9524045	focus
	Evidence of association of the ecNOS gene polymorphism with plasma			Not a renal disea
1		Tsukada T et al.	9535806	focus
	Human GFRA1: cloning, mapping, genomic structure, and evaluation as a			Not a renal disea
1		Angrist M et al.	9545641	focus
-	Serum paraoxonase activity and its relationship to diabetic complications			Not a renal disea
1	in patients with non-insulin-dependent diabetes mellitus.	Ikeda Y et al.	9591753	focus

	Inhibition by platelet-activating factor of Src- and hepatocyte growth			
	factor-dependent invasiveness of intestinal and kidney epithelial cells.	Kotelevets L et		Not a renal disease
1	Phosphatidylinositol 3'-kinase is a critical mediator of tumor invasion.	al.	9603913	focus
	Angiotensin I-converting enzyme and angiotensinogen gene interaction			Not a renal disease
1	and prediction of essential hypertension.	Vasku A et al.	9607178	focus
	Phosphorylation sites in the autoinhibitory domain participate in			Not a renal disease
1	p70(s6k) activation loop phosphorylation.	Dennis PB et al.	9614086	focus
	EGF-r gene copy number changes in renal cell carcinoma detected by			Not a renal diseas
1	fluorescence in situ hybridization.	Moch H et al.	9664910	focus
	Point mutation and homozygous deletion of PTEN/MMAC1 in primary			Not a renal diseas
1	bladder cancers.	Cairns P et al.	9671402	focus
	Duplication and overexpression of the mutant allele of the MET proto-			Not a renal diseas
1	oncogene in multiple hereditary papillary renal cell tumours.	Fischer J et al.	9715275	focus
	Trisomy 7-harbouring non-random duplication of the mutant MET allele			Not a renal diseas
1	in hereditary papillary renal carcinomas.	Zhuang Z et al.	9731534	focus
	An analysis of phenotypic variation in the familial cancer syndrome von			Not a renal diseas
1	Hippel-Lindau disease: evidence for modifier effects.	Webster AR et al.	9758595	focus
	CYP2E1 genotyping in renal cell/urothelial cancer patients in comparison			Not a renal diseas
1	with control populations.	Farker K et al.	9760005	focus
	Identification of fifteen novel mutations in the tissue-nonspecific alkaline			
	phosphatase (TNSALP) gene in European patients with severe			Not a renal diseas
1	hypophosphatasia.	Mornet E et al.	9781036	focus
				Not a renal diseas
1	Impact of CYP2E1 genotype in renal cell and urothelial cancer patients.	Farker K et al.	9784018	focus
	Inhibition of tissue angiotensin converting enzyme activity prevents	Montgomery HE		Not a renal diseas
1	malignant hypertension in TGR(mREN2)27.	et al.	9797175	focus
	Analysis of 3p allelic losses in renal cell carcinomas: comparison with			Not a renal diseas
1	cytogenetic results.	Bernues M et al.	9844606	focus
	Renal changes on hyperglycemia and angiotensin-converting enzyme in			Not a renal diseas
1	type 1 diabetes.	Marre M et al.	10082486	focus
	Association of an insertion polymorphism of angiotensin-converting			Not a renal diseas
1	enzyme gene with the activity of lupus nephritis.	Akai Y et al.	10099886	focus

	G-Protein beta3 subunit C825T variant and ambulatory blood pressure in			Not a renal diseas
1		Beige J et al.	10205246	focus
	Novel mutations in the 1alpha-hydroxylase (P450c1) gene in three			
	families with pseudovitamin D-deficiency rickets resulting in loss of			Not a renal diseas
1	functional enzyme activity in blood-derived macrophages.	Smith SJ et al.	10320521	focus
	Gene structure, chromosomal location, and expression pattern of	Fernandez-		Not a renal disea
1	maleylacetoacetate isomerase.	Canon JM et al.	10373324	focus
	Candidate genetic modifiers of individual susceptibility to renal cell			
	carcinoma: a study of polymorphic human xenobiotic-metabolizing	Longuemaux S et		Not a renal disea
1	enzymes.	al.	10383153	focus
	Absence of PTEN germ-line mutations in men with a potential inherited			Not a renal disea
1	predisposition to prostate cancer.	Cooney KA et al.	10389923	focus
	Increased fragmentation of von Willebrand factor, due to abnormal			
	cleavage of the subunit, parallels disease activity in recurrent hemolytic			
	uremic syndrome and thrombotic thrombocytopenic purpura and			
	discloses predisposition in families. The Italian Registry of Familial and	Galbusera M et		Not a renal disea
1	Recurrent HUS/TTP.	al.	10397728	focus
	Mutations of the VHL gene in sporadic renal cell carcinoma: definition of			Not a renal disea
1	a risk factor for VHL patients to develop an RCC.	Gallou C et al.	10408776	focus
	Novel somatic mutations in the VHL gene in Swedish archived sporadic			Not a renal disea
1	renal cell carcinomas.	Yang K et al.	10454237	focus
	The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in			Not a renal disea
1	patients with primary hyperoxaluria type II.	Cramer SD et al.	10484776	focus
	Carotid intima-media thickness and ACE-gene polymorphism in	Nergizoglu G et		Not a renal disea
1	hemodialysis patients.	al.	10493570	focus
	Telomerase activity and telomere lengths: alterations in renal cell			Not a renal disea
1	carcinomas.	Dahse R et al.	10504477	focus
	Genotyping and functional analysis of a polymorphic (CCTTT)(n) repeat of	Warpeha KM et		Not a renal disea
1		al.	10506586	focus
	Molecular basis of human salt sensitivity: the role of the 11beta-			Not a renal disea
1	hydroxysteroid dehydrogenase type 2.	Lovati E et al.	10523024	focus

	Genetic polymorphisms of the renin-angiotensin system and			Not a renal disease
1	atheromatous renal artery stenosis.	Olivieri O et al.	10567188	focus
	Molecular characterization of the human PEA15 gene on 1q21-q22 and			Not a renal disease
1	association with type 2 diabetes mellitus in Pima Indians.	Wolford JK et al.	10607908	focus
	Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of			Not a renal disease
1	10q23 in renal cell carcinoma.	Alimov A et al.	10628321	focus
	No association between deletion-type angiotensin-converting enzyme			
	gene polymorphism and left-ventricular hypertrophy in hemodialysis			Not a renal diseas
1	patients.	Yildiz A et al.	10657713	focus
	Analysis of point mutation in exon 2 of CYP2E1 gene in renal			Not a renal diseas
1	cell/urothelial cancer patients in comparison with control population.	Farker K et al.	10667834	focus
	Association between diabetic retinopathy and genetic variations in	Matsubara Y et		Not a renal diseas
1	alpha2beta1 integrin, a platelet receptor for collagen.	al.	10688808	focus
	Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients with			Not a renal diseas
1	low-renin hypertension.	Komiya I et al.	10720581	focus
	Synergistic effect of alpha-adducin and ACE genes causes blood pressure			Not a renal diseas
1	changes with body sodium and volume expansion.	Barlassina C et al.	10720960	focus
	Somatic mutations of the MET oncogene are selected during metastatic	Di Renzo MF et		Not a renal diseas
1	spread of human HNSC carcinomas.	al.	10734314	focus
	Identification of fifteen novel PHEX gene mutations in Finnish patients	Tyynismaa H et		Not a renal diseas
1	with hypophosphatemic rickets.	al.	10737991	focus
	Abnormal RNA expression of 11p15 imprinted genes and kidney	Schwienbacher C		Not a renal diseas
1	developmental genes in Wilms' tumor.	et al.	10749116	focus
	VHL alterations in human clear cell renal cell carcinoma: association with	-		Not a renal diseas
1	advanced tumor stage and a novel hot spot mutation.	Brauch H et al.	10766184	focus
	An insertion/deletion polymorphism in intron 18 of the type B human			
	natriuretic peptide receptor gene is not associated with cerebral	Rahmutula D et		Not a renal diseas
1	infarction.	al.	10770265	focus
	Glutathione S-transferase M1, T1, and P1 polymorphisms as risk factors			Not a renal diseas
1		Sweeney C et al.	10794492	focus
	Familial clear cell renal cell carcinoma (FCRC): clinical features and	Woodward ER et		Not a renal diseas
1	mutation analysis of the VHL, MET, and CUL2 candidate genes.	al.	10807693	focus

	Trisomy 4 leading to duplication of a mutated KIT allele in acute myeloid			Not a renal diseas
1	leukemia with mast cell involvement.	Beghini A et al.	10812167	focus
	Distribution of different HLA antigens in Greek hypertensives according	Diamantopoulos		Not a renal diseas
1	to the angiotensin-converting enzyme genotype.	EJ et al.	10821349	focus
	Angiotensin-converting enzyme gene I/D polymorphism in malignant	Stefansson B et		Not a renal diseas
1	hypertension.	al.	10855732	focus
	An intron 4 gene polymorphism in endothelial cell nitric oxide synthase			
	might modulate volume-dependent hypertension in patients on	Yokoyama K et		Not a renal diseas
1	hemodialysis.	al.	10867538	focus
	Elevated urinary albumin excretion is not linked to the angiotensin I-			Not a renal disea
1	converting enzyme gene polymorphism in clinically healthy subjects.	Clausen P et al.	10872702	focus
	Functional analyses of amino acid substitutions Arg883Ser and Asp905Tyr	Permana PA et		Not a renal disea
1		al.	10873397	focus
	Functional synergism between the most common polymorphism in			
	human alanine:glyoxylate aminotransferase and four of the most			Not a renal disea
1	common disease-causing mutations.	Lumb MJ et al.	10960483	focus
	G-protein beta(3)-subunit C825T genotype and nephropathy in diabetes			Not a renal disea
1	mellitus.	Beige J et al.	10978395	focus
	Alterations of the DNA repair gene OGG1 in human clear cell carcinomas	Audebert M et		Not a renal disea
1	of the kidney.	al.	10987279	focus
				Not a renal disea
1	Missense mutation of the MET gene detected in human glioma.	Moon YW et al.	11007037	focus
	Renal outcome and vascular morbidity in systemic lupus erythematosus			
	(SLE): lack of association with the angiotensin-converting enzyme gene	•		Not a renal disea
1		Molad Y et al.	11071585	focus
	Serum arylesterase/diazoxonase activity and genetic polymorphisms in			Not a renal disea
1	patients with type 2 diabetes.	Inoue M et al.	11092501	focus
	Detection of the association between a deletion polymorphism in the			
	gene encoding angiotensin I-converting enzyme and advanced diabetic	Matsumoto A et		Not a renal disea
1	retinopathy.	al.	11106834	focus
				Not a renal disea
1	Proteinase 3 gene polymorphisms and Wegener's granulomatosis.	Gencik M et al.	11115080	focus

	alpha-adducin and angiotensin I-converting enzyme polymorphisms in			Not a renal diseas
1	essential hypertension.	Clark CJ et al.	11116113	focus
	Alleviating transcript insufficiency caused by Friedreich's ataxia triplet			Not a renal diseas
1	repeats.	Grabczyk E et al.	11121484	focus
	Glutathione transferase activities in renal carcinomas and adjacent			
	normal renal tissues: factors influencing renal carcinogenesis induced by	Delbanco EH et		Not a renal disea
1	xenobiotics.	al.	11218045	focus
	Random mutagenesis-PCR to introduce alterations into defined DNA	Nickerson ML et		Not a renal disea
1	sequences for validation of SNP and mutation detection methods.	al.	11241843	focus
	Gain-of-function mutation at the extracellular domain of KIT in			Not a renal disea
1	gastrointestinal stromal tumours.	Hirota S et al.	11276010	focus
				Not a renal disea
1	Gene-environment interactions in renal cell carcinoma.	Semenza JC et al.	11323315	focus
	von Hippel-Lindau protein mutants linked to type 2C VHL disease	Hoffman MA et		Not a renal disea
1	preserve the ability to downregulate HIF.	al.	11331612	focus
	Association of angiotensinogen M235T and A(-6)G gene polymorphisms			
	with coronary heart disease with independence of essential	Rodriquez-Perez		Not a renal disea
1	hypertension: the PROCAGENE study. Prospective Cardiac Gene.	JC et al.	11345362	focus
	Cholesteryl ester transfer protein polymorphism associated with			Not a renal disea
1	macroangiopathy in Japanese patients with type 2 diabetes.	Meguro S et al.	11369008	focus
	Mixed epithelial and stromal tumor of the kidney lacks the genetic			Not a renal disea
1	alterations of cellular congenital mesoblastic nephroma.	Pierson CR et al.	11381370	focus
	Increased D allele frequency of the angiotensin-converting enzyme gene	Morrison CD et		Not a renal disea
1	in pulmonary fibrosis.	al.	11381371	focus
	Class II HLA associations with autoantibodies in scleroderma: a highly			Not a renal disea
1	significant role for HLA-DP.	Gilchrist FC et al.	11393660	focus
	IRAK1b, a novel alternative splice variant of interleukin-1 receptor-			
	associated kinase (IRAK), mediates interleukin-1 signaling and has			Not a renal disea
1	prolonged stability.	Jensen LE et al.	11397809	focus
		Geoffroy-Perez B		Not a renal disea
1	Cancer risk in heterozygotes for ataxia-telangiectasia.	et al.	11410879	focus
	VHL c.505 T>C mutation confers a high age related penetrance but no			Not a renal disea
1	increased overall mortality.	Bender BU et al.	11483638	focus

	Angiotensin-converting enzyme gene polymorphism in patients with			Not a renal disease
1	systemic lupus.	Prkacin I et al.	11505631	focus
	Polymorphism screening of the insulin receptor-related receptor gene			Not a renal disease
1	(INSRR) on 1q in Pima Indians.	Wolford JK et al.	11513557	focus
	The pVHL-associated SCF ubiquitin ligase complex: molecular genetic			Not a renal disease
1	analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma.	Clifford SC et al.	11526493	focus
	Meningioma: a cytogenetic model of a complex benign human tumor,			Not a renal disease
1	including data on 394 karyotyped cases.	Zang KD	11528114	focus
	Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in			Not a renal disease
1	both clear cell and papillary renal cell carcinoma.	Morrissey C et al.	11585766	focus
	Crystal structures of NK1-heparin complexes reveal the basis for NK1			Not a renal disease
1	activity and enable engineering of potent agonists of the MET receptor.	Lietha D et al.	11597998	focus
	Detection of AGXT bgene mutations by denaturing high-performance			Not a renal disease
1	liquid chromatography for diagnosis of hyperoxaluria type 1.	Pirulli D et al.	11699734	focus
	Identification of six novel MYH9 mutations and genotype-phenotype			
	relationships in autosomal dominant macrothrombocytopenia with	Kunishima S et		Not a renal disease
1	leukocyte inclusions.	al.	11776386	focus
	Biallelic inactivation of the von Hippel-Lindau tumor suppressor gene in			Not a renal disease
1	sporadic renal cell carcinoma.	Hamano K et al.	11792959	focus
	Association of the D allele of the angiotensin I converting enzyme			Not a renal disease
1	polymorphism with malignant vascular injury.	Mayer NJ et al.	11836444	focus
	Comprehensive mutational analysis of the VHL gene in sporadic renal cell			Not a renal disease
1	carcinoma: relationship to clinicopathological parameters.	Kondo K et al.	11921283	focus
	Mutations in the von Hippel-Lindau (VHL) gene refine differential			Not a renal disease
1	diagnostic criteria in renal cell carcinoma.	Barnabas N et al.	11967908	focus
	Enhanced activity of variant phospholipase C-delta1 protein (R257H)			Not a renal disease
1	detected in patients with coronary artery spasm.	Nakano T et al.	11980680	focus
	Inhibition of LUC is popped to tumor superscript by the year Users			Not a ranal diasaa
4	Inhibition of HIF is necessary for tumor suppression by the von Hippel-	Kanda Katal	12096960	Not a renal disease
1	Lindau protein.	Kondo K et al.	12086860	focus

		1		
	Identification of cyclin D1 and other novel targets for the von Hippel-			
	Lindau tumor suppressor gene by expression array analysis and			
	investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau			Not a renal disease
1	disease.	Zatyka M et al.	12097293	focus
	ACE and PC-1 gene polymorphisms in normoalbuminuric Type 1 diabetic	de Azevedo MJ		Not a renal disease
1	patients: a 10-year prospective study.	et al.	12126783	focus
	Microsatellite instability and immunostaining for MSH-2 and MLH-1 in			
	cutaneous and internal tumors from patients with the Muir-Torre			Not a renal disease
1	syndrome.	Machin P et al.	12139636	focus
	No association between a genetic variant of the p22(phox) component of			Not a renal disease
1	NAD(P)H oxidase and the incidence and progression of IgA nephropathy.	Wolf G et al.	12147803	focus
	Analysis of MGEA5 on 10q24.1-q24.3 encoding the beta-O-linked N-			
	acetylglucosaminidase as a candidate gene for type 2 diabetes mellitus in			Not a renal disease
1	Pima Indians.	Farook VS et al.	12359146	focus
	Distinct patterns of chromosomal losses in clinically synchronous and			Not a renal disease
1	asynchronous bilateral renal cell carcinoma. 🛛 🗸 🚫	Kito H et al.	12442000	focus
	The relationship among the polymorphisms of SULT1A1, 1A2 and			Not a renal disease
1	different types of cancers in Taiwanese.	Peng CT et al.	12469224	focus
	Variant screening of PRKAB2, a type 2 diabetes mellitus susceptibility 👘 🚺	Prochazka M et		Not a renal disease
1	candidate gene on 1q in Pima Indians.	al.	12490143	focus
	Genetics, clinical and pathological features of glomerulonephritis	Ghiggeri GM et		Not a renal disease
1	associated with mutations of nonmuscle myosin IIA (Fechtner syndrome).	al.	12500226	focus
	Mutations in PRKCSH cause isolated autosomal dominant polycystic liver			Not a renal disease
1	disease.	Li A et al.	12529853	focus
	Impact of clarithromycin resistance and CYP2C19 genetic polymorphism			
	on treatment efficacy of Helicobacter pylori infection with lansoprazole-			Not a renal disease
1	or rabeprazole-based triple therapy in Japan.	Miki I et al.	12544691	focus
	The inhibitory gamma subunit of the type 6 retinal cGMP			
	phosphodiesterase functions to link c-Src and G-protein-coupled receptor			
	kinase 2 in a signaling unit that regulates p42/p44 mitogen-activated			Not a renal disease
1	protein kinase by epidermal growth factor.	Wan KF et al.	12624098	focus
		1		

	Serum extracellular superoxide dismutase in patients with type 2			
	diabetes: relationship to the development of micro- and macrovascular			Not a renal diseas
1	complications.	Kimura F et al.	12663605	focus
	Vascular endothelial growth factor gene polymorphism is associated with			Not a renal diseas
1	calcium oxalate stone disease.	Chen WC et al.	12719950	focus
	Proinflammatory genotype of interleukin-1 and interleukin-1 receptor			
	antagonist is associated with ESRD in proteinase 3-ANCA vasculitis	Borgmann S et		Not a renal disea
1	patients.	al.	12722027	focus
	Mutation analysis and clinical implications of von Willebrand factor-			Not a renal disea
1	cleaving protease deficiency.	Assink K et al.	12753286	focus
	Association of homozygous deletion of the Humhv3005 and the VH3-30.3			Not a renal disea
1	genes with renal involvement in systemic lupus erythematosus.	Cho ML et al.	12765304	focus
	A biallelic gene polymorphism of CYP11B2 predicts increased aldosterone			Not a renal disea
1	to renin ratio in selected hypertensive patients.	Nicod J et al.	12788845	focus
	MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome,			
	Fechtner syndrome, and Epstein syndrome are not distinct entities but			Not a renal disea
1	represent a variable expression of a single illness.	Seri M et al.	12792306	focus
	A single nucleotide polymorphism in the matrix metalloproteinase-1			Not a renal disea
1	promoter is associated with conventional renal cell carcinoma.	Hirata H et al.	12845675	focus
	Aberrant methylation and silencing of ARHI, an imprinted tumor	· //		Not a renal disea
1	suppressor gene in which the function is lost in breast cancers.	Yuan J et al.	12874023	focus
	Oxidative stress-related factors in Bartter's and Gitelman's syndromes:			Not a renal disea
1	relevance for angiotensin II signalling.	Calo LA et al.	12897089	focus
	Frequent allelic changes at chromosome 7q34 but lack of mutation of the	-		Not a renal disea
1	BRAF in papillary renal cell tumors.	Nagy A et al.	12918080	focus
	Relevance of nuclear and cytoplasmic von hippel lindau protein			Not a renal disea
1	expression for renal carcinoma progression.	Schraml P et al.	12937142	focus
	GBPI, a novel gastrointestinal- and brain-specific PP1-inhibitory protein,			Not a renal disea
1	is activated by PKC and inactivated by PKA.	Liu QR et al.	12974676	focus
	Renin-angiotensin system gene polymorphisms: assessment of the risk of	Buraczynska M		Not a renal disea
1	coronary heart disease.	et al.	14502296	focus
	Glutathione S-transferases M1-1 and T1-1 as risk modifiers for renal cell			Not a renal disea
1	cancer associated with occupational exposure to chemicals.	Buzio L et al.	14504370	focus

1	
2 3	
3 4	
5	
6 7	
7 8	
9	
10	
11 12	
13	
14	
15 16	
16 17	
18 19	
20	
21	
22 23	
24	
25	
26 27	
28	
29 30	
30 31	
31 32 33	
33	
34 35 36 37	
36	
38 39	
40	
41 42	
42 43	
44	
45	
46	

				Not a renal disease
1	Expression of the proto-oncogene Axl in renal cell carcinoma.	Chung BI et al.	14565870	focus
	Paraoxonase (Pon1) Q192R polymorphism and serum Pon1 activity in			Not a renal disease
1	diabetic patients on maintenance hemodialysis.	Zhang B et al.	14579940	focus
	Endothelial nitric oxide synthase gene intron 4 polymorphism in type 2			Not a renal disease
1	diabetes mellitus.	Ksiazek P et al.	14580231	focus
	Cytochrome P450 and manganese superoxide dismutase genes			Not a renal diseas
1	polymorphisms in systemic lupus erythematosus.	Yen JH et al.	14611903	focus
	Peripheral vascular disease in Type 2 diabetic Chinese patients:			
	associations with metabolic indices, concomitant vascular disease and			Not a renal diseas
1	genetic factors.	Thomas GN et al.	14632699	focus
	The rapid effects of 1,25-dihydroxyvitamin D3 require the vitamin D			
	receptor and influence 24-hydroxylase activity: studies in human skin			Not a renal disease
1	fibroblasts bearing vitamin D receptor mutations. 🦰 👝	Nguyen TM et al.	14665637	focus
	Renovascular disease: effect of ACE gene deletion polymorphism and			Not a renal diseas
1	endovascular revascularization.	Pizzolo F et al.	14718831	focus
	Genetic characterization and structural analysis of VHL Spanish families	Ruiz-Llorente S et		Not a renal disease
1	to define genotype-phenotype correlations.	al.	14722919	focus
	Congenital disorder of oxygen sensing: association of the homozygous			
	Chuvash polycythemia VHL mutation with thrombosis and vascular			Not a renal disease
1	abnormalities but not tumors.	Gordeuk VR et al.	14726398	focus
	Defects in translational regulation mediated by the alpha subunit of			
	eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the			Not a renal disease
1	malignant transformation of human fibroblasts.	Perkins DJ et al.	14966282	focus
	Polymorphisms of the CYP1B1 gene as risk factors for human renal cell			Not a renal diseas
1	cancer.	Sasaki M et al.	15041720	focus
	Abnormal hepatocystin caused by truncating PRKCSH mutations leads to			Not a renal disease
1	autosomal dominant polycystic liver disease.	Drenth JP et al.	15057895	focus
	KIT expression in chromophobe renal cell carcinoma: comparative			
	immunohistochemical analysis of KIT expression in different renal cell			Not a renal diseas
1	neoplasms.	Petit A et al.	15105658	focus

	Association of the serum and glucocorticoid regulated kinase (sgk1) gene			Not a renal diseas
1	with QT interval.	Busjahn A et al.	15107590	focus
	Three novel missense mutations of WNK4, a kinase mutated in inherited			
	hypertension, in Japanese hypertensives: implication of clinical			Not a renal diseas
1	phenotypes.	Kamide K et al.	15110905	focus
	Intron 4 polymorphism of the endothelial nitric oxide synthase gene is			Not a renal diseas
1	associated with the development of lupus nephritis.	Lee YH et al.	15119548	focus
	Identification of PIK3C3 promoter variant associated with bipolar			Not a renal disea
1	disorder and schizophrenia.	Stopkova P et al.	15121481	focus
	The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette)			
	gene in cytochrome oxidase assembly: mutation causes lowered levels of			Not a renal disea
1	COX (cytochrome c oxidase) I and COX III mRNA.	Xu F et al.	15139850	focus
	A naturally occurring human Nedd4-2 variant displays impaired ENaC	Fouladkou F et		Not a renal disea
1	regulation in Xenopus laevis oocytes. 💦 🚫 👝	al.	15140763	focus
	Increased amount of the angiotensin-converting enzyme (ACE) mRNA			Not a renal disea
1	originating from the ACE allele with deletion.	Suehiro T et al.	15164285	focus
	G protein beta3 subunit C825T polymorphism in primary IgA			Not a renal disea
1	nephropathy.	Thibaudin L et al.	15200440	focus
	A novel missense substitution (Val1483Ile) in the fatty acid synthase gene			
	(FAS) is associated with percentage of body fat and substrate oxidation	· //		Not a renal disea
1	rates in nondiabetic Pima Indians.	Kovacs P et al.	15220220	focus
	Functional analysis of polymorphisms in the promoter regions of genes	Hoogendoorn B		Not a renal disea
1	on 22q11.	et al.	15221787	focus
		van Woerden CS 🗸		Not a renal disea
1	Clinical implications of mutation analysis in primary hyperoxaluria type 1.	et al.	15253729	focus
	Paraoxonase 1 Gln/Arg polymorphism is associated with the risk of			Not a renal disea
1	microangiopathy in Type 2 diabetes mellitus.	Murata M et al.	15270786	focus
	Identification of 108 SNPs in TSC, WNK1, and WNK4 and their association			Not a renal disea
1	with hypertension in a Japanese general population.	Kokubo Y et al.	15309683	focus
	Association of a haplotype of matrix metalloproteinase (MMP)-1 and			Not a renal disea
1	MMP-3 polymorphisms with renal cell carcinoma.	Hirata H et al.	15319295	focus
	Genetic risk of atherosclerotic renal artery disease: the candidate gene	van Onna M et		Not a renal disea
1	approach in a renal angiography cohort.	al.	15326089	focus

	Evaluation of mutation screening as a first line test for the diagnosis of			Not a renal disease
1	the primary hyperoxalurias.	Rumsby G et al.	15327387	focus
	G-protein beta3 subunit gene C825T polymorphism in patients with	Zagradisnik B et		Not a renal disease
1	vesico-ureteric reflux.	al.	15337465	focus
	An intronic variant of the TGFBR1 gene is associated with carcinomas of			Not a renal disease
1	the kidney and bladder.	Chen T et al.	15382067	focus
	Polymorphisms in the 5'-upstream region of the PKCbeta gene in			Not a renal disease
1	Japanese patients with Type 2 diabetes.	Ikeda Y et al.	15384959	focus
	Glutathione S-transferase T1 deletion is a risk factor for developing end-			Not a renal disease
1	stage renal disease in diabetic patients.	Yang Y et al.	15492856	focus
	6			Not a renal disease
1	CHEK2 is a multiorgan cancer susceptibility gene.	Cybulski C et al.	15492928	focus
	Molecular basis of hypoxanthine-guanine phosphoribosyltransferase			
	deficiency in Italian Lesch-Nyhan patients: identification of nine novel			Not a renal disease
1	mutations.	Bertelli M et al.	15505382	focus
	Distinct patterns of abnormal GNAS imprinting in familial and sporadic			Not a renal disease
1	pseudohypoparathyroidism type IB.	Liu J et al.	15537666	focus
	Chromophobe renal cell carcinoma: a comparative study of histological,			
	immunohistochemical and ultrastructural features using high throughput	Abrahams NA et		Not a renal disease
1	tissue microarray.	al.	15569050	focus
	Association of a functional single-nucleotide polymorphism of PTPN22,			
	encoding lymphoid protein phosphatase, with rheumatoid arthritis and			Not a renal disease
1	systemic lupus erythematosus.	Orozco G et al.	15641066	focus
	Altered gene expression in phenotypically normal renal cells from carriers	Stoyanova R et 🚽		Not a renal disease
1	of tumor suppressor gene mutations.	al.	15662135	focus
				Not a renal disease
1	Thrombin activatable fibrinolysis inhibitor in Behçet's disease.	Donmez A et al.	15668188	focus
	Allelic variants of the human scavenger receptor class B type 1 and	Rodriquez-		
	paraoxonase 1 on coronary heart disease: genotype-phenotype	Esparragon F et		Not a renal disease
1	correlations.	al.	15681296	focus
	A novel recessive mutation in fibroblast growth factor-23 causes familial			Not a renal disease
1	tumoral calcinosis.	Larsson T et al.	15687325	focus

	DNase II polymorphisms associated with risk of renal disorder among			Not a renal disease
1	systemic lupus erythematosus patients.	Shin HD et al.	15723160	focus
	Analysis of the apolipoprotein(a) size polymorphism in patients with			Not a renal disease
1	systemic lupus erythematosus.	Peros E et al.	15754029	focus
	Relationship of eNOS gene variants to diseases that have in common an			Not a renal diseas
1	endothelial cell dysfunction.	Heltianu C et al.	15784171	focus
	Variable number of tandem repeat of the 5'-flanking region of type-C			
	human natriuretic peptide receptor gene influences blood pressure levels			Not a renal diseas
1	in obesity-associated hypertension.	Aoi N et al.	15785005	focus
	Renin-angiotensin system gene polymorphisms predict the progression			Not a renal diseas
1	to renal insufficiency among Asians with lupus nephritis.	Parsa A et al.	15789057	focus
	A novel STX16 deletion in autosomal dominant			
	pseudohypoparathyroidism type Ib redefines the boundaries of a cis-			Not a renal diseas
1	acting imprinting control element of GNAS. 💦 🚫 🔼	Linglart A et al.	15800843	focus
	Overexpression of human alanine:glyoxylate aminotransferase in			
	Escherichia coli: renaturation from guanidine-HCl and affinity for	Coulter-Mackie		Not a renal diseas
1	pyridoxal phosphate co-factor.	MB et al.	15802217	focus
	Association between plasma activities of semicarbazide-sensitive amine			
	oxidase and angiotensin-converting enzyme in patients with type 1			Not a renal diseas
1	diabetes mellitus.	Boomsma F et al.	15830186	focus
	Relationship of bradykinin B2 receptor gene polymorphism with essential			Not a renal diseas
1	hypertension and left ventricular hypertrophy.	Fu Y et al.	15894833	focus
	Genetic variation in the bleomycin hydrolase gene and bleomycin-			Not a renal diseas
1	induced pulmonary toxicity in germ cell cancer patients.	Nuver J et al. 🛛 🗸	15900213	focus
	Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell	van Houwelingen		Not a renal disea
1	carcinoma: results from The Netherlands cohort study.	KP et al.	15932632	focus
	Inducible nitric oxide synthase polymorphism is associated with			Not a renal diseas
1	susceptibility to Henoch-SchĶnlein purpura in northwestern Spain.	Martin J et al.	15940772	focus
	Association between CYP2C9 slow metabolizer genotypes and severe			Not a renal diseas
1	hypoglycaemia on medication with sulphonylurea hypoglycaemic agents.	Holstein A et al.	15963101	focus

	The major allele of the alanine:glyoxylate aminotransferase gene: nine			
	novel mutations and polymorphisms associated with primary	Coulter-Mackie		Not a renal disease
1	hyperoxaluria type 1.	MB et al.	15963748	focus
	Angiotensin-converting enzyme (ACE) haplotypes and cyclosporine A			
	(CsA) response: a model of the complex relationship between ACE			Not a renal disease
1	quantitative trait locus and pathological phenotypes.	Catarsi P et al.	16002416	focus
	Increased frequency of the angiotensin-converting enzyme gene D-allele			
	is associated with noninfectious pulmonary dysfunction following			Not a renal disease
1	allogeneic stem cell transplant.	Onizuka M et al.	16044138	focus
	Association between polymorphisms of the renin-angiotensin system and			Not a renal disease
1	more severe histological forms of lupus nephritis.	Sprovieri SR et al.	16047641	focus
	The R620W C/T polymorphism of the gene PTPN22 is associated with SLE			Not a renal disease
1	independently of the association of PDCD1.	Reddy MV et al.	16052172	focus
	Does complement factor B have a role in the pathogenesis of atypical			Not a renal disease
1	HUS?	Kavanagh D et al.	16061287	focus
				Not a renal diseas
1	Association of NEDD4L ubiquitin ligase with essential hypertension.	Russo CJ et al.	16103266	focus
				Not a renal disease
1	CYP3A5 genotype is associated with elevated blood pressure.	Fromm MF et al.	16141800	focus
	Complement factor B allotypes in the susceptibility and severity of	da Rosa Utiyama		Not a renal disease
1	coeliac disease in patients and relatives.	SR et al.	16164698	focus
	The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase	Dreisbach AW et		Not a renal disease
1	polymorphisms in African Americans with hypertension.	al.	16202848	focus
		-		Not a renal diseas
1	Natural history of Fabry disease in females in the Fabry Outcome Survey.	Deegan PB et al.	16227523	focus
				Not a renal disease
1	ADAM33: a newly identified gene in the pathogenesis of asthma.	Holgate ST et al.	16257631	focus
	Alternative splicing of fibroblast growth factor receptor 3 produces a			
	secreted isoform that inhibits fibroblast growth factor-induced	Tomlinson DC et		Not a renal diseas
1	proliferation and is repressed in urothelial carcinoma cell lines.	al.	16288035	focus
	Homozygous and compound heterozygous mutations in ZMPSTE24 cause			Not a renal diseas
1	the laminopathy restrictive dermopathy.	Moulson CL et al.	16297189	focus

				Not a renal diseas
1	The PTPN22 620W allele is a risk factor for Wegener's granulomatosis.	Jagiello P et al.	16320352	focus
	Hypoxia-regulated expression of attenuated diphtheria toxin A fused with			
	hypoxia-inducible factor-1alpha oxygen-dependent degradation domain	Koshikawa N et		Not a renal diseas
1	preferentially induces apoptosis of hypoxic cells in solid tumor.	al.	16357173	focus
	Is factor V Leiden a risk factor for thrombotic microangiopathies without			Not a renal diseas
1	severe ADAMTS 13 deficiency?	Krieg S et al.	16411392	focus
	Int7G24A variant of transforming growth factor-beta receptor type I is			Not a renal disea
1	associated with invasive breast cancer.	Chen T et al.	16428477	focus
	Antiepidermal growth factor variant III scFv fragment: effect of			Not a renal disea
1	radioiodination method on tumor targeting and normal tissue clearance.	Shankar S et al.	16459265	focus
	Matrix metalloproteinase-9 polymorphisms and renal cell carcinoma in a			Not a renal disea
1	Japanese population.	Awakura Y et al.	16466849	focus
	Association of CYP3A5 genotypes with blood pressure and renal function			Not a renal disea
1	in African families.	Bochud M et al.	16612255	focus
	Relationship of serum paraoxonase 1 activity and paraoxonase 1			Not a renal disea
1	genotype to risk of systemic lupus erythematosus.	Tripi LM et al.	16729301	focus
				Not a renal disea
1	CCL18: a urinary marker of Gaucher cell burden in Gaucher patients.	Boot RG et al.	16736095	focus
		Carvajal-		
	Adult leydig cell tumors of the testis caused by germline fumarate	Carmona LG et		Not a renal disea
1	hydratase mutations.	al.	16757530	focus
	Are the angiotensin-converting enzyme gene and activity risk factors for			Not a renal disea
1	stroke?	Dikmen M et al.	16791358	focus
	Increased neutrophil membrane expression and plasma level of			
	proteinase 3 in systemic vasculitis are not a consequence of the - 564 A/G	Abdgawad M et		Not a renal disea
1	promotor polymorphism.	al.	16792675	focus
	Slight association between type 1 diabetes and "ff" VDR FokI genotype in			
	patients from the Italian Lazio Region. Lack of association with diabetes	Capoluongo E et		Not a renal disea
1	complications.	al.	16806146	focus

	No association of the CYP3A5*1 allele with blood pressure and left			
	ventricular mass and geometry: the KORA/MONICA Augsburg			Not a renal diseas
1	echocardiographic substudy.	Lieb W et al.	16822233	focus
	Autosomal-dominant pseudohypoparathyroidism type Ib is caused by			Not a renal diseas
1	different microdeletions within or upstream of the GNAS locus.	Juppner H et al.	16831926	focus
				Not a renal diseas
1	VHL P25L is not a pathogenic von Hippel-Lindau mutation: a family study.	Pettman RK et al.	16884327	focus
	ACE gene insertion/deletion polymorphism modulates capillary			Not a renal diseas
1	permeability in hypertension.	Dell'omo G et al.	16889537	focus
	Allelic variation in the CNDP1 gene and its lack of association with			Not a renal diseas
1	longevity and coronary heart disease.	Zschocke J et al.	16965804	focus
	Ubiquitin ligase gp78 increases solubility and facilitates degradation of			Not a renal diseas
1	the Z variant of alpha-1-antitrypsin.	Shen Y et al.	16979136	focus
	NFkappaB and its inhibitor IkappaB in relation to type 2 diabetes and its			Not a renal diseas
1	microvascular and atherosclerotic complications.	Romzova M et al.	17002901	focus
	Predicting the impact of population level risk reduction in cardio-vascular			
	disease and stroke on acute hospital admission rates over a 5 year	Whitfield MD et		Not a renal diseas
1	perioda pilot study.	al.	17084425	focus
	Increased expression of angiotensin II type 1 receptor (AGTR1) in heart			Not a renal disea
1	transplant recipients with recurrent rejection.	Yamani MH et al.	17097490	focus
	Effect of synthetic corticosteroids on vascular reactivity in the human			Not a renal disea
1	forearm.	Mangos GJ et al.	17132537	focus
	Association of genetic polymorphisms of ACADSB and COMT with human			Not a renal disea
1	hypertension.	Kamide K et al. 🧹	17143180	focus
		Hammerschmied		Not a renal disea
1	Role of the STK15 Phe31Ile polymorphism in renal cell carcinoma.	CG et al.	17143471	focus
	Genetic and epigenetic analysis of CHEK2 in sporadic breast, colon, and			Not a renal disea
1	ovarian cancers.	Williams LH et al.	17145815	focus
	Blastemal expression of type I insulin-like growth factor receptor in			
	Wilms' tumors is driven by increased copy number and correlates with			Not a renal disea
1	relapse.	Natrajan R et al.	17145858	focus

	Identification of a novel BBS gene (BBS12) highlights the major role of a			
	vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl			Not a renal diseas
1	syndrome.	Stoetzel C et al.	17160889	focus
	Association of the C825T polymorphism of the G-protein beta3 subunit			
	gene with hypertension, obesity, hyperlipidemia, insulin resistance,			Not a renal diseas
1	diabetes, diabetic complications, and diabetic therapies among Japanese.	Hayakawa T et al.	17161225	focus
	Adrenal hyperplasia and adenomas are associated with inhibition of			
	phosphodiesterase 11A in carriers of PDE11A sequence variants that are			Not a renal disea
1	frequent in the population.	Horvath A et al.	17178847	focus
	Mucinous tubular and spindle cell carcinoma of kidney is probably a			Not a renal disea:
1	variant of papillary renal cell carcinoma with spindle cell features.	Shen SS et al.	17240302	focus
		Franco-		
	EGFR sequence variations and real-time quantitative polymerase chain	Hernandez C et		Not a renal disea
1	reaction analysis of gene dosage in brain metastases of solid tumors.	al.	17284372	focus
				Not a renal disea
1	Nosocomial outbreak of CTX-M-15-producing E. coli in Norway.	Naseer U et al.	17295678	focus
	Association of genotypes of thrombin-activatable fibrinolysis inhibitors			Not a renal disea
1	with thrombotic microangiopathiesa pilot study.	Sucker C et al.	17327284	focus
	Functional polymorphism in human CYP4F2 decreases 20-HETE			Not a renal disea
1	production.	Stec DE et al.	17341693	focus
	Immunoexpression of lactoferrin in human sporadic renal cell			Not a renal disea
1	carcinomas.	Giuffre G et al.	17390038	focus
	Association of ATP1A1 and dear single-nucleotide polymorphism			
	haplotypes with essential hypertension: sex-specific and haplotype-			Not a renal disea
1	specific effects.	Glorioso N et al.	17446437	focus
	Comprehensive mutation screening in 55 probands with type 1 primary			Not a renal disea
1	hyperoxaluria shows feasibility of a gene-based diagnosis.	Monico CG et al.	17460142	focus
				Not a renal disea
1	Mutations in the SBDS gene in acquired aplastic anemia.	Calado RT et al.	17478638	focus
	Re-assessment of the influence of polymorphisms of phase-II metabolic	Wiesenhutter B		Not a renal disea
1	enzymes on renal cell cancer risk of trichloroethylene-exposed workers.	et al.	17479278	focus

2	
_	
3	
4	
5	
6	
6 7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
9 10 11 12 13 14 15 16 17 18	
19	
20	
20 21 22 23	
22	
22	
23 24	
24	
25	
26	
27	
28	
29	
30	
30 31 32 33	
21	
32	
33	
33 34	
35	
35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
10	

46

	Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related			Not a renal disea
1		Brennan P et al.	17517688	focus
	Impact of maternal angiotensinogen M235T polymorphism and			
	angiotensin-converting enzyme insertion/deletion polymorphism on			Not a renal disea
1	blood pressure, protein excretion and fetal outcome in pregnancy.	Pfab T et al.	17563539	focus
	Lack of association between endothelial nitric oxide synthase gene			
	polymorphisms, microalbuminuria and endothelial dysfunction in			Not a renal disea
1		Dell'Omo G et al.	17563560	focus
	Circulating protein biomarkers of pharmacodynamic activity of sunitinib			
	in patients with metastatic renal cell carcinoma: modulation of VEGF and			Not a renal dise
1		Deprimo SE et al.	17605814	focus
	Glutathione S-transferase polymorphisms, cruciferous vegetable intake			Not a renal dise
1	and cancer risk in the Central and Eastern European Kidney Cancer Study.	Moore LE et al.	17617661	focus
	Effects of angiotensin-converting enzyme gene polymorphism and serum			
	vitamin D levels on ambulatory blood pressure measurement and left			Not a renal dise
1	ventricular mass in Turkish hypertensive population.	Kulah E et al.	17625392	focus
	Manganese superoxide dismutase (Mn-SOD) gene polymorphisms in			Not a renal dise
1	urolithiasis.	Tugcu V et al.	17628794	focus
	Angiotensin-converting enzyme gene polymorphism in Kuwaiti patients	Al-Awadhi AM et		Not a renal dise
1	with systemic lupus erythematosus.	al.	17631741	focus
	MDM2 SNP309 polymorphism as risk factor for susceptibility and poor			Not a renal dise
1	prognosis in renal cell carcinoma.	Hirata H et al.	17634539	focus
	Protein expression and mutational analysis of epidermal growth factor			Not a renal dise
1	receptor in renal angiomyolipomas.	Lim SD et al.	17685929	focus
	Germline VHL gene mutations in three Serbian families with von Hippel-	Stanojevic BR et		Not a renal dise
1	Lindau disease.	al.	17688370	focus
	The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor			Not a renal dise
1	involved in multiple cancers.	Zhang L et al.	17694067	focus
	Genetic variation in the paraoxonase-3 (PON3) gene is associated with	Sanghera DK et		Not a renal dise
1	serum PON1 activity.	al.	17900266	focus
	Genetic polymorphisms in OGG1 and their association with			
	angiomyolipoma, a benign kidney tumor in patients with tuberous			Not a renal dise
1	sclerosis.	Habib SL et al.	17932460	focus

	Human G(salpha) mutant causes pseudohypoparathyroidism type			
	Ia/neonatal diarrhea, a potential cell-specific role of the palmitoylation			Not a renal disease
1	,	Makita N et al.	17962410	focus
	Association of the nitric oxide synthase (eNOS) gene polymorphism with			
	increased risk for both lupus glomerulonephritis and rheumatoid arthritis	Vazgiourakis V et		Not a renal diseas
1	in a single genetically homogeneous population.	al.	17971359	focus
	Lack of association between matrix metalloproteinase-1 (MMP-1)			Not a renal diseas
1	promoter polymorphism and risk of renal cell carcinoma.	Piccoli MF et al.	17980059	focus
	Differential regulation of serum- and glucocorticoid-inducible kinase 1			Not a renal diseas
1	(SGK1) splice variants based on alternative initiation of transcription.	Simon P et al.	17982254	focus
	Polymorphisms in genes related to activation or detoxification of			
	carcinogens might interact with smoking to increase renal cancer risk:			Not a renal diseas
1	results from The Netherlands Cohort Study on diet and cancer.	Smits KM et al.	17982751	focus
	Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell	Maynard MA et		Not a renal diseas
1	carcinoma progression.	al.	17998805	focus
	The extracolonic cancer spectrum in females with the common 'South	Blokhuis MM et		Not a renal diseas
1	African' hMLH1 c.C1528T mutation.	al.	18049911	focus
	Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations			Not a renal diseas
1	predicts the natural history of MYH9-related disease.	Pecci A et al.	18059020	focus
	Lack of association of a functional single nucleotide polymorphism of	• / ,		
	PTPN22, encoding lymphoid protein phosphatase, with susceptibility to			Not a renal diseas
1	Henoch-Schönlein purpura.	Orozco G et al.	18078626	focus
	Progesterone receptor reactivity in renal oncocytoma and chromophobe			Not a renal diseas
1	renal cell carcinoma.	Mai KT et al.	18081814	focus
	Constant allelic alteration on chromosome 16p (TSC2 gene) in		5	
	perivascular epithelioid cell tumour (PEComa): genetic evidence for the			Not a renal diseas
1	relationship of PEComa with angiomyolipoma.	Pan CC et al.	18085521	focus
	Association of angiotensin-converting enzyme gene insertion/deletion			
	polymorphism with metabolic syndrome in Iranians with type 2 diabetes			Not a renal diseas
1		Nikzamir A et al.	18154415	focus
	Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11			Not a renal diseas
1		Omori S et al.	18162508	focus

	Renal oncocytoma with and without intravascular extension into the			
	branches of renal vein have the same morphological,			Not a renal diseas
1	immunohistochemical and genetic features.	Hes O et al.	18196270	focus
				Not a renal diseas
1	Association of SGK1 gene polymorphisms with type 2 diabetes.	Schwab M et al.	18209482	focus
	Association of a functional cytochrome P450 4F2 haplotype with urinary			Not a renal diseas
1	20-HETE and hypertension.	Liu H et al.	18235092	focus
	Haplotypes of the HRES-1 endogenous retrovirus are associated with			
	development and disease manifestations of systemic lupus	Pullmann R Jr et		Not a renal disea
1	erythematosus.	al.	18240231	focus
	Genetic and epigenetic alterations in the von hippel-lindau gene: the			Not a renal disea
1	influence on renal cancer prognosis.	Smits KM et al.	18245539	focus
	AMP-activated protein kinase inhibits transforming growth factor-beta-			
	induced Smad3-dependent transcription and myofibroblast			Not a renal disea
1	transdifferentiation.	Mishra R et al.	18250161	focus
	Oncocytic papillary renal cell carcinoma with solid architecture: mimic of			Not a renal disea
1	renal oncocytoma.	Mai KT et al.	18251779	focus
	Structure of the N-terminal region of complement factor H and			Not a renal disea
1	conformational implications of disease-linked sequence variations.	Hocking HG et al.	18252712	focus
	The role of type 1 and type 2 5'-deiodinase in the pathophysiology of the	· //		Not a renal disea
1	3,5,3'-triiodothyronine toxicosis of McCune-Albright syndrome.	Celi FS et al.	18349068	focus
	N-acetyltransferase 8, a positional candidate for blood pressure and renal	U k		Not a renal disea
1	regulation: resequencing, association and in silico study.	Juhanson P et al.	18402670	focus
	Association analysis in african americans of European-derived type 2	-		
	diabetes single nucleotide polymorphisms from whole-genome			Not a renal disea
1	association studies.	Lewis JP et al.	18443202	focus
	PPP2R2B CAG repeat length in the Han Chinese in Taiwan: Association			
	analyses in neurological and psychiatric disorders and potential			Not a renal disea
1	functional implications.	Chen CM et al.	18484086	focus
				Not a renal disea
1	Glutathione S-transferase variants and hypertension.	Delles C et al.	18551009	focus
	Allelic loss analysis of tumor suppressor genes regardless of			Not a renal disea
1	heterozygosity: von Hippel-Lindau gene loss in renal cell carcinoma.	Mochida J et al.	18554638	focus

	Renal cell carcinoma, occupational pesticide exposure and modification			Not a renal disease
1	by glutathione S-transferase polymorphisms.	Karami S et al.	18566013	focus
	No association between single nucleotide polymorphisms and the			Not a renal disease
1	development of nephrotoxicity after orthotopic heart transplantation.	Klauke B et al.	18582803	focus
	Association of GSTM3 intron 6 variant with cigarette smoking, tobacco	Kesarwani P et		Not a renal disease
1	chewing and alcohol as modifier factors for prostate cancer risk.	al.	18668224	focus
	Association of renin-angiotensin and endothelial nitric oxide synthase			
	gene polymorphisms with blood pressure progression and incident			Not a renal disease
1	hypertension: prospective cohort study.	Conen D et al.	18698212	focus
	Association of angiotensin-converting enzyme gene dimorphisms with	Rabbani MA et		Not a renal disease
1	severity of lupus disease.	al.	18711292	focus
	Development of human cell models for assessing the carcinogenic			Not a renal disease
1	potential of chemicals.	Pang Y et al.	18778725	focus
	SIRT1 genetic variants associate with the metabolic response of			Not a renal disease
1	Caucasians to a controlled lifestyle interventionthe TULIP Study.	Weyrich P et al.	19014491	focus
	Influence of XPD and APE1 DNA repair gene polymorphism on bladder			Not a renal disease
1	cancer susceptibility in north India.	Gangwar R et al.	19041121	focus
	Genetic variants in hypertensive patients with coronary artery disease	(Not a renal disease
1	and coexisting atheromatous renal artery stenosis.	Szperl M et al.	19043368	focus
	When should genetic testing be obtained in a patient with	· //		Not a renal disease
1	phaeochromocytoma or paraganglioma?	Erlic Z et al.	19067729	focus
	Identification of novel mutations and sequence variation in the Zellweger			Not a renal disease
1	syndrome spectrum of peroxisome biogenesis disorders.	Yik WY et al.	19105186	focus
				Not a renal disease
1	High aldosterone-to-renin variants of CYP11B2 and pregnancy outcome.	Escher G et al.	19151144	focus
	The Leu262Val polymorphism of presenilin associated rhomboid like			
	protein (PARL) is associated with earlier onset of type 2 diabetes and			
	increased urinary microalbumin creatinine ratio in an Irish case-control			Not a renal disease
1	population.	Hatunic M et al.	19185381	focus
	A pilot study of genetic polymorphisms and hemodialysis vascular access			Not a renal diseas
1	thrombosis.	Brophy DF et al.	19210273	focus

	CYP1B1 mutations in Spanish patients with primary congenital glaucoma:	Campos-Mollo E		Not a renal diseas
1	phenotypic and functional variability.	et al.	19234632	focus
	Impact of nucleotide excision repair ERCC2 and base excision repair			
	APEX1 genes polymorphism and its association with recurrence after	Gangawar R et		Not a renal diseas
1	adjuvant BCG immunotherapy in bladder cancer patients of North India.	al.	19242824	focus
	Functional basis of protection against age-related macular degeneration			Not a renal diseas
1	conferred by a common polymorphism in complement factor B.	Montes T et al.	19255449	focus
	Insight into mechanism of oxidative DNA damage in angiomyolipomas			Not a renal disea
1	from TSC patients.	Habib SL	19265534	focus
	Alu-Alu recombination underlies the vast majority of large VHL germline			
	deletions: Molecular characterization and genotype-phenotype			Not a renal disea
1	correlations in VHL patients.	Franke G et al.	19280651	focus
				Not a renal disea
1	Loss of function of Sco1 and its interaction with cytochrome c oxidase.	Stiburek L et al.	19295170	focus
	Expression of hepatocyte growth factor and its receptor met in Wilms'	Vuononvirta R et		Not a renal disea
1	tumors and nephrogenic rests reflects their roles in kidney development.	al.	19318497	focus
	A human polymorphism affects NEDD4L subcellular targeting by leading			Not a renal disea
1	to two isoforms that contain or lack a C2 domain.	Garrone NF et al.	19364400	focus
	The action and mode of binding of thiazolidinedione ligands at free fatty			Not a renal disea
1	acid receptor 1.	Smith NJ et al.	19398560	focus
	Tropical calcific pancreatitis and its association with CTRC and SPINK1			Not a renal disea
1	(p.N34S) variants.	Derikx MH et al.	19404200	focus
	GSTM1, GSTM3 and GSTT1 gene variants and risk of benign prostate			Not a renal disea
1	hyperplasia in North India.	Mittal RD et al.	19407363	focus
	Structural bioinformatics mutation analysis reveals genotype-phenotype			
	correlations in von Hippel-Lindau disease and suggests molecular			Not a renal disea
1	mechanisms of tumorigenesis.	Forman JR et al.	19408298	focus
	Caspase 9 and caspase 8 gene polymorphisms and susceptibility to			Not a renal disea
1		Gangwar R et al.	19412632	focus
	Is polymorphism within eNOS gene associated with the late onset of	_		Not a renal disea
1	myocardial infarction? A pilot study.	Gluba A et al.	19505886	focus

	Functional phosphodiesterase 11A mutations may modify the risk of			Not a renal disease
1	familial and bilateral testicular germ cell tumors.	Horvath A et al.	19549888	focus
	Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and			Not a renal disease
1	VEGF in familial and sporadic renal cell carcinoma.	Ricketts C et al.	19551141	focus
	The calcineurin homologous protein-1 increases Na(+)/H(+) -exchanger 3			Not a renal diseas
1	trafficking via ezrin phosphorylation.	Di Sole F et al.	19556366	focus
	A functional variant of NEDD4L is associated with hypertension,			Not a renal diseas
1	antihypertensive response, and orthostatic hypotension.	Luo F et al.	19635985	focus
	A significantly joint effect between arsenic and occupational exposures			
	and risk genotypes/diplotypes of CYP2E1, GSTO1 and GSTO2 on risk of			Not a renal diseas
1	urothelial carcinoma.	Wang YH et al.	19686770	focus
	Genetic polymorphisms in genes encoding antioxidant enzymes are			Not a renal diseas
1	associated with diabetic retinopathy in type 1 diabetes.	Hovnik T et al.	19752172	focus
	Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for			Not a renal diseas
1	miR-562.	Drake KM et al.	19789318	focus
				Not a renal diseas
1	Apolipoprotein E/C1 locus variants modify renal cell carcinoma risk.	Moore LE et al.	19808960	focus
	Do DNA repair genes OGG1, XRCC3 and XRCC7 have an impact on			Not a renal diseas
1	susceptibility to bladder cancer in the North Indian population?	Gangwar R et al.	19815090	focus
	Angiotensin-converting enzyme and angiotensin II receptor subtype 2	· //		
	genotypes in type 1 diabetes and severe hypoglycaemia requiring	Pedersen-		Not a renal diseas
1	emergency treatment: a case cohort study.	Bjergaard U et al.	19820429	focus
	Clinical predictors and algorithm for the genetic diagnosis of			Not a renal diseas
1	pheochromocytoma patients.	Erlic Z et al.	19825962	focus
	A polymorphism within the fructosamine-3-kinase gene is associated			Not a renal diseas
1	with HbA1c Levels and the onset of type 2 diabetes mellitus.	Mohas M et al.	19834870	focus
	A study on the association between angiotensin-I converting enzyme I/D	Chmaisse HN et		Not a renal diseas
1	dimorphism and type-2 diabetes mellitus.	al.	19861867	focus
	The Int7G24A variant of transforming growth factor-beta receptor type I			
	is a risk factor for colorectal cancer in the male Spanish population: a			Not a renal diseas
1	case-control study.	Castillejo A et al.	19930569	focus

	The role of polymorphisms within paraoxonases (192 Gln/Arg in PON1			
	and 311Ser/Cys in PON2) in the modulation of cardiovascular risk: a pilot			Not a renal diseas
1	study.	Gluba A et al.	19939821	focus
	Endothelial nitric oxide synthase and nicotinamide adenosine			
	dinucleotide phosphate oxidase p22phox gene (C242T) polymorphisms			Not a renal disea
1	and systemic lupus erythematosus in a Chinese Population.	Tang FY et al.	19965945	focus
	A novel human heparanase splice variant, T5, endowed with			Not a renal disea
1	protumorigenic characteristics.	Barash U et al.	20007507	focus
	Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin			
	inhibitor-related neurotoxicity after hematopoietic stem cell	Yanagimachi M		Not a renal disea
1		et al.	20030680	focus
	Development of a multiplex ligation-dependent probe amplification			Not a renal disea
1	(MLPA) assay for quantification of the OCRL1 gene.	Coutton C et al.	20043897	focus
	DNA repair gene X-ray repair cross-complementing group 1 and			
	xeroderma pigmentosum group D polymorphisms and risk of prostate			Not a renal disea
1	cancer: a study from North India.	Mandal RK et al.	20070155	focus
	Renal cell carcinoma Fuhrman grade and histological subtype correlate			
	with complete polymorphic deletion of glutathione S-transferase M1	De Martino M et		Not a renal disea
1		al.	20083259	focus
	Genetic variations in the sodium balance-regulating genes ENaC,	· / .		Not a renal disea
1	NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension.	Jin HS et al.	20090362	focus
	Multiorgan detection and characterization of protease-resistant prion			Not a renal disea
1	protein in a case of variant CJD examined in the United States.	Notari S et al.	20098730	focus
	Genetic disorders in complement (regulating) genes in patients with			Not a renal disea
1	atypical haemolytic uraemic syndrome (aHUS).	Westra D et al.	20106822	focus
	CYP4F2 gene V433M polymorphism is associated with ischemic stroke in			Not a renal disea
1		Deng S et al.	20227456	focus
	Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms'	Ŭ Ŭ		Not a renal disea
1	tumor.	Williams RD et al.	20332316	focus
	Association of selected variants in genes involved in cell cycle and			Not a renal disea
1	apoptosis with bladder cancer risk in North Indian population.	Gangwar R et al.	20380574	focus
-	Association of CAPN10 gene with insulin sensitivity, glucose tolerance			Not a renal disea
1	and renal function in essential hypertensive patients.	Zhou X et al.	20406624	focus

	Clinical and molecular features of familial and sporadic cases of von	Chacon-Camacho		Not a renal disease
1	Hippel-Lindau disease from Mexico.	OF et al.	20447124	focus
	N-glycosylation of carnosinase influences protein secretion and enzyme			Not a renal disease
1	activity: implications for hyperglycemia.	Riedl E et al.	20460427	focus
	Combined classical cytogenetics and microarray-based genomic copy			
	number analysis reveal frequent 3;5 rearrangements in clear cell renal			Not a renal disease
1	cell carcinoma.	Pei J et al.	20461753	focus
	The association of glutathione-S-transferase gene polymorphisms	Safarinejad MR		Not a renal disease
1	(GSTM1, GSTT1, GSTP1) with idiopathic male infertility.	et al.	20505681	focus
	The non-muscle Myosin heavy chain 9 gene (MYH9) is not associated	Freedman BI et		Not a renal diseas
1	with lupus nephritis in African Americans.	al.	20523037	focus
	Association of the genetic polymorphisms of the ACE gene and the eNOS			Not a renal diseas
1	gene with lupus nephropathy in northern Chinese population.	Li X et al.	20540812	focus
	eNOS gene polymorphism association with retinopathy in type 1			Not a renal diseas
1	diabetes.	Bazzaz JT et al.	20565248	focus
	Clinical and molecular characterization of Brazilian families with von			
	Hippel-Lindau disease: a need for delineating genotype-phenotype			Not a renal diseas
1	correlation.	Gomy I et al.	20567917	focus
	Functional polymorphisms in cell death pathway genes and risk of renal			Not a renal diseas
1	cell carcinoma.	Zhu J et al.	20572163	focus
	Role of MMP-3 and MMP-9 and their haplotypes in risk of bladder cancer			Not a renal diseas
1	in North Indian cohort.	Srivastava P et al.	20574775	focus
	The role of endothelial nitric oxide synthase (eNOS) T-786C, G894T, and	Safarinejad MR		Not a renal diseas
1	4a/b gene polymorphisms in the risk of idiopathic male infertility.	et al.	20586099	focus
	Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of			Not a renal diseas
1	prostate cancer: a study from North Indian population.	Mandal RK et al.	20590474	focus
	Association of TNFAIP3 polymorphism with susceptibility to systemic			Not a renal diseas
1	lupus erythematosus in a Japanese population.	Kawasaki A et al.	20617138	focus
	Functional polymorphisms in the CYP3A4, CYP3A5, and CYP21A2 genes in			Not a renal diseas
1	the risk for hypertension in pregnancy.	Coto E et al.	20617557	focus
	Functional polymorphism of the CK2alpha intronless gene plays			Not a renal diseas
1	oncogenic roles in lung cancer.	Hung MS et al.	20625391	focus

Page 150 of 304

1	
2	
3	
4	
5	
6 7	
, 8	
9	
10	
10 11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38 39	
39 40	
41	
42	
43	
44	
45	
46	

	Occupational trichloroethylene exposure and renal carcinoma risk:			Not a renal dise
1	evidence of genetic susceptibility by reductive metabolism gene variants.	Moore LE et al.	20663906	focus
	Influence of caspases 8 and 9 gene promoter polymorphism on prostate			
	cancer susceptibility and early development of hormone refractory	Kesarwani P et		Not a renal dise
1	prostate cancer.	al.	20804486	focus
	Are cell cycle and apoptosis genes associated with prostate cancer risk in			Not a renal dise
1	North Indian population?	Mandal RK et al.	20822933	focus
	Bladder cancer risk associated with genotypic polymorphism of the			Not a renal dise
1	matrix metalloproteinase-1 and 7 in North Indian population.	Srivastava P et al.	20826916	focus
	Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus			
	erythematosus in a Japanese population: a case-control association			Not a renal dise
1	,	Kawasaki A et al.	20849588	focus
	S-adenosyl methionine improves early viral responses and interferon-			Not a renal dise
1	stimulated gene induction in hepatitis C nonresponders.	Feld JJ et al.	20854821	focus
	Phosphodiesterase 11A (PDE11A) genetic variants may increase			Not a renal dise
1	susceptibility to prostatic cancer.	Faucz FR et al.	20881257	focus
	A functional variant of the NEDD4L gene is associated with beneficial			
	treatment response with \hat{I}^2 -blockers and diuretics in hypertensive	Svensson-		Not a renal dise
1	patients.	Farbom P et al.	21052022	focus
	Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants			Not a renal dise
1	and their potential role in tobacco carcinogenesis.	Bushey RT et al.	21164388	focus
	hOGG1 Ser326Cys polymorphism and renal cell carcinoma risk in a	U A		Not a renal dise
1	Chinese population.	Zhao H et al.	21166493	focus
	Cancer risks for monoallelic MUTYH mutation carriers with a family	•		Not a renal dise
1	history of colorectal cancer.	Win AK et al.	21171015	focus
	Isocitrate dehydrogenase 1/2 mutational analyses and 2-			Not a renal dise
1	hydroxyglutarate measurements in Wilms tumors.	Rakheja D et al.	21225914	focus
	A WNK4 gene variant relates to osteoporosis and not to hypertension in			Not a renal dise
1	the Portuguese population.	Mendes AI et al.	21236712	focus
	Three novel mutations in the PHEX gene in Chinese subjects with			Not a renal dise
1	hypophosphatemic rickets extends genotypic variability.	Jap TS et al.	21293852	focus

	Bimodal distribution of RNA expression levels in human skeletal muscle			Not a renal disease
1	tissue.	Mason CC et al.	21299892	focus
	Investigating paraoxonase-1 gene Q192R and L55M polymorphism in			Not a renal disease
1	patients with renal cell cancer.	Uyar OA et al.	21308654	focus
	The presence of PAI-1 4G/5G and ACE DD genotypes increases the risk of			Not a renal disease
1	early-stage AVF thrombosis in hemodialysis patients.	Gungor Y et al.	21332339	focus
	Association of genetic polymorphisms of CYP 2C19 with hypertension in a			Not a renal diseas
1	Chinese Han population.	Ma Y et al.	21332417	focus
	Association between renin-angiotensin-aldosterone system-related			Not a renal diseas
1	genes and blood pressure in a Korean population.	Song SB et al.	21342026	focus
	Admixture aberration analysis: application to mapping in admixed			Not a renal diseas
1	population using pooled DNA.	Bercovici S et al.	21385031	focus
	Polymorphisms and haplotypes in caspases 8 and 9 genes and risk for			Not a renal diseas
1	prostate cancer: a case-control study in cohort of North India.	George GP et al.	21396853	focus
	A novel MECA3 region in human 3p21.3 harboring putative tumor			Not a renal diseas
1	suppressor genes and oncogenes.	Braga E et al.	21423093	focus
	GSTT1, GSTM1, and CYP1B1 gene polymorphisms and susceptibility to	Salinas-Sanchez		Not a renal diseas
1	sporadic renal cell cancer.	AS et al.	21458313	focus
	Insertion/deletion polymorphism of angiotensin I-converting enzyme	de Martino M et		Not a renal diseas
1	gene is linked with chromophobe renal cell carcinoma.	al.	21477733	focus
	Genetic polymorphisms in APE1 are associated with renal cell carcinoma			Not a renal diseas
1	risk in a Chinese population.	Cao Q et al.	21538578	focus
	In vitro transforming potential, intracellular signaling properties, and			
	sensitivity to a kinase inhibitor (sorafenib) of RET proto-oncogene	-		Not a renal diseas
1	variants Glu511Lys, Ser649Leu, and Arg886Trp.	Prazeres H et al.	21551259	focus
				Not a renal diseas
1	Hypercholesterolemia and a candidate gene within the 12q24 locus.	Gragnoli C.	21554682	focus
	Lack of association of Klotho gene variants with valvular and vascular			
	calcification in Caucasians: a candidate gene study of the Framingham			Not a renal diseas
1	Offspring Cohort.	Tangri N et al.	21565945	focus

	Clear-cell papillary renal cell carcinoma: molecular and			
	immunohistochemical analysis with emphasis on the von Hippel-Lindau			Not a renal disease
1	gene and hypoxia-inducible factor pathway-related proteins.	Rohan SM et al.	21602815	focus
	Selected AGXT gene mutations analysis provides a genetic diagnosis in	Benhaj Mbarek I		Not a renal disease
1	28% of Tunisian patients with primary hyperoxaluria.	et al.	21612638	focus
				Not a renal disease
1	Familial renal cell carcinoma from the Swedish Family-Cancer Database.	Liu H et al.	21621909	focus
	Adult renal cell carcinoma with rhabdoid morphology represents a	Chapman-		Not a renal disease
1	neoplastic dedifferentiation analogous to sarcomatoid carcinoma.	Fredricks JR et al.	21665507	focus
	Association of caspases with an increased prostate cancer risk in north			Not a renal disease
1	Indian population.	Mittal RD et al.	21668377	focus
	Association of death receptor 4, Caspase 3 and 5 gene polymorphism			Not a renal disease
1	with increased risk to bladder cancer in North Indians.	Mittal RD et al.	21700414	focus
	The polymorphisms in the VHL and HIF1A genes are associated with the			Not a renal disease
1	prognosis but not the development of renal cell carcinoma.	Qin C et al.	21778301	focus
	Association of single nucleotide polymorphisms in promoter of matrix			Not a renal diseas
1	metalloproteinase-2, 8 genes with bladder cancer risk in Northern India.	Srivastava P et al.	21784671	focus
	Association of PTPN22 gene polymorphism and systemic lupus			
	erythematosus in a cohort of Egyptian patients: impact on clinical and			Not a renal disease
1	laboratory results.	Moez P et al.	21818561	focus
	Thrombotic events in MYH9 gene-related autosomal			
	macrothrombocytopenias (old May-Hegglin, Sebastian, Fechtner and			Not a renal diseas
1	Epstein syndromes).	Girolami A et al.	21842307	focus
	JAK3 in clear cell renal cell carcinoma: mutational screening and clinical	de Martino M et 🧹		Not a renal diseas
1	implications.	al.	21868263	focus
	Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a			
	cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum			Not a renal diseas
1	levels are associated with PHEX mutation type.	Morey M et al.	21902834	focus
	Gene-gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in			Not a renal diseas
1	systemic lupus erythematosus.	Zhou XJ et al.	21905002	focus
	Vitamin D receptor Fokl and Bsml gene polymorphism and its association	Arjumand W et		Not a renal diseas
1	with grade and stage of renal cell carcinoma in North Indian population.	al.	21931993	focus

	The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell			Not a renal disease
1	carcinoma risk in a low arsenic exposure area.	Huang CY et al.	21982800	focus
	Risk factor for clear cell renal cell carcinoma in Chinese population: a			Not a renal disease
1	case-control study.	Wang G et al.	22000673	focus
	Base excision repair pathway genes polymorphism in prostate and			Not a renal diseas
1	bladder cancer risk in North Indian population.	Mittal RD et al.	22019847	focus
	Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer:			Not a renal diseas
1	associations with germline VHL polymorphisms and etiologic risk factors.	Moore LE et al.	22022277	focus
	Impact of glutathione transferase M1, T1, and P1 gene polymorphisms in			
	the genetic susceptibility of North Indian population to renal cell			Not a renal diseas
1	carcinoma.	Ahmad ST et al.	22054067	focus
	Whole-exome sequencing of human pancreatic cancers and			
	characterization of genomic instability caused by MLH1			Not a renal diseas
1	haploinsufficiency and complete deficiency. 📉 🚫 🔼	Wang L et al.	22156295	focus
	Association between urothelial carcinoma after kidney transplantation	_		
	and aristolochic acid exposure: the potential role of aristolochic acid in			Not a renal disea
1	HRas and TP53 gene mutations.	Xiao J et al.	22172840	focus
	Mapping of the UGT1A locus identifies an uncommon coding variant that			Not a renal diseas
1	affects mRNA expression and protects from bladder cancer.	Tang W et al.	22228101	focus
	Paravertebral ligament ossification in vitamin D-resistant rickets:			Not a renal disea
1	incidence, clinical significance, and genetic evaluation.	Lee SH et al.	22261628	focus
	Risk of renal cell carcinoma and polymorphism in phase I xenobiotic		4	Not a renal disea
1	metabolizing CYP1A1 and CYP2D6 enzymes.	Ahmad ST et al.	22281432	focus
	Relationship between CYP1A1 genetic polymorphisms and renal cancer in			Not a renal diseas
1		Chen J et al.	22296350	focus
	Genetic variations in the ADAMTS12 gene are associated with	Bespalova IN et		Not a renal diseas
1	schizophrenia in Puerto Rican patients of Spanish descent.	al.	22322903	focus
	Association of promoter polymorphisms in MMP2 and TIMP2 with			Not a renal disea
1		Srivastava P et al.	22374248	focus
	Polymorphisms in base-excision & nucleotide-excision repair genes &			Not a renal disea
1		Mandal RK et al.	22382185	focus
	Common genetic variants at the 11q13.3 renal cancer susceptibility locus			Not a renal disea
1	influence binding of HIF to an enhancer of cyclin D1 expression.	Schodel J et al.	22406644	focus

1	
2 3	
5 4	
5	
6	
7 8	
9	
10 11	
11	
12 13	
14	
15	
16 17	
18	
19	
20	
21 22	
23	
24	
25 26	
27	
28	
29 30	
30 31	
32	
33	
34 35	
36	
37	
38 39	
39 40	
41	
42	
43	
44 45	
45 46	

	Mutation screening of the EYA1, SIX1, and SIX5 genes in an East Asian			Not a renal di
1	cohort with branchio-oto-renal syndrome.	Wang SH et al.	22447252	focus
	Association of Ku70 A-31G polymorphism and risk of renal cell carcinoma			Not a renal di
1	in a Chinese population.	Wang W et al.	22455395	focus
	INPPL1 is associated with the metabolic syndrome in men with Type 1	Hyvonen ME et		Not a renal dis
1	diabetes, but not with diabetic nephropathy.	al.	22486725	focus
	MicroRNA target site polymorphisms in the VHL-HIF11 [±] pathway predict			Not a renal di
1	renal cell carcinoma risk.	Wei H et al.	22517515	focus
	A two-stage matched case-control study on multiple hypertensive			Not a renal di
1	candidate genes in Han Chinese. 🦯 🏸	Kuo TY et al.	22534794	focus
	Somatic mutation analysis of the SDHB, SDHC, SDHD, and RET genes in			Not a renal di
1	the clinical assessment of sporadic and hereditary pheochromocytoma.	Weber A et al.	22573489	focus
	Mutational analysis of patients with FGF23-related hypophosphatemic			Not a renal di
1	rickets.	Kinoshita Y et al.	22577109	focus
	A functional polymorphism C-1310G in the promoter region of			Not a renal di
1	Ku70/XRCC6 is associated with risk of renal cell carcinoma.	Wang W et al.	22593040	focus
	Angiotensin-converting enzyme (ACE) gene II genotype protects against			
	the development of diabetic peripheral neuropathy in type 2 diabetes			Not a renal di
1	mellitus.	Mansoor Q et al.	22607040	focus
	LMP2, a novel immunohistochemical marker to distinguish renal			
	oncocytoma from the eosinophilic variant of chromophobe renal cell			Not a renal di
1	carcinoma.	Zheng G et al.	22705098	focus
				Not a renal di
1	BRAF mutations in metanephric adenoma of the kidney.	Choueiri T et al.	22727996	focus
	Resequencing the whole MYH7 gene (including the intronic, promoter,			Not a renal di
1	and 3' UTR sequences) in hypertrophic cardiomyopathy.	Coto E et al.	22765922	focus
	Higher frequency of paraoxonase gene polymorphism and cardiovascular	Barris-Oliveira AC		Not a renal di
1	impairment among Brazilian Fabry Disease patients.	et al.	22796398	focus
	Paraoxonase 1 (PON1) C/T-108 association with longitudinal mean	Bhatnagar V et		Not a renal di
1	arterial blood pressure.	al.	22854640	focus

	Patients with Lynch syndrome mismatch repair gene mutations are at			
	higher risk for not only upper tract urothelial cancer but also bladder			Not a renal diseas
1	cancer.	Skeldon SC et al.	22883484	focus
	Novel missense mutations of WNK1 in patients with hypokalemic salt-			Not a renal diseas
1	losing tubulopathies.	Zhang C et al.	22934535	focus
				Not a renal diseas
1	Proteasome modulator 9 and depression in type 2 diabetes.	Gragnoli C	22934761	focus
	Regulatory regions of the paraoxonase 1 (PON1) gene are associated with			Not a renal disea
1	neovascular age-related macular degeneration (AMD).	Oczos J et al.	22956172	focus
	Uh			Not a renal disea
1	New insights into Dok-4 PTB domain structure and function.	Hooker E et al.	22982678	focus
	The role of XRCC6 T-991C functional polymorphism in renal cell			Not a renal disea
1	carcinoma.	Chang WS et al.	22993329	focus
	Integrated multiplex ligation dependent probe amplification (MLPA)			
	assays for the detection of alterations in the HEXB, GM2A and SMARCAL1			
	genes to support the diagnosis of Morbus Sandhoff, M. Tay-Sachs variant			Not a renal disea
1	AB and Schimke immuno-osseous dysplasia in humans.	Sobek AK et al.	23010210	focus
	Endothelial nitric oxide synthase Glu298Asp polymorphism as a risk			Not a renal disea
1	factor for prostate cancer.	Ziaei SA et al.	23015399	focus
	Calpain-10 gene polymorphisms in type 2 diabetes and its micro- and	Buraczynska M		Not a renal disea
1	macrovascular complications.	et al.	23021796	focus
	Genetic variants in metabolizing genes NQO1, NQO2, MTHFR and risk of			Not a renal disea
1	prostate cancer: a study from North India.	Mandal RK et al.	23054000	focus
	Soluble FLT1 binds lipid microdomains in podocytes to control cell			Not a renal disea
1	morphology and glomerular barrier function.	Jin J et al.	23063127	focus
	Polymorphism in protein tyrosine phosphatase receptor delta is			Not a renal disea
1	associated with the risk of clear cell renal cell carcinoma.	Du Y et al.	23069849	focus
	Impact of glutathione S-transferase T1 gene polymorphisms on acute			Not a renal disea
1	cellular rejection in living donor liver transplantation.	Kamei H et al.	23153768	focus
	Interaction of C1GALT1-IL5RA on the susceptibility to IgA nephropathy in			Not a renal disea
1	Southern Han Chinese.	Wang W et al.	23190752	focus
	A functional variant in the MTOR promoter modulates its expression and	-		Not a renal disea
1		Cao Q et al.	23209702	focus

		1	1	
	Association of the formiminotransferase N-terminal sub-domain			
	containing gene and thrombospondin, type 1, domain-containing 7A			
	gene with the prevalence of vertebral fracture in 2427 consecutive			Not a renal disease
1	autopsy cases.	Zhou H et al.	23303384	focus
	Phenotypic spectrum and prevalence of INPP5E mutations in Joubert			Not a renal disease
1	syndrome and related disorders.	Travaglini L et al.	23386033	focus
	CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism			Not a renal disease
1	in colon cancer cells.	Jacobs ET et al.	23423976	focus
	Tumor-specific isoform switch of the fibroblast growth factor receptor 2			
	underlies the mesenchymal and malignant phenotypes of clear cell renal			Not a renal disease
1	cell carcinomas.	Zhao Q et al.	23444225	focus
	Distribution of human leukocyte antigen alleles in systemic lupus			
	erythematosus patients with angiotensin converting enzyme			Not a renal disease
1	insertion/deletion polymorphism. 💦 🚫 👝	Hussain N et al.	23448612	focus
	Genetic predisposition to left ventricular hypertrophy and the potential			Not a renal disease
1	involvement of cystatin-C in untreated hypertension.	Tousoulis D et al.	23479071	focus
		Voskarides K et		Not a renal disease
1	Epistatic role of the MYH9/APOL1 region on familial hematuria genes.	al.	23516419	focus
	Pre-treatment role of inosine triphosphate pyrophosphatase	2		
1				
	polymorphism for predicting anemia in Egyptian hepatitis C virus			Not a renal disease
1	polymorphism for predicting anemia in Egyptian hepatitis C virus patients.	Ahmed WH et al.	23538996	
1		Ahmed WH et al. Mantoan Padilha	23538996	
1	patients.		23538996	focus
	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma:	Mantoan Padilha		focus Not a renal disease
	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features.	Mantoan Padilha		focus Not a renal disease focus
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and	Mantoan Padilha M et al.	23551615	focus Not a renal disease focus Not a renal disease
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk.	Mantoan Padilha M et al.	23551615	focus Not a renal disease focus Not a renal disease
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional	Mantoan Padilha M et al.	23551615	focus Not a renal disease focus Not a renal disease focus Not a renal disease
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a	Mantoan Padilha M et al. Wang J et al.	23551615 23632476	focus Not a renal disease focus Not a renal disease focus Not a renal disease
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a	Mantoan Padilha M et al. Wang J et al.	23551615 23632476	focus Not a renal disease focus Not a renal disease focus Not a renal disease focus
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population.	Mantoan Padilha M et al. Wang J et al. Marques I et al.	23551615 23632476 23645041	focus Not a renal disease focus Not a renal disease focus Not a renal disease focus Not a renal disease
1	patients. Metanephric adenoma and solid variant of papillary renal cell carcinoma: common and distinctive features. Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population. Germline BAP1 mutations predispose to renal cell carcinomas.	Mantoan Padilha M et al. Wang J et al. Marques I et al. Popova T et al.	23551615 23632476 23645041	focus Not a renal disease focus Not a renal disease focus Not a renal disease focus Not a renal disease focus

	Klotho gene polymorphism of rs3752472 is associated with the risk of			Not a renal disease
1	urinary calculi in the population of Han nationality in Eastern China.	Xu C et al.	23756195	focus
	Oncocytic papillary renal cell carcinoma: a clinicopathological study			
	emphasizing distinct morphology, extended immunohistochemical profile			Not a renal diseas
1	and cytogenetic features.	Xia QY et al.	23826421	focus
	Impact of MMP-3 and TIMP-3 gene polymorphisms on prostate cancer			Not a renal diseas
1	susceptibility in North Indian cohort.	Srivastava P et al.	23872201	focus
	Clinical phenotypes of Chinese primary hyperparathyroidism patients are			Not a renal diseas
1	associated with the calcium-sensing receptor gene R990G polymorphism.	Han G et al.	23946278	focus
	Q222R polymorphism in DNAse I gene is a risk factor for nephritis in			Not a renal diseas
1	South Indian SLE patients.	Panneer D et al.	23963431	focus
	cGMP-dependent protein kinase 1 polymorphisms underlie renal sodium			Not a renal diseas
1	handling impairment.	Citterio L et al.	24060892	focus
	Cancer risk and overall survival in mismatch repair proficient hereditary			
	non-polyposis colorectal cancer, Lynch syndrome and sporadic colorectal			Not a renal disea
1	cancer.	Garre P et al.	24061861	focus
	Clinical and Genetic Factors Associated With Severe Hematological			
	Toxicity in Glioblastoma Patients During Radiation Plus Temozolomide			Not a renal disea
1	Treatment: A Prospective Study.	Lombardi G et al.	24064758	focus
	Mutations in the mevalonate kinase (MVK) gene cause nonsyndromic	Siemiatkowska		Not a renal disea
1	retinitis pigmentosa.	AM et al.	24084495	focus
	Three novel mutations in the carnitine-acylcarnitine translocase (CACT)	Fukushima T et 🗡		Not a renal disea
1	gene in patients with CACT deficiency and in healthy individuals.	al.	24088670	focus
	Delineation of PIGV mutation spectrum and associated phenotypes in			Not a renal disea
1	hyperphosphatasia with mental retardation syndrome.	Horn D et al.	24129430	focus
	Genetic variation in the GSTM3 promoter confer risk and prognosis of			Not a renal disea
1	renal cell carcinoma by reducing gene expression.	Tan X et al.	24157827	focus
	Early (2008-2010) hospital outbreak of Klebsiella pneumoniae producing			Not a renal diseas
1	OXA-48 carbapenemase in the UK.	Thomas CP et al.	24207018	focus
	RTK/ERK pathway under natural selection associated with prostate			Not a renal disea
1	cancer.	Chen Y et al.	24223781	focus

	Amylase α-1A (AMY1A): a novel immunohistochemical marker to			
	differentiate chromophobe renal cell carcinoma from benign			Not a renal disease
1	oncocytoma.	Jain S et al.	24225843	focus
T	Clear cell papillary renal cell carcinoma: a clinicopathological study	Jaili S et al.	24223643	Not a renal disease
1	emphasizing ultrastructural features and cytogenetic heterogeneity.	Shi SS et al.	24294381	focus
1		5111 55 et di.	24294561	Not a renal disease
4	The epidemic of extended-spectrum-l ² -lactamase-producing Escherichia	Duine I Diet el	24245742	
1	coli ST131 is driven by a single highly pathogenic subclone, H30-Rx.	Price LB et al.	24345742	focus
	Mutations in the UQCC1-interacting protein, UQCC2, cause human			
	complex III deficiency associated with perturbed cytochrome b protein			Not a renal diseas
1	expression.	Tucker EJ et al.	24385928	focus
	The association of endothelial nitric oxide synthase gene G894T			
	polymorphism and serum nitric oxide concentration with			Not a renal diseas
1	microalbuminuria in patients with gestational diabetes.	Atay AE et al.	24403014	focus
	Association of candidate genetic variants with restless legs syndrome in			Not a renal diseas
1	end stage renal disease: a multicenter case-control study in Taiwan.	Lin CH et al.	24433515	focus
	VHL and HIF-11 [±] : gene variations and prognosis in early-stage clear cell			Not a renal diseas
1	renal cell carcinoma.	Lessi F et al.	24446253	focus
	Genomic architecture and evolution of clear cell renal cell carcinomas			Not a renal diseas
1	defined by multiregion sequencing.	Gerlinger M et al.	24487277	focus
	IFT27, encoding a small GTPase component of IFT particles, is mutated in	Aldahmesh MA		Not a renal diseas
1	a consanguineous family with Bardet-Biedl syndrome.	et al.	24488770	focus
	TNFAIP3 gene polymorphisms associated with differential susceptibility			
	to rheumatoid arthritis and systemic lupus erythematosus in the Korean			Not a renal diseas
1	population.	Kim SK et al.	24489017	focus
	HER2 protein overexpression and gene amplification in upper urinary			Not a renal diseas
1	tract urothelial carcinoma-an analysis of 171 patients.	Sasaki Y et al.	24551292	focus
	Genotype-phenotype correlations, and retinal function and structure in	Wittstrom E et		Not a renal diseas
1	von Hippel-Lindau disease.	al.	24555745	focus
	Higher thrombin activatable fibrinolysis inhibitor levels are associated		21000710	Not a renal diseas
1	with inflammation in attack-free familial Mediterranean fever patients.	Bavbek N et al.	24580410	focus
T	Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960		24500410	10003
	polymorphisms in type 2 diabetes, diabetic complications, obesity risk			Not a renal diseas
1		Lacram K at al	24626224	
1	and hypertension in the Tunisian population.	Lasram K et al.	24636221	focus

	Testing of potential glycan-based heparanase inhibitors in a fluorescence	Schoenfeld AK et		Not a renal disease
1	activity assay using either bacterial heparinase II or human heparanase.	al.	24667567	focus
	Impact of the common genetic associations of age-related macular			Not a renal disease
1	degeneration upon systemic complement component C3d levels.	Ristau T et al.	24675670	focus
	Lipoprotein (a) concentrations, apolipoprotein (a) phenotypes, and	Laschkolnig A et		Not a renal disease
1	peripheral arterial disease in three independent cohorts.	al.	24760552	focus
	TMPRSS6 rs855791 polymorphism influences the susceptibility to iron			Not a renal disease
1	deficiency anemia in women at reproductive age.	Pei SN et al.	24782651	focus
	Manganese superoxide dismutase (SOD2) polymorphisms, plasma			
	advanced oxidation protein products (AOPP) concentration and risk of	Mohammedi K et		Not a renal disease
1	kidney complications in subjects with type 1 diabetes.	al.	24819633	focus
	A labor- and cost-effective non-optical semiconductor (Ion Torrent) next-			
	generation sequencing of the SLC12A3 and CLCNKA/B genes in			Not a renal diseas
1	Gitelman's syndrome patients.	Tavira B et al.	24830959	focus
	Genetic polymorphisms of paraoxonase1 192 and glutathione			Not a renal diseas
1	peroxidase1 197 enzymes in familial Mediterranean fever.	Oktem F et al.	24841661	focus
	Common variants of cGKII/PRKG2 are not associated with gout	Sakiyama M et		Not a renal diseas
1	susceptibility.	al.	24882840	focus
	Bobby Sox homology regulates odontoblast differentiation of human			Not a renal diseas
1	dental pulp stem cells/progenitors.	Choi YA et al.	24885382	focus
	A complement factor B mutation in a large kindred with atypical			Not a renal diseas
1	hemolytic uremic syndrome.	Funato M et al.	24906628	focus
	Recurrent somatic mutation in DROSHA induces microRNA profile	Torrezan GT et		Not a renal diseas
1	changes in Wilms tumour.	al.	24909261	focus
				Not a renal diseas
1	Breast cancer risk, nightwork, and circadian clock gene polymorphisms.	Truong T et al.	24919398	focus
	The role of endothelial nitric oxide synthase gene G894T and intron 4			
	VNTR polymorphisms in hemodialysis patients with vascular access			Not a renal diseas
1	thrombosis.	Sener EF et al.	24936541	focus
	The consensus-based approach for gene/enzyme replacement therapies			
	and crystallization strategies: the case of human alanine-glyoxylate	Mesa-Torres N et		Not a renal diseas
1	aminotransferase.	al.	24957194	focus

	Polymorphisms in genes of the renin-angiotensin-aldosterone system and			
	renal cell cancer risk: interplay with hypertension and intakes of sodium,			Not a renal disease
1	potassium and fluid.	Deckers IA et al.	24978482	focus
	The effect of a single nucleotide polymorphism of the CYP4F2 gene on			
	blood pressure and 20-hydroxyeicosatetraenoic acid excretion after			Not a renal disease
1	weight loss.	Ward NC et al.	24984178	focus
	Cytochrome P450 1B1 polymorphisms and risk of renal cell carcinoma in			Not a renal diseas
1	men.	Chang I et al.	25027399	focus
	Single nucleotide polymorphism-single nucleotide polymorphism			
	interactions among inflammation genes in the genetic architecture of			Not a renal diseas
1	blood pressure in the Framingham Heart Study.	Basson JJ et al.	25063733	focus
		de la		
	Germline BAP1 mutations predispose also to multiple basal cell	Fouchardiere A		Not a renal diseas
1	carcinomas.	et al.	25080371	focus
	Fluorescence in situ hybridization of chromosome 17 polysomy in			
	breast cancer using thin tissue sections causes the loss of CEP17 and			Not a renal diseas
1	HER2 signals.	Jiang H et al.	25119636	focus
	Single-nucleotide polymorphisms in the UDP-glucuronosyltransferase 1A-			
	3' untranslated region are associated with atazanavir-induced	0,		Not a renal diseas
1	nephrolithiasis in patients with HIV-1 infection: a pharmacogenetic study.	Nishijima T et al.	25151207	focus
	A low-frequency variant in MAPK14 provides mechanistic evidence of a	Waterworth DM		Not a renal diseas
1	link with myeloperoxidase: a prognostic cardiovascular risk marker.	et al.	25164947	focus
	Identification of genetic markers for treatment success in heart failure			Not a renal diseas
1	patients: insight from cardiac resynchronization therapy.	Schmitz B et al.	25210049	focus
	Two single nucleotide polymorphisms in the von Hippel-Lindau tumor		5	Not a renal diseas
1	suppressor gene in Taiwanese with renal cell carcinoma.	Wang WC et al.	25217002	focus
	Replicative study of GWAS TP63C/T, TERTC/T, and SLC14A1C/T with	, , , , , , , , , , , , , , , , , , ,		Not a renal diseas
1	susceptibility to bladder cancer in North Indians.	Singh V et al.	25218484	focus
	Molecular epidemiology of extended-spectrum beta-lactamase (ESBL)-	Ŭ		
	positive Klebsiella pneumoniae from bloodstream infections and risk			Not a renal diseas
1	factors for mortality.	Gurntke S et al.	25224765	focus
	Pharmacologic rescue of an enzyme-trafficking defect in primary			Not a renal diseas
1	hyperoxaluria 1.	Miyata N et al.	25237136	focus

	Variants in angiogenesis-related genes and the risk of clear cell renal cell			Not a renal disease
1	carcinoma.	Qin C et al.	25239121	focus
	PYGM expression analysis in white blood cells: a complementary tool for			Not a renal diseas
1	diagnosing McArdle disease?	de Luna N et al.	25240406	focus
	LRRK2 G2385R and R1628P mutations are associated with an increased			Not a renal diseas
1	risk of Parkinson's disease in the Malaysian population.	Gopalai AA et al.	25243190	focus
	Gender differences in impact of CYP2C19 polymorphism on development			Not a renal diseas
1	of coronary artery disease.	Hokimoto S et al.	25264752	focus
	Genotype and phenotype frequencies of paraoxonase 1 in fertile and			Not a renal diseas
1	infertile men.	Tavilani H et al.	25264968	focus
	Phase 1 trial of tivantinib in combination with sorafenib in adult patients			Not a renal diseas
1	with advanced solid tumors.	Puzanov I et al.	25294187	focus
	G-protein receptor kinase 4 polymorphism and response to	Muskalla AM et		Not a renal disea
1	antihypertensive therapy.	al.	25301854	focus
	Downregulation of NDUFB6 due to 9p24.1-p13.3 loss is implicated in	Narimatsu T et		Not a renal disea
1	metastatic clear cell renal cell carcinoma.	al.	25315157	focus
	Association of polymorphisms of angiotensin I converting enzyme 2 with			Not a renal disea
1	retinopathy in type 2 diabetes mellitus among Chinese individuals	Meng N et al.	25359286	focus
	Matrix metalloproteinase 9 polymorphisms and systemic lupus			
	erythematosus: correlation with systemic inflammatory markers and	Bahrehmand F et		Not a renal disea
1	oxidative stress.	al.	25416694	focus
				Not a renal disea
1	Rhabdoid tumor predisposition syndrome.	Sredni ST et al.	25494491	focus
	Autosomal recessive lissencephaly with cerebellar hypoplasia is			Not a renal disea
1	associated with a loss-of-function mutation in CDK5.	Magen D et al.	25560765	focus
	Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel	Cutcutache I et		Not a renal disea
1	Mutated Genes in Seminomas.	al.	25597018	focus
	Molecular and immunohistochemical characterization reveals novel BRAF			Not a renal disea
1	mutations in metanephric adenoma.	Udager AM et al.	25602792	focus
	Genome-wide association study of clinically defined gout identifies	-		Not a renal disea
1	multiple risk loci and its association with clinical subtypes.	Matsuo H et al.	25646370	focus

	The role of hOGG1 C1245G polymorphism in the susceptibility to lupus			Not a renal diseas
4	nephritis and modulation of the plasma 8-OHdG in patients with systemic	1	25674045	-
1		Lee HT et al.	25671815	focus
	Endothelial nitric oxide synthase gene intron 4 variable number tandem			
	repeat polymorphism in \hat{l}^2 -thalassemia major: relation to cardiovascular			Not a renal diseas
1	complications.	Tantawy AA et al.	25699607	focus
	Genetic variants in five novel loci including CFB and CD40 predispose to			Not a renal diseas
1	chronic hepatitis B.	Jiang DK et al.	25802187	focus
	SNP Variants in RET and PAX2 and Their Possible Contribution to the	Coulter-Mackie		Not a renal diseas
1	Primary Hyperoxaluria Type 1 Phenotype.	MB	25854853	focus
	Polymorphic differences in the SOD-2 gene may affect the pathogenesis	Houldsworth A et		Not a renal diseas
1	of nephropathy in patients with diabetes and diabetic complications.	al.	25858271	focus
	Retrospective analysis of FFPE based Wilms' Tumor samples through copy			
	number and somatic mutation related Molecular Inversion Probe Based			Not a renal diseas
1	Array.	Singh N et al.	25913740	focus
	Genotype-phenotype analysis of von Hippel-Lindau syndrome in fifteen			Not a renal diseas
1	Indian families.	Vikkath N et al.	25952756	focus
	Angiotensin-converting enzyme (ACE) gene insertion/deletion			Not a renal diseas
1	polymorphism is not a risk factor for hypertension in SLE nephritis.	Negi VS et al.	25957879	focus
	A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-	· / ,		Not a renal diseas
1	Nishimura skeletal dysplasia due to pathogenic variants in ALG9.	Tham E et al.	25966638	focus
	Loss of BAP1 Expression in Basal Cell Carcinomas in Patients With			Not a renal diseas
1	Germline BAP1 Mutations.	Mochel MC et al.	25972334	focus
	Spectrum of mutations in the ATP binding domain of ATP7B gene of			Not a renal diseas
1	Wilson Disease in a regional Indian cohort.	Guggilla SR et al.	25982861	focus
	Prevalence of Mycobacterium avium subsp. paratuberculosis and			
	Escherichia coli in blood samples from patients with inflammatory bowel			Not a renal diseas
1	disease.	Nazareth N et al.	25994082	focus
	Matrix metalloproteinase-2 (MMP-2) gene polymorphism and	Buraczynska M		Not a renal diseas
1	cardiovascular comorbidity in type 2 diabetes patients.	, et al.	26025700	focus
	Genetic Variants in Caveolin-1 and RhoA/ROCK1 Are Associated with			Not a renal diseas
1	Clear Cell Renal Cell Carcinoma Risk in a Chinese Population.	Zhao R et al.	26066055	focus

	Genetic and Functional Analysis of Polymorphisms in the Human			Not a renal diseas
1	Dopamine Receptor and Transporter Genes in Small Cell Lung Cancer.	Cherubini E et al.	26081799	focus
	Exploring genotype-phenotype relationships in Bardet-Biedl syndrome	Castro-Sanchez S		Not a renal diseas
1	families.	et al.	26082521	focus
	Whole Exome Sequencing Reveals Novel PHEX Splice Site Mutations in			Not a renal diseas
1	Patients with Hypophosphatemic Rickets.	Ma SL et al.	26107949	focus
	Exome sequencing in seven families and gene-based association studies			
	indicate genetic heterogeneity and suggest possible candidates for			Not a renal diseas
1	fibromuscular dysplasia.	Kiando SR et al.	26147384	focus
	U k			Not a renal disea
1	TERT Promoter Mutations in Papillary Thyroid Microcarcinomas.	de Biase D et al.	26148423	focus
	A genome-wide screening and SNPs-to-genes approach to identify novel			Not a renal disea
1	genetic risk factors associated with frontotemporal dementia.	Ferrari R et al.	26154020	focus
				Not a renal disea
1	GSTM1, GSTT1 and GSTP1 Genetic Variants in Multiple Urologic Cancers.	Chirila DN et al.	26158735	focus
	Renal cell carcinoma risk is associated with the interactions of APOE, VHL			Not a renal disea
1	and MTHFR gene polymorphisms.	Lv C et al.	26191297	focus
	Financial incentives for kidney donation: A comparative case study using			Not a renal disea
1	synthetic controls.	Bilgel F et al.	26218985	focus
	Novel mutations of the ATP7B gene in Han Chinese families with pre-	N		Not a renal disea
1	symptomatic Wilson's disease.	Yuan ZF et al.	26253413	focus
	Lack of genetic association of the TGM2 gene with schizophrenia in a			Not a renal disea
1	Chinese population.	Wang J et al.	26307914	focus
	Genetic Polymorphism of MMP2 Gene and Susceptibility to Prostate	-		Not a renal disea
1	Cancer.	Adabi Z et al.	26319608	focus
	A method for predicting target drug efficiency in cancer based on the			Not a renal disea
1	analysis of signaling pathway activation.	Artemov A et al.	26320181	focus
	Effect of a functional polymorphism in the pre-miR-146a gene on the risk			Not a renal disea
1	and prognosis of renal cell carcinoma.	Huang Z et al.	26323945	focus
	The sirtuin inhibitor sirtinol inhibits hepatitis A virus (HAV) replication by	<u> </u>		Not a renal disea
1	inhibiting HAV internal ribosomal entry site activity.	Kanda T et al.	26388050	focus

1	
2	
3 4	
5 6	
7	
8 9	
8 9 10 11	
11	
12	
13 14	
15 16	
16	
17	
18 19	
19 20	
21	
22 23	
23 24	
25	
25 26	
27 20	
28 29	
29 30	
31	
32 33	
33 34	
34 35	
36	
37 38	
30 39	
40	
41	
42 43	
43 44	
45	
46	

	Molecular characterization of multidrug-resistant Klebsiella pneumoniae			Not a renal disea
1	isolates.	Hou XH et al.	26413058	focus
	Variants in Vitamin D Binding Protein Gene Are Associated With			Not a renal dise
1	Gestational Diabetes Mellitus.	Wang Y et al.	26448018	focus
	Role of PTPN22 and CSK gene polymorphisms as predictors of			
	susceptibility and clinical heterogeneity in patients with Henoch-	Lopez-Mejias R		Not a renal dise
1	Schönlein purpura (IgA vasculitis).	et al.	26458874	focus
	Association of polymorphisms in PRKCI gene and risk of prostate cancer			Not a renal dise
1	in a sample of Iranian Population.	Hashemi M et al.	26475383	focus
	Analysis of Multiple Families With Single Individuals Affected by			
	Pseudohypoparathyroidism Type Ib (PHP1B) Reveals Only One Novel			Not a renal dise
1	Maternally Inherited GNAS Deletion.	Takatani R et al.	26479409	focus
	Constitutional de novo deletion of the FBXW7 gene in a patient with focal			Not a renal dise
1	segmental glomerulosclerosis and multiple primitive tumors.	Roversi G et al.	26482194	focus
				Not a renal dise
1	MKS1 regulates ciliary INPP5E levels in Joubert syndrome.	Slaats GG et al.	26490104	focus
	Association of Angiotensin Converting Enzyme Insertion-Deletion			
	Polymorphism with Hypertension in Emiratis with Type 2 Diabetes			Not a renal dise
1	Mellitus and Its Interaction with Obesity Status.	Alsafar H et al.	26491214	focus
	Association of chitotriosidase enzyme activity and genotype with the risk	Elmonem MA et		Not a renal dise
1		al.	26589000	focus
	Use of a High-Density Protein Microarray to Identify Autoantibodies in			
	Subjects with Type 2 Diabetes Mellitus and an HLA Background			Not a renal dise
1	Associated with Reduced Insulin Secretion.	Chang DC et al.	26606528	focus
	Analysis of urinary cathepsin C for diagnosing Papillon-Lefèvre			Not a renal dise
1	syndrome.	Hamon Y et al.	26607765	focus
	Genetic alteration in notch pathway is associated with better prognosis in			Not a renal dise
1	renal cell carcinoma.	Feng C et al.	26662507	focus
	Genotype-guided tacrolimus dosing in African-American kidney			Not a renal dise
1	transplant recipients.	Sanghavi K et al.	26667830	focus
	Hepatocystin is Essential for TRPM7 Function During Early	-		Not a renal dise
1	Embryogenesis.	Overton JD et al.	26671672	focus

	XRCC3 Thr241Met and XPD Lys751Gln gene polymorphisms and risk of			Not a renal disease
1	clear cell renal cell carcinoma.	Loghin A et al.	26682510	focus
	Germline BAP1 Mutational Landscape of Asbestos-Exposed Malignant			Not a renal disease
1	Mesothelioma Patients with Family History of Cancer.	Ohar JA et al.	26719535	focus
				Not a renal disease
1	HABP2 G534E Variant in Papillary Thyroid Carcinoma.	Tomsic J et al.	26745718	focus
	Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk	Mohammedi K et		Not a renal disease
1	of kidney complications in people with type 1 diabetes.	al.	26773925	focus
	Serum paraoxonase-1 gene polymorphism and enzyme activity in			Not a renal disease
1	patients with urolithiasis.	Atar A et al.	26795139	focus
	Association of ACE gene D polymorphism with left ventricular			Not a renal diseas
1	hypertrophy in patients with diastolic heart failure: a case-control study.	Bahramali E et al.	26861937	focus
	Association of the Bsml, Apal, Taql, Tru9I and Fokl Polymorphisms of the			Not a renal diseas
1	Vitamin D Receptor Gene with Nephrolithiasis in the Turkish Population.	Cakir OO et al.	26945655	focus
	System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin			Not a renal diseas
1	Variant Probes.	Zhang W et al.	26949039	focus
	Spondyloenchondrodysplasia Due to Mutations in ACP5: A			Not a renal diseas
1	Comprehensive Survey.	Briggs TA et al.	26951490	focus
	Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia			Not a renal diseas
1	through YAP Dysregulation.	Grampa V et al.	26967905	focus
	Angiotensin-converting enzyme gene I/D polymorphism increases the			
	susceptibility to hypertension and additive diseases: A study on North			Not a renal diseas
1	Indian patients.	Singh M et al.	27030424	focus
	Cystinosin deficiency causes podocyte damage and loss associated with			Not a renal diseas
1	increased cell motility.	Ivanova EA et al.	27083281	focus
				Not a renal diseas
1		Liu Y et al.	27196060	focus
	Vascular endothelial growth factor polymorphism (-460 T/C) is related to	Malkiewicz A et		Not a renal diseas
1	hypertension-associated chronic kidney disease.	al.	27367286	focus
	The association between fructosamine-3 kinase 900C/G polymorphism,			
	transferrin polymorphism and human herpesvirus-8 infection in diabetics			Not a renal diseas
1	living in South Kivu.	Cikomola JC et al.	27461879	focus

2	
3	
4	
5	
6	
7	
8	
9	
9 10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
19	
20	
20	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
- 30	
- 33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41 42	
43	
44	
45	
46	_

	Pro198Leu Polymorphism in the Glutathione Peroxidase 1 Gene	During any marker M4		
4	Contributes to Diabetic Peripheral Neuropathy in Type 2 Diabetes	Buraczynska M	27502002	Not a renal dis
1	Patients.	et al.	27592002	focus
	ERBB4 gene polymorphisms and the risk of prostate cancer in a sample of			Not a renal dis
1	Iranian Population.	Hashemi M et al.	27609473	focus
	VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine	Amosco MD et		Not a renal dis
1	population.	al.	27668980	focus
	Assessment of Human Tribbles Homolog 3 Genetic Variation (rs2295490)			
	Effects on Type 2 Diabetes Patients with Glucose Control and Blood			Not a renal dis
1	Pressure Lowering Treatment. 🕖 🌽	He F et al.	27793583	focus
	TET2 binds the androgen receptor and loss is associated with prostate	Nickerson ML et		Not a renal dis
1	cancer.	al.	27819678	focus
	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian			Not a renal dis
1	randomisation study.	Schmidt AF et al.	27908689	focus
	Hypertension is a characteristic complication of X-linked	Nakamura Y et		Not a renal dis
1	hypophosphatemia.	al.	28025445	focus
				Not a renal dis
1	URAT1 inhibition by ALPK1 is associated with uric acid homeostasis.	Kuo TM et al.	28039413	focus
	Autophagy-related gene LRRK2 is likely a susceptibility gene for systemic			Not a renal dis
1	lupus erythematosus in northern Han Chinese.	Zhang YM et al.	28099919	focus
	Association Study of Klotho Gene Polymorphism With Calcium Oxalate			Not a renal dis
1	Stones in The Uyghur Population of Xinjiang, China.	Ali A et al.	28116736	focus
				Not a renal dis
1	Rare and low-frequency coding variants alter human adult height.	Marouli E et al. 🧹	28146470	focus
	An association between overexpression of DNA methyltransferase 3B4			Not a renal dis
1	and clear cell renal cell carcinoma.	Liu Y et al.	28160561	focus
				Not a renal dis
1	BARD1 Gene Polymorphisms Confer Nephroblastoma Susceptibility.	Fu W et al.	28161399	focus
	Genetic susceptibility variants for lung cancer: replication study and			Not a renal dis
1	assessment as expression quantitative trait loci.	Pintarelli G et al.	28181565	focus
	Relationship between salivary/pancreatic amylase and body mass index:	Bonnefond A et		Not a renal dis
1	a systems biology approach.	al.	28228143	focus

	Development of hypomelanotic macules is associated with constitutive			Not a renal disease
1	activated mTORC1 in tuberous sclerosis complex.	Moller LB et al.	28336152	focus
	A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish			
	Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes			Not a renal diseas
1		Manning A et al.	28341696	focus
	Cost-effectiveness Analysis for Genotyping before Allopurinol Treatment			Not a renal diseas
1	to Prevent Severe Cutaneous Adverse Drug Reactions.	Ke CH et al.	28365572	focus
	Hepatitis C viral load, genotype, and increased risk of developing end-			Not a renal diseas
1		Lai TS et al.	28370058	focus
	Isolated polycystic liver disease genes define effectors of polycystin-1			Not a renal diseas
1	function.	Besse W et al.	28375157	focus
	Role of MMP-7 in the pathogenesis of systemic lupus erythematosus			Not a renal diseas
1	(SLE).	Vira H et al.	28420044	focus
	Frequent somatic mutations in epigenetic regulators in newly diagnosed			Not a renal diseas
1	chronic myeloid leukemia.	Togasaki E et al.	28452984	focus
	Ocular Pathology of Oculocerebrorenal Syndrome of Lowe: Novel			Not a renal disea
1	Mutations and Genotype-Phenotype Analysis.	Song E et al.	28473699	focus
	A novel, de novo mutation in the PRKAG2 gene: infantile-onset			Not a renal diseas
1		Xu Y et al.	28550180	focus
	Genome-wide association study of erythrocyte density in sickle cell			Not a renal disea
1		Ilboudo Y et al.	28552477	focus
	Functional polymorphism at the miR-502-binding site in the 3'			
	untranslated region of the SETD8 gene increased the risk of prostate			Not a renal disea
1	cancer in a sample of Iranian population.	Narouie B et al. 🧹	28578017	focus
	Acute lymphoblastic leukemia and genetic variations in BHMT gene:	Bellampalli R et		Not a renal disea
1	Case-control study and computational characterization.	al.	28582843	focus
	Unusual clinical outcome of primary Hyperoxaluria type 1 in Tunisian			Not a renal disea
1	patients carrying 33_34InsC mutation.	Mbarek IB et al.	28619084	focus
	Disease-linked mutations in factor H reveal pivotal role of cofactor			Not a renal disea
1	activity in self-surface-selective regulation of complement activation.	Kerr H et al.	28637873	focus
	Glomerular Hyperfiltration in Obese African American Hypertensive			
	Patients Is Associated With Elevated Urinary Mitochondrial-DNA Copy			Not a renal disea
1	Number.	Eirin A et al.	28641368	focus

Page 168 o	f 304
------------	-------

1 2
3 4
5 6
7 8
8 9
9 10
11
12 13
14
15
16
17 18
19 20
20
21 22
23
24 25
25
26 27
28
29 30
30 31
32
33
34 35
35 36
37
38
39 40
41
42
43
44
45 46
υT

	Expression and secretion of the Giardia duodenalis variant surface			
	protein 9B10A by transfected trophozoites causes damage to epithelial	Cabrera-Licona A		Not a renal diseas
1	cell monolayers mediated by protease activity.	et al.	28668253	focus
	Identification of sequence polymorphisms in the mitochondrial			Not a renal diseas
1	cytochrome c oxidase genes as risk factors for hepatocellular carcinoma.	Wang H et al.	28703354	focus
	Genome-wide association study identifies inversion in the CTRB1-CTRB2			Not a renal diseas
1	locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis.	Rosendahl J et al.	28754779	focus
	A role of the endothelial nitric oxide system in acute renal colic caused by			Not a renal disea
1	ureteral stone.	Bulbul E et al.	28802544	focus
	An apical MRCK-driven morphogenetic pathway controls epithelial			Not a renal disea
1	polarity.	Zihni C et al.	28825699	focus
	Frequent Genetic Aberrations in the CDK4 Pathway in Acral Melanoma			Not a renal disea
1	Indicate the Potential for CDK4/6 Inhibitors in Targeted Therapy.	Kong Y et al.	28830923	focus
	Association between interferon-induced helicase (IFIH1) rs1990760			
	polymorphism and seasonal variation in the onset of type 1 diabetes			Not a renal disea
1	mellitus.	Jermendy A et al.	28929635	focus
	AGXT2 rs37369 polymorphism predicts the renal function in patients with			Not a renal disea
1	chronic heart failure.	Hu XL et al.	28942034	focus
	The Endothelial Nitric Oxide Synthase Gene Polymorphism is Associated			
	with the Susceptibility to Immunoglobulin a Nephropathy in Chinese			Not a renal disea
1	Population.	Gao J et al.	28946141	focus
	APOL1, CDKN2A/CDKN2B, and HDAC9 polymorphisms and small vessel			Not a renal disea
1	ischemic stroke.	Akinyemi R et al.	28975602	focus
	Polymorphisms of DNA repair genes XRCC1 and LIG4 and idiopathic male			Not a renal disea
1	infertility.	Ghasemi H et al.	28991497	focus
	Alcohol consumption, variability in alcohol dehydrogenase genes and risk			Not a renal disea
1	of renal cell carcinoma.	Antwi SO et al.	29023769	focus
	Rare ADAR and RNASEH2B variants and a type I interferon signature in			Not a renal disea
1	glioma and prostate carcinoma risk and tumorigenesis.	Beyer U et al.	29030706	focus
	Familial Mediterranean fever mutations are hypermorphic mutations			
	that specifically decrease the activation threshold of the Pyrin			Not a renal disea
1	inflammasome.	Jamilloux Y et al.	29040788	focus

	Circulating Endothelial Markers in Retinal Vasculopathy With Cerebral			Not a renal disease
1	Leukoencephalopathy and Systemic Manifestations.	Pelzer N et al.	29114091	focus
	Relationship between rs854560 PON1 Gene Polymorphism and Tobacco			Not a renal disease
1	Smoking with Coronary Artery Disease.	Iwanicka J et al.	29118461	focus
	Polymorphism of ERCC1 rs3212986 in Chinese Han women with			Not a renal disease
1	preeclampsia.	Liu MC et al.	29153678	focus
	Analysis of the influence of the T393C polymorphism of the GNAS gene			Not a renal disease
1	on the clinical expression of primary hyperparathyroidism.	Piedra M et al.	29179855	focus
	Association Between Klotho Gene Polymorphism and Markers of Bone			Not a renal disease
1	Metabolism in Patients Receiving Maintenance Hemodialysis in Iran.	Nazarian A et al.	29190606	focus
	Association Between HACE1 Gene Polymorphisms and Wilms' Tumor Risk			Not a renal disease
1	in a Chinese Population.	Jia W et al.	29243987	focus
				Not a renal disease
1	PDE1A polymorphism contributes to the susceptibility of nephrolithiasis.	Yang Z et al.	29262781	focus
	Genetic screening and functional analysis of CASP9 mutations in a			Not a renal disease
1	Chinese cohort with neural tube defects.	Liu XZ et al.	29365368	focus
	The relationship between ACE/AGT gene polymorphisms and the risk of			Not a renal disease
1	diabetic retinopathy in Chinese patients with type 2 diabetes.	Qiao YC et al.	29378484	focus
	HIPK2 polymorphisms rs2058265, rs6464214, and rs7456421 were			Not a renal disease
1	associated with kidney stone disease in Chinese males not females.	Lin H et al.	29428801	focus
	The association of endothelial nitric oxide synthase gene single			Not a renal disease
1	nucleotide polymorphisms with paediatric systemic lupus erythematosus.	Zhu J et al.	29465350	focus
	Common Variants in ALPL Gene Contribute to the Risk of Kidney Stones in			Not a renal disease
1	the Han Chinese Population.	Li X et al.	29489416	focus
	Impact of eNOS 27-bp VNTR (4b/a) gene polymorphism with the risk of			Not a renal disease
1	Systemic Lupus Erythematosus in south Indian subjects.	Katkam SK et al.	29524578	focus
	Rationale, design, and preliminary results of the Quebec Warfarin Cohort			Not a renal disease
1	Study.	Perreault S et al.	29542828	focus
	The evaluation of two genetic polymorphisms of paraoxonase 1 in			Not a renal disease
1	patients with pulmonary embolism.	Basol N et al.	29682786	focus

	HCMV UL97 phosphotransferase gene mutations may be associated with antiviral resistance in immunocompromised patients in Belém, PA,			Not a renal disease
1	Northern Brazil.	Silva DFLD et al.	29768545	focus
	Screening for mutation hotspots in Bardet-Biedl syndrome patients from	Chandrasekar SP		Not a renal disease
1	India.	et al.	29806606	focus
	Angiotensin Converting Enzyme Gene Insertion/Deletion Variant and			Not a renal disease
1	Familial Mediterranean Fever-related Amyloidosis.	Nursal AF et al.	29891744	focus
	Base Excision Repair Gene Polymorphisms and Wilms Tumor			Not a renal disease
1	Susceptibility.	Zhu J et al.	29937070	focus
	Concomitance of Polymorphisms in Glutathione Transferase Omega			Not a renal disease
1	Genes Is Associated with Risk of Clear Cell Renal Cell Carcinoma.	Radic TM et al.	30224590	focus
	Dissociation of Fatty Liver and Insulin Resistance in I148M PNPLA3			
	Carriers: Differences in Diacylglycerol (DAG) FA18:1 Lipid Species as a			Not a renal disease
1	Possible Explanation.	Franko A et al.	30227635	focus
	[Uric acid stones in children. Identification and therapy of a newly			Not English or
1	detected defect of adenine-phosphoribosyltransferase (author's transl)].	Simmonds HA	118367	Spanish
	[The functional properties of the erythrocyte membranes in patients with			Not English or
1		Rakhov DA et al.	1475876	Spanish
	[Lipid peroxidation and the antioxidant system in bicarbonate			Not English or
1	hemodialysis and acetate-free biofiltration].	Eiselt J et al.	7762187	Spanish
	[A study on angiotensin-I converting enzyme polymorphism in CAPD			Not English or
1		Nishina M	9014479	Spanish
	[Is Pstl polymorphism of the angiotensin I converting enzyme gene			
	associated with nephropathy development in non-insulin-dependent	Grzeszczak W et 🔍		Not English or
1		al.	9499204	Spanish
	[Relationship between angiotensin 1 converting enzyme gene			Not English or
1		Wu S et al.	9596955	
	[Polymorphism studies of angiotensin converting enzyme gene in chronic			Not English or
1	0 1 3	Kutyrina IM et al.	10420452	
	[Angiotensin-converting enzyme gene polymorphism and the clinical			Not English or
1	pathological features and progression in lupus nephritis].	Guan T et al.	10436947	Spanish

	[Association between ACE gene polymorphism and therapeutic			Not English or
1	responsiveness of ACEI in diabetic nephropathy].	Wang L et al.	10923445	Spanish
	[Increased clinical and economic advantages using PROSIT (proteinuria			Not English or
1	screening and intervention) in type 2 diabetic patients].	Gozzoli V et al.	11075242	Spanish
	[Association between insertion-deletion polymorphism of the			
	angiotensin-converting enzyme gene and development of angiopathies in			
	patients with non-insulin dependent diabetes mellitus from the Chuvash	Miloserdova OV		Not English or
1	Republic].	et al.	11234416	Spanish
		Buraczynska M		Not English or
1	[Renin-angiotensin system genes in chronic glomerulonephritis].	et al.	11865575	Spanish
	[The association between polymorphism of endothelial nitric oxide			Not English or
1	synthase gene and diabetic nephropathy].	Li C et al.	11930675	Spanish
	[Relationship between serum angiotensin I-converting enzyme activity			Not English or
1	and diabetic nephropathy in patients with type II diabetes].	Liao L et al.	12016801	Spanish
	[Acquired mutation of type II transforming growth factor-beta receptor			Not English or
1	gene in glomerulosclerosis].	Liu Z et al.	12126523	Spanish
				Not English or
1	[Renal effects of low doses of mercury].	Alinovi R et al.	12197269	Spanish
	[Association of ecNOS 4 b/a polymorphism and end-stage chronic renal			Not English or
1	failure].	Lin S et al.	12421496	Spanish
	[Associative analysis of the connection between mutation C1167T in the			
	catalase gene and polymorphic marker D6S392 nearby the Mn-	Chistiakov D et		Not English or
1	dependent superoxide dismutase gene with diabetic microangiopathies].	al.	12469627	Spanish
	[Association of the renin-angiotensin system gene polymorphism with	Buraczynska M		Not English or
1	nephropathy in type II diabetes].	et al.	12476891	Spanish
	[Study on candidate genes of benazepril related cough in Chinese			Not English or
1	hypertensives].	Lu J et al.	12848919	Spanish
	[Polymorphism at the glutathione S-transferase pi locus as a risk factor			Not English or
1	for ifosfamide nephrotoxicity in children].	Zielinska E et al.	12868187	Spanish
				Not English or
1	[Correlation analysis between WNK4 gene and essential hypertension].	Sun ZJ et al.	12905707	Spanish

$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 34\\ 45\\ 46\\ 46\\ 45\\ 46\\ 46\\ 45\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46\\ 46$	2
$\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 45 \\ 36 \\ 7 \\ 38 \\ 39 \\ 41 \\ 42 \\ 44 \\ 45 \end{array}$	3
9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 9 30 31 23 34 35 36 37 8 9 40 41 42 34 45	4
9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 9 30 31 23 34 35 36 37 8 9 40 41 42 34 45	5
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 23 34 35 36 37 8 39 40 41 42 34 45	6
9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 9 30 31 23 34 35 36 37 8 9 40 41 42 34 45	7
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 21\\ 22\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 132\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\end{array}$	8
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\end{array}$	9
$\begin{array}{c} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \end{array}$	
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\end{array}$	
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
$\begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \end{array}$	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	15
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	17
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	18
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	19
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	20
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	21
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	22
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	23
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	24 25
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	25 26
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	20
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	28
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	29
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	30
 33 34 35 36 37 38 39 40 41 42 43 44 45 	
34 35 36 37 38 39 40 41 42 43 44 45	
35 36 37 38 39 40 41 42 43 44 45	
36 37 38 39 40 41 42 43 44 45	
38 39 40 41 42 43 44 45	35
38 39 40 41 42 43 44 45	36
 39 40 41 42 43 44 45 	3/
40 41 42 43 44 45	
41 42 43 44 45	
42 43 44 45	
43 44 45	
44 45	
45	

1	[Arterial hypertension in glomerulonephritis].	Oko A et al.	14974362	Not English o Spanish
1	[Search for the association of polymorphic markers for genes coding for antioxidant defense enzymes, with development of diabetic polyneuropathies in patients with type 1 diabetes mellitus].	Zotova EV et al.	15125229	Not English o Spanish
1	[Association of the complex of polymorphic markers of ACE genes, aldosteron synthetase and endothelial synthetase of nitric oxide with progression of chronic glomerulonephritis].	Kamysheva ES et al.	15532370	Not English o Spanish
1	[Correlative study between angiotensin-converting enzyme gene polymorphism and hepatorenal syndrome].	Wu XX et al.	15698501	Not English o Spanish
1		Yu H et al.	16027793	Not English or Spanish
1		Kaliev RR et al.	16078593	Not English oi Spanish
1	[A search for association between the polymorphic markers of PON1 and PON2 genes and diabetic nephropathy in patients with type I diabetes mellitus].	Voron'ko OE et al.	16080611	Not English o Spanish
1	[Correlation of cyclin D1 overexpression to mutations of von hippel- lindau gene in renal clear cell carcinoma].	Ren YY et al.	16480581	Not English o Spanish
1	[Activation of RHOA gene transcription in epithelial tumors may be caused by gene amplification and/or demethylation of its promotor region].	Braga EA et al.	17086988	Not English oi Spanish
1	[Association of aldosterone synthase gene -344 T/C polymorphism with early renal damage in Han nationality with essential hypertension].	Sun XJ et al.	17407071	Not English o Spanish
1	[Relationship between I/D polymorphism of angiotensin I converting enzyme gene and microvascular complications in type 2 diabetic patients].	Moleda P et al.	17941464	Not English o Spanish
1		Mikhailenko DS et al.	18389622	Not English o Spanish
1		Lu LH et al.	18393230	Not English o Spanish
1	[Distribution of polymorphism in endothelial nitric oxide synthase gene in Singapore Chinese and its association with diabetic nephropathy].	Dong JJ et al.	18476541	Not English o Spanish

	[Effect of tissue factor pathway inhibitor on apoptosis of rat mesangial			Not English or
1	cells and Fas and bcl-2 expression].	Lin YF et al.	19094710	Spanish
	[Genetic predisposition to systemic complications of arterial			Not English or
1	hypertension in maintenance haemodialysis patients].	Bzoma B et al.	19112833	Spanish
	[Factors responsible for inter-individual variations in			Not English or
1	dosage/concentration of tacrolimus in renal transplant recipients].	Fu SJ et al.	19114346	Spanish
	[Association analysis of genetic polymorphisms of TCF7L2, CDKAL1,			
	SLC30A8, HHEX genes and microvascular complications of type 2 diabetes			Not English or
1	mellitus].	Fu LL et al.	22487833	Spanish
	U h	Krajina-		
	[Angiotensin-converting enyme insertion/deletion polymorphism and	Andricevic M et		Not English or
1	blood pressure regulation in type 2 diabetic patients].	al.	23120809	Spanish
	[Association between mannose-binding lectin 2 gene and protein kinase			
	C-beta 1 gene polymorphisms and type 2 diabetic macrovascular			Not English or
1	complications in northern Chinese Han population]. 🖊 🛛 👝	Zhang NN et al.	23225056	Spanish
	[Gene polymorphisms of CYP3A5 and MDR-1 in Hans renal transplant			Not English or
1	recipients in Hunan Province].	Shao M et al.	23981990	Spanish
	[Association of CYP3A5 and MDR1 genetic polymorphisms with the blood			
	concentration of tacrolimus in Chinese liver and renal transplant			Not English or
1	recipients].	Sun JY et al.	24059111	Spanish
				Not English or
1	[Gene mutation analysis of X-linked hypophosphatemic rickets].	Song Y et al.	24229582	Spanish
	[Mutational analysis of MYO1E in children with sporadic steroid-resistant			Not English or
1	nephrotic syndrome in Chinese Han ethnic group].	Zhao F et al. 📃 🔍	25224051	Spanish
	[Children with idiopathic hypogonadotropic hypogonadism: clinical data			Not English or
1	analysis and mutations analysis of KAL1 and FGFR1 gene].	Qin M et al.	25619354	Spanish
	[DNA repair XRCC1, XPD genes polymorphism as associated with the	Akhmadishina LZ		Not English or
1	development of bladder cancer and renal cell carcinoma].	et al.	25715450	Spanish
	[Association between angiotensin-converting enzyme 2 gene			Not English or
1	polymorphisms and childhood primary nephrotic syndrome].	Qiu MY et al.	25815490	Spanish
	[GENETIC RISK FACTORS FOR MULTIPLE KIDNEY STONE FORMATION IN			Not English or
1	THE RUSSIAN POPULATION].	Apolihin OI et al.	26665756	Spanish

Page 174 of 304

1 2	
3	
4 5	
6 7	
7 8	
9	
10 11	
12	
13 14	
14 15	
16 17	
18	
19 20	
21	
22 23	
24 25	
25 26 27	
27 28	
28 29	
29 30 31 32 33 34 35 36 37	
31 32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46	

	[Polymorphism at the miR-502 binding site in the 3' untranslated region			Not English o
1	of SET8 gene is associated with the risk of clear cell renal cell carcinoma].	Xu JS et al.	27346408	Spanish
	[Expression of cadherin17 in metanephric adenoma and its value in			Not English o
1	differential diagnosis].	Wang X et al.	27430690	Spanish
	[Clinical and immunological analysis of patients with activated			Not English o
1	phosphoinositide 3-kinase Î syndrome resulting from PIK3CD mutation].	Tang WJ et al.	28072954	Spanish
	[Molecular features of metanephric adenoma and their values in			Not English o
1	differential diagnosis].	Wang X et al.	28072975	Spanish
		Apolikhin OI et		Not English o
1	[Early diagnosis of risk for developing calcium oxalate urolithiasis].	al.	28845932	Spanish
	HLA extended haplotypes in steroid-sensitive nephrotic syndrome of	Lagueruela CC et		Paediatric
1	childhood.	al.	1974661	individuals
	Major histocompatibility complex antigens in steroid-responsive			Paediatric
1		McEnery PT et al.	2702084	individuals
	Glycosphingolipid levels in an unusual neurovisceral storage disease	,		
	characterized by lactosylceramide galactosyl hydrolase deficiency:			Paediatric
1		Dawson G.	5016302	individuals
	Differentiation of human adult and fetal intestinal alkaline phosphatases			Paediatric
1		Vockley J et al.	6437214	individuals
	Deficient fumarylacetoacetate fumarylhydrolase activity in lymphocytes	Kvittingen EA et		Paediatric
1	and fibroblasts from patients with hereditary tyrosinemia.	al.	6622096	individuals
	A polymorphism at codon 160 of human O6-methylguanine-DNA			
	methyltransferase gene in young patients with adult type cancers and			Paediatric
1	functional assay.	Imai Y et al.	7586149	individuals
	Streptokinase activity among group A streptococci in relation to			
	streptokinase genotype, plasminogen binding, and disease	Tewodros W et		Paediatric
1	manifestations.	al.	7783598	individuals
	Heterogeneous AVPR2 gene mutations in congenital nephrogenic			Paediatric
1	diabetes insipidus.	Wildin RS et al.	7913579	individuals
	Variability in the rate of 6-mercaptopurine methylation in the			Paediatric
1	erythrocytes, liver and kidney in an Italian population.	Ferroni MA et al.	8880047	individuals

	Prostanoid biosynthesis by blood monocytes of children with			Paediatric
1		Nusing RM et al.	9262230	individuals
	Angiotensin I-converting enzyme-gene-polymorphism: relationship to			
	albumin excretion and blood pressure in pediatric patients with type-I-			Paediatric
1	diabetes mellitus.	Pavlovic M et al.	9354852	individuals
	Inherited mutations in PTEN that are associated with breast cancer,			Paediatric
1	cowden disease, and juvenile polyposis.	Lynch ED et al.	9399897	individuals
	ACE gene polymorphism in childhood IgA nephropathy: association with			Paediatric
1	clinicopathologic findings.	Tanaka R et al.	9590186	individuals
	ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link	Knezevich SR et		Paediatric
1	between mesoblastic nephroma and congenital fibrosarcoma.	al.	9823307	individuals
	Genetic polymorphisms of the renin-angiotensin system and the			Paediatric
1	outcome of focal segmental glomerulosclerosis in children.	Frishberg Y et al.	9853248	individuals
	Platelet-activating factor acetylhydrolase gene mutation in Japanese			Paediatric
1	nephrotic children.	Xu H et al.	9853251	individuals
	Polymorphisms in angiotensin-converting enzyme gene and severity of			
	renal disease in Henoch-Schoenlein patients. Italian Group of Renal			Paediatric
1	Immunopathology.	Amoroso A et al.	9870486	individuals
	Implications of certain genetic polymorphisms in scarring in			Paediatric
1	vesicoureteric reflux: importance of ACE polymorphism.	Ozen S et al.	10401028	individuals
	Role of platelet-activating factor acetylhydrolase gene mutation in			Paediatric
1	Japanese childhood IgA nephropathy.	Tanaka R et al. 📃	10430976	individuals
	ACE I/D gene polymorphism predicts renal damage in congenital	Hohenfellner K et		Paediatric
1	uropathies.	al.	10452281	individuals
	Thiopurine methyltransferase activity and its relationship to the			
	occurrence of rejection episodes in paediatric renal transplant recipients			Paediatric
1	treated with azathioprine.	Dervieux T et al.	10594482	individuals
	Platelet-activating factor acetylhydrolase gene mutation in Japanese			
	children with Escherichia coli O157-associated hemolytic uremic			Paediatric
1	syndrome.	Xu H et al.	10873870	individuals
	Angiotensin-converting enzyme gene insertion/deletion polymorphism			Paediatric
1	and renal damage in childhood uropathies.	al-Eisa A et al.	10986863	individuals

1	Genetic polymorphism in paraoxonase is a risk factor for childhood focal segmental glomerulosclerosis.	Frishberg Y et al.	11096050	Paediatric individuals
1			11090030	
	Polymorphisms of renin-angiotensin system genes in childhood IgA	Maruyama K et		Paediatric
1	nephropathy.	al.	11354780	individuals
	Impact of ACE I/D gene polymorphism on congenital renal	Hohenfellner K et		Paediatric
1	malformations.	al.	11354781	individuals
	Significance of ACE genotypes and medical treatments in childhood focal			Paediatric
1	glomerulosclerosis.	Hori C et al.	11474225	individuals
	Angiotensin converting enzyme gene insertion/deletion polymorphism in			Paediatric
1	idiopathic nephrotic syndrome in Kuwaiti Arab children.	Al-Eisa A et al.	11487079	individuals
	Distribution and development of CLN2 protein, the late-infantile			Paediatric
1	neuronal ceroid lipofuscinosis gene product.	Kurachi Y et al.	11547947	individuals
	G protein beta3 subunit 825T genotype is not associated with differing			Paediatric
1	outcome in pediatric renal transplant recipients.	Hocher B et al.	12000471	individuals
	Genomic rearrangements of EYA1 account for a large fraction of families			Paediatric
1	with BOR syndrome.	Vervoort VS et al.	12404110	individuals
	Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal			Paediatric
1	renal tubular acidosis with new evidence for hearing loss.	Stover EH et al.	12414817	individuals
	ACE gene polymorphism and renal scarring in primary vesicoureteric			Paediatric
1	reflux.	Haszon I et al.	12478352	individuals
				Paediatric
1	Renin-angiotensin system polymorphisms and renal scarring.	Pardo R et al.	12579398	individuals
	Renin-angiotensin gene polymorphism in children with uremia and			Paediatric
1	essential hypertension.	Papp F et al.	12579405	individuals
	HbA1c levels and erythrocyte transport functions in complication-free			Paediatric
1	type 1 diabetic children and adolescents.	Deak B et al.	12682823	individuals
	Genetic heterogeneity of peroxisome biogenesis disorders among			
	Japanese patients: evidence for a founder haplotype for the most	Shimozawa N et		Paediatric
1	common PEX10 gene mutation.	al.	12794690	individuals
	Angiotensin converting enzyme gene polymorphism in Asian Indian			Paediatric
1	children with congenital uropathies.	Bajpai M et al.	14713838	individuals

	ACE I/D gene polymorphism in primary FSGS and steroid-sensitive			Paediatric
1	nephrotic syndrome.	Oktem F et al.	14986085	individuals
	Renin-angiotensin system polymorphisms in Taiwanese primary			Paediatric
1	vesicoureteral reflux.	Liu KP et al.	15045574	individuals
	Is ACE gene polymorphism a risk factor for renal scarring with low-grade			Paediatric
1	reflux?	Erdogan H et al.	15138870	individuals
	ACE and AT1 receptor gene polymorphisms and renal scarring in urinary			Paediatric
1	bladder dysfunction.	Kostic M et al.	15179569	individuals
	Angiotensin-converting enzyme gene insertion/deletion polymorphism in			Paediatric
1	children with Henoch-Schonlein purpua nephritis.	Zhou J et al.	15315169	individuals
	Late effects on renal glomerular and tubular function in childhood cancer			Paediatric
1	survivors.	Bardi E et al.	15390293	individuals
	Role of truncating mutations in MME gene in fetomaternal			Paediatric
1	alloimmunisation and antenatal glomerulopathies.	Debiec H et al.	15464186	individuals
	Angiotensin-converting enzyme and angiotensin type 2 receptor gene			Paediatric
1	genotype distributions in Italian children with congenital uropathies.	Rigoli L et al.	15470205	individuals
	Low renin-angiotensin system activity gene polymorphism and dysplasia			Paediatric
1	associated with posterior urethral valves.	Peruzzi L et al.	16006956	individuals
	Polymorphisms of the angiotensin converting enzyme and angiotensin II			
	type 1 receptor genes and renal scarring in non-uropathic children with			Paediatric
1	recurrent urinary tract infection.	Ece A et al.	16109085	individuals
				Paediatric
1	Implication of genetic variations in congenital obstructive nephropathy.	Hahn H et al.	16133060	individuals
	Is paraoxonase 192 gene polymorphism a risk factor for	-		Paediatric
1	membranoproliferative glomerulonephritis in children?	Bilge I et al.	16175651	individuals
	ACE gene insertion/deletion polymorphism in childhood idiopathic	Serdaroglu E et		Paediatric
1	nephrotic syndrome.	al.	16208534	individuals
	Angiotensin converting enzyme gene polymorphism in Indian children			Paediatric
1	with steroid sensitive nephrotic syndrome.	Patil SJ et al.	16272677	individuals
	Evaluation of the antitumor efficacy, pharmacokinetics, and			
	pharmacodynamics of the histone deacetylase inhibitor depsipeptide in			Paediatric
1	childhood cancer models in vivo.	Graham C et al.	16397046	individuals

	ACE gene polymorphism in children with nephrotic syndrome in the	Sasongko TH et		Paediatric
1	Indonesian population.	al.	16421456	individuals
	Renin-angiotensin system gene polymorphisms: association with			Paediatric
1	susceptibility to Henoch-Schonlein purpura and renal involvement.	Ozkaya O et al.	16521052	individuals
				Paediatric
1	Paraoxonase 1 192 and 55 polymorphisms in nephrotic children.	Biyikli NK et al.	16565923	individuals
	Angiotensin-converting enzyme gene polymorphism in children with			Paediatric
1	idiopathic nephrotic syndrome.	Tsai IJ et al.	16645262	individuals
				Paediatric
1	ACE gene polymorphism in Turkish children with nephrotic syndrome.	Celik US et al.	16825089	individuals
	Roles of paraoxonase and oxidative stress in adolescents with uraemic,			Paediatric
1	essential or obesity-induced hypertension.	Barath A et al.	16912512	individuals
	Endothelial nitric oxide synthase gene intron 4 a/b VNTR polymorphism			Paediatric
1	in children with APSGN.	Dursun H et al.	16941147	individuals
	Bardet-Biedl syndrome gene variants are associated with both childhood			Paediatric
1	and adult common obesity in French Caucasians.	Benzinou M et al.	17003356	individuals
	HLA class II influences humoral autoimmunity in patients with type 2	Djilali-Saiah et		Paediatric
1	autoimmune hepatitis.	al.	17050030	individuals
	Nitric oxide synthase gene polymorphisms in children with primary			Paediatric
1	nocturnal enuresis: a preliminary study.	Balat A et al.	17365914	individuals
	Molecular and functional characterization of novel glycerol-3-phosphate			
	dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death	Van Norstrand		Paediatric
1	syndrome.	DW et al.	17967976	individuals
				Paediatric
1	Sudden infant death syndrome and activating GNAS1 gene mutations.	Roman R et al.	18075835	individuals
	Endothelial nitric oxide synthase gene T-786C and 27-bp repeat gene			Paediatric
1	polymorphisms in retinopathy of prematurity.	Rusai K et al.	18334945	individuals
	Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-			
	Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic	Bergmann C et		Paediatric
1	dysplasia.	al.	18371931	individuals
	The polymorphism in insulin receptor substrate-1 gene and birth weight	Simonska-		Paediatric
1	in neonates at term.	Cichocka E et al.	18615395	individuals

	Report of a family segregating mutations in both the APC and MSH2	Uhrhammer N et		Paediatric
1	genes: juvenile onset of colorectal cancer in a double heterozygote.	al.	18629513	individuals
	ACE gene polymorphism in Egyptian children with idiopathic nephrotic			Paediatric
1	syndrome.	Fahmy ME et al.	18792483	individuals
	A common RET variant is associated with reduced newborn kidney size			Paediatric
1	and function.	Zhang Z et al.	18820179	individuals
	Activation of the AKT/mTOR pathway in autosomal recessive polycystic			Paediatric
1	kidney disease (ARPKD).	Fischer DC et al.	19176689	individuals
				Paediatric
1	Mutations of NPHP2 and NPHP3 in infantile nephronophthisis.	Tory K et al.	19177160	individuals
	Lethal cystic kidney disease in Amish neonates associated with	Simpson MA et		Paediatric
1	homozygous nonsense mutation of NPHP3.	al.	19303681	individuals
	Nitric oxide synthase gene polymorphisms in children with minimal			Paediatric
1	change nephrotic syndrome.	Alasehirli B et al.	19371282	individuals
	ACE gene insertion/deletion polymorphism and renal scarring in children			Paediatric
1	with urinary tract infections.	Sekerli E et al.	19603195	individuals
	Effect of paraoxonase 1 gene polymorphisms on clinical course of			Paediatric
1	Henoch-Schönlein purpura.	Yilmaz A et al.	19967651	individuals
	Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment			
	are associated with survival beyond infancy in generalized arterial	· //		Paediatric
1	calcification of infancy.	Rutsch F et al.	20016754	individuals
	Changes in glomerular mesangium in kidneys with congenital nephrotic			Paediatric
1	syndrome of the Finnish type.	Kaukinen A et al.	20020158	individuals
	Polymorphisms of the TNF-alpha and ACE genes, and renal scarring in			Paediatric
1	infants with urinary tract infection.	Savvidou A et al.	20022049	individuals
	Genetic polymorphisms of 17 î ² -hydroxysteroid dehydrogenase 3 and the			Paediatric
1	risk of hypospadias.	Sata F et al.	20059664	individuals
	Association of angiotensin converting enzyme and angiotensin type 2			
	receptor gene polymorphisms with renal damage in posterior urethral			Paediatric
1	valves.	Laksmi NK et al.	20149750	individuals
	Glutathione S-transferase T1-null seems to be associated with graft			Paediatric
1	failure in hematopoietic SCT.	Elhasid R et al.	20348973	individuals

	Linkage and association study of discoidin domain receptor 1 as a novel			Paediatric
1	susceptibility gene for childhood IgA nephropathy.	Hahn WH et al.	20372823	individuals
	Effect of angiotensin-converting enzyme gene insertion/deletion			
	polymorphism on steroid resistance in Egyptian children with idiopathic	Saber-Ayad M et		Paediatric
1	nephrotic syndrome.	al.	20418353	individuals
	Phosphodiesterase-5 gene (PDE5A) polymorphisms are associated with			Paediatric
1	progression of childhood IgA nephropathy.	Hahn WH et al.	20563733	individuals
	Mutational analysis of the PLCE1 gene in steroid resistant nephrotic			Paediatric
1	syndrome.	Boyer O et al.	20591883	individuals
	The association of genetic variability in patatin-like phospholipase			
	domain-containing protein 3 (PNPLA3) with histological severity of			Paediatric
1	nonalcoholic fatty liver disease.	Rotman Y et al.	20684021	individuals
	Founder mutations in the ATP6V1B1 gene explain most Cypriot cases of			Paediatric
1	distal renal tubular acidosis: first prenatal diagnosis. 🔪 👝	Elia A et al.	20805693	individuals
	Polymorphisms of insulin-like growth factor-1 (IGF-1) and IGF-1 receptor			
	(IGF-1R) contribute to pathologic progression in childhood IgA			Paediatric
1	nephropathy.	Hahn WH et al.	21047277	individuals
				Paediatric
1	Renal manifestations of patients with MYH9-related disorders.	Han KH et al.	21210153	individuals
	Clinical utility of genetic testing in children and adults with steroid-			Paediatric
1	resistant nephrotic syndrome.	Santin S et al.	21415313	individuals
	Induction of podocyte-derived VEGF ameliorates podocyte injury and			
	subsequent abnormal glomerular development caused by puromycin			Paediatric
1	aminonucleoside.	Ma J et al.	21451433	individuals
				Paediatric
1	ADAMTS13 gene mutations in children with hemolytic uremic syndrome.	Choi HS et al.	21488199	individuals
	RET and GDNF mutations are rare in fetuses with renal agenesis or other	Jeanpierre C et		Paediatric
1	severe kidney development defects.	al.	21490379	individuals
	Endothelial nitric oxide synthase gene intron4 VNTR polymorphism in	Elshamaa MF et		Paediatric
1	patients with chronic kidney disease.	al.	21519233	individuals
				Paediatric
1	Disruption of PTPRO causes childhood-onset nephrotic syndrome.	Ozaltin F et al.	21722858	individuals

	Age and CYP3A5 genotype affect tacrolimus dosing requirements after			Paediatric
1	transplant in pediatric heart recipients.	Gijsen V et al.	21930396	individuals
	DD genotype of ACE gene in boys: may it be a risk factor for minimal			Paediatric
1	change nephrotic syndrome?	Alasehirli B et al.	22017506	individuals
	Association of the ACE-II genotype with the risk of nephrotic syndrome in			Paediatric
1	Pakistani children.	Shahid S et al.	22033511	individuals
	C1GALT1 polymorphisms are associated with Henoch-SchĶnlein			Paediatric
1	purpura nephritis.	He X et al.	22544166	individuals
	Genes in the ureteric budding pathway: association study on vesico-	van Eerde AM et		Paediatric
1	ureteral reflux patients.	al.	22558067	individuals
	Genetic polymorphisms influence the steroid treatment of children with			Paediatric
1	idiopathic nephrotic syndrome.	Chiou YH et al.	22610055	individuals
	Mutations in NEK8 link multiple organ dysplasia with altered Hippo			Paediatric
1	signalling and increased c-MYC expression.	Frank V et al.	23418306	individuals
	Association of eNOS gene intron 4 a/b VNTR polymorphisms in children			Paediatric
1	with nephrotic syndrome.	Dursun H et al.	23570878	individuals
	A molecular genetic analysis of childhood nephrotic syndrome in a cohort	Al-Hamed MH et		Paediatric
1	of Saudi Arabian families.	al.	23595123	individuals
	Cost-effective PKHD1 genetic testing for autosomal recessive polycystic			Paediatric
1	kidney disease.	Krall P et al.	24162162	individuals
	EIF2AK3 mutations in South Indian children with permanent neonatal			Paediatric
1	diabetes mellitus associated with Wolcott-Rallison syndrome.	Jahnavi S et al. 🗡	24168455	individuals
	Molecular diagnosis of distal renal tubular acidosis in Tunisian patients:			
	proposed algorithm for Northern Africa populations for the ATP6V1B1,			Paediatric
1	ATP6V0A4 and SCL4A1 genes.	Elhayek D et al.	24252324	individuals
	MMP-1 and -3 haplotype is associated with congenital anomalies of the			Paediatric
1	kidney and urinary tract.	Djuric T et al.	24414606	individuals
	Mutation screening and array comparative genomic hybridization using a			Paediatric
1	180K oligonucleotide array in VACTERL association.	Winberg J et al.	24416387	individuals
	Conversion from twice- to once-daily tacrolimus in pediatric kidney	Lapeyraque AL et		Paediatric
1	recipients: a pharmacokinetic and bioequivalence study.	al.	24435759	individuals

				Paediatric
1	Muscle involvement in Dent disease 2.	Park E et al.	24912603	individuals
	PON1 Q192R polymorphism (rs662) is associated with childhood	Vasconcelos GM		Paediatric
1	embryonal tumors.	et al.	24972570	individuals
	Genetic analysis of strictly defined Leber congenital amaurosis with (and			Paediatric
1	without) neurodevelopmental delay.	Khan AO et al.	24997176	individuals
	Modification of epigenetic patterns in low birth weight children:			Paediatric
1	importance of hypomethylation of the ACE gene promoter.	Rangel M et al.	25170764	individuals
	Gene polymorphisms of adducin GLY460TRP, ACE I/D, AND AGT M235T in			Paediatric
1	pediatric hypertension patients.	Kaplan I et al.	25262176	individuals
	Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in			Paediatric
1	sickle cell disease: relation to vasculopathy and disease severity.	Tantawy AA et al.	25263931	individuals
	HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset	Gbadegesin RA		Paediatric
1	Steroid-Sensitive Nephrotic Syndrome. 💦 🚫 👝	et al.	25349203	individuals
	Activation of human telomerase reverse transcriptase through gene			Paediatric
1	fusion in clear cell sarcoma of the kidney.	Karlsson J et al.	25481751	individuals
	Coinheritance of COL4A5 and MYO1E mutations accentuate the severity			Paediatric
1	of kidney disease.	Lennon R et al.	25739341	individuals
	Novel carboxypeptidase A6 (CPA6) mutations identified in patients with			Paediatric
1	juvenile myoclonic and generalized epilepsy.	Sapio MR et al.	25875328	individuals
	HPSE2 mutations in urofacial syndrome, non-neurogenic neurogenic			Paediatric
1	bladder and lower urinary tract dysfunction.	Bulum B et al.	25924634	individuals
	Impact of common functional polymorphisms in renin angiotensin system			
	genes on the risk of renal parenchymal scarring following childhood			Paediatric
1	urinary tract infection.	Hussein A et al.	25939993	individuals
	Angiotensin-converting enzyme genotype is not a significant genetic risk			Paediatric
1	factor for idiopathic nephrotic syndrome in Croatian children.	Batinic D et al.	25997642	individuals
				Paediatric
1	BRAF mutations in pediatric metanephric tumors.	Chami R et al.	26014474	individuals
	Expressions of mRNA for innate immunity-associated functional			Paediatric
1	molecules in urinary sediment in immunoglobulin A nephropathy.	Tsuruga K et al.	26058859	individuals

	Association of ACE and MDR1 Gene Polymorphisms with Steroid	Dhandapani MC		Paediatric
1	Resistance in Children with Idiopathic Nephrotic Syndrome.	et al.	26154535	individuals
				Paediatric
1	Inflammasome polymorphisms in juvenile systemic lupus erythematosus.	Pontillo A et al.	26182076	individuals
	Associations of the eNOS G894T gene polymorphism with target organ	Sladowska-		Paediatric
1	damage in children with newly diagnosed primary hypertension.	Kozlowska J et al.	26227630	individuals
	Paraoxnase1 Gene Polymorphism in Childhood Idiopathic Nephrotic			Paediatric
1	Syndrome.	Al-Eisa AA et al.	26780374	individuals
	Coagulation, thrombophilia and patency of arteriovenous fistula in			
	children undergoing haemodialysis compared with healthy volunteers: a			Paediatric
1		Fadel FI et al.	26829282	individuals
	Components of the lectin pathway of complement activation in	Swierzko AS et		Paediatric
1	paediatric patients of intensive care units.	al.	26850322	individuals
	ACE serum level and I/D gene polymorphism in children with obstructive			
	uropathies and other congenital anomalies of the kidney and urinary	Kostadinova ES		Paediatric
1	tract.	et al.	27206329	individuals
	Association study between matrix metalloproteinase-9 gene (MMP9)			Paediatric
1	polymorphisms and the risk of Henoch-SchĶnlein purpura in children.	Xu ED et al.	27323137	individuals
	Clinicopathological features and BRAF(V600E) mutations in patients with			Paediatric
1	isolated hypothalamic-pituitary Langerhans cell histiocytosis.	Huo Z et al.	27760550	individuals
	BRAF exon 15 mutations in pediatric renal stromal tumors: prevalence in			Paediatric
1	metanephric stromal tumors.	Marsden L et al.	27769870	individuals
	Angiotensin-converting enzyme insertion/deletion gene polymorphism in			
	Egyptian children with systemic lupus erythematosus: a possible relation			Paediatric
1	to proliferative nephritis.	Hammad A et al.	27956582	individuals
	Estimation of the relationship between the polymorphisms of selected			
	genes: ACE, AGTR1, TGFÎ ² 1 and GNB3 with the occurrence of primary	Zyczkowski M et		Paediatric
1		al.	27988909	individuals
	Spectrum of mutations in Chinese children with steroid-resistant			Paediatric
1	nephrotic syndrome.	Wang F et al.	28204945	individuals
	Lectin pathway factors in patients suffering from juvenile idiopathic	Kasperkiewicz K		Paediatric
1	arthritis.	et al.	28405017	individuals

	Association of Endothelial Nitric Oxide Synthase Gene Polymorphism with			
	Susceptibility and Nephritis Development of Henoch-SchĶnlein Purpura			Paediatric
1	in Chinese Han Children.	Wang A et al.	28409662	individuals
	Angiotensin-Converting Enzyme Gene Polymorphism in Children with	Monajemzadeh		Paediatric
1	Idiopathic Nephrotic Syndrome, Effect on Biopsy Findings.	M et al.	28481137	individuals
	Inducible nitric oxide synthase gene polymorphisms are associated with a			Paediatric
1	risk of nephritis in Henoch-SchĶnlein purpura children.	Jiang J et al.	28593405	individuals
	Inborn errors in RNA polymerase III underlie severe varicella zoster virus			Paediatric
1		Ogunjimi B et al.	28783042	individuals
	Association of single-nucleotide polymorphism in the FKBP5 gene with			
	response to steroids in pediatric patients with primary nephrotic			Paediatric
1	syndrome .	Du N et al.	28992850	individuals
	Monogenic diabetes in overweight and obese youth diagnosed with type	Kleinberger JW		Paediatric
1	2 diabetes: the TODAY clinical trial.	et al.	29758564	individuals
	Evaluation of Genetic Polymorphisms for Determining Steroid Response			Paediatric
1	in Nephrotic Children.	Kara A et al.	30143489	individuals
	A randomized clinical trial of age and genotype-guided tacrolimus dosing			Paediatric
1	after pediatric solid organ transplantation.	Min S et al.	30178515	individuals
	Pharmacogenetics of acute azathioprine toxicity: relationship to			Pharmaceutical
1	thiopurine methyltransferase genetic polymorphism.	Lennard L et al.	2758725	drug focus
	Genetic association of 11 beta-hydroxysteroid dehydrogenase type 2			Pharmaceutical
1	(HSD11B2) flanking microsatellites with essential hypertension in blacks.	Watson B Jr et al.	8794836	drug focus
	Effect of deletion polymorphism of angiotensin converting enzyme gene			
	on progression of diabetic nephropathy during inhibition of angiotensin			Pharmaceutical
1	converting enzyme: observational follow up study.	Parving HH et al.	8806248	drug focus
	Effect of angiotensin-converting enzyme (ACE) gene polymorphism on			
	progression of renal disease and the influence of ACE inhibition in IDDM			
	patients: findings from the EUCLID Randomized Controlled Trial.			Pharmaceutical
1	EURODIAB Controlled Trial of Lisinopril in IDDM.	Penno G et al.	9726242	drug focus
	Effects of erythropoietin, angiotensin II, and angiotensin-converting			
	enzyme inhibitor on erythroid precursors in patients with			Pharmaceutical
1	posttransplantation erythrocytosis.	Glicklich D et al.	10428268	drug focus

	Nifedipine improves endothelial function in hypercholesterolemia,			Pharmaceutical
1	independently of an effect on blood pressure or plasma lipids.	Verhaar MC et al.	10533616	drug focus
	Pharmacogenetic analysis of the effect of angiotensin-converting enzyme			
	inhibitor on restenosis after percutaneous transluminal coronary			Pharmaceutical
1	angioplasty.	Okamura A et al.	10535720	drug focus
	The norbornenyl moiety of cyclothiazide determines the preference for			Pharmaceutical
1	flip-flop variants of AMPA receptor subunits.	Kessler M et al.	10854736	drug focus
	Randomized placebo-controlled trial of perindopril in normotensive,			Pharmaceutical
1	normoalbuminuric patients with type 1 diabetes mellitus.	Kvetny J et al.	11181984	drug focus
	Human thiopurine S-methyltransferase activity in uremia and after renal			Pharmaceutical
1	transplantation.	Weyer N et al.	11417444	drug focus
	Long-term renoprotective effects of losartan in diabetic nephropathy:			Pharmaceutical
1	interaction with ACE insertion/deletion genotype?	Andersen S et al.	12716812	drug focus
	The influence of the ACE (I/D) polymorphism on systemic and renal			
	vascular responses to angiotensins in normotensive, normoalbuminuric			Pharmaceutical
1	Type 1 diabetes mellitus.	Luik PT et al.	12856080	drug focus
	Venous response to nitroglycerin is enhanced in young, healthy carriers			Pharmaceutical
1	of the 825T allele of the G protein beta3 subunit gene (GNB3).	Mitchell A et al.	14586390	drug focus
	Matrix metalloproteinase-1 gene polymorphism in renal transplant	Kurzawski M et		Pharmaceutical
1	patients with and without gingival enlargement.	al.	16945025	drug focus
	Enalapril and losartan affect lipid peroxidation in renal transplant	Rashtchizadeh N		Pharmaceutical
1	recipients with renin-angiotensin system polymorphisms.	et al.	17222813	drug focus
	Renin-angiotensin system polymorphisms and hemoglobin level in renal	Noroozianavval		Pharmaceutical
1	allografts: a comparative study between losartan and enalapril.	M et al.	17524880	drug focus
	Genetic analysis of fluvastatin response and dyslipidemia in renal			Pharmaceutical
1	transplant recipients.	Singer JB et al.	17563401	drug focus
	Impact of the preintervention rate of renal function decline on outcome			Pharmaceutical
1	of renoprotective intervention.	Lely AT et al.	18077786	drug focus
	CYP3A5 genotype is not associated with a higher risk of acute rejection in	Hesselink DA et		Pharmaceutical
1	tacrolimus-treated renal transplant recipients.	al.	18334918	drug focus
	Endothelial nitric oxide synthase gene polymorphisms and the renal			Pharmaceutical
1	hemodynamic response to L-arginine.	Cherney DZ et al.	19037250	drug focus

4 5 7 8 9 10 11 12 13 14
8 9 10 11 12 13 14
11 12 13 14
14
15 16 17
18 19 20
21 22 23
24 25 26 27
28 29 30
31 32 33
34 35 36 37
37 38 39 40
41 42 43
44 45 46

	Modulating effect of atorvastatin on paraoxonase 1 activity in type 2			Pharmaceutical
1	diabetic Egyptian patients with or without nephropathy.	Abdin AA et al.	19553142	drug focus
	CYP2C9 genotype and pharmacodynamic responses to losartan in			Pharmaceutical
1	patients with primary and secondary kidney diseases.	Joy MS et al.	19669737	drug focus
	Matrix metalloproteinase-3 gene polymorphism in renal transplant			Pharmaceutical
1	patients with gingival overgrowth.	Drozdzik A et al.	19778329	drug focus
	Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2			Pharmaceutical
1	diabetic patients treated with sulfonylureas.	Ragia G et al.	19891554	drug focus
	Drug-resistant cytomegalovirus in transplant recipients: a French cohort			Pharmaceutical
1	study.	Hantz S et al.	20961907	drug focus
	CYP3A5 genotype does not influence everolimus in vitro metabolism and			Pharmaceutical
1	clinical pharmacokinetics in renal transplant recipients.	Picard N et al.	21389905	drug focus
	Cytochrome P450 polymorphisms and the response of lupus nephritis to			Pharmaceutical
1	cyclophosphamide therapy.	Winoto J et al.	21543025	drug focus
	Exaggerated natriuresis during clamping of systemic NO supply in healthy	Simonsen JA et		Pharmaceutical
1	young men.	al.	21749320	drug focus
	In vivo CYP3A activity is significantly lower in cyclosporine-treated as			Pharmaceutical
1	compared with tacrolimus-treated renal allograft recipients.	de Jonge H et al.	21753749	drug focus
	Lack of association between the Trp719Arg polymorphism in kinesin-like			
	protein-6 and cardiovascular risk and efficacy of atorvastatin among	Hoffmann MM et		Pharmaceutical
1	subjects with diabetes on dialysis: the 4D study.	al.	21871624	drug focus
	Influence of NAT2 polymorphisms on sulfamethoxazole pharmacokinetics			Pharmaceutical
1	in renal transplant recipients.	Kagaya H et al.	22106207	drug focus
	Comparing antihypertensive effect and plasma ciclosporin concentration			
	between amlodipine and valsartan regimens in hypertensive renal			Pharmaceutical
1	transplant patients receiving ciclosporin therapy.	Cai J et al.	22149319	drug focus
	Genetic and clinical determinants of early, acute calcineurin inhibitor-	Jacobson PA et		Pharmaceutical
1	related nephrotoxicity: results from a kidney transplant consortium.	al.	22334041	drug focus
	Risk of tacrolimus toxicity in CYP3A5 nonexpressors treated with			Pharmaceutical
1	intravenous nicardipine after kidney transplantation.	Hooper DK et al.	22491658	drug focus
	CYP3A5 polymorphism effect on cyclosporine pharmacokinetics in living			
	donor renal transplant recipients: analysis by population			Pharmaceutical
1	pharmacokinetics.	Song J et al.	22947591	drug focus

	Comparison of pharmacokinetics and pharmacogenetics of once- and			Pharmaceutical
1	twice-daily tacrolimus in the early stage after renal transplantation.	Niioka T et al.	23073468	drug focus
	Impact of tacrolimus intraindividual variability and CYP3A5 genetic			Pharmaceutical
1	polymorphism on acute rejection in kidney transplantation.	Ro H et al.	23149441	drug focus
	Endothelial nitric oxide synthase gene polymorphisms and renal			Pharmaceutical
1	responsiveness to RAS inhibition therapy in type 2 diabetic Asian Indians.	Cheema BS et al.	23260854	drug focus
	Individualization of tacrolimus dosage basing on cytochrome P450 3A5			Pharmaceutical
1	polymorphisma prospective, randomized, controlled study.	Chen SY et al.	23432535	drug focus
	Genetic polymorphisms of UGT1A8, UGT1A9 and HNF-11 [±] and			
	gastrointestinal symptoms in renal transplant recipients taking			Pharmaceutical
1	mycophenolic acid.	Vu D et al.	23721685	drug focus
	CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2			Pharmaceutical
1	diabetic patients treated with sulfonylureas.	Ragia G et al.	24464600	drug focus
	Association of CYP3A4*18B and CYP3A5*3 polymorphism with			Pharmaceutical
1	cyclosporine-related liver injury in Chinese renal transplant recipients.	Xin HW et al.	24691060	drug focus
	Genetic variance in ABCB1 and CYP3A5 does not contribute toward the	Tapirdamaz O et		Pharmaceutical
1	development of chronic kidney disease after liver transplantation.	al.	25014506	drug focus
	Associations of HSD11B1 polymorphisms with tacrolimus concentrations			Pharmaceutical
1	in Chinese renal transplant recipients with prednisone combined therapy.	Liu X et al.	25587129	drug focus
	Impact of interaction of cigarette smoking with angiotensin-converting	· //		
	enzyme polymorphisms on end-stage renal disease risk in a Han Chinese	Yang HY et al.	23477970	< 3 populations
3	population			reported per SN
	Polymorphisms in the gene encoding angiotensin I converting enzyme 2	Eroido S ot al	16211275	< 3 populations
3	and diabetic nephropathy	Frojdo S et al. 🔪 🧹	16211375	reported per SN
	Investigation of ACE, ACE2 and AGTR1 genes for association with	Currie Disticl	2005 4202	< 3 populations
3	nephropathy in Type 1 diabetes mellitus.	Currie D et al.	20854388	reported per SN

Supplementary Table S3c: Excluded studies from the AGT search

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1c)

Exclusion			Pubmed ID or WoS ID if	
Stage	Title	Authors	Pubmed ID not available	Reason
1	Identification of potential candidate genes for hypertensive nephropathy based on gene expression profile	Chen Z et al.	27756246	Gene expression based study
1	Defining Uremic Arterial Functional Abnormalities in Patients Recently Started on Haemodialysis: Combined In Vivo and Ex Vivo Assessment	Abushufa AM et al.	25546407	No data for AGT
1	Angiotensin I Converting Enzyme Gene Polymorphism in Type 2 Diabetes Mellitus with Nephropathy in Saudi Population	Alharbi SA et al.	WOS:000415063100003	No data for AGT
1	Clinical impact of an angiotensin I-converting enzyme insertion/deletion and kinin B2 receptor +9/-9 polymorphisms in the prognosis of renal transplantation	Amorim CEN et al.	23362199	No data for AGT
1	Transforming growth factor beta and progression of renal disease	August P et al.	WOS:000185812000016	No data for AGT
1	Associations of fractalkine receptor (CX3CR1) and CCR5 gene variants with hypertension, diabetes and atherosclerosis in chronic renal failure patients undergoing hemodialysis	Bagci B et al.	27118566	No data for AGT
1	Effect of ACE and AT-2 inhibitors on mortality and progression to microalbuminuria in a nested case-control study of diabetic nephropathy in diabetes mellitus type 2: results from the GENDIAN	Deger (A et al	16061167	No data for AGT
1	study.	Boger CA et al.	16961167	NO GALA IOF AGT
1	The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease	Bonomo JA et al.	25027322	No data for AGT
1	Angiotensin II type 1 receptor gene polymorphism in end-stage renal disease	Buraczyńska M et al.	12187084	No data for AGT

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Endothelial nitric oxide synthase gene polymorphisms and renal responsiveness to RAS inhibition therapy in type 2 diabetic Asian Indians	Cheema BS et al.	23260854	No data for AGT
1	Polymorphism of angiotensin II receptor gene and microangiopathies in patients with insulin-dependent diabetes mellitus	Chistyakov DA et al.	WOS:000084973600016	No data for AGT
1	Association of renin-angiotensin and endothelial nitric oxide synthase gene polymorphisms with blood pressure progression and incident hypertension: prospective cohort study.	Conen D et al.	18698212	No data for AGT
1	Serological and genetic factors in early recurrence of IgA nephropathy after renal transplantation	Coppo R et al.	17988266	No data for AGT
1	Plasma renin and prorenin and renin gene variation in patients with insulin-dependent diabetes mellitus and nephropathy	Deinum J et al.	10462269	No data for AGT
1	Insertion/deletion polymorphism of the angiotensin-converting enzyme gene in normalcy and among diabetics with vascular complications	Demurov LM et al.	WOS:A1997XE98500008	No data for AGT
1	Haplotype analysis of NAD(P)H oxidase p22 phox polymorphisms in end-stage renal disease	Doi K et al.	16215641	No data for AGT
1	Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin Iconverting enzyme gene	Doria A et al.	7909524	No data for AGT
1	Synergistic effect of angiotensin II type 1 receptor genotype and poor glycaemic control on risk of nephropathy in IDDM	Doria A et al.	9389421	No data for AGT
1	Analysis of three genetic markers in IgA nephropathy patients from a single region	Drouet M et al.	12005241	No data for AGT
1	Angiotensin II type 1 receptor (A1166C) gene polymorphism in Egyptian adult hemodialysis patients	El-Banawy H et al.	WOS:000365886400009	No data for AGT
1	Angiotensin-I converting enzyme gene polymorphism in Turkish type 2 diabetic patients	Ergen HA et al.	WOS:000223974500007	No data for AGT

Page	190	of 304
------	-----	--------

gene polymorphism and serum ACE activity in Iranians type II etic patients with macroalbuminuria polymorphisms in the ACE gene, serum ACE activity and the of nephropathy in insulin-dependent diabetes mellitus morphisms in the gene encoding angiotensin I converting me 2 and diabetic nephropathy ciation of fibronectin Msp iv polymorphism and diabetic propathy susceptibility in Chinese Han population ets of erythropoietin, angiotensin II, and angiotensin-converting me inhibitor on erythroid precursors in patients with transplantation erythrocytosis ciation of Angiotensin converting Enzyme (ACE) gene morphism and diabetic nephropathy otensin I-converting enzyme gene polymorphisms: Relationship	Felehgari V et al. Freire MBS et al. Frojdo S et al. Gao JX et al. Glicklich D et al. Golmohamadi T et al.	20830509 9794558 16211375 26045844 10428268 WOS:000242619000003	No data for AGT No data for AGT No data for AGT No data for AGT No data for AGT
of nephropathy in insulin-dependent diabetes mellitus morphisms in the gene encoding angiotensin I converting me 2 and diabetic nephropathy ciation of fibronectin Msp iv polymorphism and diabetic propathy susceptibility in Chinese Han population ets of erythropoietin, angiotensin II, and angiotensin-converting me inhibitor on erythroid precursors in patients with transplantation erythrocytosis ciation of Angiotensin converting Enzyme (ACE) gene morphism and diabetic nephropathy otensin I-converting enzyme gene polymorphisms: Relationship	Frojdo S et al. Gao JX et al. Glicklich D et al.	16211375 26045844 10428268	No data for AGT No data for AGT No data for AGT
me 2 and diabetic nephropathy ciation of fibronectin Msp iv polymorphism and diabetic propathy susceptibility in Chinese Han population ets of erythropoietin, angiotensin II, and angiotensin-converting me inhibitor on erythroid precursors in patients with transplantation erythrocytosis ciation of Angiotensin converting Enzyme (ACE) gene morphism and diabetic nephropathy otensin I-converting enzyme gene polymorphisms: Relationship	Gao JX et al. Glicklich D et al.	26045844 10428268	No data for AGT No data for AGT
Aropathy susceptibility in Chinese Han population ats of erythropoietin, angiotensin II, and angiotensin-converting me inhibitor on erythroid precursors in patients with transplantation erythrocytosis ciation of Angiotensin converting Enzyme (ACE) gene morphism and diabetic nephropathy otensin I-converting enzyme gene polymorphisms: Relationship	Glicklich D et al.	10428268	No data for AGT
me inhibitor on erythroid precursors in patients with transplantation erythrocytosis ciation of Angiotensin converting Enzyme (ACE) gene morphism and diabetic nephropathy otensin I-converting enzyme gene polymorphisms: Relationship			
morphism and diabetic nephropathy otensin I-converting enzyme gene polymorphisms: Relationship	Golmohamadi T et al.	WOS:000242619000003	No data for AGT
ephropathy in patients with non-insulin dependent diabetes	Grzeszczak W et al.	9727375	No data for AGT
eptibility and progression of end stage renal disease are not ciated with angiotensin II type 1 receptor gene polymorphism	Hanna MOF et al.	25316403	No data for AGT
morphism of the angiotensin I-converting enzyme gene in etic nephropathy in type II diabetic patients with proliferative opathy	Hanyu O et al.	9509566	No data for AGT
otensin Converting Enzyme Insertion/Deletion gene morphism and genomic sequence in Diabetic Nephropathy	Haque SF et al.	WOS:000300381000004	No data for AGT
angiotensin I-converting enzyme (ACE) locus is strongly ciated with age and duration of diabetes in patients with type I	Hibberd ML et al.	9025006	No data for AGT
etes			
m ar cia	orphism and genomic sequence in Diabetic Nephropathy agiotensin I-converting enzyme (ACE) locus is strongly ated with age and duration of diabetes in patients with type I es	orphism and genomic sequence in Diabetic NephropathyHaque SF et al.agiotensin I-converting enzyme (ACE) locus is strongly ated with age and duration of diabetes in patients with type I esHibberd ML et al.	orphism and genomic sequence in Diabetic NephropathyHaque SF et al.WOS:000300381000004agiotensin I-converting enzyme (ACE) locus is strongly ated with age and duration of diabetes in patients with type IImage: Converting enzyme (ACE)Image: Converting enzyme (ACE)

1	Neuropeptide YY1 receptor polymorphism as a prognostic predictor in Japanese patients with IgA nephropathy	Ito H et al.	10363627	No data for AG
1	Carnosine as a protective factor in diabetic nephropathy - Association with a leucine repeat of the carnosinase gene CNDP1	Janssen B et al.	16046297	No data for AG
1	Impact of Polymorphisms of the Genes Encoding Angiotensin II- Forming Enzymes on the Progression of IgA Nephropathy	Jung ES et al.	21150220	No data for AG
1	Proteomic analysis of alpha-1-antitrypsin in immunoglobulin A nephropathy	Kwak NJ et al.	21136694	No data for AG
1	Renal perfusion and the renal hemodynamic response to blocking the renin system in diabetes - Are the forces leading to vasodilation and vasoconstriction linked?	Lansang MC et al.	12086929	No data for AG
1	Polymorphism in IgA nephropathy	Liu ZH et al.	WOS:A1997WW80600013	No data for AG
1	The angiotensin-I converting enzyme gene I/D variation contributes to end-stage renal disease risk in Chinese patients with type 2 diabetes receiving hemodialysis	Lu M et al.	27633502	No data for AG
1	The influence of three endothelin-1 polymorphisms on the progression of IgA nephropathy	Maixnerova D et al.	17328840	No data for AG
1	The influence of two megsin polymorphisms on the progression of IgA nephropathy	Maixnerova D et al.	18498720	No data for AG
1	Relationships Between Angiotensin-I Converting-Enzyme Gene Polymorphism, Plasma-Levels, And Diabetic Retinal And Renal Complications	Marre M et al.	8314010	No data for AG
1	Hereditary factors in the development of diabetic renal disease	Marre M et al.	10922971	No data for AG
1	A rare haplotype of the vitamin D receptor gene is protective against diabetic nephropathy	Martin RJL et al.	19783860	No data for AG
1	Mutational Analysis of Agxt in Tunisian Population with Primary Hyperoxaluria Type 1.	M'dimegh S et al.	27935012	No data for AG
1	Kinin-dependent hypersensitivity reactions in hemodialysis: metabolic and genetic factors.	Molinaro G et al.	17003818	No data for AG

Page 192	of 304
----------	--------

1	A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women	Mollsten A et al.	21316998	No data for AGT
1	Relationship of angiotensin-converting enzyme gene polymorphism with nephropathy associated with Type 2 diabetes mellitus in Asian Indians	Movva S et al.	17616353	No data for AGT
1	Relationship of Serum Klotho Level With ACE Gene Polymorphism in Stable Kidney Allograft Recipients	Nahandi MZ et al.	28270648	No data for AGT
1	The effect of angiotensin receptor blockade (ARB) on the regression of left ventricular hypertrophy in hemodialysis patients: comparison between patients with D allele and non-D allele (ACE gene polymorphism)	Nakayama M et al.	16312263	No data for AGT
1	Different Mechanisms for the Progression of CKD with ACE Gene Polymorphisms	Nakayama Y et al.	19293592	No data for AGT
1	A disease haplotype for advanced nephropathy in type 2 diabetes at the ACE locus	Ng DPK et al.	16936219	No data for AGT
1	Relationships between angiotensin I converting enzyme gene polymorphism and renal complications in Korean IDDM patients.	Oh TG et al.	8854649	No data for AGT
1	alpha(1)-antitrypsin gene polymorphisms are not associated with renal arterial fibromuscular dysplasia	Perdu J et al.	16531799	No data for AGT
1	The frequency of factor V Leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in Iranians type II diabetic patients with microalbuminuria	Rahimi Z et al.	20853144	No data for AGT
1	AGTR1 rs5186 variants in patients with type 2 diabetes mellitus and nephropathy	Razi F et al.	WOS:000419720600009	No data for AGT
1	Angiotensin-converting enzyme polymorphism in patients with terminal renal failure	Schmidt A et al.	8785402	No data for AGT

1	No association of converting enzyme insertion/deletion polymorphism with immunoglobulin A glomerulonephritis	Schmidt S et al.	7485124	No data for AGT
1	Angiotensin I converting enzyme gene polymorphism and diabetic nephropathy in type II diabetes	Schmidt S et al.	9269698	No data for AGT
1	ACACÎ ² gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes.	Shah VN et al.	23081748	No data for AGT
1	Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy	Shin Shin Y et al.	15331206	No data for AGT
1	Angiotensin I-converting enzyme genotype significantly affects progression of IgA glomerulonephritis in an Italian population	Stratta P et al.	10352195	No data for AG
1	The association of LOX-1 rs1050283 polymorphism with renal hypertension susceptibility in a Chinese population	Sun YC et al.	WOS:000395739000087	No data for AG
1	Lack Of Relationship Between An Insertion Deletion Polymorphism In The Angiotensin I-Converting Enzyme Gene And Diabetic Nephropathy And Proliferative Retinopathy In Iddm Patients	Tarnow L et al.	7729604	No data for AGT
1	Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy.	Tarnow L et al.	8671962	No data for AG
1	High prevalence of ACE DD genotype among north Indian end stage renal disease patients.	Tripathi G et al.	17042963	No data for AG
1	Angiotensin-converting enzyme gene polymorphism and vascular manifestations in Korean patients with SLE	Uhm WS et al.	12043886	No data for AG
1	Increased expression of monocytic angiotensin-converting enzyme in dialysis patients with cardiovascular disease	Ulrich C et al.	16476718	No data for AG
1	Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio	Wakahara S et al.	17303661	No data for AG
1	Angiotensin-converting enzyme inhibitor versus angiotensin 2 receptor antagonist therapy and the influence of angiotensin- converting enzyme gene polymorphism in IgA nephritis.	Woo KT et al.	18536822	No data for AG

Page 19	4 of 304
---------	----------

1	Involvement of platelet-derived growth factor and histocompatibility of DRB 1 in chronic renal allograft nephropathy	Yamada K et al.	11349729	No data for AGT
1	Angiotensin converting enzyme gene polymorphism and development of post-transplant erythrocytosis.	Yildiz A et al.	12832741	No data for AGT
1	Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux	Yoneda A et al.	12187255	No data for AGT
1	Polymorphism Of The Angiotensin-Converting Enzyme Gene And Clinical Aspects Of Iga Nephropathy	Yorioka T et al.	8529313	No data for AGT
1	Interleukin-4 (IL4)-590C/T (rs2243250) gene polymorphism is not associated with diabetic nephropathy (DN) in Caucasians with type 2 diabetes mellitus (T2DM)	Zavrsnik M et al.	29514038	No data for AGT
1			23314038	
1	Hemodynamic Parameters During Normal And Hypertensive Pregnancy In Rats: Evaluation Of Renal Salt And Water Transporters	Abreu N et al.	18293204	Non-human stud
1	DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy	Alter ML et al.	23171828	Non-human stud
1	Long-Term Angiotensin II Receptor Blockade Limits Hypertension, Aortic Dysfunction, and Structural Remodeling in a Rat Model of Chronic Kidney Disease	Ameer OZ et al.	27880955	Non-human stud
1	Effects of Diets with Different Proportions of Protein/Carbohydrate on Retinal Manifestations in db Mice	Arimura E et al.	29475908	Non-human stud
1	Identification of Cathepsin L as a Potential Sex-Specific Biomarker for Renal Damage	Bauer Y et al.	21357272	Non-human stu
1	Blood pressure (BP) and renal vasoconstrictor responses to acute blockade of nitric oxide: persistence of renal vasoconstriction despite normalization of BP with either verapamil or sodium nitroprusside.	Baylis C et al.	7562480	Non-human stu
1	Specific pregnancy-induced angiotensin II type-1 receptor expression in ovine uterine artery does not involve formation of	Bird IM et al.		
1	alternate splice variants or alternate promoter usage	DITU IIVI EL dI.	9687288	Non-human stu

1	N-terminal residues control proteasomal degradation of RGS2, RGS4, and RGS5 in human embryonic kidney 293 cells	Bodenstein J et al.	17220356	Non-human stud
1	Angiotensinogen concentrations and renin clearance : implications for blood pressure regulation.	Bohlender J et al.	10720595	Non-human stud
1	Blood pressure and renin-angiotensin system resetting in transgenic rats with elevated plasma Val(5)-angiotensinogen	Bohlender J et al.	22728903	Non-human stuc
1	CCN1 expression in interleukin-6 deficient mouse kidney in experimental model of heart failure	Bonda TA et al.	23690222	Non-human stuc
1	Advanced Glycated End-Products Affect HIF-Transcriptional Activity in Renal Cells	Bondeva T et al.	24030251	Non-human stud
1	Lack of in vivo function of osteopontin in experimental anti-GBM nephritis	Bonvini JM et al.	10966489	Non-human stu
1	Hypoxia/Reoxygenation of Rat Renal Arteries Impairs Vasorelaxation via Modulation of Endothelium-Independent sGC/cGMP/PKG Signaling	Braun D et al.	29773995	Non-human stu
1	Angiotensin II mesenteric and renal vasoregulation: Dissimilar bissimilar bismilar bissimilar bissimilar bissi	Broome M et al.	11065204	Non-human stu
1	N-domain angiotensin I-converting enzyme expression in renal artery of Wistar, Wistar Kyoto, and spontaneously hypertensive rats	Bueno V et al.	15194348	Non-human stu
1	Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs	Cabral CM et al.	12181335	Non-human stu
1	Role of NOX2 in the regulation of afferent arteriole responsiveness	Carlstrom M et al.	18987286	Non-human stu
1	Adrenomedullin gene expression differences in mice do not affect blood pressure but modulate hypertension-induced pathology in	Caron K et al.	17360661	Non-human stu
1	Appropriate regulation of renin and blood pressure in 45-kb human renin/human angiotensinogen transgenic mice.	Catanzaro DF et al.	9931123	Non-human stu
1	Mice lacking endothelial ACE - Normal blood pressure with elevated angiotensin	Cole JM et al.	12574101	Non-human stu

1	Natriuretic peptides buffer renin-dependent hypertension	Demerath T et al.	24717731	Non-human stuc
	Renin-angiotensin system transgenic mouse model recapitulates pathophysiology similar to human preeclampsia with renal injury			
1	that may be mediated through VEGF.	Denney JM et al.	27927648	Non-human stud
1	Mycophenolate mofetil prevents cerebrovascular injury in stroke- prone spontaneously hypertensive rats	Dhande IS et al.	28011882	Non-human stud
1	Inhibition of proximal tubular fluid absorption by nitric oxide and atrial natriuretic peptide in rat kidney	Eitle E et al.	9575805	Non-human stud
1	Complex interactions of NO/cGMP/PKG systems on Ca2+ signaling in afferent arteriolar vascular smooth muscle	Fellner SK et al.	19880669	Non-human stu
1	Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene.	Ferrario CM et al.	26873967	Non-human stud
1	Attenuation of accelerated renal cystogenesis in Pkd1 mice by renin- angiotensin system blockade	Fitzgibbon WR et al.	29021226	Non-human stu
1	Renal cyst growth is the main determinant for hypertension and concentrating deficit in Pkd1-deficient mice	Fonseca JM et al.	24429399	Non-human stu
1	Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle	Frisbee JC et al.	10329253	Non-human stud
1	Contribution of cytochrome P-450 omega-hydroxylase to altered arteriolar reactivity with high-salt diet and hypertension	Frisbee JC et al.	10775129	Non-human stu
1	Adenosine A(1) receptor-dependent and independent pathways in modulating renal vascular responses to angiotensin II	Gao X et al.	25251152	Non-human stu
1	Connexin 43 is not essential for the control of renin synthesis and secretion	Gerl M et al.	24062052	Non-human stu
1	Metformin prevents the impairment of endothelium-dependent vascular relaxation induced by high glucose challenge in rabbit isolated perfused kidneys	Gomes MB et al.	16133490	Non-human stud
1	Effect of the angiotensinogen genotype on experimental hypertension in mice	Handtrack C et al.	17333097	Non-human stu

1	Cytoprotective effects of nitrates in a cellular model of	Hogarty NL at al	12001565	Non-human s
1		Hegarty NJ et al.	12081565	Non-numan s
	The genetic deletion of Mas abolishes salt induced hypertension in	Heringer-Walther S et		
1	mice	al.	22652430	Non-human s
	Pressor and sympathoexcitatory effects of nitric oxide in the rostral			
1	ventrolateral medulla	Hirooka Y et al.	8934360	Non-human s
	An essential role of angiotensin II receptor type 1a in recipient			
	kidney, not in transplanted peripheral blood leukocytes, in			
1	progressive immune-mediated renal injury	Hisada Y et al.	11555672	Non-human s
	The angiotensin type II receptor tonically inhibits angiotensin-			
1	converting enzyme in AT2 null mutant mice	Hunley TE et al.	10652034	Non-human s
	NOS1-dependent negative feedback regulation of the epithelial			
1		Hyndman KA et al.	25391901	Non-human s
	Collecting Duct Nitric Oxide Synthase 1 beta Activation Maintains			
	Sodium Homeostasis During High Sodium Intake Through			
1	Suppression of Aldosterone and Renal Angiotensin II Pathways	Hyndman KA et al.	29066445	Non-human s
	Pathophysiological roles of adrenomedullin-RAMP2 system in acute			
1	and chronic cerebral ischemia	Igarashi K et al.	25252154	Non-human s
	Role of A(1) receptors in renal sympathetic neurotransmission in the			
1	mouse kidney	Jackson EK et al.	22874760	Non-human s
	mPGES-1 deletion potentiates urine concentrating capability after			
1	water deprivation	Jia ZJ et al.	22237797	Non-human s
	Transfer of a salt-resistant renin allele raises blood pressure in Dahl			
1	salt-sensitive rats	Jiang J et al.	9040448	Non-human s
	Angiotensin-converting enzyme inhibition attenuates the			
1	progression of rat hepatic fibrosis	Jonsson JR et al.	11438504	Non-human s
	Rat Ace allele variation determines susceptibility to AngII-induced			
1	renal damage	Kamilic J et al.	21788250	Non-human s
1	Genetic-Control Of Blood-Pressure And The Angiotensinogen Locus	Kim HS et al.	7708716	Non-human s

Page	198	of 304
------	-----	--------

1	Regulation of renin secretion and expression in mice deficient in ss 1-and ss 2-adrenergic receptors	Kim SM et al.	17515456	Non-human stud
1	Low Blood Pressure in Endothelial Cell-Specific Endothelin 1 Knockout Mice	Kisanuki YY et al.	20516397	Non-human stuc
1	Lack of an effect of collecting duct-specific deletion of adenylyl cyclase 3 on renal Na+ and water excretion or arterial pressure	Kittikulsuth W et al.	24431204	Non-human stuc
1	Effect of the plasminogen-plasmin system on hypertensive renal and cardiac damage	Knier B et al.	21610512	Non-human stud
1	Axl mediates vascular remodeling induced by deoxycorticosterone acetate-salt hypertension	Korshunov VA et al.	17923589	Non-human stud
1	Reciprocal expression of connexin 40 and 45 during phenotypical changes in renin-secreting cells	Kurt B et al.	21209011	Non-human stud
1	Stimulation of renin secretion by NO donors is related to the cAMP pathway	Kurtz A et al.	9575895	Non-human stu
1	The angiotensin II receptor blocker candesartan improves survival and mesenteric perfusion in an acute porcine endotoxin model	Laesser M et al.	14995942	Non-human stud
1	Physiological impact of increased expression of the AT(1) angiotensin receptor	Le TH et al.	12963678	Non-human stu
1	Nitric oxide reduces the molecular activity of Na+,K+-ATPase in opossum kidney cells	Liang MY et al.	10432402	Non-human stud
1	Regulation of sympathetic nerve activity in heart failure - A role for nitric oxide and angiotensin II	Liu JL et al.	10066676	Non-human stud
1	Overexpression of cytochrome P450 4F2 in mice increases 20- hydroxyeicosatetraenoic acid production and arterial blood pressure	Liu XL et al.	19279555	Non-human stud
1	Sodium-Nitroprusside Increases Glomerular Capillary Hydraulic Conductivity In Isolated Rat Glomeruli	Lovell HB et al.	7706899	Non-human stu
1	Macula Densa Nitric Oxide Synthase 1 beta Protects against Salt- Sensitive Hypertension	Lu Y et al.	26647426	Non-human stud
1	Correction of an enzyme trafficking defect in hereditary kidney stone disease in vitro	Lumb MJ et al.	12737622	Non-human stud

1	Development and Analysis of Alpha 1-Antitrypsin Neoglycoproteins: The Impact of Additional N-Glycosylation Sites on Serum Half-Life	Lusch A et al.	23668542	Non-human stud
	Connexin 40 is dispensable for vascular renin cell recruitment but is			
1	indispensable for vascular baroreceptor control of renin secretion	Machura K et al.	25241776	Non-human stuc
1	Angiotensin receptor-binding protein ATRAP/Agtrap inhibits metabolic dysfunction with visceral obesity.	Maeda A et al.	23902639	Non-human stuc
1	Effect of sodium nitroprusside on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetized dogs	Maekawa H et al.	8720419	Non-human stud
1	Hypertension in unilaterally nephrectomized rats induced by single- kidney transfection with angiotensinogen cDNA	Marley WS et al.	10567853	Non-human stud
1	A novel rodent model of pregnancy complications associated with genetically determined angiotensin-converting enzyme (ACE) activity	Mata-Greenwood E et al.	29360395	Non-human stud
1	Chronic regulation of arterial blood pressure by ANP: role of endogenous vasoactive endothelial factors	Melo LG et al.	9815091	Non-human stu
1	Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes	Merrill DC et al.	8613528	Non-human stud
1	Role of endothelium-derived relaxing factors in the renal response to vasoactive agents in hypothyroid rats	Moreno JM et al.	12657567	Non-human stud
1	Hypervolemia of pregnancy is not maintained in mice chronically overexpressing angiotensinogen	Morgan TK et al.	16796982	Non-human stu
1	Vascular angiotensin-converting enzyme expression regulates local angiotensin II	Muller DN et al.	9039087	Non-human stu
1	AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II-induced hypertension	Navedo MF et al.	18174462	Non-human stud
1	Angiotensin-li Enhances Norepinephrine Spillover During Sympathetic Activation In Conscious Rabbits	Noshiro T et al.	WOS:A1994NP99600022	Non-human stud

1	Effects of potassium adaptation on blood pressure and pressor responses in normotensive and renal hypertensive Wistar rats	Omogbai EL et al.	15834453	Non-human study
1	Altered regulation of renal interstitial hydrostatic pressure and the renal renin-angiotensin system in the absence of atrial natriuretic peptide	O'Tierney PF et al.	18192845	Non-human study
1	Effects of Stimulation of Soluble Guanylate Cyclase on Diabetic Nephropathy in Diabetic eNOS Knockout Mice on Top of Angiotensin II Receptor Blockade	Ott IM et al.	22900035	Non-human study
1	Nitric oxide modulates angiotensin II- and norepinephrine- dependent vasoconstriction in rat kidney	Parekh N et al.	8780230	Non-human study
1	Gene Trapping Uncovers Sex-Specific Mechanisms for Upstream Stimulatory Factors 1 and 2 in Angiotensinogen Expression	Park S et al.	22547438	Non-human study
1	Hyperplastic Growth Of Aortic Smooth-Muscle Cells In Renovascular Hypertensive Rabbits Is Characterized By The Expansion Of An Immature Cell Phenotype	Pauletto P et al.	8156626	Non-human study
1	Mechanical Basis of Osmosensory Transduction in Magnocellular Neurosecretory Neurones of the Rat Supraoptic Nucleus	Prager-Khoutorsky M et al.	25712904	Non-human study
1	Calcium/Calmodulin-Dependent Kinase II Inhibition in Smooth Muscle Reduces Angiotensin II-Induced Hypertension by Controlling Aortic Remodeling and Baroreceptor Function	Prasad AM et al.	26077587	Non-human study
1	Endothelium-Dependent Control Of Vascular Tone In The Rabbit Kidney After Ischemia And Reperfusion	Pruneau D et al.	8453977	Non-human study
1	Angiotensin II stimulates the synthesis and secretion of vascular permeability factor vascular endothelial growth factor in human mesangial cells	Pupilli C et al.	10215323	Non-human study
1	Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension	Ragot H et al.	27296994	Non-human study
1	Knockdown of parathyroid hormone related protein in smooth muscle cells alters renal hemodynamics but not blood pressure	Raison D et al.	23720345	Non-human study

1	Nephron-specific deletion of the prorenin receptor causes a urine concentration defect	Ramkumar N et al.	25995108	Non-human stu
1	Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension	Ramkumar N et al.	WOS:000380233800013	Non-human stu
1	20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR	Savas S et al.	WOS:000380826700046	Non-human stu
1	Angiotensin converting enzyme (ACE) gene expression in experimentally induced liver cirrhosis in rats	Shahid SM et al.	24035938	Non-human stu
1	Strain differences in angiotensin-converting enzyme and angiotensin II type I receptor expression. Possible implications for experimental chronic renal transplant failure	Smit-van Oosten A et al.	11984748	Non-human stu
1		Soria LA et al.	19665052	Non-human stu
1	Angiotensin II Type 1A Receptors in Vascular Smooth Muscle Cells Do Not Influence Aortic Remodeling in Hypertension	Sparks MA et al.	21242463	Non-human stu
1	Thromboxane Receptors in Smooth Muscle Promote Hypertension, Vascular Remodeling, and Sudden Death	Sparks MA et al.	23150508	Non-human stu
1	Losartan and Sodium Nitroprusside Effectively Protect against Renal Impairments after Ischemia and Reperfusion in Rats	Srisawat U et al.	25947921	Non-human stu
1	Natriuretic Peptide Receptor Guanylyl Cyclase-A in Podocytes is Renoprotective but Dispensable for Physiologic Renal Function	Staffel J et al.	27153922	Non-human stu
1	Co-operation between particulate and soluble guanylyl cyclase systems in the rat renal glomeruli	Stepinski J et al.	11016869	Non-human stu
1	Renal angiotensin converting enzyme promotes renal damage during ureteral obstruction	Stoneking BJ et al.	9719278	Non-human stu
1	Mediation of tubuloglomerular feedback by adenosine: Evidence from mice lacking adenosine 1 receptors	Sun DQ et al.	11504952	Non-human stu

Page 202	of 304
----------	--------

1	Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity	Sun RX et al.	25467400	Non-human study
1	Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-Binding Protein).	Tassi E et al.	29158353	Non-human study
1	Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta)	Tipsmark CK et al.	12654889	Non-human study
1	Mechanisms of Renal. Control of Potassium Homeostasis in Complete Aldosterone Deficiency	Todkar A et al.	25071088	Non-human study
1	Functional genetic variation in aminopeptidase A (ENPEP): Lack of clear association with focal and segmental glomerulosclerosis (FSGS)	Tonna S et al.	18206321	Non-human study
1	Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase	Touyz RM et al.	15753233	Non-human study
1	Increased availability of nitric oxide leads to enhanced nitric oxide dependency of tubuloglomerular feedback in the contralateral kidney of rats with2-kidney, 1-clip Goldblatt hypertension	Turkstra E et al.	10523346	Non-human study
1	Cardiac phenotype and angiotensin II levels in AT(1a), AT(1b), and AT(2) receptor single, double, and triple knockouts	van Esch JHM et al.	20071356	Non-human study
1	Blood pressure and renal hemodynamic responses to acute angiotensin II infusion are enhanced in a female mouse model of systemic lupus erythematosus	Venegas-Pont M et al.	21900645	Non-human study
1	Compensatory up-regulation of angiotensin II subtype 1 receptors in alpha ENaC knockout heterozygous mice	Wang Q et al.	11380824	Non-human study
1	Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1 alpha Knockout and Wild- Type Mice	Wang XM et al.	26883268	Non-human study
1	Nebivolol treatment improves resistant arterial function and reduces ventricular hypertrophy and angiotensin II in spontaneously hypertension rats	Wang Y et al.	23263161	Non-human study

1	Human GRK4 gamma(142V) Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition	Wang Z et al.	26667412	Non-human stud
1	Role of neutral endopeptidase 24.11 in AV fistular rat model of heart failure	Wegner M et al.	8759244	Non-human stud
1	Lysine-Specific Demethylase 1: An Epigenetic Regulator of Salt- Sensitive Hypertension	Williams JS et al.	22534796	Non-human stu
1	Role of angiotensin-converting enzyme (ACE and ACE2) imbalance on tourniquet-induced remote kidney injury in a mouse hindlimb ischemia-reperfusion model	Yang XH et al.	22580272	Non-human stud
1	Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension	Yogi A et al.	18195161	Non-human stu
1	Signal transduction through Ca2+/calmodulin-dependent Ras- GTPase and protein kinase II contributes to development of diabetes-induced renal vascular dysfunction	Yousif MH	16287213	Non-human stu
1	Cosegregation of spontaneously hypertensive rat renin gene with elevated blood pressure in an F-2 generation	Yu H et al.	9794718	Non-human stu
1	Add-on angiotensin receptor blockade with maximized ACE inhibition	Agarwal R	11380832	Not a case-contr study
1	Angiotensin-converting enzyme genotype is a predictive factor in the peak panel-reactive antibody response	Akcay A et al.	15013293	Not a case-contr study
1	Association of the genetic polymorphisms of the renin-angiotensin system and endothelial nitric oxide synthase with chronic renal transplant dysfunction	Akcay A et al.	15385810	Not a case-cont study
1	Major clinical trials of hypertension - What should be done next?	Alderman MH et al.	WOS:000230012700001	Not a case-cont study
1	Allergic reaction related to ramipril use: a case report	Alencar RC et al.	20180980	Not a case-cont study

1	CYP3A5 and ABCB1 genes and hypertension	Bochud M et al.	19290795	Not a case-contro study
1	Disorders of mineralocorticoid synthesis	Connell JMC et al.	11469810	Not a case-contro study
1	Whole-Genome Linkage and Association Scan in Primary, Nonsyndromic Vesicoureteric Reflux	Cordell HJ et al.	19959718	Not a case-contro study
1	Genetics of angiotensin I-converting enzyme	Costerousse O et al.	9247746	Not a case-contro study
1	Renin Angiotensin System and Cytokines in Chronic Kidney Disease: Clinical and Experimental Evidence	da Silva AAS et al.	28820061	Not a case-contro study
1	Association between two genetic polymorphisms of the renin- angiotensin-aldosterone system and diabetic nephropathy: a meta- analysis	Ding W et al.	21607620	Not a case-contro study
1	A systematic review and meta-analysis of the association between angiotensin II type 1 receptor A1166C gene polymorphism and myocardial infarction susceptibility	Feng X et al.	23178513	Not a case-contro study
1	Polymorphism of angiotensin converting enzyme, angiotensinogen, and angiotensin II type 1 receptor genes and end-stage renal failure in IgA nephropathy: IGARAS - A study of 274 men	Frimat L et al.	11053482	Not a case-contro study
1	HLA genes in ANCA-associated vasculitides	Griffith ME et al.	9493788	Not a case-contro study
1	Antiproteinuric effect of candesartan cilexetil in Japanese subjects with type 2 diabetes and nephropathy	Haneda M et al.	15364166	Not a case-contro study
1	Nonmodulation and essential hypertension	Hollenberg NK et al.	16672145	Not a case-contro study
1	Angiotensinogen genotype affects renal and adrenal responses to angiotensin II in essential hypertension	Hopkins PN et al.	11997278	Not a case-contro study
1	Association between Angiotensin I-Converting Enzyme Insertion/Deletion Polymorphism and Prognosis of Kidney Transplantation: A Meta-Analysis	Huang ZK et al.	26000752	Not a case-contro

1	Association of angiotensinogen gene M235T and angiotensin- converting enzyme gene I/D polymorphisms with essential hypertension in Han Chinese population: a meta-analysis	Ji LD et al.	20087216	Not a case-contro study
1	The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study.	Kelly TN et al.	25906781	Not a case-contro study
1	The Phenotypic Patterns of Essential Hypertension Are the Key to Identifying "High Blood Pressure" Genes	Korner Pl	21208016	Not a case-contro study
1	Glucocorticoids Reduce Aberrant O-Glycosylation of IgA1 in IgA Nephropathy Patients	Kosztyu P et al.	29529610	Not a case-contro study
1	Antihypertensive treatment modulates the association between the D/I ACE gene polymorphism and left ventricular hypertrophy: a meta-analysis	Kuznetsova T et al.	10918550	Not a case-contro study
1	The renoprotective effect of antihypertensive drugs	Locatelli F et al.	10048500	Not a case-contro study
1	microRNAs in Essential Hypertension and Blood Pressure Regulation	Marques FZ et al.	26663185	Not a case-contro study
1	Genetics and the prediction of complications in type 1 diabetes	Marre M	10097900	Not a case-contro study
1	Improvement of nephrotic syndrome by intensive lipid-lowering therapy in a patient with lipoprotein glomerulopathy	Matsunaga A et al.	19603250	Not a case-contro study
1	Mechanisms of plasminogen activator inhibitor 1 action in stromal remodeling and related diseases	Milenkovic J et al.	29097819	Not a case-contro study
1	Angiotensinogen gene variation and renoprotective efficacy of renin-angiotensin system blockade in IgA nephropathy	Narita I et al.	12911556	Not a case-contro study
	Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: a meta-analysis of studies reported between 1994 and 2004 and comprising 14,727		15020402	Not a case-contro
1	subjects	Ng D et al.	15830182	study

1	Is the presence of retinopathy of practical value in defining cases of diabetic nephropathy in genetic association studies? The experience with the ACE insertion/deletion polymorphism in 53 studies comprising 17,791 subjects	Ng DPK et al.	18523141	Not a case-control study
1	Partial Deletion of the AGXT Gene (EX1_EX7del): A New Genotype in Hyperoxaluria Type 1	Nogueira PK et al.	10737993	Not a case-control study
1		Obata F et al.	28509128	Not a case-control study
1	Survival in type 2 diabetic patients in dialysis and the number of risk alleles in polymorphisms of the renin-angiotensin system genes	Padro-Miquel A et al.	19014923	Not a case-control study
1	Normative genetic profiles of RAAS pathway gene Polymorphisms in	Prasad P et al.	18027817	Not a case-control study
1	Stress, Genes, and Hypertension. Contribution of the ISIAH Rat Strain Study	Redina et al.	29909475	Not a case-control study
1	A Synergistic Association of ACE I/D and eNOS G894T Gene Variants with the Progression of Immunoglobulin A Nephropathy - A Pilot Study	Rodriguez-Perez JC et al.	19546528	Not a case-control study
1	Diabetic nephropathy is associated with AGT polymorphism T235 - Results of a family-based study	Rogus JJ et al.	9461232	Not a case-control study
1	Risk of developing diabetic nephropathy is not associated with synergism between the angiotensin II (type 1) receptor C-1166 allele and poor glycaemic control	Savage DA et al.	10328465	Not a case-control study
1	ACE gene polymorphism and IgA nephropathy: An ethnically homogeneous study and a meta-analysis	Schena FP et al.	11473656	Not a case-control study
1	Genetic determinants of diabetic renal disease and their impact on therapeutic interventions	Schmidt S et al.	WOS:A1997YJ60500008	Not a case-control study

1	Impact of genetic polymorphisms of the renin-angiotensin system and of non-genetic factors on kidney transplant function - a single- center experience	Siekierka-Harreis M et al.	19681973	Not a case-contro study
1	The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk	Staessen JA et al.	9488209	Not a case-contro study
1	M235T angiotensinogen gene polymorphism and cardiovascular renal risk	Staessen JA et al.	10100088	Not a case-contro study
1	Weber-Christian Disease Associated with the Tip Variant of Focal Segmental Glomerulosclerosis: A Case Report	Sterling KA et al.	23216240	Not a case-contro study
1	Gastric-Carcinoma With Osteoclast-Like Giant-Cells - Report Of 4 Cases	Straccapansa V et al.	7726143	Not a case-contr study
1	Analysis of baseline parameters in the HALT polycystic kidney disease trials.	Torres VE et al.	22205355	Not a case-contr study
1	Mistyping of the human angiotensin-converting enzyme gene polymorphism: Frequency, causes and possible methods to avoid errors in typing	Ueda S et al.	8863184	Not a case-contr study
1	Varicella-zoster virus (VZV) and alpha 1 antitrypsin: a fatal outcome in a patient affected by endemic pemphigus foliaceus	Velez AMA et al.	WOS:000305514500009	Not a case-contr study
1	NHLBI Family Blood Pressure Program: Methodology and recruitment in the HyperGEN network	Williams RR et al.	10964005	Not a case-contr study
1		Wong TYH et al.	11431175	Not a case-contr study
1	Gene Polymorphisms of the Renin-AngiotensinAldosterone system and angiotensin 11 type I-Receptor activating antibodies in renal rejection	Zhang G et al.	17984617	Not a case-contr study
1	Associations between angiotensinogen M235T polymorphisms and the risk of diabetic nephropathy: A meta-analysis	Zhou B et al.	29775675	Not a case-contr study
1	Association of angiotensin II type-1 receptor A1166C gene polymorphism with the susceptibility of end-stage renal disease	Zhou TB et al.	23971628	Not a case-contr study

1	Variants in blood pressure genes and the risk of renal cell carcinoma	Andreotti G et al.	20047954	Not a renal diseas focus
1	Association of angiotensin II type 1 receptor gene A1166C polymorphism with the presence of diabetes mellitus and metabolic syndrome in patients with documented coronary artery disease	Assali A et al.	21570644	Not a renal diseas focus
1	Germline genetic variations at 11q13 and 12p11 locus modulate age at onset for renal cell carcinoma.	Audenet F et al.	23911636	Not a renal diseas focus
1	Angiotensinogen M235T and angiotensin-converting enzyme I/D gene polymorphism and their association with type 2 diabetes in Egypt	Badr S et al.	WOS:000309728600182	Not a renal diseas focus
1	Polymorphism in angiotensin II receptor genes and hypertension	Baudin B	15640279	Not a renal diseas focus
1	Analyses of mutations in the human renal kallikrein (hKLK1) gene and their possible relevance to blood pressure regulation and risk of myocardial infarction	Berge KE et al.	9298743	Not a renal disea focus
1	Single Strand Conformation Polymorphism (SSCP) as a quick and reliable method to genotype M235T polymorphism of angiotensinogen gene	Bettinaglio P et al.	12270765	Not a renal disea focus
1	Polymorphisms of the renin-angiotensin system in patients with multifocal renal arterial fibromuscular dysplasia	Bofinger A et al.	11317203	Not a renal disea focus
1	Association between plasma activities of semicarbazide-sensitive amine oxidase and angiotensin-converting enzyme in patients with type 1 diabetes mellitus.	Boomsma F et al.	15830186	Not a renal disea focus
1	Can the choice of diet undermine the potential genetic risk of AT1R 1166A>C gene polymorphism?	Bozina T et al.	30205174	Not a renal disea focus
1	Structure-Based Analysis of Single Nucleotide Variants in the Renin- Angiotensinogen Complex	Brown DK et al.	28302554	Not a renal disea focus
1	Interactions between serotonin and endogenous and exogenous noradrenaline in the human forearm.	Bruning TA et al.	7866595	Not a renal disea focus

1	Renin-angiotensin system gene polymorphisms: assessment of the risk of coronary heart disease.	Buraczyńska M et al.	14502296	Not a renal disease focus
1	Oxidative stress-related factors in Bartter's and Gitelman's syndromes: relevance for angiotensin II signalling.	Calo LA et al.	12897089	Not a renal disease focus
1	alpha(1)-antitrypsin (AAT) deficiency and ANCA-positive systemic vasculitis: genetic and clinical implications	Callea F et al.	9279535	Not a renal diseas focus
1	Evaluation of Alpha-1 Antitrypsin Levels and SERPINA1 Gene Polymorphisms in Sickle Cell Disease	Carvalho MOS et al.	29163550	Not a renal diseas focus
1	Role of GRK4 in the Regulation of Arterial AT(1) Receptor in Hypertension	Chen K et al.	24218433	Not a renal diseas focus
1	A study on the association between angiotensin-I converting enzyme I/D dimorphism and type-2 diabetes mellitus.	Chmaisse HN et al.	19861867	Not a renal diseas focus
1	alpha-adducin and angiotensin I-converting enzyme polymorphisms in essential hypertension	Clark CJ et al.	11116113	Not a renal diseas focus
1	Elevated urinary albumin excretion is not linked to the angiotensin I- converting enzyme gene polymorphism in clinically healthy subjects	Clausen P et al.	10872702	Not a renal diseas focus
1	Role of ACE inhibitors in patients with diabetes mellitus	Cordonnier DJ et al.	11708761	Not a renal diseas focus
1	Molecular genetics of the renin-angiotensin-aldosterone system in human hypertension	Corvol P et al.	9296068	Not a renal disea: focus
1	6	Costerousse O et al.	9830503	Not a renal diseas focus
1	Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier.	Coto E et al.	20594303	Not a renal disea: focus
1	SNP Variants in RET and PAX2 and Their Possible Contribution to the Primary Hyperoxaluria Type 1 Phenotype	Coulter-Mackie MB	25854853	Not a renal disea focus
1	Overexpression of human alanine:glyoxylate aminotransferase in Escherichia coli: renaturation from guanidine-HCl and affinity for pyridoxal phosphate co-factor.	Coulter-Mackie MB et al.	15802217	Not a renal diseas

1	The major allele of the alanine:glyoxylate aminotransferase gene: nine novel mutations and polymorphisms associated with primary hyperoxaluria type 1.	Coulter-Mackie MB et al.	15963748	Not a renal disease focus
1	Mutation-based diagnostic testing for primary hyperoxaluria type 1:	Coulter-Mackie MB et al.	18282470	Not a renal disease focus
1	Further studies on the activity and subcellular distribution of alanine:glyoxylate aminotransferase in the livers of patients with primary hyperoxaluria type 1.	Danpure CJ et al.	3416563	Not a renal disease focus
1	Alanine : glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease	Danpure CJ et al.	12686111	Not a renal diseas focus
1	Insertion/Deletion Polymorphism of Angiotensin I-converting Enzyme Gene Is Linked With Chromophobe Renal Cell Carcinoma	de Martino M et al.	21477733	Not a renal disease focus
1	Polymorphisms in genes of the renin-angiotensin-aldosterone system and renal cell cancer risk: Interplay with hypertension and intakes of sodium, potassium and fluid	Deckers IA et al.	24978482	Not a renal diseas
1	ACE gene insertion/deletion polymorphism modulates capillary permeability in hypertension	Dell'omo G et al.	16889537	Not a renal diseas focus
1	Single nucleotide polymorphism of adiponectin +276 G/T is associated with the susceptibility to essential hypertension in a Turkish population.	Demir AK et al.	27936341	Not a renal diseas focus
1		Deuster PA et al.	23543093	Not a renal diseas focus
1	Vasodilator-derived nitric oxide inhibits fetal calf serum- and angiotensin-II-induced growth of renal arteriolar smooth muscle cells	Dubey RK et al.	8169847	Not a renal diseas focus
1	The angiotensin I-converting enzyme gene insertion/deletion polymorphism is linked to early gastric cancer	Ebert MPA et al.	16365022	Not a renal diseas focus
1	A new theory of essential hypertension based on analysis of the association between a polymorphism of the alpha(2)-adrenoceptor at the 10q24-q26 locus and hypertension in African-Americans	Eggers AE	26243176	Not a renal diseas focus

1	CYP3A5 genotype is associated with elevated blood pressure.	Fromm MF et al.	16141800	Not a renal disease focus
1	Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension	Gainer JV et al.	15611369	Not a renal disease focus
1	The interaction of AGT and NOS3 gene polymorphisms with conventional risk factors increases predisposition to hypertension	Gatti RR et al.	22791701	Not a renal diseas
1	Somatic Von Hippel-Lindau Mutation In Clear-Cell Papillary Cystadenoma Of The Epididymis	Gilcrease MZ et al.	8522307	Not a renal diseas
1	Phenotype-genotype analysis in two Chinese families with Liddle syndrome.	Gong L et al.	24474657	Not a renal diseas focus
1	alpha(1)-Antitrypsin Deficiency in Fraternal Twins Born With Familial Spontaneous Pneumothorax	Greene DN et al.	22215832	Not a renal diseas focus
1	C-antineutrophil cytoplasmic antibody positivity in vasculitis patients is associated with the Z allele of alpha-1-antitrypsin, and P-antineutrophil cytoplasmic antibody positivity with the S allele.	Griffith ME et al.	8671812	Not a renal diseas focus
1	Potential Benefits of Rho-kinase Inhibition in Arterial Hypertension	Grisk O	23852615	Not a renal diseas focus
1	A Computational Model of the Circulating Renin-Angiotensin System and Blood Pressure Regulation	Guillaud F et al.	20683640	Not a renal diseas focus
1	The presence of PAI-1 4G/5G and ACE DD genotypes increases the risk of early-stage AVF thrombosis in hemodialysis patients.	Gungor Y et al.	21332339	Not a renal diseas focus
1	Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes	Hanukoglu A et al.	18634878	Not a renal diseas focus
1	Blunted renal vascular response to angiotensin II is associated with a common Variant of the angiotensinogen gene and obesity	Hopkins PN et al.	8728297	Not a renal diseas focus
1	Vitamin B6 in Primary Hyperoxaluria I: First Prospective Trial after 40 Years of Practice	Hoyer-Kuhn H et al.	24385516	Not a renal diseas

1	Genetic variation of the renin-angiotensin system and chronic kidney disease progression in black individuals in the atherosclerosis risk in communities study	Hsu CCC et al.	16396964	Not a renal disease
1	Clinical and Genetic Factors Associated With Thiazide-Induced Hyponatremia.	Huang CC et al.	26313793	Not a renal disease
1	A case control association study of ACE gene polymorphism (I/D) with hypertension in Punjabi population from Faisalabad, Pakistan	Hussain M et al.	29058472	Not a renal disease focus
1	Genetic variant of the renin-angiotensin system and prevalence of type 2 diabetes mellitus: a modest but significant effect of aldosterone synthase	Ichikawa M et al.	24549414	Not a renal disease focus
1	No association between alpha-adducin 460 polymorphism and essential hypertension in a Japanese population	Ishikawa K et al.	9607391	Not a renal diseas focus
1	Renin-Angiotensin System Gene Variants and Type 2 Diabetes Mellitus: Influence of Angiotensinogen	Joyce-Tan SM et al.	WOS:000370250500001	Not a renal diseas focus
1	Lack of association between the alpha-adducin locus and essential hypertension in the Japanese population	Kato N et al.	9495254	Not a renal diseas focus
1	Comprehensive analysis of the renin-angiotensin gene polymorphisms with relation to hypertension in the Japanese	Kato N et al.	10953993	Not a renal diseas focus
1	Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension.	Komiya I et al.	10720581	Not a renal diseas focus
1	Molecular-Biology Of Hypertension	Krieger Je et al.	WOS:A1991GF39900002	Not a renal diseas focus
1	Effects of angiotensin-converting enzyme gene polymorphism and serum vitamin D levels on ambulatory blood pressure measurement and left ventricular mass in Turkish hypertensive population	Kulah E et al.	17625392	Not a renal diseas focus
1	Efficacy of Korean Red Ginseng by Single Nucleotide Polymorphism in Obese Women: Randomized, Double-blind, Placebo-controlled Trial	Kwon DH et al.	23717118	Not a renal diseas focus
1	Serum liver enzymes in Turner syndrome	Larizza D et al.	10664223	Not a renal diseas focus

1	Risk given by AGT polymorphisms in inducing susceptibility to essential hypertension among isolated populations from a remote region of China: A case-control study among the isolated populations	Li Q et al.	26391364	Not a renal diseas
1	Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations.	Liang J et al.	28498854	Not a renal disease focus
1	No Evidence for the Expression of Renin-Angiotensin-Aldosterone System in Otosclerotic Stapes Footplates	Liktor B et al.	23370555	Not a renal disease focus
1	Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations.	Lumb MJ et al.	10960483	Not a renal diseas focus
1	Effects of organic anion transporting polypeptide IBI haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril	Maeda K et al.	16678545	Not a renal diseas focus
1	Low-salt diet and diuretic effect on blood pressure and organ damage	Manunta P et al.	14684671	Not a renal diseas focus
1	Renal changes on hyperglycemia and angiotensin-converting enzyme in type 1 diabetes	Marre M et al.	10082486	Not a renal diseas focus
1	Association of TNFRSF4 gene polymorphisms with essential hypertension	Mashimo Y et al.	18398332	Not a renal diseas focus
1	Alternative transcripts of the SERPINA1 gene in alpha-1 antitrypsin deficiency	Matamala N et al.	26141700	Not a renal diseas focus
1	Detection of the association between a deletion polymorphism in the gene encoding angiotensin I-converting enzyme and advanced diabetic retinopathy	Matsumoto A et al.	11106834	Not a renal diseas focus
1	Association of the D allele of the angiotensin I converting enzyme polymorphism with malignant vascular injury	Mayer NJ et al.	WOS:000173608200004	Not a renal diseas focus
1	Genotypic interactions of renin-angiotensin system genes with diabetes type 2 in a Tunisian population	Mehri S et al.	20580725	Not a renal diseas focus

	Association of polymorphisms of angiotensin I converting enzyme 2 with retinopathy in type 2 diabetes mellitus among Chinese			Not a renal diseas
1	individuals	Meng N et al.	25359286	focus
T	The consensus-based approach for gene/enzyme replacement		23339280	10003
	therapies and crystallization strategies: the case of human alanine-			Not a renal diseas
1	glyoxylate aminotransferase.	Mesa-Torres N et al.	24957194	focus
	Angiotensin II type 1 receptor gene polymorphism and the response	incou forres i ce ui.	21337131	Not a renal diseas
1	to hyperglycemia in early type 1 diabetes	Miller JA et al.	10969844	focus
1		Willer JA et al.	10969844	
	Pharmacologic rescue of an enzyme-trafficking defect in primary			Not a renal diseas
1	hyperoxaluria 1.	Miyata N et al.	25237136	focus
	Association of Polymorphisms in Endothelial Nitric Oxide Synthesis			
	and Renin-Angiotensin-Aldosterone System with Developing of			Not a renal diseas
1	Coronary Artery Disease in Bulgarian Patients	Mokretar K et al.	26670794	focus
	Contribution of angiotensin I converting enzyme gene			
	polymorphism and angiotensinogen gene polymorphism to blood			Not a renal disea
1	pressure regulation in essential hypertension.	Mondorf UF et al.	9524045	focus
	Comprehensive mutation screening in 55 probands with type 1			Not a renal diseas
1	primary hyperoxaluria shows feasibility of a gene-based diagnosis.	Monico CG et al.	17460142	focus
	Inhibition of tissue angiotensin converting enzyme activity prevents			Not a renal disea
1	malignant hypertension in TGR(mREN2)27.	Montgomery HE et al.	9797175	focus
	Two novel point mutations in the lecithin:cholesterol			
	acyltransferase (LCAT) gene resulting in LCAT deficiency: LCAT (G873			Not a renal disea
1	deletion) and LCAT (Gly344>Ser)	Moriyama K et al. 🦳 🗸	8656071	focus
	Independent, Marked Associations Of Alleles Of The Insulin-			
	Receptor And Dipeptidyl Carboxypeptidase-I Genes With Essential-			Not a renal disea
1	Hypertension	Morris BJ et al.	8104754	focus
	ANCA-associated vasculitis is linked to carriage of the Z allele of			Not a renal disea
1	alpha(1) antitrypsin and its polymers	Morris H et al.	21821620	focus
1	Is the influence of variation in the ACE gene on the prospective risk		21021020	Not a renal disea
1	of Type 2 diabetes in middle-aged men modified by obesity?	Muthumala A et al.	17624939	focus
T	or type 2 diabetes in middle-aged men modified by obesity!	iviatifanala A Et al.	1/024939	10003

	Angiotensin converting enzyme (ACE) insertion/deletion (I/D)			
	polymorphism, and diabetic retinopathy in subjects with IDDM and			Not a renal diseas
1		Nagi Dk et al.	8582133	focus
	Association between RAS gene polymorphisms (ACE I/D, AGT			Not a renal disea
1	M235T) and Henoch-Schonlein purpura in a Turkish population	Nalbantoglu S et al.	23151617	focus
	Enhanced renal production of cyclic GMP and reduced free water			Not a renal disea
1	clearance during sodium nitroprusside infusion in healthy man	Nielsen CB et al.	8393795	focus
	Alpha-1-proteinase inhibitor and pulmonary haemorrhage in			Not a renal disea
1	systemic vasculitis.	O'Donoghue DJ et al.	8296629	focus
	Genetic polymorphisms of the renin-angiotensin system and			Not a renal disea
1		Olivieri O et al.	10567188	focus
	Endothelial nitric oxide synthase gene/gender interactions and the			Not a renal disea
1		Page A et al.	16093452	focus
	Angiotensin-converting enzyme and angiotensin II receptor subtype	0		
	2 genotypes in type 1 diabetes and severe hypoglycaemia requiring	Pedersen-Bjergaard U		Not a renal disea
1		et al.	19820429	focus
	Deep-targeted exon sequencing reveals renal polymorphisms	1		Not a renal disea
1	associate with postexercise hypotension among African Americans	Pescatello LS et al.	WOS:000387445200013	focus
	Impact of maternal angiotensinogen M235T polymorphism and			
	angiotensin-converting enzyme insertion/deletion polymorphism on			Not a renal disea
1	blood pressure, protein excretion and fetal outcome in pregnancy.	Pfab T et al. 🚺 🔪 📐	17563539	focus
	Effect of ACE inhibitors and beta-blockers on homocysteine levels in			Not a renal disea
1	essential hypertension	Poduri A et al.	18200034	focus
	The state and responsiveness of the renin-angiotensin-aldosterone			Not a renal disea
1	system in patients with type II diabetes mellitus	Price DA et al.	10232494	focus
	Identification of mutations associated with peroxisome-to-			
	mitochondrion mistargeting of alanine/glyoxylate aminotransferase			Not a renal disea
1		Purdue PE et al.	1703535	focus
	The relationship between ACE/AGT gene polymorphisms and the			Not a renal disea
1		Qiao YC et al.	29378484	focus

	Association of angiotensin-converting enzyme gene dimorphisms			Not a renal diseas
1		Rabbani MA et al.	18711292	focus
	Association of angiotensinogen M235T and A(-6)G gene polymorphisms with coronary heart disease with independence of			
1	essential hypertension: the PROCAGENE study. Prospective Cardiac Gene.	Rodriquez-Perez JC et al.	11345362	Not a renal disea focus
1	Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias.	Rumsby G et al.	15327387	Not a renal diseas focus
1	Angiotensin II acutely attenuates range of arterial baroreflex control of renal sympathetic nerve activity	Sanderford MG et al.	11009467	Not a renal disea: focus
1	An Erythropoietin Gene Polymorphism in the Hypoxia-Responsive Element at Position 3434 Is Possibly Associated with Hypertension	Schulz EG et al.	21912181	Not a renal disea focus
1	Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin.	Shen Y et al.	16979136	Not a renal disea focus
1	Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India	Singh PP et al.	16621107	Not a renal diseas focus
1	Renal haemodynamics are not related to genotypes in offspring of parents with essential hypertension	Skov K et al.	17083073	Not a renal disea focus
1	Association between renin-angiotensin-aldosterone system-related genes and blood pressure in a Korean population.	Song SB et al.	21342026	Not a renal disea focus
1	Angiotensin II sensitivity in nonpregnant formerly preeclamptic women and healthy parous controls	Spaanderman MEA et al.	15350256	Not a renal disea focus
1	The genetic predisposition to produce high levels of TGF-beta 1 impacts on the severity of eclampsia/pre-eclampsia	Stanczuk GA et al.	17653872	Not a renal disea focus
1	Angiotensin-converting enzyme gene I/D polymorphism in malignant hypertension	Stefansson B et al.	10855732	Not a renal disea focus
1	A Polymorphism Regulates CYP4A11 Transcriptional Activity and Is	Sugimoto K et al.	18936345	Not a renal disea

1	Blunted cGMP response to agonists and enhanced glomerular cyclic 3',5'-nucleotide phosphodiesterase activities in experimental congestive heart failure	Supaporn T et al.	8914042	Not a renal disease focus
1	,	Taddei C et al.	10563543	Not a renal diseas focus
1		Tassiulas IO et al.	9710341	Not a renal diseas focus
1	Middle cerebral artery stenosis in type II diabetic Chinese patients is associated with conventional risk factors but not with polymorphisms of the renin-angiotensin system genes	Thomas GN et al.	12865608	Not a renal diseas focus
1	Peripheral vascular disease in type 2 diabetic Chinese patients: associations with metabolic indices, concomitant vascular disease and genetic factors	Thomas GN et al.	14632699	Not a renal diseas focus
1	Genetic predisposition to left ventricular hypertrophy and the potential involvement of cystatin-C in untreated hypertension.	Tousoulis D et al.	23479071	Not a renal diseas focus
1	Genomic association analysis identifies multiple loci influencing antihypertensive response to an angiotensin II receptor blocker.	Turner ST et al.	22566498	Not a renal diseas focus
1	The M235T polymorphism in theangiotensinogen gene is associated with the risk of malignant hypertension in white patients	van den Born BJH et al.	17921816	Not a renal diseas focus
1	Genetic risk of atherosclerotic renal artery disease - The candidate gene approach in a renal angiography cohort	van Onna M et al.	15326089	Not a renal disea focus
1	Eprosartan modulates the reflex activation of the sympathetic nervous system in sodium restricted healthy humans	Vase H et al.	18341678	Not a renal disea focus
1	Angiotensin I-converting enzyme and angiotensinogen gene interaction and prediction of essential hypertension	Vasku A et al.	9607178	Not a renal disea focus
1	Association between ACE gene polymorphisms and Alzheimer's disease in Han population in Hebei Peninsula	Wang XL et al.	WOS:000412148800122	Not a renal disea focus
1	Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes	Watkins WS et al.	19770777	Not a renal disea focus

Page 218	of 304
----------	--------

	No association between a genetic variant of the p22(phox) component of NAD(P)H oxidase and the incidence and progression			Not a renal disea
1		Wolf G et al.	12147803	focus
1	Genetic polymorphisms of the angiotensin II type 1 receptor gene and diastolic heart failure	Wu CK et al.	19330904	Not a renal disea focus
1	Increased expression of angiotensin II type 1 receptor (AGTR1) in heart transplant recipients with recurrent rejection	Yamani MH et al.	17097490	Not a renal disea focus
1	G-protein beta 3 subunit gene C825T polymorphism in patients with vesico-ureteric reflux	Zagradisnik B et al.	15337465	Not a renal disea focus
1	Frequencies of variants of candidate genes in different age groups of hypertensives	Zee RY et al.	7882587	Not a renal disea focus
1	Crystal structure of alanine: Glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1	Zhang XX et al.	12899834	Not a renal disea
1	Rab1 Small GTP-Binding Protein Regulates Cell Surface Trafficking of the Human Calcium-Sensing Receptor	Zhuang XL et al.	20861236	Not a renal dise focus
1	[Renin-angiotensin system genes in chronic glomerulonephritis].	Buraczyńska M et al.	11865575	Not written in English or Spani
1	[Association of the renin-angiotensin system gene polymorphism with nephropathy in type II diabetes].	Buraczyńska M et al.	12476891	Not written in English or Spani
1	[Genetic predisposition to systemic complications of arterial hypertension in maintenance haemodialysis patients].	Bzoma B et al.	19112833	Not written in English or Spani
1	[Polymorphism of gene encoding vascular angiotensin II receptor and microangiopathies in patients with insulin-dependent diabetes mellitus].	Chistiakov DA et al.	10576062	Not written in English or Spani
1	[Arterial hypertension and chronic hemodialysis].	Ermolenko VM et al.	7700	Not written in English or Spani
	[Is Pstl polymorphism of the angiotensin I converting enzyme gene associated with nephropathy development in non-insulin-			Not written in
1	dependent diabetes mellitus (preliminary study)].	Grzeszczak W et al.	9499204	English or Spanis

	[Effect of eprosartan on the hemostatic system in patients with			Not written in
1	chronic kidney disease associated with hereditary thrombophilia].	Kaliuzhin VV et al.	24261234	English or Spanis
	[Polymorphism studies of angiotensin converting enzyme gene in			Not written in
1	chronic glomerulonephritis].	Kutyrina IM et al.	10420452	English or Spanis
	[Relationship between serum angiotensin I-converting enzyme			Not written in
1	activity and diabetic nephropathy in patients with type II diabetes].	Liao L et al.	12016801	English or Spanis
	[Relationship between I/D polymorphism of angiotensin I converting			
	enzyme gene and microvascular complications in type 2 diabetic			Not written in
1	patients].	Moleda P et al.	17941464	English or Spanis
-			1,511101	English of optime
	[Pharmacogenetic aspects of candesartan application for the			Nuclear States of a
4	treatment of arterial hypertension in patients with chronic	N 4 - · · · · · 11 + A	25206644	Not written in
1	pyelonephritis].	Mormol' IA	25286611	English or Spanis
	[A study on angiotensin-I converting enzyme polymorphism in CAPD			Not written in
1	patients].	Nishina M	9014479	English or Spanis
	[Identification of the locus associated with diabetic nephropathy in			Not written in
1	type 1 diabetes mellitus].	Savost'ianov KV et al.	12500539	English or Spanis
	[Relationships of angiotensinogen gene M235T variant with diabetic			Not written in
1	nephropathy in Chinese type 2 diabetes mellitus].	Wang J et al.	10514536	English or Spanis
	[Association between angiotensin-II receptor gene type I			
	polymorphism and diabetic nephropathy in type 2 diabetes			Not written in
1	mellitus].	Xue Y et al.	11798574	English or Spanis
	[AGTR1 A1166C polymorphism is associated with risk of diabetic			Not written in
1	nephropathy].	Yin X et al.	23505107	English or Spanis
	Posterior urethral valves: Preliminary observations on the			Paediatric
1	significance of plasma renin activity as a prognostic marker	Bajpai M et al.	15643266	Individuals
	Donor and recipient ACE I/D genotype are associated with loss of			Paediatric
1	renal function in children following renal transplantation	Buscher R et al.	21309964	Individuals
	Polymorphisms of the angiotensin converting enzyme and			
	angiotensin II type 1 receptor genes and renal scarring in non-			Paediatric
1	uropathic children with recurrent urinary tract infection	Ece A et al.	16109085	Individuals

Page 220 d	of 304
------------	--------

1	Genetic polymorphism of ACE and the angiotensin II type1 receptor genes in children with chronic kidney disease	Elshamaa MF et al.	21859496	Paediatric Individuals
1	ACE gene polymorphism in Egyptian children with idiopathic	Fahmy ME et al.	18792483	Paediatric Individuals
1	Identification of a novel splice site mutation of CLCN5 gene and characterization of a new alternative 5 ' UTR end of ClC-5 mRNA in human renal tissue and leukocytes	Forino M et al.	14673707	Paediatric Individuals
1	Genetic polymorphisms of the renin-angiotensin system and the outcome of focal segmental glomerulosclerosis in children	Frishberg Y et al.	9853248	Paediatric Individuals
1	Angiotensinogen gene T235 variant: a marker for the development of persistent microalbuminuria in children and adolescents with type 1 diabetes mellitus	Gallego PH et al.	18413222	Paediatric Individuals
1	Autosomal dominant pseudohypoaldosteronism type 1: Mechanisms, evidence for neonatal lethality, and phenotypic expression in adults	Geller DS et al.	16611713	Paediatric Individuals
1	Implication of genetic variations in congenital obstructive nephropathy	Hahn H et al.	16133060	Paediatric Individuals
1	Variants of alpha(1)-proteinase inhibitor in black and white South African patients with focal glomerulosclerosis and minimal change nephrotic syndrome	Halkas AC et al.	9475086	Paediatric Individuals
1	Angiotensin-converting enzyme insertion/deletion gene polymorphism in Egyptian children with systemic lupus erythematosus: a possible relation to proliferative nephritis.	Hammad A et al.	27956582	Paediatric Individuals
1	ACE gene polymorphism and renal scarring in primary vesicoureteric	Haszon I et al.	12478352	Paediatric Individuals
1	Angiotensin type 2 receptor is important in the normal development of the ureter	Hohenfellner K et al.	10353402	Paediatric Individuals
1	Impact of common functional polymorphisms in renin angiotensin system genes on the risk of renal parenchymal scarring following childhood urinary tract infection	Hussein A et al.	25939993	Paediatric Individuals

1	Gene Polymorphisms of Adducin GLY460TRP, ACE I/D, and AGT M235T in Pediatric Hypertension Patients	Kaplan I et al.	25262176	Paediatric Individuals
1	ACE and AT1 receptor gene polymorphisms and renal scarring in urinary bladder dysfunction	Kostic M et al.	15179569	Paediatric Individuals
1	Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: Role of the Renin-Angiotensin system.	Lacoste M et al.	16790508	Paediatric Individuals
1	Hemorrhagic shock and encephalopathy: clinical, pathologic, and biochemical features.	Levin M et al.	2783733	Paediatric Individuals
1	Renin-angiotensin system gene polymorphisms in children with Henoch-Schonlein purpura in West China	Liu DS et al.	WOS:000284763300006	Paediatric Individuals
1	Renin-angiotensin system polymorphisms in Taiwanese primary vesicoureteral reflux	Liu KP et al.	15045574	Paediatric Individuals
1	Polymorphisms of renin-angiotensin system genes in childhood IgA nephropathy	Maruyama K et al.	11354780	Paediatric Individuals
1	Angiotensin-Converting Enzyme Gene Polymorphism in Children 💋 💋 with Idiopathic Nephrotic Syndrome, Effect on Biopsy Findings.	Monajemzadeh M et al.	28481137	Paediatric Individuals
1	A-20C angiotensinogen gene polymorphism and proteinuria in childhood IgA nephropathy	Nakanishi K et al.	14648325	Paediatric Individuals
1	Implications of certain genetic polymorphisms in scarring in vesicoureteric reflux: importance of ACE polymorphism.	Ozen S et al.	10401028	Paediatric Individuals
1	Renin-angiotensin system gene polymorphisms: association with susceptibility to Henoch-Schonlein purpura and renal involvement	Ozkaya O et al.	16521052	Paediatric Individuals
1	Renin-angiotensin gene polymorphism in children with uremia and essential hypertension	Papp F et al.	12579405	Paediatric Individuals
1	Renin-angiotensin system polymorphisms and renal scarring	Pardo R et al.	12579398	Paediatric Individuals
1	Angiotensin I-converting enzyme-gene-polymorphism: Relationship to albumin excretion and blood pressure in pediatric patients with type-I-diabetes mellitus	Pavlovic M et al.	9354852	Paediatric Individuals

	Angiotensin I converting enzyme and angiotensinogen gene polymorphisms related to 24-h blood pressure in paediatric type I			Paediatric
1	diabetes mellitus	Pavlovic M et al.	9950302	Individuals
1	Low renin-angiotensin system activity gene polymorphism and dysplasia associated with posterior urethral valves	Peruzzi L et al.	16006956	Paediatric Individuals
1	Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies	Rigoli L et al.	15470205	Paediatric Individuals
1	Angiotensin II type 2 receptor gene polymorphism in Caucasian children with a wide spectrum of congenital anomalies of the kidney and urinary tract	Siomou E et al.	17515833	Paediatric Individuals
1	Effects of genetic polymorphisms of the renin-angiotensin system in children with nephrotic syndrome	Tabel Y et al.	16525944	Paediatric Individuals
1	ACE gene polymorphism in childhood IgA nephropathy: Association with clinicopathologic findings	Tanaka R et al.	9590186	Paediatric Individuals
1	Genetic risk factors in typical haemolytic uraemic syndrome	Taranta A et al.	19110485	Paediatric Individuals
1	The juxtaglomerular apparatus in Bartter's syndrome and related tubulopathies. An immunocytochemical and electron microscopic study.	Taugner R et al.	3128915	Paediatric Individuals
1	Genetic polymorphism of the renin-angiotensin system on the development of primary vesicoureteral reflux	Yim HE et al.	14764974	Paediatric Individuals
1	Genetic control of VEGF and TGF-beta 1 gene polymorphisms in childhood urinary tract infection and vesicoureteral reflux	Yim HE et al.	17597658	Paediatric Individuals
1	Estimation of the relationship between the polymorphisms of selected genes: ACE, AGTR1, TGF beta 1 and GNB3 with the occurrence of primary vesicoureteral reflux	Zyczkowski et al.	27988909	Paediatric Individuals
1	Randomized Controlled Trial: Lisinopril Reduces Proteinuria, Ammonia, and Renal Polypeptide Tubular Catabolism in Patients With Chronic Allograft Nephropathy	Amara AB et al.	20061926	Pharmaceutical drug focus

	Long-term renoprotective effects of losartan in diabetic			Pharmaceutical
1	nephropathy: interaction with ACE insertion/deletion genotype?	Andersen S et al.	12716812	drug focus
	Effects of losartan and enalapril on high-sensitivity C-reactive			
	protein and total antioxidant in renal transplant recipients with			Pharmaceutical
1	renin-angiotensin system polymorphisms	Argani H et al.	18261537	drug focus
	Efficacy and safety of the angiotensin II receptor blocker losartan for			
	hypertrophic cardiomyopathy: the INHERIT randomised, double-			Pharmaceutical
1	blind, placebo-controlled trial	Axelsson A et al.	25533774	drug focus
	Angiotensin I - Converting enzyme gene polymorphism modulates			
	the consequences of in utero growth retardation on plasma insulin			Pharmaceutical
1	in young adults	Cambien F et al.	9519756	drug focus
	Losartan decreases plasma levels of TGF-beta 1 in transplant			Pharmaceutical
1	patients with chronic allograft nephropathy	Campistol JM et al.	10432413	drug focus
				Pharmaceutical
1	High serum enalaprilat in chronic renal failure	Elung-Jensen et al.	11881130	drug focus
	The influence of renin-angiotensin system genotypes on the			
	antiproteinuric response to high doses of olmesartan in non- 👘 🗾			Pharmaceutical
1	diabetic protein uric nephropathies	Goyache-Goni B et al.	24241364	drug focus
				Pharmaceutical
1	Renal implications of angiotensin receptor blockers	Hollenberg NK	11459212	drug focus
	CYP2C9 genotype and pharmacodynamic responses to losartan in	U A		Pharmaceutical
1	patients with primary and secondary kidney diseases.	Joy MS et al.	19669737	drug focus
	Association of angiotensinogen gene polymorphism with			Pharmaceutical
1	erythropoietin-induced hypertension: a preliminary report	Kuriyama S et al.	11675943	drug focus
	The influence of the ACE (I/D) polymorphism on systemic and renal			
	vascular responses to angiotensins in normotensive,			Pharmaceutica
1	normoalbuminuric Type 1 diabetes mellitus	Luik PT et al.	12856080	drug focus
	Renin-angiotensin system polymorphisms and hemoglobin level in	Noroozianavval M et		Pharmaceutical
1	renal allografts: A comparative study between losartan and enalapril	al.	17524880	drug focus
	ACE gene polymorphism and losartan treatment in type 2 diabetic			Pharmaceutical
1	patients with nephropathy	Parving HH et al.	18199798	drug focus

1	Enalapril and losartan affect lipid peroxidation in renal transplant recipients with renin-angiotensin system polymorphisms	Rashtchizadeh N et al.	17222813	Pharmaceutical drug focus
1	Exaggerated natriuresis during clamping of systemic NO supply in healthy young men	Simonsen JA et al.	21749320	Pharmaceutical drug focus
2	Influence of genetic polymorphisms of the renin-angiotensin system on IgA nephropathy	Bantis C et al.	15031629	No data
2	Genetic polymorphisms of renin-angiotensin system and progression of interstitial nephritis.	Buraczyńska M et al.	12898858	No data
2		Chistyakov DA et al.	WOS:000079798700011	No data
2	U.K. Prospective Diabetes Study. XV: Relationship of renin- angiotensin system gene polymorphisms with microalbuminuria in NIDDM.	Dudley CR et al.	8587251	No data
2	Angiotensin I-converting enzyme and angiotensinogen gene polymorphisms in non-insulin-dependent diabetes mellitus. Lack of relationship with diabetic nephropathy and retinopathy in a Caucasian Mediterranean population.	Gutierrez C et al.	9258285	No data
2	Effects of the genetic polymorphisms of the renin-angiotensin system on focal segmental glomerulosclerosis.	Luther Y et al.	14610337	No data
2	The reninangiotensin system gene polymorphisms and clinicopathological correlations in IgA nephropathy.	Ong-Ajyooth S et al.	10511770	No data
2		Osawa N et al.	17143591	No data
2	The relationship between genetic and haemodynamic factors in diabetic nephropathy (DN): Case-control study in type 1 diabetes mellitus (T1DM)	Shestakova MV et al.	WOS:000242410600010	No data
2		Wang JJ et al.	11717948	No data
2	Lack of association of angiotensin-converting enzyme (DID/II) and angiotensinogen M235T gene polymorphism with renal function among Chinese patients with type II diabetes	Wong TYH et al.	10352194	No data

	Polymorphism of renin-angiotensin system genes in IgA			
2		Woo KT et al.	15504143	No data
	ACE variants interact with the RAS pathway to confer risk and			< 3 populations
3	protection against type 2 diabetic nephropathy.	Ahluwalia TS et al.	19108684	reported per SI
	Analysis of polymorphism in renin angiotensin system and other			< 3 populations
3	related genes in South Indian chronic kidney disease patients.	Anbazhagan K et al.	19520069	reported per SI
	Polymorphism of the renin–angiotensin–aldosterone system in			< 3 populations
3	patients with chronic allograft dysfunction	Ayed K et al.	16635753	reported per SI
	Renin-angiotensin-aldosterone system related gene polymorphisms			< 3 populations
3	and urinary total arsenic is related to chronic kidney disease	Chen WJ et al.	24907556	reported per SI
	Hypertension after renal transplantation and polymorphism of			
	genes involved in essential hypertension: ACE, AGT, AT1R and			< 3 populations
3	ecNOS	El-Essawy AB et al.	11926202	reported per SI
	Genetic polymorphisms of the renin-angiotensin-aldosterone			< 3 populations
3	system and renal insufficiency in essential hypertension.	Fabris B et al.	15662219	reported per SI
	Angiotensinogen gene polymorphisms and progression of chronic	Gnanasambandan R et		< 3 populations
3	kidney disease in ADPKD patients	al.	26482465	reported per SI
	Angiotensinogen and angiotensin II type 1 receptor gene	· (N)		
	polymorphism in patients with autosomal dominant polycystic			< 3 populations
3	kidney disease: effect on hypertension and ESRD.	Lee KB et al.	12950120	reported per SI
	Genes involved in the regulation of vascular homeostasis determine	U A		< 3 populations
3	renal survival rate in patients with chronic glomerulonephritis	Litovkina O et al. 🗸 🗸	24727057	reported per SI
	Contribution of genetic polymorphism in the renin-angiotensin			
	system to the development of renal complications in insulin-			< 3 populations
3	dependent diabetes	Marre M et al.	9120002	reported per SI
	Genetic polymorphism of renin-angiotensin system is not associated			
	with diabetic vascular complications in Japanese subjects with long-			< 3 populations
3	term insulin dependent diabetes mellitus.	Miura J et al.	10499884	reported per SI
	Renin-angiotensin-aldosterone system genotypes and haplotypes			< 3 populations
3		Mtiraoui N et al.	21421655	reported per SI

	Renin-angiotensin system gene polymorphisms predict the			< 3 populations
3		Parsa A et al.	15789057	reported per SNP
	Association of aldosterone synthase (CYP11B2) gene -344T/C			
	polymorphism with the risk of primary chronic glomerulonephritis in			< 3 populations
3	the Polish population.	Pawlik M et al.	23681285	reported per SNP
	Association of angiotensinogen gene T235 variant with progression			< 3 populations
3	of immunoglobin A nephropathy in Caucasian patients	Pei Y et al.	9259580	reported per SNP
	Chronic renal insufficiency among Asian Indians with type 2			< 3 populations
3	diabetes: I. Role of RAAS gene polymorphisms.	Prasad P et al.	16672053	reported per SNP
	Angiotensinogen and plasminogen activator inhibitor-1 gene			< 3 populations
3	polymorphism in relation to renovascular disease.	Reis KA et al.	16228848	reported per SNP
	M235T Polymorphism in the AGT Gene and A/GI8-83 Substitution in			< 3 populations
3	the REN Gene Correlate with End-Stage Renal Disease	Sarkar S et al.	25660845	reported per SNP
	Genetic variants of ACE (Insertion/Deletion) and AGT (M268T) genes			< 3 populations
3	in patients with diabetes and nephropathy	Shaikh R et al.	24737640	reported per SNP
	Polymorphisms of the renin-angiotensin system genes in Brazilian			< 3 populations
3	patients with lupus nephropathy.	Sprovieri SR et al.	15934435	reported per SNP
	Interaction between gene polymorphisms of nitric oxide synthase	10		
	and renin-angiotensin system in the progression of membranous			< 3 populations
3	glomerulonephritis	Stratta P et al.	14767013	reported per SNP
	Gene polymorphisms of angiotensin-converting enzyme and			
	angiotensin II type 1 receptor among chronic kidney disease			< 3 populations
3	patients in a Chinese population.	Su SL et al.	22147663	reported per SNP
	Genetic polymorphisms and the risk of progressive renal failure in			< 3 populations
3	elderly Hungarian patients.	Zsom M et al.	22111818	reported per SNP

 BMJ Open

Supplementary Table S3d: Excluded studies from the AGTR1 search

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1d)

Exclusion Stage	Title	Authors	Pubmed ID or WoS ID if Pubmed ID not available	Reason
				Gene
	Identification of potential candidate genes for hypertensive nephropathy			expression
1	based on gene expression profile	Chen Z et al.	27756246	based study
				No data for
1	Polymorphism in IgA nephropathy	Liu ZH et al.	WOS:A1997WW80600013	AGTR1
	The effect of angiotensin receptor blockade ARB on the regression of left			
	ventricular hypertrophy in hemodialysis patients: comparison between	Nakayama M et		No data for
1	patients with D allele and non-D allele ACE gene polymorphism.	al.	16312263	AGTR1
	Angiotensin II receptor type 1 A1166C modifies the association between			No data for
1	angiotensinogen M235T and chronic kidney disease	Su SL et al.	29296205	AGTR1
	Specific pregnancy-induced angiotensin II type-1 receptor expression in			
	ovine uterine artery does not involve formation of alternate splice 💦 🔍			Non-human
1	variants or alternate promoter usage	Bird IM et al.	9687288	study
	CCN1 expression in interleukin-6 deficient mouse kidney in experimental			Non-human
1	model of heart failure	Bonda TA et al.	23690222	study
		Heringer-		Non-human
1	The genetic deletion of Mas abolishes salt induced hypertension in mice	Walther S et al.	22652430	study
	The angiotensin type II receptor tonically inhibits angiotensin-converting			Non-human
1	enzyme in AT2 null mutant mice	Hunley TE et al.	10652034	study
	Collecting Duct Nitric Oxide Synthase 1 beta Activation Maintains Sodium			-
	Homeostasis During High Sodium Intake Through Suppression of	Hyndman KA et		Non-human
1	Aldosterone and Renal Angiotensin II Pathways	al.	29066445	study
	Physiological impact of increased expression of the AT(1) angiotensin			Non-human
1	receptor	Le TH et al.	12963678	study

	Angiotensin receptor-binding protein ATRAP/Agtrap inhibits metabolic			Non-human
1	dysfunction with visceral obesity.	Maeda A et al.	23902639	study
		Mata-		
	A novel rodent model of pregnancy complications associated with	Greenwood E et		Non-human
1	genetically determined angiotensin-converting enzyme (ACE) activity	al.	29360395	study
	Losartan and Sodium Nitroprusside Effectively Protect against Renal			Non-human
1	Impairments after Ischemia and Reperfusion in Rats	Srisawat U et al.	25947921	study
	Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-			Non-human
1	Binding Protein).	Tassi E et al.	29158353	study
	Mechanisms of Renal. Control of Potassium Homeostasis in Complete			Non-human
1	Aldosterone Deficiency	Todkar A et al.	25071088	study
	Cardiac phenotype and angiotensin II levels in AT(1a), AT(1b), and AT(2)	van Esch JHM et		Non-human
1	receptor single, double, and triple knockouts	al.	20071356	study
	Human GRK4 gamma(142V) Variant Promotes Angiotensin II Type I			
	Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1			Non-human
1	Inhibition	Wang Z et al.	26667412	study
				Not a case-
1	Add-on angiotensin receptor blockade with maximized ACE inhibition	Agarwal R	11380832	control stud
	Association of the genetic polymorphisms of the renin-angiotensin system			
	and endothelial nitric oxide synthase with chronic renal transplant			Not a case-
1		Akcay A et al.	15385810	control stud
	Influence of genetic polymorphisms of the renin-angiotensin system on			Not a case-
1	IgA nephropathy	Bantis C et al.	15031629	control stud
		Cardinal-		
	Genetic determinants of acute renal damage risk and prognosis: a	Fernandez P et		Not a case-
1	systematic review	al.	22436318	control stud
	Association between two genetic polymorphisms of the renin-			
	angiotensin-aldosterone system and diabetic nephropathy: a meta-			Not a case-
1	analysis	Ding W et al.	21607620	control stud
	A systematic review and meta-analysis of the association between			
	angiotensin II type 1 receptor A1166C gene polymorphism and myocardial			Not a case-
1	infarction susceptibility	Feng X et al.	23178513	control stud

	Polymorphism of angiotensin converting enzyme, angiotensinogen, and angiotensin II type 1 receptor genes and end-stage renal failure in IgA			Not a case-
1		Frimat Latal	11052402	
1	nephropathy: IGARAS - A study of 274 men	Frimat L et al.	11053482	control stud
	Survival in type 2 diabetic patients in dialysis and the number of risk	Padro-Miquel A		Not a case-
1	alleles in polymorphisms of the renin-angiotensin system genes	et al.	19014923	control stud
	A Synergistic Association of ACE I/D and eNOS G894T Gene Variants with	Rodriguez-Perez		Not a case-
1	the Progression of Immunoglobulin A Nephropathy - A Pilot Study	JC et al.	19546528	control stud
	Impact of genetic polymorphisms of the renin-angiotensin system and of			
	non-genetic factors on kidney transplant function - a single-center	Siekierka-Harreis		Not a case-
1	experience	M et al.	19681973	control stu
	Analysis of baseline parameters in the HALT polycystic kidney disease			Not a case-
1	trials.	Torres VE et al.	22205355	control stu
	Angiotensin-converting enzyme inhibitor versus angiotensin 2 receptor			
	antagonist therapy and the influence of angiotensin-converting enzyme			Not a case-
1	gene polymorphism in IgA nephritis.	Woo KT et al.	18536822	control stu
	Gene Polymorphisms of the Renin-AngiotensinAldosterone system and			Not a case-
1	angiotensin 11 type I-Receptor activating antibodies in renal rejection	Zhang G et al.	17984617	control stu
	Association of angiotensin II type-1 receptor A1166C gene polymorphism	0		Not a case-
1	with the susceptibility of end-stage renal disease	Zhou TB et al.	23971628	control stud
-	Association of angiotensin II type 1 receptor gene A1166C polymorphism		23371020	control stat
	with the presence of diabetes mellitus and metabolic syndrome in	U L		Not a renal
1	patients with documented coronary artery disease	Assali A et al.	21570644	disease foc
		, loodin , r et din	21070011	Not a renal
1	Polymorphism in angiotensin II receptor genes and hypertension	Baudin B	15640279	disease foc
	Polymorphisms of the renin-angiotensin system in patients with			Not a renal
1	multifocal renal arterial fibromuscular dysplasia	Bofinger A et al.	11317203	disease foc
	Can the choice of diet undermine the potential genetic risk of AT1R			Not a renal
1	1166A>C gene polymorphism?	Bozina T et al.	30205174	disease foc
-	Renin-angiotensin system gene polymorphisms: assessment of the risk of	Buraczynska M		Not a renal

	Association of renin-angiotensin and endothelial nitric oxide synthase gene polymorphisms with blood pressure progression and incident			Not a renal
1	hypertension: prospective cohort study.	Conen D et al.	18698212	disease focus
1	Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier.	Coto E et al.	20594303	Not a renal disease focus
1	Polymorphisms in genes of the renin-angiotensin-aldosterone system and renal cell cancer risk: Interplay with hypertension and intakes of sodium, potassium and fluid	Deckers IA et al.	24978482	Not a renal disease focus
1	Single nucleotide polymorphism of adiponectin +276 G/T is associated with the susceptibility to essential hypertension in a Turkish population.	Demir AK et al.	27936341	Not a renal disease focus
1	Genetic variation of the renin-angiotensin system and chronic kidney disease progression in black individuals in the atherosclerosis risk in communities study	Hsu CCC et al.	16396964	Not a renal disease focus
1	Genetic variant of the renin-angiotensin system and prevalence of type 2 diabetes mellitus: a modest but significant effect of aldosterone synthase	lchikawa M et al.	24549414	Not a renal disease focus
1	Renin-Angiotensin System Gene Variants and Type 2 Diabetes Mellitus: Influence of Angiotensinogen	Joyce-Tan SM et al.	26682227	Not a renal disease focus
1	Comprehensive analysis of the renin-angiotensin gene polymorphisms with relation to hypertension in the Japanese	Kato N et al.	10953993	Not a renal disease focus
1	Renin-angiotensin system gene polymorphisms: its impact on IgAN and its progression to end-stage renal failure among Chinese in Singapore.	Lau YK et al.	15153745	Not a renal disease focus
1	Angiotensin II type 1 receptor gene polymorphism and the response to hyperglycemia in early type 1 diabetes	Miller JA et al.	10969844	Not a renal disease focus
1	Deep-targeted exon sequencing reveals renal polymorphisms associate with postexercise hypotension among African Americans	Pescatello LS et al.	27940662	Not a renal disease focus
1	Association between renin-angiotensin-aldosterone system-related genes and blood pressure in a Korean population.	Song SB et al.	21342026	Not a renal disease focus
1	Angiotensin II Type 1A Receptors in Vascular Smooth Muscle Cells Do Not Influence Aortic Remodeling in Hypertension	Sparks MA et al.	21242463	Not a renal disease focus

	Peripheral vascular disease in type 2 diabetic Chinese patients:			
	associations with metabolic indices, concomitant vascular disease and			Not a renal
1	genetic factors	Thomas GN et al.	14632699	disease focu
	Genomic association analysis identifies multiple loci influencing			Not a renal
1	antihypertensive response to an angiotensin II receptor blocker.	Turner ST et al.	22566498	disease focu
	The M235T polymorphism in theangiotensinogen gene is associated with	van den Born		Not a renal
1	the risk of malignant hypertension in white patients	BJH et al.	17921816	disease focu
	Genetic risk of atherosclerotic renal artery disease - The candidate gene	van Onna M et		Not a renal
1	approach in a renal angiography cohort	al.	15326089	disease focu
	Eprosartan modulates the reflex activation of the sympathetic nervous			Not a renal
1	system in sodium restricted healthy humans	Vase H et al.	18341678	disease focu
	Genetic polymorphisms of the angiotensin II type 1 receptor gene and			Not a renal
1	diastolic heart failure	Wu CK et al.	19330904	disease focu
	Increased expression of angiotensin II type 1 receptor (AGTR1) in heart			Not a renal
1	transplant recipients with recurrent rejection	Yamani MH et al.	17097490	disease focu
-			1/03/130	Not written
		Buraczynska M		English or
1	[Renin-angiotensin system genes in chronic glomerulonephritis].	et al.	11865575	Spanish
				Not written
	[Association of the renin-angiotensin system gene polymorphism with	Buraczynska M		English or
1	nephropathy in type II diabetes].	et al.	12476891	Spanish
				Not written
	[Genetic predisposition to systemic complications of arterial hypertension			English or
1	in maintenance haemodialysis patients].	Bzoma B et al.	19112833	Spanish
				Not written
	[Polymorphism of gene encoding vascular angiotensin II receptor and	Chistiakov DA et		English or
1	microangiopathies in patients with insulin-dependent diabetes mellitus].	al.	10576062	Spanish
				Not written
	[Effect of eprosartan on the hemostatic system in patients with chronic	Kaliuzhin VV et		English or
1	kidney disease associated with hereditary thrombophilia].	al.	24261234	Spanish

	[Pharmacogenetic aspects of candesartan application for the treatment of			Not written i English or
1		Mormol' IA	25286611	Spanish
1			23280011	Not written
	[Identification of the locus associated with diabetic nephropathy in type 1	Savost'ianov KV		English or
1	diabetes mellitus].	et al.	12500539	Spanish
1	uabetes menitusj.	et al.	12500559	
	ACTD1 A11CCC networking is accepted with viel of dishetic			Not written
4	[AGTR1 A1166C polymorphism is associated with risk of diabetic	Via V at al	22505407	English or
1	nephropathy].	Yin X et al.	23505107	Spanish
	Donor and recipient ACE I/D genotype are associated with loss of renal			Paediatric
1		Buscher R et al.	21309964	Individuals
	Polymorphisms of the angiotensin converting enzyme and angiotensin II			_
	type 1 receptor genes and renal scarring in non-uropathic children with			Paediatric
1		Ece A et al.	16109085	Individuals
	Cyclosporine A responsive congenital nephrotic syndrome with single			Paediatric
1		Eichinger A et al.	29663071	Individuals
	Genetic polymorphism of ACE and the angiotensin II type1 receptor genes	Elshamaa MF et		Paediatric
1	in children with chronic kidney disease	al.	21859496	Individuals
	Genetic polymorphisms of the renin-angiotensin system and the outcome			Paediatric
1	of focal segmental glomerulosclerosis in children	Frishberg Y et al.	9853248	Individuals
	Angiotensinogen gene T235 variant: a marker for the development of			
	persistent microalbuminuria in children and adolescents with type 1			Paediatric
1	diabetes mellitus	Gallego PH et al.	18413222	Individuals
	ACE gene polymorphism and renal scarring in primary vesicoureteric			Paediatric
1		Haszon I et al.	12478352	Individuals
	Angiotensin type 2 receptor is important in the normal development of	Hohenfellner K		Paediatric
1	the ureter	et al.	10353402	Individuals
	Impact of common functional polymorphisms in renin angiotensin system			
	genes on the risk of renal parenchymal scarring following childhood			Paediatric
1	urinary tract infection	Hussein A et al.	25939993	Individuals
	ACE and AT1 receptor gene polymorphisms and renal scarring in urinary			Paediatric
1		Kostic M et al.	15179569	Individuals

	Renin-angiotensin system polymorphisms in Taiwanese primary			Paediatric
1	vesicoureteral reflux	Liu KP et al.	15045574	Individuals
	Polymorphisms of renin-angiotensin system genes in childhood IgA	Maruyama K et		Paediatric
1	nephropathy	al.	11354780	Individuals
	Implications of certain genetic polymorphisms in scarring in vesicoureteric			Paediatric
1	reflux: importance of ACE polymorphism.	Ozen S et al.	10401028	Individuals
	Renin-angiotensin system gene polymorphisms: association with			Paediatric
1	susceptibility to Henoch-Schonlein purpura and renal involvement	Ozkaya O et al.	16521052	Individuals
	Renin-angiotensin gene polymorphism in children with uremia and			Paediatric
1	essential hypertension	Papp F et al.	12579405	Individuals
				Paediatric
1		Pardo R et al.	12579398	
	Effects of genetic polymorphisms of the renin-angiotensin system in			Paediatric
1	children with nephrotic syndrome.	Tabel Y et al.	16525944	Individuals
				Paediatric
1		Taranta A et al.	19110485	Individuals
	Mapping candidate regions and genes for congenital anomalies of the			
	kidneys and urinary tract (CAKUT) by array-based comparative genomic			Paediatric
1	hybridization	Weber S et al.	20605837	Individuals
	Genetic polymorphism of the renin-angiotensin system on the			Paediatric
1	development of primary vesicoureteral reflux	Yim HE et al.	14764974	Individuals
	Estimation of the relationship between the polymorphisms of selected			
	genes: ACE, AGTR1, TGFÎ ² 1 and GNB3 with the occurrence of primary	Zyczkowski M et		Paediatric
1	vesicoureteral reflux.	al.	27988909	Individuals
	Long-term renoprotective effects of losartan in diabetic nephropathy:			Pharmaceutica
1		Andersen S et al.	12716812	drug focus
	Effect of ACE and AT-2 inhibitors on mortality and progression to			
	microalbuminuria in a nested case-control study of diabetic nephropathy			Pharmaceutica
1	in diabetes mellitus type 2: results from the GENDIAN study.	Boger CA et al.	16961167	drug focus
	Genetic polymorphisms of renin-angiotensin system and progression of	Buraczynska M		Pharmaceutica

Page 234	of 304
----------	--------

	The influence of renin-angiotensin system genotypes on the			
	antiproteinuric response to high doses of olmesartan in non-diabetic	Goyache-Goni B		Pharmaceutica
1	protein uric nephropathies	et al.	24241364	drug focus
	CYP2C9 genotype and pharmacodynamic responses to losartan in patients			Pharmaceutica
1	with primary and secondary kidney diseases.	Joy MS et al.	19669737	drug focus
	Genotypic interactions of renin-angiotensin system genes with diabetes			Pharmaceutica
1	type 2 in a Tunisian population	Mehri S et al.	20580725	drug focus
	Evaluation of Candidate Nephropathy Susceptibility Genes in a Genome-			Pharmaceutica
1	Wide Association Study of African American Diabetic Kidney Disease	Palmer ND et al.	24551085	drug focus
-	Chronic renal insufficiency among Asian Indians with type 2 diabetes: I.		24331003	Pharmaceutica
1	Role of RAAS gene polymorphisms.	Prasad P et al.	16672053	drug focus
1		Rashtchizadeh N	10072033	Pharmaceutica
1	Enalapril and losartan affect lipid peroxidation in renal transplant		17222813	
1	recipients with renin-angiotensin system polymorphisms	et al.	1/222813	drug focus
2	A polymorphism in the angiotensin II type 1 receptor gene has different		2424 6000	Incorrect
2	effects on the risk of diabetic nephropathy in men and women	Möllsten A et al.	21316998	patient group
	Effects of the genetic polymorphisms of the renin-angiotensin system on			
2	focal segmental glomerulosclerosis	Luther Y et al.	14610337	No data
	The reninangiotensin system gene polymorphisms and	Ong-Ajyooth S et		
2	clinicopathological correlations in IgA nephropathy.	al.	10511770	No data
	Combinational effect of genes for the renin-angiotensin system in			
2	conferring susceptibility to diabetic nephropathy.	Osawa N et al.	17143591	No data
	Lack of synergism between long-term poor glycaemic control and three			
	gene polymorphisms of the renin angiotensin system on risk of			
2	developing diabetic nephropathy in type I diabetic patients.	Tarnow L et al.	10907125	No data
	Gene polymorphisms of angiotensin-converting enzyme and angiotensin II			
	Type 1 receptor among chronic kidney disease patients in a Chinese			Overlap in
2	population	Su SL et al.	22147663	patient group
				Overlap in
2	Polymorphism of renin-angiotensin system genes in IgA nephropathy	Woo KT et al.	15504143	•
	Association of a polymorphism of the apolipoprotein E gene with chronic			Overlap in
2	kidney disease in Japanese individuals with metabolic syndrome	Yoshida T et al.	19056482	patient group

3	Polymorphism of the renin–angiotensin–aldosterone system in patients with chronic allograft dysfunction	Ayed K et al.	16635753	< 3 populations reported per SNP
3	Angiotensin II type 1 receptor gene polymorphism in end-stage renal disease	Buraczynska M et al.	12187084	< 3 population reported per SNP
3	Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease.	Buraczynska M et al.	16384824	< 3 population reported per SNP
3	Renin-angiotensin-aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease.	Chen WJ et al.	24907556	< 3 population reported per SNP
3	Hypertension after renal transplantation and polymorphism of genes involved in essential hypertension: ACE, AGT, AT1R and ecNOS	El-Essawy AB et al.	WOS:000174306600003 (11926202)	< 3 population reported per SNP
3	Genetic polymorphisms of the renin-angiotensin-aldosterone system and renal insufficiency in essential hypertension	Fabris B et al.	15662219	< 3 populatior reported per SNP
3	Relationship between polymorphisms in the renin-angiotensin system and nephropathy in type 2 diabetic patients.	Fradin S et al.	11938025	< 3 population reported per SNP
3	Susceptibility and progression of end stage renal disease are not associated with angiotensin II type 1 receptor gene polymorphism	Hanna MO et al.	25316403	< 3 population reported per SNP
3	Renin-angiotensin system component gene polymorphisms in Japanese maintenance haemodialysis patients	Kawada N et al.	WOS:000071880400005	< 3 population reported per SNP
3	GENETIC CLUES TO THE ETIOLOGY OF BALKAN ENDEMIC NEPHROPATHY: INVESTIGATING THE ROLE OF ACE AND AT1R POLYMORPHISMS	Krcunovic Z et al.	WOS:000287217500011	< 3 populatior reported per SNP
3	Angiotensinogen and angiotensin II type 1 receptor gene polymorphism in patients with autosomal dominant polycystic kidney disease: Effect on hypertension and ESRD	Lee KB et al.	12950120	< 3 population reported per SNP

3	Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulonephritis	Litovkina O et al.	24727057	< 3 populations reported per SNP
3	Polymorphism of renin-angiotensin system genes in dialysis patients - association with cerebrovascular disease	Losito A et al.	WOS:000179668600025 (12454231)	< 3 populations reported per SNP
3	Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes	Marre M et al.	9120002	< 3 populations reported per SNP
3	Association of angiotensinogen gene T235 variant with progression of immunoglobin A nephropathy in Caucasian patients.	Pei Y et al.	9259580	< 3 populations reported per SNP
3	Polymorphisms of the renin-angiotensin system genes in Brazilian patients with lupus nephropathy.	Sprovieri SR et al.	15934435	< 3 populations reported per SNP
3	Interaction between gene polymorphisms of nitric oxide synthase and renin-angiotensin system in the progression of membranous glomerulonephritis.	Stratta P et al.	14767013	< 3 populations reported per SNP
3	Gene-Gene Interactions in Renin-Angiotensin-Aldosterone System Contributes to End-Stage Renal Disease Susceptibility in a Han Chinese Population	Su SL et al.	24977181	< 3 populations reported per SNP
3	Association of Genetic Variants with Chronic Kidney Disease in Japanese Individuals	Yoshida T et al.	19406964	< 3 populations reported per SNP
3	Genetic polymorphisms and the risk of progressive renal failure in elderly Hungarian patients.	Zsom M et al.	22111818	< 3 populations reported per SNP

 BMJ Open

Supplementary Table S3e: Excluded studies from the AGTR2 search

*Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1e)

Exclusion Stage	Title	Authors	Pubmed ID	Reason
	Association of angiotensinogen gene T235 variant with			
	progression of immunoglobin A nephropathy in Caucasian			
1	patients.	Pei Y et al.	9259580	No data for AGTR2
	Synergistic effect of angiotensin II type 1 receptor genotype and			
1	poor glycaemic control on risk of nephropathy in IDDM.	Doria A et al.	9389421	No data for AGTR2
	Lack of synergism between long-term poor glycaemic control and			
	three gene polymorphisms of the renin angiotensin system on risk			
1	of developing diabetic nephropathy in type I diabetic patients.	Tarnow L et al.	10907125	No data for AGTR2
	Angiotensin II type 1 receptor gene polymorphism and the			
1	response to hyperglycemia in early type 1 diabetes.	Miller JA et al.	10969844	No data for AGTR2
	Polymorphism of angiotensin converting enzyme,			
	angiotensinogen, and angiotensin II type 1 receptor genes and			
	end-stage renal failure in IgA nephropathy: IGARASa study of	101		
1	274 Men.	Frimat L et al.	11053482	No data for AGTR2
	Altered regulation of renal interstitial hydrostatic pressure and		\mathbf{O}	
	the renal renin-angiotensin system in the absence of atrial	O'Tierney PF et	Uh,	
1	natriuretic peptide	al.	18192845	No data for AGTR2
	The angiotensin type II receptor tonically inhibits angiotensin-			
1	converting enzyme in AT2 null mutant mice	Hunley TE et al.	10652034	Non-human study
	A novel rodent model of pregnancy complications associated with	Mata-		
	genetically determined angiotensin-converting enzyme (ACE)	Greenwood E et		
1	activity	al.	29360395	Non-human study
				Not a case-control
1	Renin-angiotensin system polymorphisms and renal scarring	Pardo R et al.	12579398	study

	Association of the genetic polymorphisms of the renin-			
	angiotensin system and endothelial nitric oxide synthase with			Not a case-control
1	chronic renal transplant dysfunction.	Akcay A et al.	15385810	study
	Whole-genome linkage and association scan in primary,			Not a case-control
1	nonsyndromic vesicoureteric reflux.	Cordell HJ et al.	19959718	study
	Association of angiotensin converting enzyme and angiotensin			
	type 2 receptor gene polymorphisms with renal damage in			Not a case-control
1	posterior urethral valves.	Laksmi NK et al.	20149750	study
	Angiotensin type 2 receptor is important in the normal	Hohenfellner K		Not a renal disease
1	development of the ureter	et al.	10353402	focus
	Angiotensin II type 2 receptor gene is not responsible for familial			Not a renal disease
1	vesicoureteral reflux	Yoneda A et al.	12187255	focus
	Genetic polymorphism of the renin-angiotensin system on the			Not a renal disease
1	development of primary vesicoureteral reflux	Yim HE et al.	14764974	focus
				Not a renal disease
1	Polymorphism in angiotensin II receptor genes and hypertension	Baudin B et al.	15640279	focus
	No evidence for angiotensin type 2 receptor gene polymorphism			
	in intron 1 in patients with coarctation of the aorta and Ullrich-			Not a renal disease
1	Turner syndrome.	Struwe E et al.	16944335	focus
	[Effect of eprosartan on the hemostatic system in patients with	Kaliuzhin VV et		Not written in English
1	chronic kidney disease associated with hereditary thrombophilia].	al.	24261234	or Spanish
	No evidence for AT2R gene derangement in human urinary tract			
1	anomalies.	Hiraoka M et al.	11260384	Paediatric Individuals
	Polymorphisms of renin-angiotensin system genes in childhood	Maruyama K et		
1	IgA nephropathy.	al.	11354780	Paediatric Individuals
¥			11554780	
	Angiotensin-converting enzyme and angiotensin type 2 receptor			
	gene genotype distributions in Italian children with congenital		45470205	
1	uropathies.	Rigoli L et al.	15470205	Paediatric Individuals
	Implication of genetic variations in congenital obstructive			
1	nephropathy.	Hahn H et al.	16133060	Paediatric Individuals

1	Angiotensin II type 2 receptor gene polymorphism in Caucasian children with a wide spectrum of congenital anomalies of the kidney and urinary tract	Siomou E et al.	17515833	Paediatric Individuals
1	Association of angiotensin type 2 receptor gene polymorphisms with ureteropelvic junction obstruction in Brazilian patients.	Miranda DM et al.	24995698	Paediatric Individuals
2	Angiotensin-converting enzyme and angiotensin II receptor subtype 2 genotypes in type 1 diabetes and severe hypoglycaemia requiring emergency treatment: a case cohort study.	Pedersen- Bjergaard U et al.	19820429	Incorrect patient group
	requiring emergency treatment: a case cohort study.			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table S3f: Excluded studies from the REN search

 *Exclusion stage relates to the stage at which the article was removed as shown in the flow diagram (Supplementary Figure S1f)

Exclusion Stage	Title	Authors	Pubmed ID or WoS ID if Pubmed ID not available	Reason
				Gene
	Increased amount of the angiotensin-converting enzyme (ACE) mRNA			expression
1	originating from the ACE allele with deletion.	Suehiro T et al.	15164285	based study
1	Increased expression of monocytic angiotensin-converting enzyme in dialysis patients with cardiovascular disease	Ulrich C et al.	16476718	Gene expression based study
1	Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio	Wakahara S et al.	17303661	Gene expression based study
1	Insertion / Deletion Polymorphism of Angiotensin Converting Enzyme Gene Does Not Contribute to Chronic Kidney Disease in Palestine	Abuaisha AM et al.	WOS:000433049000003	No data for REN
1	Relationship between GSTs gene polymorphism and susceptibility to end stage renal disease among North Indians.	Agrawal S et al.	18067039	No data for REN
1	ACE variants interact with the RAS pathway to confer risk and protection against type 2 diabetic nephropathy.	Ahluwalia TS et al.	19108684	No data for REN
1	Analysis of insertion/deletion polymorphisms of the angiotensin converting enzyme gene in Malaysian end-stage renal disease patients.	Ali A et al.	21421653	No data for REN
1	Apparent Mineralocorticoid Excess Caused By A Novel Mutation In 11- Beta Hydroxysteroid Dehydrogenase Type 2 Enzyme: Its Genetics And Response To Therapy	Alzahrani AS et al.	24936560	No data for REN
1	Clinical impact of an angiotensin I-converting enzyme insertion/deletion and kinin B2 receptor +9/-9 polymorphisms in the prognosis of renal transplantation	Amorim CEN et al.	23362199	No data for REN

1	Analysis of polymorphism in Renin Angiotensin System and other related genes in South Indian chronic kidney disease patients	Anbazhagan K et al.	19520069	No data for REN
1	Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease	Anguiano L et al.	25813276	No data foi REN
1	Lack of association between the angiotensin-converting enzyme gene (I/D) polymorphism and diabetic nephropathy in Tunisian type 2 diabetic patients.	Arfa I et al.	18404607	No data fo REN
1	Associations between apolipoprotein E gene polymorphism and plasminogen activator inhibitor-1 and atherogenic lipid profile in dialysis patients.	Arikan H et al.	17763167	No data fo REN
1	The DD genotype of the ACE gene polymorphism is associated with diabetic nephropathy in type-1 diabetics	Azar ST et al.	11428725	No data fo REN
1	Association of sequence polymorphism in the mitochondrial D-loop with chronic kidney disease.	Bai Y et al.	24576051	No data fo REN
1	Impact of aldosterone synthase gene C-344T polymorphism on IgA nephropathy.	Bantis C et al.	21476902	No data fo REN
1	Influence of cytokine gene polymorphisms on focal segmental glomerulosclerosis	Bantis C et al.	15308875	No data fo REN
1	Influence of aldosterone synthase gene C-344T polymorphism on focal segmental glomerulosclerosis	Bantis C et al.	21777344	No data fo REN
1	Identification of Cathepsin L as a Potential Sex-Specific Biomarker for Renal Damage	Bauer Y et al.	21357272	No data fo REN
1	Determinants of Progression in Early Autosomal Dominant Polycystic Kidney Disease: Is it Blood Pressure or Renin-Angiotensin-Aldosterone- System Blockade?	Brosnahan GM et al.	29564978	No data fo REN
1	Genetic determination of TNF and myeloperoxidase production in dialyzed patients with diabetic nephropathy.	Buraczynska M et al.	15600254	No data fo REN

	Genetic polymorphisms of the renin-angiotensin system in end-stage	Buraczynska M et		No data fo
1	renal disease	al.	16384824	REN
	Angiotensin II type 1 receptor gene polymorphism in end-stage renal	Buraczynska M et		No data fo
1	disease	al.	12187084	REN
	Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-			No data fo
1	wasting	Calado J et al.	16518345	REN
	Non-relation of parathyroid hormone gene polymorphisms to secondary			No data fo
1	hyperparathyroidism in Chinese hemodialysis patients.	Chen JB et al.	15083922	REN
	Effect of IL-6 C-572G polymorphism on idiopathic membranous			No data fo
1	nephropathy risk in a Han Chinese population.	Chen SY et al.	20954977	REN
	Lack of association between transient receptor potential cation channel			No data fo
1	6 polymorphisms and primary membranous glomerulonephritis.	Chen WC et al.	20540633	REN
	Renin-angiotensin-aldosterone system related gene polymorphisms and			No data fo
1	urinary total arsenic is related to chronic kidney disease	Chen WJ et al.	24907556	REN
	Toll-like receptor 9 SNPs are susceptible to the development and			
_	progression of membranous glomerulonephritis: 27 years follow-up in			No data fo
1	Taiwan.	Chen YT et al.	23964786	REN
	Endothelial nitric oxide synthase gene polymorphisms and the renal			No data fo
1	hemodynamic response to L-arginine	Cherney DZI et al.	19037250	REN
	Influence of uridine diphosphate-glucuronosyltransferases (1A9)			
	polymorphisms on mycophenolic acid pharmacokinetics in patients with	U A		No data fo
1	renal transplant.	Ciftci HS et al.	30012031	REN
	Serological and genetic factors in early recurrence of IgA nephropathy			No data fo
1	after renal transplantation	Coppo R et al.	17988266	REN
	Association of glutathione S-transferase M1 and T1 gene polymorphism			No data fo
1	with oxidative stress in diabetic and nondiabetic chronic kidney disease.	Datta SK et al.	20954980	REN
	ACE, PAI-1, decorin and Warner helicase genes are not associated with			
	the development of renal disease in European patients with Type 1			No data fo
1	diabetes	De Cosmo S et al.	10495473	REN
	U.K. Prospective Diabetes Study. XV: Relationship of renin-angiotensin			No data fo
1	system gene polymorphisms with microalbuminuria in NIDDM.	Dudley CR et al.	8587251	REN

1	Angiotensin II type 1 receptor (A1166C) gene polymorphism in Egyptian adult hemodialysis patients	El-Banawy H et al.	WOS:000365886400009	No data foi REN
1	Mthfr C677T, A1298C And Ace I/D Polymorphisms As Risk Factors For Diabetic Nephropathy Among Type 2 Diabetic Patients.	El-Baz R et al.	22554825	No data fo REN
1	Impact of nitric oxide synthase Glu298Asp polymorphism on the development of end-stage renal disease in type 2 diabetic Egyptian patients.	El-Din Bessa SS et al.	21854353	No data fo REN
1	Angiotensin-I converting enzyme gene polymorphism in Turkish type 2 diabetic patients	Ergen HA et al.	15365253	No data fo REN
1	GAS6 intron 8 c.834 + 7G > A gene polymorphism in diabetic nephropathy.	Erkoc R et al.	25869052	No data fo REN
1	DNA polymorphisms in the ACE gene, serum ACE activity and the risk of nephropathy in insulin-dependent diabetes mellitus	Freire MBS et al.	9794558	No data fo REN
1	Polymorphism of angiotensin converting enzyme, angiotensinogen, and angiotensin II type 1 receptor genes and end-stage renal failure in IgA nephropathy: IGARAS - A study of 274 men	Frimat L et al.	11053482	No data fo REN
1	Polymorphisms in the gene encoding angiotensin I converting enzyme 2 and diabetic nephropathy	Frojdo S et al.	16211375	No data fo REN
1	Lack of association between the heparan sulfate proteoglycan gene polymorphism and diabetic nephropathy in Japanese NIDDM with proliferative diabetic retinopathy.	Fujita H et al.	10586428	No data fo REN
1	Effects of erythropoietin, angiotensin II, and angiotensin-converting enzyme inhibitor on erythroid precursors in patients with posttransplantation erythrocytosis	Glicklich D et al.	10428268	No data fo REN
1	Angiotensinogen gene polymorphisms and progression of chronic kidney disease in ADPKD patients	Gnanasambandan R et al.	26482465	No data fo REN
1	Association study of ACE polymorphisms and systemic lupus erythematosus in Northern Chinese Han population	Gong AM et al.	22729880	No data fo REN

1	Angiotensin I converting enzyme and angiotensinogen gene polymorphisms in non-insulin-dependent diabetes mellitus. Lack of relationship with diabetic nephropathy and retinopathy in a Caucasian Mediterranean population	Gutierrez C et al.	9258285	No data for REN
1	Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes	Hanukoglu A et al.	18634878	No data for REN
1	Polymorphism of the angiotensin I-converting enzyme gene in diabetic nephropathy in type II diabetic patients with proliferative retinopathy.	Hanyu O et al.	9509566	No data for REN
1	Increased frequency of angiotensin-converting enzyme DD genotype in patients with type 2 diabetes in Taiwan	Hsieh MC et al.	10862639	No data for REN
1	Genetic polymorphisms of the renin-angiotensin-aldosterone system in Chinese patients with end-stage renal disease secondary to IgA nephropathy	Huang HD et al.	21163122	No data for REN
1	Impact of Polymorphisms of the Genes Encoding Angiotensin II-Forming Enzymes on the Progression of IgA Nephropathy	Jung ES et al.	21150220	No data for REN
1	Study of the association of -667 aquaporin-2 (AQP-2) A/G promoter polymorphism with the incidence and clinical course of chronic kidney disease in Korea.	Kang SW et al.	17763164	No data for REN
1	Assessment of matrix Gla protein, Klotho gene polymorphisms, and oxidative stress in chronic kidney disease.	Karsli Ceppioglu S et al.	21859400	No data for REN
1	Renin-angiotensin system component gene polymorphisms in Japanese maintenance haemodialysis patients	Kawada N et al.	WOS:000071880400005	No data for REN
1	Manganese superoxide dismutase, glutathione peroxidase and catalase gene polymorphisms and clinical outcomes in acute kidney injury.	Kidir V et al.	26787049	No data for REN
1	Blood Pressure-Related Genes and the Progression of IgA Nephropathy	Kim SM et al.	19729965	No data for REN
1	Genetic Clues To The Etiology Of Balkan Endemic Nephropathy: Investigating The Role Of Ace And At1R Polymorphisms	Krcunovic Z et al.	WOS:000287217500011	No data for REN

1	Effect of ACE gene on diabetic nephropathy in NIDDM patients with insulin resistance	Kuramoto N et al.	10023638	No data for REN
1	Association of apolipoprotein E gene polymorphism with end-stage renal disease and hyperlipidemia in patients on long-term hemodialysis.	Lahrach H et al.	25155022	No data for REN
1	Aldosterone synthase (CYP11B2)-344T/C polymorph ism is not associated with the initiation and progression of diabetic nephropathy in Caucasian Type 1 diabetic patients	Lajer M et al.	16759311	No data for REN
1	Renal perfusion and the renal hemodynamic response to blocking the renin system in diabetes - Are the forces leading to vasodilation and vasoconstriction linked?	Lansang MC et al.	12086929	No data foi REN
1	Renin-angiotensin system gene polymorphisms: its impact on IgAN and its progression to end-stage renal failure among Chinese in Singapore.	Lau YK et al.	15153745	No data foi REN
1	Association studies between the HSD11B2 gene (encoding human 11 beta-hydroxysteroid dehydrogenase type 2), type 1 diabetes mellitus and diabetic nephropathy	Lavery GG et al.	11916625	No data for REN
1	Association of the genetic polymorphisms of the ACE gene and the eNOS gene with lupus nephropathy in northern Chinese population	Li X et al.	20540812	No data foi REN
1	The relationship between the TGF-beta1 gene -509C/T polymorphism and tubulointerstitial damage resulting from primary nephrotic syndrome.	Li Y et al.	20446778	No data foi REN
1	Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulonephritis	Litovkina O et al.	24727057	No data foi REN
1	Factors affecting progression of renal insufficiency	Locatelli F et al.	9387138	No data fo REN
1	Polymorphism of renin-angiotensin system genes in dialysis patients - association with cerebrovascular disease	Losito A et al.	12454231	No data for REN
1	Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease	Lovati E et al.	11422735	No data for REN

1	Effects of the genetic polymorphisms of the renin-angiotensin system on focal segmental glomerulosclerosis	Luther Y et al.	14610337	No data for REN
	Angiotensinogen (AGT) gene missense polymorphisms (rs699 and			
	rs4762) and diabetic nephropathy in Caucasians with type 2 diabetes			No data for
1	mellitus.	Makuc J et al.	28488548	REN
1		Makuc J et al.	20400340	
	Impact of interferon-gamma and interleukin-4 gene polymorphisms on			No data foi
1	development and progression of IgA nephropathy in Japanese patients	Masutani K et al.	12552499	REN
	Influence of the endothelial nitric oxide synthase polymorphism on the			
	progression of autosomal dominant polycystic kidney disease and IgA			No data foi
1	nephropathy.	Merta M et al.	12212826	REN
	Manganese Superoxide Dismutase (SOD2) Polymorphisms, Plasma			
	Advanced Oxidation Protein Products (AOPP) Concentration and Risk of	Mohammedi K et		No data foi
1	Kidney Complications in Subjects with Type 1 Diabetes	al.	24819633	REN
	The effect of polymorphisms in the renin-angiotensin-aldosterone			No data fo
1	system on diabetic nephropathy risk	Mollsten A et al.	18413189	REN
_	A polymorphism in the angiotensin II type 1 receptor gene has different			No data fo
1	effects on the risk of diabetic nephropathy in men and women	Mollsten A et al.	21316998	REN
	Different Mechanisms for the Progression of CKD with ACE Gene			No data foi
1	Polymorphisms	Nakayama Y et al.	19293592	REN
-			15255552	No data for
4	Pronatriodilatin gene polymorphisms, microvascular permeability, and	Nannipieri M et	10405200	
1	diabetic nephropathy in type 1 diabetes mellitus	al.	10405209	REN
4	A biallelic gene polymorphism of CYP11B2 predicts increased	Nissed Lated	12700045	No data foi
1	aldosterone to renin ratio in selected hypertensive patients.	Nicod J et al.	12788845	REN
			44040722	No data foi
1	Role of the alpha-adducin genotype on renal disease progression	Nicod J et al.	11918733	REN
	Association between CCDC132, FDX1 and TNFSF13 gene polymorphisms			No data foi
1	and the risk of IgA nephropathy.	Niu D et al.	26370181	REN
	Chemerin rs17173608 and vaspin rs2236242 gene variants on the risk of			
	end stage renal disease (ESRD) and correlation with plasma			No data fo
1	malondialdehyde (MDA) level.	Nomani H et al.	29644922	REN

1	Renal clearance of endogenous erythropoietin in patients with proteinuria.	Nowicki M et al.	7759206	No data for REN
1	The reninangiotensin system gene polymorphisms and clinicopathological correlations in IgA nephropathy.	Ong-Ajyooth S et al.	10511770	No data for REN
1	Angiotensin-converting enzyme polymorphism gene and evolution of nephropathy to end-stage renal disease	Ortiz MA et al.	15012717	No data for REN
1	Combinational effect of genes for the renin-angiotensin system in conferring susceptibility to diabetic nephropathy	Osawa N et al.	17143591	No data for REN
1	,	Ozdemir O et al.	25394530	No data for REN
1	Survival in type 2 diabetic patients in dialysis and the number of risk alleles in polymorphisms of the renin-angiotensin system genes	Padro-Miquel A et al.	19014923	No data for REN
1	Association of aldosterone synthase (CYP11B2) gene -344T/C polymorphism with the risk of primary chronic glomerulonephritis in the Polish population.	Pawlik M et al.	23681285	No data for REN
1	Does copy number variation of APOL1 gene affect the susceptibility to focal segmental glomerulosclerosis?	Peng T et al.	28494221	No data for REN
1	Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes	Prasad P et al.	20353610	No data for REN
1	DNA repair genes XPD and XRCC1 polymorphisms and risk of end-stage renal disease in Egyptian population.	Radwan WM et al.	25310768	No data for REN
1	ACE I/D and MMP-7 A-181G variants and the risk of end stage renal disease	Rahimi Z et al.	28447048	No data for REN
1	Influence of angiotensin converting enzyme (ACE) gene rs4362 polymorphism on the progression of kidney failure in patients with autosomal dominant polycystic kidney disease (ADPKD)	Ramanathan G et al.	27748299	No data for REN

4	Aldosterone synthase gene is not a major susceptibility gene for progression of chronic kidney disease in patients with autosomal	Ramanathan G et	20540002	No data for
1	dominant polycystic kidney disease	al.	28540892	REN
	AGTR1 rs5186 variants in patients with type 2 diabetes mellitus and			No data for
1	nephropathy	Razi F et al.	WOS:000419720600009	REN
	Association of the angiotensinogen M235T and APO E gene			
	polymorphisms in Turkish type 2 diabetic patients with and without			No data for
1	nephropathy.	Reis KA et al.	21500980	REN
	The influence of the endothelin-converting enzyme-1 gene			
	polymorphism on the progression of autosomal dominant polycystic			No data for
1	kidney disease.	Reiterova J et al.	16526315	REN
	The influence of G-protein beta3-subunit gene and endothelial nitric			
	oxide synthase gene in exon 7 polymorphisms on progression of			No data for
1	autosomal dominant polycystic kidney disease.	Reiterova J et al.	15287194	REN
			15207154	
	Role of ADDUCIN Gly460Trp, ACE I/D and AGT M235T Gene			No data for
1	Polymorphisms in Genetic Susceptibility to Diabetic Nephropathy	Sancakdar E et al.	WOS:000367541400005	REN
	Angiotensin I converting enzyme gene polymorphism and diabetic	· // .		No data for
1	nephropathy in type II diabetes	Schmidt S et al.	9269698	REN
	ACACÎ ² gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and			No data for
1	the risk of nephropathy in Asian Indian patients with type 2 diabetes.	Shah VN et al.	23081748	REN
	Genetic variants of ACE (Insertion/Deletion) and AGT (M268T) genes in			No data for
1	patients with diabetes and nephropathy	Shaikh R et al.	24737640	REN
I	Distribution of ACE I/D Polymorphism in the Patients of Diabetes and	Shankii iy Ct al.	27737040	No data for
1	Nephropathy in Pakistan	Shaikh R et al.	WOS:000312053000001	REN
T			VV U3.000312033000001	IVEIN
	The relationship between genetic and haemodynamic factors in diabetic			
	nephropathy (DN): Case-control study in type 1 diabetes mellitus	Shestakova MV et		No data for
1	(T1DM)	al.	WOS:000242410600010	REN

	SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis	Shimoyama Y et		No data foi
1	patients.	al.	22200427	REN
	Interleukin 1 receptor antagonist and tumor necrosis factor-alpha gene			No data for
1	polymorphism in patients with end-stage renal failure.	Shu KH et al.	15717635	REN
	Angiotensin-converting enzyme (ACE) inhibition in type 2, diabetic			No data fo
1	patients - interaction with ACE insertion/deletion polymorphism	So WY et al.	16395257	REN
	Vitamin D binding protein and the need for vitamin D in hemodialysis	Speeckaert MM		No data fo
1	patients.	et al.	18721734	REN
	Polymorphisms of the renin-angiotensin system genes in Brazilian	Sprovieri SRS et		No data fo
1	patients with lupus nephropathy	al.	15934435	REN
	Prospective study on the potential of RAAS blockade to halt renal			No data fo
1	disease in Alport syndrome patients with heterozygous mutations.	Stock J et al.	27402170	REN
	Interaction between gene polymorphisms of nitric oxide synthase and			
	renin-angiotensin system in the progression of membranous			No data fo
1	glomerulonephritis	Stratta P et al.	14767013	REN
	Angiotensin II receptor type 1 A1166C modifies the association between			No data fo
1	angiotensingen M235T and chronic kidney disease	Su SL et al.	29296205	REN
⊥		Su SE CE UI.	25250205	
	Gene polymorphisms of angiotensin-converting enzyme and angiotensin			No data fo
1	II Type 1 receptor among chronic kidney disease patients in a Chinese population	Su SL et al.	22147663	REN
1			2214/005	REIN
	Gene-Gene Interactions in Renin-Angiotensin-Aldosterone System			
-	Contributes to End-Stage Renal Disease Susceptibility in a Han Chinese			No data fo
1	Population	Su SL et al.	24977181	REN
	Study on 3'-UTR length polymorphism in peripheral blood mononuclear			No data fo
1	cells of uremia patient.	Sui W et al.	26554293	REN
	Angiotensin-II type 1 receptor gene polymorphism and diabetic			No data fo
1	microangiopathy.	Tarnow L et al.	8671962	REN

1	Lack Of Relationship Between An Insertion Deletion Polymorphism In The Angiotensin I-Converting Enzyme Gene And Diabetic Nephropathy And Proliferative Retinopathy In Iddm Patients	Tarnow L et al.	7729604	No data for REN
1	Lack of synergism between long-term poor glycaemic control and three gene polymorphisms of the renin angiotensin system on risk of developing diabetic nephropathy in Type I diabetic patients	Tarnow L et al.	10907125	No data for REN
1	High prevalence of ACE DD genotype among north Indian end stage renal disease patients.	Tripathi G et al.	17042963	No data for REN
1	Vitamin D receptor genetic variants among patients with end-stage renal disease.	Tripathi G et al.	20722565	No data for REN
1	Association between angiotensin converting enzyme gene polymorphism and clinical features in autosomal dominant polycystic kidney disease	Uemasu J et al.	9180368	No data for REN
1	The DD genotype of the ACE gene polymorphism is associated with progression of diabetic nephropathy to end stage renal failure in IDDM	Vleming LJ et al.	10099885	No data for REN
1	Relationship between angiotensinogen gene M235T variant with diabetic nephropathy in Chinese NIDDM.	Wang J et al.	11717948	No data for REN
1	Nodular glomerulosclerosis and renin angiotensin system in Chinese patients with type 2 diabetes	Wang M et al.	26973293	No data for REN
1	Predicting the development of diabetic nephropathy and its progression	William J et al.	15822056	No data for REN
1	Polymorphism of renin-angiotensin system genes in IgA nephropathy	Woo KT et al.	15504143	No data for REN
1	Platelet glycoprotein IIb HPA-3 a/b polymorphism is associated with native arteriovenous fistula thrombosis in chronic hemodialysis patients.	Wu JH et al.	22880801	No data for REN
1	Association of plasminogen activator inhibitor-1 gene polymorphism and type 2 diabetic nephropathy.	Xu F et al.	26616527	No data for REN
1	A candidate gene approach to genetic contributors to the development of IgA nephropathy	Yamamoto R et al.	21737517	No data for REN

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Impact of interaction of cigarette smoking with angiotensin-converting enzyme polymorphisms on end-stage renal disease risk in a Han Chinese population.	Yang HY et al.	23477970	No data for REN
	Angiotensin converting enzyme gene polymorphism and development of			No data for
1	post-transplant erythrocytosis.	Yildiz A et al.	12832741	REN
	Aldosterone Synthase CYP11B2 Gene Promoter Polymorphism in a			No data for
1	Turkish Population With Chronic Kidney Disease	Yilmaz M et al.	25957425	REN
	Structural analysis of the 11 beta-hydroxysteroid dehydrogenase type 2			No data for
1	gene in end-stage renal disease	Zaehner T et al.	11012876	REN
	Arg913GIn of SLC12A3 gene promotes development and progression of			No data for
1	end-stage renal disease in Chinese type 2 diabetes mellitus	Zhang R et al.	28744814	REN
	Pin1 and secondary hyperparathyroidism of chronic kidney disease:			No data for
1		Zhao Y et al.	27876426	REN
	Polymorphisms in NADPH oxidase CYBA gene modify the risk of ESRD in			No data for
1		Zhou H et al.	26627442	REN
	Angiotensinogen M235T and chymase gene CMA/B polymorphisms are			No data for
1	not associated with nephropathy in type II diabetes	Zychma MJ et al.	11096141	REN
	Effects of Diets with Different Proportions of Protein/Carbohydrate on			Non-humar
1	Retinal Manifestations in db Mice	Arimura E et al.	29475908	study
	Effects of plasma kallikrein deficiency on haemostasis and thrombosis in			Non-humar
1	mice: Murine Ortholog of the Fletcher Trait	Bird JE et al.	22398951	study
	Blood pressure and renin-angiotensin system resetting in transgenic rats			Non-humar
1	with elevated plasma Val(5)-angiotensinogen	Bohlender J et al.	22728903	study
	Angiotensin II mesenteric and renal vasoregulation: Dissimilar			Non-humar
1	modulatory effects with nitroprusside	Broome M et al.	11065204	study
	N-domain angiotensin I-converting enzyme expression in renal artery of			Non-humar
1	Wistar, Wistar Kyoto, and spontaneously hypertensive rats	Bueno V et al.	15194348	study
	Adrenomedullin gene expression differences in mice do not affect blood			Non-humar
1	pressure but modulate hypertension-induced pathology in males	Caron K et al.	17360661	study

	Appropriate regulation of renin and blood pressure in 45-kb human	Catanzaro DF et		Non-human
1	renin/human angiotensinogen transgenic mice.	al.	9931123	study
1	Vascular and renal effects of vasopeptidase inhibition and angiotensin- converting enzyme blockade in spontaneously diabetic Goto-Kakizaki rats	Cheng ZJ et al.	16093923	Non-human study
1	Mice lacking endothelial ACE - Normal blood pressure with elevated angiotensin	Cole JM et al.	12574101	Non-human study
1	Thyroid hormones stimulate renal expression of CFTR	de Andrade Pinto AC et al.	17595518	Non-human study
1	Renin-angiotensin system transgenic mouse model recapitulates pathophysiology similar to human preeclampsia with renal injury that may be mediated through VEGF.	Denney JM et al.	27927648	Non-human study
1	Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene.	Ferrario CM et al.	26873967	Non-human study
1	Attenuation of accelerated renal cystogenesis in Pkd1 mice by renin- angiotensin system blockade	Fitzgibbon WR et al.	29021226	Non-human study
1	Renal cyst growth is the main determinant for hypertension and concentrating deficit in Pkd1-deficient mice	Fonseca JM et al.	24429399	Non-human study
1	Adenosine A(1) receptor-dependent and independent pathways in modulating renal vascular responses to angiotensin II	Gao X et al.	25251152	Non-human study
1	Collecting duct-specific knockout of nitric oxide synthase 3 impairs water excretion in a sex-dependent manner	Gao Y et al.	27707708	Non-human study
1	Metformin prevents the impairment of endothelium-dependent vascular relaxation induced by high glucose challenge in rabbit isolated perfused kidneys	Gomes MB et al.	16133490	Non-human study
1	Effect Of Nitric-Oxide On Renin Secretion .1. Studies In Isolated Juxtaglomerular Granular Cells	Greenberg SG et al.	7771523	Non-human study

Page 253	of 304
----------	--------

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	1 2	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	4	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	6	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	0	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	9 10 11	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	12 13	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	14 15	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	16 17	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	18 19	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45		
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	22 23	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	25	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	26 27	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	28 29	
38 39 40 41 42 43 44 45	30 31	
38 39 40 41 42 43 44 45	33 34	
38 39 40 41 42 43 44 45	35 36	
 39 40 41 42 43 44 45 		
41 42 43 44 45	39	
43 44 45	41	
	43 44	

	Effect of the angiotensinogen genotype on experimental hypertension in			Non-huma
1	mice	Handtrack C et al.	17333097	study
	Pituitary adenylate cyclase-activating polypeptide stimulates renin	Hautmann M et		Non-huma
1	secretion via activation of PAC1 receptors	al.	17360952	study
		Heringer-Walther		Non-huma
1	The genetic deletion of Mas abolishes salt induced hypertension in mice	S et al.	22652430	study
	An essential role of angiotensin II receptor type 1a in recipient kidney,			
	not in transplanted peripheral blood leukocytes, in progressive immune-			Non-huma
1	mediated renal injury	Hisada Y et al.	11555672	study
				,
	The angiotensin type II receptor tonically inhibits angiotensin-converting			Non-huma
1	enzyme in AT2 null mutant mice	Hunley TE et al.	10652034	study
-	Collecting Duct Nitric Oxide Synthase 1 beta Activation Maintains	Traincy TE et al.	10052054	Study
	Sodium Homeostasis During High Sodium Intake Through Suppression of	Hyndman KA et		Non-hum
1		al.	29066445	study
	Transfer of a salt-resistant renin allele raises blood pressure in Dahl salt-			Non-hum
1	sensitive rats	Jiang J et al.	9040448	study
	Angiotensin-converting enzyme inhibition attenuates the progression of			Non-hum
1	rat hepatic fibrosis	Jonsson JR et al.	11438504	study
	Rat Ace allele variation determines susceptibility to Angll-induced renal			Non-huma
1	damage	Kamilic J et al.	21788250	study
	Regulation of renin secretion and expression in mice deficient in ss 1-			Non-hum
1	and ss 2-adrenergic receptors	Kim SM et al.	17515456	study
				Non hum
4	Low Blood Pressure in Endothelial Cell-Specific Endothelin 1 Knockout		20516207	Non-hum
1	Mice	Kisanuki YY et al.	20516397	study
				Nee house
4	Lack of an effect of collecting duct-specific deletion of adenylyl cyclase 3	Kittikulsuth W et	24424204	Non-hum
1	on renal Na+ and water excretion or arterial pressure	al.	24431204	study

1	A High Fat Diet During Pregnancy and Lactation Induces Cardiac and		20750406	Non-huma
1	Renal Abnormalities in GLUT4+/- Male Mice	Kruse M et al.	28750406	study
	Blood pressure and renal hemodynamic responses to acute angiotensin			
	Il infusion are enhanced in a female mouse model of systemic lupus			Non-huma
1	erythematosus	Kumari S et al.	27350671	study
				Non-huma
1	Control of renin secretion from kidneys with renin cell hyperplasia	Kurt B et al.	24285498	study
	Reciprocal expression of connexin 40 and 45 during phenotypical			Non-huma
1	changes in renin-secreting cells	Kurt B et al.	21209011	study
	Stimulation of renin secretion by NO donors is related to the cAMP			Non-huma
1	pathway	Kurtz A et al.	9575895	study
	Stimulation of renin secretion by nitric oxide is mediated by			, Non-huma
1	phosphodiesterase 3	Kurtz A et al.	9539809	study
	Replacement of connexin 40 by connexin 45 causes ectopic localization			
	of renin-producing cells in the kidney but maintains in vivo control of			Non-huma
1	renin gene expression	Kurtz L et al.	19474190	study
	Interference with Gs1±-Coupled Receptor Signaling in Renin-Producing		10171100	Non-huma
1	Cells Leads to Renal Endothelial Damage.	Lachmann P et al.	28775003	study
	The angiotensin II receptor blocker candesartan improves survival and		20770000	Non-huma
1	mesenteric perfusion in an acute porcine endotoxin model	Laesser M et al.	14995942	study
	Mice with targeted disruption of the acyl-CoA binding protein display			
	attenuated urine concentrating ability and diminished renal aquaporin-3			Non-huma
1	abundance	Langaa S et al.	22237802	study
<u>⊥</u>			22237002	
	Physiological impact of increased expression of the AT(1) angiotensin			Non-huma
1	receptor	Le TH et al.	12963678	study
	Genetic analysis of the S-A and Na+/K+-ATPase alpha(1) genes in the Milan hypertensive rat	Lodwick D et al.	9535139	Non-huma study

	Hypertension in unilaterally nephrectomized rats induced by single-			Non-huma
1	kidney transfection with angiotensinogen cDNA	Marley WS et al.	10567853	study
	Cardiovascular dysfunction in Zucker obese and Zucker diabetic fatty			Non-huma
1	rats: role of hydronephrosis	Marsh SA et al.	17351065	study
	A novel rodent model of pregnancy complications associated with	Mata-Greenwood		Non-huma
1	genetically determined angiotensin-converting enzyme (ACE) activity	E et al.	29360395	study
	Chronic hypertension and altered baroreflex responses in transgenic			Non-huma
1	mice containing the human renin and human angiotensinogen genes	Merrill DC et al.	8613528	study
	Hypervolemia of pregnancy is not maintained in mice chronically			Non-huma
1	overexpressing angiotensinogen	Morgan TK et al.	16796982	study
	Vascular angiotensin-converting enzyme expression regulates local			Non-huma
1	angiotensin II	Muller DN et al.	9039087	study
	Angiotensin-li Enhances Norepinephrine Spillover During Sympathetic			Non-huma
1	Activation In Conscious Rabbits	Noshiro T et al.	8203585	study
	Effect Of Angiotensin-Converting Enzyme-Inhibition On Renal			
	Norepinephrine Spillover Rate And Baroreflex Responses In Conscious			Non-huma
1	Rabbits	Noshiro T et al.	1648463	study
	Altered regulation of renal interstitial hydrostatic pressure and the renal	O'Tierney PF et		Non-huma
1	renin-angiotensin system in the absence of atrial natriuretic peptide	al.	18192845	study
	Gene Trapping Uncovers Sex-Specific Mechanisms for Upstream			Non-huma
1	Stimulatory Factors 1 and 2 in Angiotensinogen Expression	Park S et al.	22547438	study
	Knockdown of parathyroid hormone related protein in smooth muscle			Non-huma
1	cells alters renal hemodynamics but not blood pressure	Raison D et al.	23720345	study
1	Nephron-specific deletion of the prorenin receptor causes a urine	Ramkumar N et	23720343	Non-huma
1	concentration defect	al.	25995108	
I		aı.	23333108	study
	Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for			Non-huma
1	the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis.	Ren S et al.	15788398	study

	20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION,			
	HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II			Non-human
1	RECEPTOR	Savas S et al.	27298316	study
	Parallel regulation of renin and lysosomal integral membrane protein 2			
	in renin-producing cells: further evidence for a lysosomal nature of renin			Non-human
1	secretory vesicles	Schmid J et al.	23229015	study
	Stimulation of renin release by prostaglandin E(2) is mediated by EP(2)			Non-human
1	and EP(4) receptors in mouse kidneys	Schweda F et al.	15113745	study
	Preserved macula densa-dependent renin secretion in A(1) adenosine			Non-human
1		Schweda F et al.	12475747	study
	Angiotensin converting enzyme (ACE) gene expression in experimentally			Non-human
1	induced liver cirrhosis in rats	Shahid SM et al.	24035938	study
	Elevated blood pressures in mice lacking endothelial nitric oxide			Non-human
1	synthase	Shesely EG et al.	8917564	study
	Endothelium-Dependent Relaxation In The Isolated Rat-Kidney -			Non-human
1	Impairment By Cyclosporine-A	Stephan D et al.	8606521	study
	Local Renal Circadian Clocks Control Fluid-Electrolyte Homeostasis and			Non-human
1	BP	Tokonami N et al.	24652800	study
	Functional genetic variation in aminopeptidase A (ENPEP): Lack of clear	UA /		Non-human
1	association with focal and segmental glomerulosclerosis (FSGS)	Tonna S et al.	18206321	study
	Antihypertensive Role of Tissue Kallikrein in Hyperaldosteronism in the			Non-human
1	Mouse	Waeckel L et al. 🛛 🥏	22669897	study
	Role of cGMP-kinase II in the control of renin secretion and renin			Non-human
1	expression	Wagner C et al.	9788971	study
				Non-human
1	GPR48 Increases Mineralocorticoid Receptor Gene Expression	Wang J et al.	22135314	study
	Compensatory up-regulation of angiotensin II subtype 1 receptors in			Non-human
1	alpha ENaC knockout heterozygous mice	Wang Q et al.	11380824	study

	Nebivolol treatment improves resistant arterial function and reduces ventricular hypertrophy and angiotensin II in spontaneously			Non-human
1	hypertension rats	Wang Y et al.	23263161	study
1	The elevated blood pressure of human GRK4 gamma A142V transgenic mice is not associated with increased ROS production	Wang Z et al.	17259440	Non-human study
1	Role of neutral endopeptidase 24.11 in AV fistular rat model of heart failure	Wegner M et al.	8759244	Non-humar study
1	Role of angiotensin-converting enzyme (ACE and ACE2) imbalance on tourniquet-induced remote kidney injury in a mouse hindlimb ischemia- reperfusion model	Yang XH et al.	22580272	Non-humar study
1	Effect of SWL on renal hemodynamics: could a change in renal artery contraction-relaxation responses be the cause?	Yilmaz E et al.	22945811	Non-humar study
1	Cosegregation of spontaneously hypertensive rat renin gene with elevated blood pressure in an F-2 generation	Yu H et al.	9794718	Non-humar study
1	Role of blood pressure and the renin-angiotensin system in development of diabetic nephropathy (DN) in eNOS(-/-) db/db mice	Zhang MZ et al.	22114203	Non-humar study
1	Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression.	Zhou T et al.	20693543	Non-humar study
1	Angiotensin-converting enzyme genotype is a predictive factor in the peak panel-reactive antibody response	Akcay A et al.	15013293	Not a case- control stud
1	Association of the genetic polymorphisms of the renin-angiotensin system and endothelial nitric oxide synthase with chronic renal transplant dysfunction	Akcay A et al.	15385810	Not a case- control stud
1	Randomized Controlled Trial: Lisinopril Reduces Proteinuria, Ammonia, and Renal Polypeptide Tubular Catabolism in Patients With Chronic Allograft Nephropathy	Amara AB et al.	20061926	Not a case- control stud
1	Influence of cytokine gene polymorphisms on IgA nephropathy.	Bantis C et al.	18300111	Not a case- control stud
1	Influence of genetic polymorphisms of the renin-angiotensin system on IgA nephropathy	Bantis C et al.	15031629	Not a case- control stud

Page 258 of 304

1 2 3 4 5 6 7 8	
9 10 11 12 13 14 15	
16 17 18 19 20 21	
22 23 24 25 26 27 28	
29 30 31 32 33 34	
35 36 37 38 39 40 41	
41 42 43 44 45 46	

	Angiotensin-converting-enzyme insertion/deletion genotype and long-			Not a case
1	term renal allograft survival	Beige J et al.	9550656	control stu
				Not a case
1	Angiotensin-converting enzyme genotype and renal allograft survival	Beige J et al.	9259361	control st
	Deletion insertion polymorphism of the angiotensin converting enzyme			Not a case
1	gene and progression of diabetic nephropathy	Bjorck S et al.	9269704	control st
	Angiotensinogen concentrations and renin clearance : implications for			Not a case
1		Bohlender J et al.	10720595	control st
	Genetic polymorphisms of renin-angiotensin system and progression of	Buraczynska M et		Not a case
1		al.	12898858	control st
	The Epithelial Sodium Channel gamma-Subunit Gene and Blood Pressure			
	Family Based Association, Renal Gene Expression, and Physiological			Not a case
1		Busst CJ et al.	22006290	control st
	Twenty-one additional cases of familial renal glucosuria: absence of			
	genetic heterogeneity, high prevalence of private mutations and further			Not a case
1	evidence of volume depletion	Calado J et al.	18622023	control st
	Discovery of a novel dominant mutation in the REN gene after forty	0.		Not a case
1		Clissold RL et al.	28701203	control st
				Not a case
1	Disorders of mineralocorticoid synthesis	Connell JMC et al.	11469810	control stu
	Successful treatment of decompensated chronic viral hepatitis by bursal			Not a case
1		Csatary LK et al.	10216467	control st
-		couldry Elect all	10210107	Not a case
1	Natriuretic peptides buffer renin-dependent hypertension	Demerath T et al.	24717731	control st
-	Association between two genetic polymorphisms of the renin-	Demeratin r et al.	21/1//01	control st
	angiotensin-aldosterone system and diabetic nephropathy: a meta-			Not a case
1		Ding W et al.	21607620	control st
-		2	21007020	
	The effects of angiotensin-converting enzyme gene polymorphism on			Not a case
1	the progression of immunoglobulin A nephropathy in Malaysian patients	Draman CR et al.	19037561	control stu

	Juxtaglomerular cell tumor of the kidney: Report of a non-functioning			Not a case
1	variant	Endoh Y et al.	9211527	control stu
	Prograf produces more benefits for CYP3A5 low expression patients in			Not a case-
1	early stage after kidney transplantation.	Fan B et al.	28157649	control stu
				Not a case
1	Diabetes, nephropathy, and the renin system	Hollenberg NK	16601578	control stu
	Association between Angiotensin I-Converting Enzyme			
	Insertion/Deletion Polymorphism and Prognosis of Kidney			Not a case
1	Transplantation: A Meta-Analysis	Huang ZK et al.	26000752	control stu
	Is there a role of angiotensin-converting enzyme gene polymorphism in			Not a case
1	the failure of arteriovenous femoral shunts for hemodialysis?	Isbir CS et al.	11525534	control stu
	Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and			
	Cardiovascular Disease: Report of a Scientific Workshop Organized by			Not a case
1	the National Kidney Foundation	Johnson RJ et al.	29496260	control stu
	Diagnosis of a case of Gitelman's syndrome based on renal clearance			••••
	studies and gene analysis of a novel mutation of the thiazide-sensitive		4 6 3 7 6 6 6	Not a case
1	Na-Cl cotransporter	Kageyama K et al.	16370563	control stu
	Paricalcitol as an Antiproteinuric Agent Can Result in the Deterioration			Not a case
1	of Renal and Heart Function in a Patient with Fabry Disease	Keber T et al.	28596512	control stu
	The role of renin-angiotensin-aldosterone system genes in the			••••
	progression of chronic kidney disease: findings from the Chronic Renal		25006704	Not a case
1	Insufficiency Cohort (CRIC) study.	Kelly TN et al.	25906781	control stu
1	Smoking has no impact on survival and it is not associated with ACE gene	Kiss I et al.	28058974	Not a case
1	I/D polymorphism in hemodialysis patients.	KISS I EL dI.	28058974	control stu
	ACE gene polymorphism in focal segmental glomerulosclerosis and			N
4	membranous glomerulonephritis - Is observed difference of clinical	Kuzmania Diat al	WOC.000087220000012	Not a case
1	significance?	Kuzmanic D et al.	WOS:000087339600012	control stu
	Antihypertensive treatment modulates the association between the D/I ACE gene polymorphism and left ventricular hypertrophy: a meta-	Kuzpotcovo T ot		Not a case
1		Kuznetsova T et al.	10918550	control stu
1	analysis	aı.	10319220	control stu

				Not a case-
1	Bilateral high origins of testicular arteries: a rare variant.	Li J et al.	22732819	control stu
	A Genetic Variant in the Distal Enhancer Region of the Human Renin			Not a case-
1	Gene Affects Renin Expression	Makino Y et al.	26366736	control stu
				Not a case-
1	Genetics and the prediction of complications in type 1 diabetes	Marre M	10097900	control stu
	Angiotensin converting enzyme gene polymorphism and renal			Not a case-
1	hemodynamic function in early diabetes	Miller JA et al.	8995725	control stu
	The kidney in diabetes: How to control renal and related cardiovascular			Not a case-
1	complications U/A	Mogensen CE	11158852	control stu
	A female with X-linked Alport syndrome and compound heterozygous	Mohammad M et		Not a case-
1	COL4A5 mutations	al.	24337245	control stu
-		-	21007210	control sta
	Catalase activity, allelic variations in the catalase gene and risk of kidney	Mohammedi K et		Not a case-
1	complications in patients with type 1 diabetes	al.	24057136	control stu
	Renal Tubular Dysgenesis in Israel: Pathologist's Experience and 🕥 👔			Not a case-
1	Literature Review	Moldavsky M	19344005	control stu
	Tip lesion variant of primary focal and segmental glomerulosclerosis:	0.		Not a case-
1	clinicopathological analysis of 20 cases.	Mungan S et al.	25857429	control stu
	Genome-Wide Association Analysis of Plasma B-Type Natriuretic Peptide			Not a case-
1	in Blacks The Jackson Heart Study	Musani SK et al.	25561047	control stu
	Angietansing gang variation and renear stative office av of regin			Not a case-
1	Angiotensinogen gene variation and renoprotective efficacy of renin-	Narita I et al.	12011556	
1	angiotensin system blockade in IgA nephropathy	Ndfild i et al.	12911556	control stu
	Renoprotective efficacy of renin-angiotensin inhibitors in IgA			Not a case-
1	nephropathy is influenced by ACE A2350G polymorphism	Narita I et al.	14684698	control stu
	Correlates of ACE activity in macroalbuminuric type 2 diabetic patients			Not a case-
1	treated with chronic ACE inhibition.	Nikzamir et al.	17986476	control stu
				Not a case-
1	Epidemiology and genetics of calcific aortic valve disease	O'Brien KD	17963677	control stu

 BMJ Open

	Impact of polymorphisms in the renin-angiotensin-aldosterone system	Orenes-Pinero E		Not a case-
1	on hypertrophic cardiomyopathy	et al.	21507890	control study
	Relationships between HLA-A, -B, -DQ and -DR antigens and interstitial			Not a case-
1		Ozdemir BH et al.	15354972	control stud
	Renin-angiotensin system gene polymorphisms predict the progression			Not a case-
1	to renal insufficiency among Asians with lupus nephritis	Parsa A et al.	15789057	control stud
	Association of angiotensinogen gene T235 variant with progression of			Not a case-
1		Pei Y et al.	9259580	control stuc
	Normative genetic profiles of RAAS pathway gene Polymorphisms in			Not a case-
1	north Indian and south Indian Populations	Prasad P et al.	18027817	control stuc
	Identification of a novel mutation in the human mineralocorticoid			
	receptor gene in a German family with autosomal-dominant			
	pseudohypoaldosteronism type 1: Further evidence for marked			Not a case-
1	interindividual clinical heterogeneity	Riepe FG et al.	12679457	control stud
				Not a case-
1		Rippin JD et al.	11554775	control stud
	A Synergistic Association of ACE I/D and eNOS G894T Gene Variants with	Rodriquez-Perez		Not a case-
1	the Progression of Immunoglobulin A Nephropathy - A Pilot Study	JC et al.	19546528	control stud
	Increased left ventricular mass in normotensive type 1 diabetic patients			Not a case-
1	with diabetic nephropathy	Sato A et al.	9727905	control stud
	Risk of developing diabetic nephropathy is not associated with			
	synergism between the angiotensin II (type 1) receptor C-1166 allele and			Not a case-
1	poor glycaemic control	Savage DA et al.	10328465	control stud
				Not a case-
1	Alport Syndrome in Women and Girls	Savige J et al.	27287265	control stud
	Expert Guidelines for the Management of Alport Syndrome and Thin			Not a case-
1	Basement Membrane Nephropathy	Savige J et al.	23349312	control stud
	Genetic determinants of diabetic renal disease and their impact on	-		Not a case-
1	therapeutic interventions	Schmidt S et al.	9407416	control stud

1	Rho kinase polymorphism influences blood pressure and systemic vascular resistance in human twins - Role of heredity	Seasholtz TM et al.	16585408	Not a case- control stu
	Impact of genetic polymorphisms of the renin-angiotensin system and of		10000100	00111101314
	non-genetic factors on kidney transplant function - a single-center	Siekierka-Harreis		Not a case-
1	experience	M et al.	19681973	control stu
	The deletion/insertion polymorphism of the angiotensin converting			Not a case
1	enzyme gene and cardiovascular-renal risk	Staessen JA et al.	9488209	control stu
	Developsion valiance . Further in the actual share to victim of			
1	Renal angiomyolipoma - Further immunophenotypic characterization of an expanding morphologic spectrum	Stone CH et al.	11371226	Not a case- control stu
	Frequencies of apolipoprotein E alleles in depressed patients undergoing	Stone chiet al.	113/1220	Not a case
1	hemodialysisa case-control study.	Su YY et al.	25707516	control stu
				Not a case
1	Assessing genetic susceptibility to diabetic nephropathy	Tanaka N et al.	16174281	control stu
	Tip variant of focal segmental glomerulosclerosis: is it truly a benign			Not a case-
1	variant?	Trivedi M et al.	25721429	control stu
	Roles of Loss of Chromosome 14q Allele in the Prognosis of Renal Cell 🥖			Not a case
1	Carcinoma with C-reactive Protein Abnormity.	Wang G et al.	28875953	control stu
	Contribution of gene polymorphisms in the renin-angiotensin system to			Not a case
1	macroangiopathy in patients with diabetic nephropathy	Wong et al.	11431175	control stu
	Prognostic role of serum ACE activity on outcome of type 2 diabetic			Not a case
1	patients on chronic ambulatory peritoneal dialysis	Wong TYH et al.	11979350	control stu
	Novel mutations in the inverted formin 2 gene of Chinese families			Not a case
1	contribute to focal segmental glomerulosclerosis.	Xie J et al.	26039629	control stu
	Role Of The Deletion Polymorphism Of The Angiotensin-Converting			
	Enzyme Gene In The Progression And Therapeutic Responsiveness Of Iga			Not a case
1		Yoshida H et al.	7593601	control stu
	Gene Polymorphisms of the Renin-AngiotensinAldosterone system and			Not a case
1	angiotensin 11 type I-Receptor activating antibodies in renal rejection	Zhang G et al.	17984617	control stu

	Rapid detection and quantification of apolipoprotein L1 genetic variants and total levels in plasma by ultra-performance liquid			Not a case-
1	chromatography/tandem mass spectrometry.	Zhou H et al.	24591025	control stud
	Pharmacogenetic association of the angiotensin-converting enzyme	2.100 11 00 01.	2 133 1023	
	insertion/deletion polymorphism on blood pressure and cardiovascular			
	risk in relation to antihypertensive treatment - The genetics of			Not a renal
1		Arnett DK et al.	15967849	disease focu
				Not a renal
1	A role for CETP TaqIB polymorphism in determining susceptibility to	Asselbergs FW et	16623947	disease focu
1	atrial fibrillation: a nested case control study	al.	10023947	disease toci
	Serum paraoxonase-1 gene polymorphism and enzyme activity in			Not a renal
1	patients with urolithiasis.	Atar A et al.	26795139	disease focu
	Association of ACE gene D polymorphism with left ventricular			Not a renal
1	hypertrophy in patients with diastolic heart failure: a case-control study	Bahramali E et al.	26861937	disease foc
	Amiloride, a specific drug for hypertension in black people with T594M			Not a renal
1	variant?	Baker EH et al.	12105131	disease foc
	Association of hypertension with T594M mutation in beta subunit of			Not a renal
1	epithelial sodium channels in black people resident in London	Baker EH et al.	9593408	disease foc
				Not a renal
1	Alpha-adducin polymorphism in hypertensives of South African ancestry.	Barlassina C et al.	10912759	disease foc
	Common genetic variants and haplotypes in renal CLCNKA gene are			Not a renal
1	associated to salt-sensitive hypertension	Barlassina C et al.	17510212	disease foc
	Synergistic effect of alpha-adducin and ACE genes causes blood pressure			Not a renal
1		Barlassina C et al.	10720960	disease foci
1	Evaluation of risk factors for the development of nephropathy in		10720300	
	patients with IDDM: Insertion/deletion angiotensin converting enzyme			Not a renal
1		Barnas U et al.	9084972	disease foci
1			5004972	
-				Not a renal
1	Polymorphism in angiotensin II receptor genes and hypertension	Baudin B et al.	15640279	disease focu
	Higher thrombin activatable fibrinolysis inhibitor levels are associated			Not a renal
1	with inflammation in attack-free familial Mediterranean fever patients.	Bavbek N et al.	24580410	disease focu

	Insertion-deletion polymorphism in the angiotensin-converting enzyme			Not a renal
1	(ACE) gene among Sudanese, Somalis, Emiratis, and Omanis	Bayoumi RA et al.	16900885	disease focus
	Single Strand Conformation Polymorphism (SSCP) as a quick and reliable	Bettinaglio P et		Not a renal
1	method to genotype M235T polymorphism of angiotensinogen gene	al.	12270765	disease focus
				Not a renal
1	CYP3A5 and ABCB1 genes and hypertension	Bochud M et al.	19290795	disease focu
	Polymorphisms of the renin-angiotensin system in patients with			Not a renal
1	multifocal renal arterial fibromuscular dysplasia	Bofinger A et al.	11317203	disease focu
	Association between plasma activities of semicarbazide-sensitive amine			
	oxidase and angiotensin-converting enzyme in patients with type 1			Not a renal
1	diabetes mellitus.	Boomsma F et al.	15830186	disease focu
	Structure-Based Analysis of Single Nucleotide Variants in the Renin-			Not a renal
1		Brown DK et al.	28302554	disease focu
	Renin-angiotensin system gene polymorphisms: assessment of the risk	Buraczynska M et		Not a renal
1	of coronary heart disease.	al.	14502296	disease focu
	Oxidative stress-related factors in Bartter's and Gitelman's syndromes:			Not a renal
1	relevance for angiotensin II signalling.	Calo LA et al.	12897089	disease focu
	Efficacy of large doses of IL-2-activated human leukocyte antigen	0.		
	haploidentical peripheral blood stem cells on refractory metastatic renal			Not a renal
1	cell carcinoma.	Cao S et al.	21812652	disease focu
	Biochemical and genetic characterization of 11 beta-hydroxysteroid			Not a renal
1	dehydrogenase type 2 in low-renin essential hypertensives.	Carvajal CA et al.	15643127	disease focu
	Role of GRK4 in the Regulation of Arterial AT(1) Receptor in		Y	Not a renal
1	Hypertension	Chen K et al.	24218433	disease focu
	CARD8 rs2043211 polymorphism is associated with gout in a Chinese			Not a renal
1	male population.	Chen Y et al.	25790751	disease focu
	Association of renin-angiotensin and endothelial nitric oxide synthase			
	gene polymorphisms with blood pressure progression and incident			Not a renal
1	hypertension: prospective cohort study.	Conen D et al.	18698212	disease focu
		Cordonnier DJ et		Not a renal
1	Role of ACE inhibitors in patients with diabetes mellitus	al.	11708761	disease focu

 BMJ Open

	Molecular genetics of the renin-angiotensin-aldosterone system in			Not a renal
1	human hypertension	Corvol P et al.	9296068	disease foc
	Vitamin D receptor gene polymorphisms and plasma renin activity in			Not a renal
1		Cottone S et al.	25500899	disease foc
				Not a renal
1	Genetic polymorphism of Na-K cotransport in essential hypertension.	Cusi D et al.	2258861	disease foc
	Extensive personal experience - Examination of genotype and			
	phenotype relationships in 14 patients with apparent mineralocorticoid	Dave-Sharma S et		Not a renal
1	excess	al.	9661590	disease for
	ACE and PC-1 gene polymorphisms in normoalbuminuric Type 1 diabetic	de Azevedo MJ et		Not a renal
1	patients - A 10-year prospective study	al.	12126783	disease for
	Polymorphisms in genes of the renin-angiotensin-aldosterone system			
	and renal cell cancer risk: Interplay with hypertension and intakes of			Not a renal
1	sodium, potassium and fluid	Deckers IA et al.	24978482	disease for
	Adsorption of cytotoxic anti-HLA antibodies with HLA class I			Not a renal
1		DeVito LD et al.	2186524	disease foc
I	Clinical and laboratory characterization of 114 cases of Castleman	Devito LD et al.	2100524	
	disease patients from a single centre: paraneoplastic pemphigus is an	0.		Not a renal
1		Dong Y et al.	25824806	disease foc
1		Dong r ct di.	23024000	
	CYP2C9 genotype modifies activity of the renin-angiotensin-aldosterone			Not a rena
1	system in hypertensive men	Donner KM et al.	19593208	disease foc
	TGF-beta1 gene polymorphisms and peritoneal equilibration test results			Not a renal
1	in CAPD patients.	Ebinc FA et al.	18197538	disease foo
	A new theory of essential hypertension based on analysis of the			
	association between a polymorphism of the alpha(2)-adrenoceptor at			Not a rena
1	the 10q24-q26 locus and hypertension in African-Americans	Eggers AE	26243176	disease for
				Not a rena
1	High aldosterone-to-renin variants of CYP11B2 and pregnancy outcome.	Escher G et al.	19151144	disease for
	Cardiovascular effects of aldosterone: insight from adult carriers of			Not a rena
1	C C	Escoubet B et al.	23852419	disease foc

Page 266 of 304

1 2	
2 3 4	
5	
6 7	
8 9	
10 11	
12 13 14 15	
16	
17 18	
19 20	
21	
22 23	
24 25	
26 27	
28 29	
30	
31 32	
33 34	
34 35 36	
37 38	
39	
40 41	
42 43	
44 45	
45 46	

	Genetic polymorphisms of the renin-angiotensin-aldosterone system			Not a rena
1	and renal insufficiency in essential hypertension	Fabris B et al.	15662219	disease fo
	Recurrence of the R947X mutation in unrelated families with autosomal			
	dominant pseudohypoaldosteronism type 1: evidence for a mutational	Fernandes-Rosa		Not a ren
1	hot spot in the mineralocorticoid receptor gene.	FL et al.	16757525	disease fo
	Angiotensin converting enzyme gene I/D polymorphism in essential	Fernandez-Llama		Not a rena
1	hypertension and nephroangiosclerosis	P et al.	9607207	disease fo
	Renin-Angiotensin System Polymorphisms and Risk of Hypertension:			Not a rena
1	Influence of Environmental Factors 🚬	Forman JP et al.	18550936	disease fo
	4			Not a rena
1	CYP3A5 genotype is associated with elevated blood pressure.	Fromm MF et al.	16141800	disease fo
	Associations between the human insulin gene 5' VNTR and clinical			Not a rena
1	variables of the renin-angiotensin system. 💦 🚫 🔼	Frossard PM et al.	14647005	disease fo
	The interaction of AGT and NOS3 gene polymorphisms with			Not a ren
1		Gatti RR et al.	22791701	disease fo
1	conventional risk factors increases predisposition to hypertension		22/91/01	
4	Connexin 43 is not essential for the control of renin synthesis and	Coul Masteri	24062052	Not a rena
1	secretion	Gerl M et al.	24062052	disease fo
	Deletion polymorphism of the angiotensin-converting enzyme gene is			Not a rena
1	independently associated with left ventricular mass and geometric	Charavi AC at al	0077070	
1	remodeling in systemic hypertension.	Gharavi AG et al.	8677872	disease fo
	A Computational Model of the Circulating Renin-Angiotensin System and			Not a ren
1	Blood Pressure Regulation	Guillaud F et al.	20683640	disease fo
	The presence of PAI-1 4G/5G and ACE DD genotypes increases the risk of			Not a ren
1	early-stage AVF thrombosis in hemodialysis patients.	Gungor Y et al.	21332339	disease fo
				Not a ren
1	ADAM33: a newly identified gene in the pathogenesis of asthma.	Holgate ST et al.	16257631	disease fo
			10237031	
		Hollenberg NK et		Not a rena
1	Nonmodulation and essential hypertension	al.	16672145	disease fo

 BMJ Open

	Angiotensinogen genotype affects renal and adrenal responses to			Not a renal
1	angiotensin II in essential hypertension	Hopkins PN et al.	11997278	disease focu
	Blunted renal vascular response to angiotensin II is associated with a			Not a renal
1	common Variant of the angiotensinogen gene and obesity	Hopkins PN et al.	8728297	disease focu
	Genetic variation of the renin-angiotensin system and chronic kidney			
	disease progression in black individuals in the atherosclerosis risk in			Not a renal
1	communities study	Hsu CCC et al.	16396964	disease foc
	Unclassified renal cell carcinoma: a clinicopathological, comparative			Not a renal
1	genomic hybridization, and whole-genome exon sequencing study.	Hu ZY et al.	25120763	disease foc
	A case control association study of ACE gene polymorphism (I/D) with			Not a renal
1	hypertension in Punjabi population from Faisalabad, Pakistan	Hussain M et al.	29058472	disease foc
	Genetic variant of the renin-angiotensin system and prevalence of type			
	2 diabetes mellitus: a modest but significant effect of aldosterone			Not a renal
1	synthase	Ichikawa M et al.	24549414	disease foc
	The cardiovascular system in familial hypocalciuric hypercalcemia: a			
	cross-sectional study on physiological effects of inactivating variants in	Jakobsen NFB et		Not a renal
1	the calcium-sensing receptor gene	al.	27418061	disease foc
	Genetic variants in five novel loci including CFB and CD40 predispose to			Not a renal
1	chronic hepatitis B.	Jiang DK et al.	25802187	disease foc
	The association of the R563Q genotype of the ENaC with phenotypic			Not a renal
1	variation in Southern Africa.	Jones ES et al.	22895453	disease foc
	Renin-Angiotensin System Gene Variants and Type 2 Diabetes Mellitus:	Joyce-Tan SM et		Not a renal
1	Influence of Angiotensinogen	al.	26682227	disease foc
	Comprehensive analysis of the renin-angiotensin gene polymorphisms			Not a renal
1	with relation to hypertension in the Japanese	Kato N et al.	10953993	disease foc
				Not a renal
1	Genetic-Control Of Blood-Pressure And The Angiotensinogen Locus	Kim HS et al.	7708716	
	Effect of the plasminogen-plasmin system on hypertensive renal and			Not a renal
1	cardiac damage	Knier B et al.	21610512	disease foc

	Polymorphism of the aldosterone synthase gene is not associated with			
	progression of diabetic nephropathy, but associated with hypertension			Not a renal
1	in type 2 diabetic patients	Ko GJ et al.	18771471	disease focus
	Haplotype-based case-control study revealing an association between			
	the adrenomedullin gene and proteinuria in subjects with essential			Not a renal
1	hypertension	Kobayashi Y et al.	16097366	disease focus
	Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients with			Not a renal
1	low-renin hypertension.	Komiya I et al.	10720581	disease focus
				Not a renal
1	Molecular-Biology Of Hypertension	Krieger JE et al.	1832415	disease focus
	Beneficial role of D allele in controlling ACE levels: a study among			Not a renal
1	Brahmins of north India	Kumari S et al.	27350671	disease focus
	Juxtaglomerular cell tumor: A morphological, immunohistochemical and			Not a renal
1	genetic study of six cases	Kuroda N et al.	22939575	disease focus
	Angiotensin-converting enzyme gene polymorphism has no influence on			
	the circulating renin-angiotensin-aldosterone system or blood pressure			Not a renal
1	in normotensive subjects	Lachurie ML et al.	7796503	disease focus
	Angiotensinogen and angiotensin II type 1 receptor gene polymorphism			
	in patients with autosomal dominant polycystic kidney disease: Effect on			Not a renal
1	hypertension and ESRD	Lee KB et al.	12950120	disease focus
	ACE gene insertion/deletion polymorphism associated with 1998 World			
	Health Organization definition of metabolic syndrome in Chinese type 2			Not a renal
1	diabetic patients	Lee YJ et al.	12032106	
1		Lee ij et al.	12032100	Not a renal
1	The brain and salt-sensitive hypertension	Leenen FHH et al.	11884268	disease focus
1	Risk given by AGT polymorphisms in inducing susceptibility to essential	Leenen Finn et al.	11004200	uisease iocus
	hypertension among isolated populations from a remote region of			Not a renal
1	China: A case-control study among the isolated populations	Li Q et al.	26391364	
1	Association Between Polymorphisms of ADRBK1 Gene and Plasma Renin	נו ע פו מו.	20391304	Not a renal
1	Activity in Hypertensive Patients: A Case-Control Study	Li Y et al.	27555048	
1	No Evidence for the Expression of Renin-Angiotensin-Aldosterone		27555048	Not a renal
4		Liktor B ot al	22270555	
1	System in Otosclerotic Stapes Footplates	Liktor B et al.	23370555	disease focus

1	Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study.	Liu K et al.	26339402	Not a renal disease for
	Common variation in KLKB1 and essential hypertension risk: tagging-SNP			Not a rena
1	haplotype analysis in a case-control study	Lu XF et al.	17318641	disease foc
		Lubkemeier I et		Not a renal
1	The Connexin40 A96S Mutation Causes Renin-Dependent Hypertension	al.	21597036	disease foo
	Connexin 40 is dispensable for vascular renin cell recruitment but is			Not a renal
1	indispensable for vascular baroreceptor control of renin secretion	Machura K et al.	25241776	disease foo
	The association between vitamin D receptor gene polymorphisms (Taql and Fokl), Type 2 diabetes, and micro-/macrovascular complications in			Not a rena
1	postmenopausal women	Maia J et al.	27536155	disease foo
	Angiotensin-converting enzyme (ACE) gene II genotype protects against			
	the development of diabetic peripheral neuropathy in type 2 diabetes			Not a rena
1	mellitus.	Mansoor Q et al.	22607040	disease foo
		•		Not a rena
1	Apparent mineralocorticoid excess: Type I and type II	Mantero F et al.	8732999	disease for
				Not a renal
1	Low-salt diet and diuretic effect on blood pressure and organ damage	Manunta P et al.	14684671	disease for
				Not a renal
1		Manunta P et al.	9377722	disease foo
	alpha-Adducin polymorphisms and renal sodium handling in essential			Not a rena
1	hypertensive patients	Manunta P et al.	9607177	disease for
	Is angiotensin-converting enzyme inhibitors/angiotensin receptor			Not a rena
1		Mao YQ et al.	26760503	disease foo
	Detection of the association between a deletion polymorphism in the			
	gene encoding angiotensin I-converting enzyme and advanced diabetic	Matsumoto A et		Not a renal
1	retinopathy	al.	11106834	disease for
	Genotypic interactions of renin-angiotensin system genes with diabetes			Not a renal
1	type 2 in a Tunisian population	Mehri S et al.	20580725	disease foc

	Angiotensin II type 1 receptor gene polymorphism and the response to			Not a renal
1	hyperglycemia in early type 1 diabetes	Miller JA et al.	10969844	disease focus
	Renal ACE immunohistochemical localization in NIDDM patients with			Not a renal
1	nephropathy	Mizuiri S et al.	9469501	disease focus
	Randomised controlled trial of dual blockade of renin-angiotensin			
	system in patients with hypertension, microalbuminuria, and non-insulin			
	dependent diabetes: the candesartan and Lisinopril microalbuminuria	Mogensen CE et		Not a renal
1	(CALM) study	al.	11110735	disease focus
	Association of Polymorphisms in Endothelial Nitric Oxide Synthesis and			
	Renin-Angiotensin-Aldosterone System with Developing of Coronary			Not a renal
1	Artery Disease in Bulgarian Patients	Mokretar K et al.	26670794	disease focus
	Contribution of angiotensin I converting enzyme gene polymorphism			
	and angiotensinogen gene polymorphism to blood pressure regulation			Not a renal
1	in essential hypertension.	Mondorf UF et al.	9524045	disease focus
	Inhibition of tissue angiotensin converting enzyme activity prevents	Montgomery HE	0707475	Not a renal
1	malignant hypertension in TGR(mREN2)27.	et al.	9797175	disease focus
	[Possible pathogenetic role of 11 beta-hydroxysteroid dehydrogenase		40760005	Not a renal
1	type 1 (11betaHSD1) gene polymorphisms in arterial hypertension].	Morales MA et al.	18769825	disease focus
	Inefficient arterial hypertension control in patients with metabolic			
	syndrome and its link to renin-angiotensin-aldosterone system	Morales-Suarez-	24 474 072	Not a renal
1	polymorphisms	Varela MM et al.	21471972	disease focus
	Trientine and renin-angiotensin system blockade ameliorate progression			
1	of glomerular morphology in hypertensive experimental diabetic	Moya-Olano L et	22020676	Not a renal
1	nephropathy.	al.	22029676	disease focus
	Is the influence of variation in the ACE gene on the prospective risk of	Muthumala A et		Not a renal
1	Type 2 diabetes in middle-aged men modified by obesity?	al.	17624939	disease focus
				Not a renal
1	Evaluation Of The Sa Locus In Human Hypertension	Nabika T et al.	7843754	disease focus
	Atrial Natriuretic Peptide Locally Counteracts the Deleterious Effects of			Not a renal
1	Cardiomyocyte Mineralocorticoid Receptor Activation	Nakagawa H et al.	25027872	disease focus

 BMJ Open

1	Association between RAS gene polymorphisms (ACE I/D, AGT M235T) and Henoch-Schonlein purpura in a Turkish population	Nalbantoglu S et al.	23151617	Not a renal disease focu
1	Urine exosomes from healthy and hypertensive pregnancies display elevated level of alpha-subunit and cleaved alpha- and gamma-subunits of the epithelial sodium channel-ENaC	Nielsen MR et al.	28405801	Not a renal disease foc
1	Angiotensin Converting Enzyme Gene Insertion/Deletion Variant and Familial Mediterranean Fever-related Amyloidosis.	Nursal AF et al.	29891744	Not a renal disease foc
1	Genetic polymorphisms of the renin-angiotensin system and atheromatous renal artery stenosis	Olivieri O et al.	10567188	Not a renal disease foc
1	Three Reportedly Unrelated Families With Liddle Syndrome Inherited From a Common Ancestor.	Pagani L et al.	29229744	Not a renal disease foc
1	Endothelial nitric oxide synthase gene/gender interactions and the renal hemodynamic response to angiotensin II	Page A et al.	16093452	Not a renal disease foc
1	The alpha-adducin Gly460Trp polymorphism and the antihypertensive effects of exercise among men with high blood pressure.	Pescatello LS et al.	17472579	Not a renal disease foc
1	Impact of maternal angiotensinogen M235T polymorphism and angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure, protein excretion and fetal outcome in pregnancy.	Pfab T et al.	17563539	Not a renal disease foc
1	The state and responsiveness of the renin-angiotensin-aldosterone system in patients with type II diabetes mellitus	Price DA et al.	10232494	Not a renal disease foci
1	Angiotensin-converting enzyme gene polymorphism in patients with systemic lupus.	Prkacin I et al.	11505631	Not a renal disease foc
1	Long-term follow-up of patients with Bartter syndrome type I and II.	Puricelli E et al.	20219833	Not a renal disease foc
1	The relationship between ACE/AGT gene polymorphisms and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes.	Qiao YC et al.	29378484	Not a renal disease foc
1	Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension	Ramkumar N et al.	26755736	Not a renal disease foc

Page 272 of 304

	A new mutation, R563Q, of the beta subunit of the epithelial sodium			Not a
1	channel associated with low-renin, low-aldosterone hypertension	Rayner BL et al.	12714866	disea
	Network-based regularization for high dimensional SNP data in the case-			Not a
1	control study of Type 2 diabetes.	Ren J et al.	28511641	disea
	Pigsties near dwellings as a potential risk factor for the prevalence of			Not a
1	Japanese encephalitis virus in adult in Shanxi, China.	Ren X et al.	28592296	disea
	Association of angiotensinogen M235T and A(-6)G gene polymorphisms			
	with coronary heart disease with independence of essential	Rodriquez-Perez		Not a
1	hypertension: the PROCAGENE study. Prospective Cardiac Gene.	JC et al.	11345362	disea
	A clinical phenotype mimicking essential hypertension in a newly			Not a
1		Rossi E et al.	21525970	disea
	Vitamin D Deficiency in the Pathogenesis of Hypertension: Still an			Not a
1		Rostand SG et al.	24929953	disea
	Amelioration of genetic hypertension by suppression of renal G protein-			Not a
1	coupled receptor kinase type 4 expression	Sanada H et al.	16636192	disea
	Dravalance of engintensis converting engine (ACE) goes			
	Prevalence of angiotensin converting enzyme (ACE) gene	Channesseethan		No.
	insertion/deletion polymorphism in South Indian population with	Shanmuganathan	26440202	Not a
1	hypertension and chronic kidney disease.	R et al.	26440392	disea
1	Nevel SI C12A2 mutations in Chinasa nationts with Citalman's sundrame	Shao L et al.	18287808	Not a disea:
1	Novel SLC12A3 mutations in Chinese patients with Gitelman's syndrome.	Shao L'et al.	18287808	disea
	Mechanisms of suppression of renal kallikrein activity in low renin	Shimamoto K et		Not a
1	essential hypertension and renoparenchymal hypertension.	al.	2676859	disea
	Systemic nitric oxide clamping in normal humans guided by total			Not a
1		Simonsen JA et al.	19785629	disea
				Nata
4	Exaggerated natriuresis during clamping of systemic NO supply in	Simonson IA at al	24740220	Not a
1	healthy young men	Simonsen JA et al.	21749320	disea

	Angiotensin-converting enzyme gene I/D polymorphism increases the susceptibility to hypertension and additive diseases: A study on North			Not a rena
1		Singh M et al.	27030424	disease for
	Renal haemodynamics are not related to genotypes in offspring of			Not a rena
1	parents with essential hypertension	Skov K et al.	17083073	disease fo
	Association between renin-angiotensin-aldosterone system-related			Not a rena
1	genes and blood pressure in a Korean population.	Song SB et al.	21342026	disease for
	Phenotype-genotype interactions on renal function in type 2 diabetes:			Not a rena
1	an analysis using structural equation modelling	Song XY et al.	19479237	disease fo
	Alpha Adducin G460T Variant is a Risk Factor for Hypertension in			Not a rena
1	Tunisian Population	Soualmia H et al.	27349000	disease fo
	Angiotensin II sensitivity in nonpregnant formerly preeclamptic women	Spaanderman		Not a rena
1	and healthy parous controls	MEA et al.	15350256	disease fo
	Angiotensin II Type 1A Receptors in Vascular Smooth Muscle Cells Do			Not a rena
1	Not Influence Aortic Remodeling in Hypertension	Sparks MA et al.	21242463	disease fo
	Association between polymorphisms of the renin-angiotensin system	Sprovieri SRS et		Not a rena
1	and more severe histological forms of lupus nephritis	al.	16047641	disease fo
				Not a rena
1	Wilms' tumor protein (-KTS) modulates renin gene transcription	Steege A et al.	18496514	disease fo
	Angiotensin-converting enzyme gene I/D polymorphism in malignant	Stefansson B et		Not a rena
1		al.	10855732	disease for
	Transforming growth factor-beta(1) hyperexpression in African-			
	American hypertensives: A novel mediator of hypertension and/or	Suthanthiran M		Not a rena
1		et al.	10725360	disease for
	A functional variant of the NEDD4L gene is associated with beneficial	Svensson-Farbom		Not a raza
1	treatment response with \hat{l}^2 -blockers and diuretics in hypertensive patients.	P et al.	21052022	Not a rena disease foo
T	· ·		21022022	
	Genetic variants in hypertensive patients with coronary artery disease		100/0000	Not a rena
1	and coexisting atheromatous renal artery stenosis	Szperl M et al.	19043368	disease for

Page 274 of 304

	Melatonin prevents maternal fructose intake-induced programmed			
	hypertension in the offspring: roles of nitric oxide and arachidonic acid	- · · · · ·	24067402	Not a renal
1		Tain YL et al.	24867192	disease focu
	Genetic variants in the inositol phosphate metabolism pathway and risk			Not a renal
1	of different types of cancer.	Tan J et al.	25683757	disease focu
	Renin in blood vessels in human pulmonary tumors. An			Not a renal
1	immunohistochemical and biochemical study.	Taylor GM et al.	2450464	disease focu
	Incidence of renal failure and nephroprotection by RAAS inhibition in			
	heterozygous carriers of X-chromosomal and autosomal recessive Alport			Not a renal
1	mutations.	Temme J et al.	22237748	disease focu
	Peripheral vascular disease in type 2 diabetic Chinese patients:			
	associations with metabolic indices, concomitant vascular disease and			Not a renal
1		Thomas GN et al.	14632699	disease focu
1	Albuminuria and the renin-angiotensin system gene polymorphisms in	Thomas GN et al.	11200871	Not a renal disease focu:
1		Thomas GN et al.	112008/1	disease locus
	Middle cerebral artery stenosis in type II diabetic Chinese patients is			
	associated with conventional risk factors but not with polymorphisms of			Not a renal
1	<u> </u>	Thomas GN et al.	12865608	disease focus
	Genetic variation in the KCNMA1 potassium channel alpha subunit as			Not a renal
1	risk factor for severe essential hypertension and myocardial infarction	Tomas M et al.	18854754	disease focu
	Renal Mechanisms of Association between Fibroblast Growth Factor 1	Tomaszewski M		Not a renal
1		et al.	25918036	disease focu
	Angiotensin II-dependent chronic hypertension and cardiac hypertrophy			Not a renal
1		Touyz RM et al.	15753233	disease focus
		100 y2 1111 Ct di.	13733233	uiscuse locu
	Renin Production In Congenital Mesoblastic Nephroma In Comparison			Not a renal
1	With That In Wilms-Tumor	Tsuchida Y et al.	8385325	disease focu
	Genomic association analysis identifies multiple loci influencing			Not a renal
1	antihypertensive response to an angiotensin II receptor blocker.	Turner ST et al.	22566498	disease focu

1	Angiotensin-converting enzyme gene polymorphism and vascular manifestations in Korean patients with SLE	Uhm WS et al.	12043886	Not a rena disease foo
1		UIIII WS et al.	12045660	uisease iou
	The M235T polymorphism in theangiotensinogen gene is associated	van den Born BJH		Not a rena
1		et al.	17921816	disease for
			17521010	
	Genetic risk of atherosclerotic renal artery disease - The candidate gene		4500000	Not a rena
1	approach in a renal angiography cohort	van Onna M et al.	15326089	disease foo
	Activation of the hypothalamic-pituitary-adrenal axis in adults with			Not a rena
1	mineralocorticoid receptor haploinsufficiency.	Walker BR et al.	24712576	disease for
	Liver pyruvate kinase polymorphisms are associated with type 2			Not a rena
1	diabetes in northern European Caucasians.	Wang H et al.	12196482	disease for
	miR149 rs71428439 polymorphism and risk of clear cell renal cell			Not a renal
1	carcinoma: a case-control study.	Wang Z et al.	25213695	disease foc
	Genotype-phenotype analysis of angiotensinogen polymorphisms and			Not a renal
1	essential hypertension: the importance of haplotypes	Watkins WS et al.	19770777	disease foc
	Angiotensin-converting enzyme gene does not contribute to genetic			Not a renal
1		Wipff J et al.	19132786	disease foc
	Androgen-Sensitive Hypertension Associates with Upregulated Vascular			Not a renal
1	CYP4A12-20-HETE Synthase	Wu CC et al.	23641057	disease foc
	Urinary UMOD excretion and chronic kidney disease in gout patients:			Not a renal
1	cross-sectional case-control study.	Wu CH et al.	21332338	disease foc
	Unknown face of known drugs - what else can we expect from			Not a rena
1	angiotensin converting enzyme inhibitors?	Wzgarda A et al.	28087255	disease foo
	Malignant Nephrosclerosis in a Patient with Familial Mediterranean	Yamanouchi M et		Not a rena
1	Fever	al.	26466703	disease for
	Gene polymorphism of vascular endothelial growth factor-1154 G > A is			Not a renal
1	associated with hypertensive nephropathy in a Hispanic population	Yang JW et al.	21080079	disease foo
<u> </u>	TBX6 compound inheritance leads to congenital vertebral malformations			Not a renal
1	in humans and mice.	Yang N et al.	30307510	disease foc

Page 276 of	304
-------------	-----

	Identification of diuretic non-responders with poor long-term clinical outcomes: a 1-year follow-up of 176 non-azotaemic cirrhotic patients			Not a renal
1	with moderate ascites	Yang YY et al.	21692745	disease focus
	Renal redox-sensitive signaling, but not blood pressure, is attenuated by			Not a renal
1	Nox1 knockout in angiotensin II-dependent chronic hypertension	Yogi A et al.	18195161	disease focus
	Angiotensin II type 2 receptor gene is not responsible for familial			Not a renal
1	vesicoureteral reflux	Yoneda A et al.	12187255	disease focu
	Angiotensinogen T235 and ACE insertion/deletion polymorphisms			Not a renal
1		Young RP et al.	9540028	disease focu
	Common genetic variants in the chromogranin a promoter are			
	associated with renal injury in IgA nephropathy patients with malignant			Not a renal
1	hypertension.	Yu L et al.	20113265	disease focu
	Frequencies Of Variants Of Candidate Genes In Different Age-Groups Of			Not a renal
1	Hypertensives	Zee RY et al.	7882587	disease focu
	Association of angiotensin-converting enzyme gene polymorphisms with			Not a renal
1	Crohn's disease in a Chinese Han population	Zhou J et al.	26823847	disease focu
	Molecular variants of the sodium/hydrogen exchanger type 3 gene and	0		Not a renal
1	essential hypertension	Zhu HD et al.	15201541	disease focu
		Buraczynska M et		Not English o
1	[Renin-angiotensin system genes in chronic glomerulonephritis].	al.	11865575	Spanish
	[Association of the renin-angiotensin system gene polymorphism with	Buraczynska M et		Not English o
1	nephropathy in type II diabetes].	al.	12476891	Spanish
	[Genetic predisposition to systemic complications of arterial			Not English
1		Bzoma B et al.	19112833	Spanish
		Ermolenko VM et		Not English
1	[Arterial hypertension and chronic hemodialysis].	al.	7700	Spanish
	[Mutations in NPHS2 in familial steroid-resistant nephrotic syndrome in			Not English
1		Fu R et al.	19099831	Spanish

1	[Is Pstl polymorphism of the angiotensin I converting enzyme gene associated with nephropathy development in non-insulin-dependent diabetes mellitus (preliminary study)].	Grzeszczak W et al.	9499204	Not English o Spanish
1	[Angiotensin-converting enzyme gene polymorphism and the clinical pathological features and progression in lupus nephritis].	Guan T et al.	10436947	Not English o Spanish
1	[Angiotensin-converting enyme insertion/deletion polymorphism and blood pressure regulation in type 2 diabetic patients].	Krajina-Andricevic M et al.	23120809	Not English o Spanish
1	[Relationship between I/D polymorphism of angiotensin I converting enzyme gene and microvascular complications in type 2 diabetic patients].	Moleda P et al.	17941464	Not English o Spanish
1	[Genomics of type 1 diabetes mellitus and its late complications]	Nosikov VV	15042845	Not English c Spanish
1	[Correlation between HLA-DQA1 allele and anaphylactoid purpura in juvenile Hans residing in Inner Mongolia].	Ren S et al.	11836690	Not English c Spanish
1	[Correlation of cyclin D1 overexpression to mutations of von hippel- lindau gene in renal clear cell carcinoma].	Ren YY et al.	16480581	Not English o Spanish
1	[Morphofunctional characteristics of endocrine nephropathy in primary aldosteronism].	Sokolova RI et al.	2678677	Not English c Spanish
1	[Gene mutation analysis of X-linked hypophosphatemic rickets].	Song Y et al.	24229582	Not English c Spanish
1	[A novel COL4A5 splicing mutation causing Alport syndrome in a Chinese family].	Tang Z et al.	19065523	Not English c Spanish
1	[Association of single nucleotide polymorphism of megsin gene with IgA nephropathy].	Wang ZH et al.	16796905	Not English c Spanish
1	[Study on the association between the polymorphism of HLA-DQA1 alleles and type 2 diabetes in Yunnan Han nationality].	Yang HY et al.	15192842	Not English o Spanish
1	DD Genotype of ACE Gene in Boys: May it be a Risk Factor for Minimal Change Nephrotic Syndrome?	Alasehirli B et al.	22017506	Paediatric individuals
1	Angiotensin-converting enzyme gene insertion/deletion polymorphism and renal damage in childhood uropathies	Al-Eisa A et al.	10986863	Paediatric individuals

	Angiotensin converting enzyme gene polymorphism in Asian Indian			Paediatric
1	children with congenital uropathies	Bajpai M et al.	14713838	individuals
	Posterior urethral valves: Preliminary observations on the significance of			Paediatric
1	plasma renin activity as a prognostic marker	Bajpai M et al.	15643266	individuals
	Nitric oxide synthase gene polymorphisms in children with primary			Paediatric
1	nocturnal enuresis: a preliminary study.	Balat A et al.	17365914	individuals
	MCP1 2518 A/G polymorphism affects progression of childhood focal			Paediatric
1	segmental glomerulosclerosis.	Besbas N et al.	26335292	individuals
	Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-			
	Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with			Paediatric
1	Anemia	Bolar NA et al.	27392076	individuals
	Donor and recipient ACE I/D genotype are associated with loss of renal			Paediatric
1	function in children following renal transplantation	Buscher R et al.	21309964	individuals
				Paediatric
1	ACE gene polymorphism in Turkish children with nephrotic syndrome.	Celik US et al.	16825089	individuals
	Increased HLA- A*11 in Chinese children with steroid-responsive			Paediatric
1	nephrotic syndrome.	Cheung W et al.	11956863	individuals
				Paediatric
1	Liddle syndrome: clinical and genetic profiles.	Cui Y et al.	27896928	individuals
	NPHS2 variation in Chinese southern infants with late steroid-resistant			Paediatric
1	nephrotic syndrome.	Dai Y et al.	25112471	individuals
		Durretui	201121/1	Paediatric
1	Earlier Onset of Complications in Youth With Type 2 Diabetes	Dart AB et al.	24130346	individuals
	ACE gene polymorphism in Egyptian children with idiopathic nephrotic			Paediatric
1		Fahmy ME et al.	18792483	individuals
	Genetic polymorphisms of the renin-angiotensin system and the			Paediatric
1	outcome of focal segmental glomerulosclerosis in children	Frishberg Y et al.	9853248	individuals
	Angiotensinogen gene T235 variant: a marker for the development of			
	persistent microalbuminuria in children and adolescents with type 1			Paediatric
1	diabetes mellitus	Gallego PH et al.	18413222	individuals

 BMJ Open

	Autosomal dominant pseudohypoaldosteronism type 1: Mechanisms,			Paediatri
1	evidence for neonatal lethality, and phenotypic expression in adults	Geller DS et al.	16611713	individua
	The role of vitamin D receptor gene polymorphisms in Turkish infants			Paediatri
1	with urolithiasis.	Goknar N et al.	26908058	individua
	Risk factors for loss of residual renal function in children treated with			Paediatri
1	chronic peritoneal dialysis	Ha IS et al.	25874598	individua
				Paediatri
1	Implication of genetic variations in congenital obstructive nephropathy	Hahn H et al.	16133060	individua
	ACE gene polymorphism and renal scarring in primary vesicoureteric			Paediatri
1		Haszon I et al.	12478352	individua
	Impact of ACE I/D gene polymorphism on congenital renal	Hohenfellner K et		Paediatri
1		al.	11354781	individua
	Impact of common functional polymorphisms in renin angiotensin			
	system genes on the risk of renal parenchymal scarring following			Paediatri
1	childhood urinary tract infection	Hussein A et al.	25939993	individua
	An insertion/deletion ACE polymorphism and kidney size in Polish full-	Kaczmarczyk M et		Paediatri
1	term newborns	al.	22674971	individua
	ACE and AT1 receptor gene polymorphisms and renal scarring in urinary			Paediatri
1	bladder dysfunction	Kostic M et al.	15179569	individua
	Renal tubular dysgenesis, a not uncommon autosomal recessive			
	disorder leading to oligohydramnios: Role of the Renin-Angiotensin			Paediatri
1	system.	Lacoste M et al.	16790508	individua
	Renin-angiotensin system gene polymorphisms in children with Henoch-			Paediatri
1		Liu DS et al.	20702504	individua
	Renin-angiotensin system polymorphisms in Taiwanese primary		20702304	Paediatri
1		Liu KP et al.	15045574	individua
	Polymorphisms of renin-angiotensin system genes in childhood IgA	Maruyama K et		Paediatri
1		al.	11354780	individua
	Association of angiotensin type 2 receptor gene polymorphisms with	Miranda DM et		Paediatri
1	ureteropelvic junction obstruction in Brazilian patients	al.	24995698	

	Association of angiotensin converting enzyme and angiotensin type 2 receptor gene polymorphisms with renal damage in posterior urethral	Narasimhan KL et		Paediatric
1	valves	al.	WOS:000290840100006	individuals
	Prioritization and burden analysis of rare variants in 208 candidate			Paediatric
1	genes suggest they do not play a major role in CAKUT	Nicolaou N et al.	26489027	individuals
	ACE I/D gene polymorphism in primary FSGS and steroid-sensitive			Paediatric
1	nephrotic syndrome	Oktem F et al.	14986085	individuals
	Implications of certain genetic polymorphisms in scarring in			Paediatric
1	vesicoureteric reflux: importance of ACE polymorphism.	Ozen S et al.	10401028	individuals
	Renin-angiotensin system gene polymorphisms: association with			Paediatric
1	susceptibility to Henoch-Schonlein purpura and renal involvement	Ozkaya O et al.	16521052	individuals
	Renin-angiotensin gene polymorphism in children with uremia and			Paediatric
1	essential hypertension	Papp F et al.	12579405	individuals
	A rare case of juvenile hypertension: coexistence of type 2 multiple			
	endocrine neoplasia -related bilateral pheochromocytoma and	Paragliola RM et		Paediatric
1	reninoma in a young patient with ACE gene polymorphism	al.	26084817	individuals
				Paediatric
1	Renin-angiotensin system polymorphisms and renal scarring	Pardo R et al.	12579398	individuals
	Low renin-angiotensin system activity gene polymorphism and dysplasia			Paediatric
1	associated with posterior urethral valves	Peruzzi L et al.	16006956	individuals
	Effect of angiotensin-converting enzyme gene insertion/deletion			
	polymorphism on steroid resistance in Egyptian children with idiopathic	Saber-Ayad M et		Paediatric
1	nephrotic syndrome.	al.	20418353	individuals
	ACE gene insertion/deletion polymorphism in childhood idiopathic	Serdaroglu E et		Paediatric
1	nephrotic syndrome	al.	16208534	individuals
	Effects of genetic polymorphisms of the renin-angiotensin system in			Paediatric
1	children with nephrotic syndrome	Tabel Y et al.	16525944	individuals
				Paediatric
1	Genetic risk factors in typical haemolytic uraemic syndrome	Taranta A et al.	19110485	individuals

1	The juxtaglomerular apparatus in Bartter's syndrome and related tubulopathies. An immunocytochemical and electron microscopic study.	Taugner R et al.	3128915	Paediatric individuals
1	Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization	Weber S et al.	20605837	Paediatric individuals
1	Genetic polymorphism of the renin-angiotensin system on the development of primary vesicoureteral reflux	Yim HE et al.	14764974	Paediatric individuals
1	The association of endothelial nitric oxide synthase gene single nucleotide polymorphisms with paediatric systemic lupus erythematosus	Zhu J et al.	29465350	Paediatric individuals
1	Add-on angiotensin receptor blockade with maximized ACE inhibition	Agarwal R	11380832	Pharmaceutica drug focus
1	DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy	Alter ML et al.	23171828	Pharmaceutica drug focus
1	Effects of losartan and enalapril on high-sensitivity C-reactive protein and total antioxidant in renal transplant recipients with renin- angiotensin system polymorphisms	Argani H et al.	18261537	Pharmaceutica drug focus
1	Losartan decreases plasma levels of TGF-beta 1 in transplant patients with chronic allograft nephropathy	Campistol JM et al.	10432413	Pharmaceutica drug focus
1	Captopril enhances transforming growth factor (TGF)-beta1 expression in peripheral blood mononuclear cells: a mechanism independent from angiotensin converting enzyme inhibition? A study in cyclosporine- treated kidney-transplanted patients.	Di Paolo S et al.	12499886	Pharmaceutica drug focus
1	Thiazolidinediones and the renal and hormonal response to water immersion-induced volume expansion in type 2 diabetes mellitus	Goenka N et al.	18230694	Pharmaceutica drug focus
1	The influence of renin-angiotensin system genotypes on the antiproteinuric response to high doses of olmesartan in non-diabetic protein uric nephropathies	Goyache-Goni B et al.	24241364	Pharmaceutica drug focus
1	Antiproteinuric effect of candesartan cilexetil in Japanese subjects with type 2 diabetes and nephropathy	Haneda M et al.	15364166	Pharmaceutica drug focus

				Pharmaceutical
1	Renal implications of angiotensin receptor blockers	Hollenberg NK	11459212	drug focus
	The influence of the ACE (I/D) polymorphism on systemic and renal			
	vascular responses to angiotensins in normotensive, normoalbuminuric			Pharmaceutica
1	Type 1 diabetes mellitus	Luik PT et al.	12856080	drug focus
				Pharmaceutical
1	Application of Direct Renin Inhibition to Chronic Kidney Disease	Mende CW	20490905	drug focus
	Pentoxifylline for Renoprotection in Diabetic Nephropathy: the PREDIAN	Navarro-Gonzalez		Pharmaceutica
1	study. Rationale and basal results	JF et al.	21144773	drug focus
	Renin-angiotensin system polymorphisms and hemoglobin level in renal	Noroozianavval		Pharmaceutica
1	allografts: A comparative study between losartan and enalapril	M et al.	17524880	drug focus
	Enalapril and losartan affect lipid peroxidation in renal transplant	Rashtchizadeh N		Pharmaceutica
1	recipients with renin-angiotensin system polymorphisms	et al.	17222813	drug focus
	Relationship between the renin-angiotensin system genes and diabetic	Wu S et al.	11776100	
2	nephropathy in the Chinese.	wa s ct al.	11770100	No data
	. 19			< 3 populations
	Plasma renin and prorenin and renin gene variation in patients with			reported per
3	insulin-dependent diabetes mellitus and nephropathy.	Deinum J et al.	10462269	SNP
		· //.		< 3 populations
	Renin-angiotensin-aldosterone system genotypes and haplotypes affect			reported per
3	the susceptibility to nephropathy in type 2 diabetes patients	Mtiraoui N et al.	21421655	SNP
				< 3 populations
	Chronic renal insufficiency among Asian Indians with type 2	-		reported per
3	diabetes: I. Role of RAAS gene polymorphisms	Prasad P et al.	16672053	SNP
	Renin gene rs1464816 polymorphism contributes to chronic kidney			< 3 populations
-	disease progression in ADPKD.	Ramanathan G et	26753721	reported per
3		al.		SNP
	M235T polymorphism in the AGT gene and A/G(I8-83) substitution in	Caultan Catal	25660045	< 3 populations
3	the REN gene correlate with end-stage renal disease	Sarkar S et al.	25660845	reported per
3				SNP

Page 283 of 304

 BMJ Open

Supplementary Table S4: Data included in quantitative analysis for ACE

						Cases		Controls				
Author	PMID/ WOS ID	Ethnicity	SNP	Definition	N	l Frequency	D Frequency	Definition	N	l Frequency	D Frequency	
Anbazhagan K et al.	19520069	SAS	Ins/Del	CKD	118	124	112	Healthy	98	99	97	
Chen WJ et al.	24907556	SAS	Ins/Del	CKD	233	314	152	Healthy	449	617	281	
Nagamani S et al.	None	SAS	Ins/Del	CKD	147	152	142	Healthy	221	195	227	
Shanmuganathan R et al.	26440392	SAS	Ins/Del	CKD	30	10	50	Healthy	30	55	5	
Ali A et al.	21421653	EAS	Ins/Del	ESRD	190	219	161	Healthy	190	262	118	
Kawada N et al.	00007188 0400005	EAS	Ins/Del	ESRD	216	280	152	Healthy	208	264	152	
Su SL et al.	24977181	EAS	Ins/Del	ESRD	647	792	502	Healthy	644	859	429	
Tang FY et al.	18629615	EAS	Ins/Del	ESRD 🧹	153	100	206	Healthy	148	138	158	
Wang AY et al.	12675870	EAS	Ins/Del	ESRD	246	316	176	Healthy	183	230	136	
Yang HY et al.	23477970	EAS	Ins/Del	ESRD	683	833	533	Healthy	653	867	439	
Buraczynska M et al.	16384824	EUR	Ins/Del	ESRD	745	688	802	Healthy	520	492	548	
Dixit M et al.	12571380	EUR	Ins/Del	ESRD	26	32	20	Healthy	22	17	27	
Losito A et al.	12454231	EUR	Ins/Del	ESRD	160	135	185	Healthy	169	128	210	
McLaughlin KJ et al.	8901844	EUR	Ins/Del	ESRD	460	654	990	Healthy	371	353	389	
Nicod J et al.	11918733	EUR	Ins/Del	ESRD	260	282	238	Healthy	260	261	259	
Ortiz MA et al.	15012717	EUR	Ins/Del	ESRD	117	68	166	Healthy	129	80	178	
Schmidt A et al.	8785402	EUR	Ins/Del	ESRD	106	105	107	Healthy	95	80	110	
van der Sman-de Beer F et al.	16221224	EUR	Ins/Del	ESRD	415	400	430	Healthy	472	459	485	
Aucella F et al.	12748347	EUR	Ins/Del	ESRD	461	315	607	Healthy	1307	916	1698	
Abuaisha AM et al.	00043304 9000003	ME	Ins/Del	ESRD	86	37	135	Healthy	100	50	150	
Rahimi Z et al.	28447048	ME	Ins/Del	ESRD	99	64	126	Healthy	117	89	145	
Zaare Nahandi et al.	28270648	ME	Ins/Del	ESRD	30	23	37	Healthy	27	21	33	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	00038665										
Guo Y et al.	3400063	EAS	Ins/Del	IgAN	45	54	36	Healthy	45	42	48
Huang HD et al.	21163122	EAS	Ins/Del	IgAN	130	155	105	Healthy	120	168	72
Jung ES et al.	21150220	EAS	Ins/Del	IgAN	261	298	224	Healthy	300	360	240
Lau YK et al.	15153745	EAS	Ins/Del	IgAN	118	154	82	Healthy	94	137	51
Suzuki H et al.	15481848	EAS	Ins/Del	IgAN	319	378	260	Healthy	270	328	212
Yoon HJ et al.	12220450	EAS	Ins/Del	IgAN	191	204	178	Healthy	233	268	198
Yorioka T et al.	8529313	EAS	Ins/Del	IgAN	48	67	29	Healthy	104	139	67
Yoshida H et al.	7593601	EAS	Ins/Del	IgAN	53	57	49	Healthy	46	62	30
Burg M et al.*	9352153	EUR	Ins/Del	IgAN	70	26	28	Healthy	60	60	60
Drouet M et al.	12005241	EUR 🧹	Ins/Del	IgAN	125	78	172	Healthy	83	54	100
Harden PN et al.	7791440	EUR	Ins/Del	IgAN	100	79	121	Healthy	98	76	120
Pawlik M et al.*	23681285	EUR	Ins/Del	IgAN	31	25	37	Healthy	187	180	194
Pei Y et al.	9259580	EUR	Ins/Del	IgAN	168	145	191	Healthy	100	91	109
Schmidt S et al. (B)	7485124	EUR	Ins/Del	IgAN	204	168	240	Healthy	234	197	271
Stratta P et al.	10352195	EUR	Ins/Del	IgAN 🧹	81	62	100	Healthy	50	38	62
Burg M et al.*	9352153	EUR	Ins/Del	Primary GN	46	44	48	Healthy	60	60	60
Pawlik M et al.*	23681285	EUR	Ins/Del	Primary GN	109	101	117	Healthy	187	180	194
				Primary				Organ			
Stratta P et al.	14767013	EUR	Ins/Del	GN	117	96	138	donors	171	134	208
Zsom M et al.	22111818	EUR	Ins/Del	Primary GN	73	62	84	Healthy	200	198	202
				RTx				Kidney			
Beige J et al.	9259361	EUR	Ins/Del	recipients	269	251	287	Donor	269	244	294
El-Essawy AB et al.	11926202	EUR	Ins/Del	RTx recipients	294	246	342	Healthy	181	170	192
Hueso M et al.	15284309	EUR	Ins/Del	RTx recipients	180	122	238	Healthy & cadaveric renal	113	96	130

Page	285	of 304	
------	-----	--------	--

 BMJ Open

								allograft donors			
				RTx							
Stratta P et al.	19034872	EUR	Ins/Del	recipients	169	122	216	Healthy	169	112	226
				RTx							
Viklický O et al.	11239522	EUR	Ins/Del	recipients	30	28	32	Healthy	653	599	707
Barnas U et al.	9084972	EUR	Ins/Del	T1DN	63	45	55	T1DM	59	51	29
Chowdhury TA et al.	8877296	EUR	Ins/Del	T1DN	242	204	280	T1DM	166	143	189
Currie D et al.	20854388 <	EUR	Ins/Del	T1DN	718	603	777	T1DM	749	696	764
De Cosmo S et al.	10495473	EUR	Ins/Del	T1DN	175	125	225	T1DM	136	89	183
	A1997XE9		6								
Demurov LM et al.	8500008	EUR	Ins/Del	T1DN	56	35	77	T1DM	76	72	80
Hadjadj S et al.	11181802	EUR	Ins/Del	T1DN	6	4	8	T1DM	251	208	294
Hibberd ML et al.	9025006	EUR	Ins/Del	T1DN	72	60	84	T1DM	86	57	115
Marre M et al.	8314010	EUR	Ins/Del	T1DN	62	43	81	T1DM	62	58	66
Ringel J et al.*	9049480	EUR	Ins/Del	T1DN 🧹	134	130	138	T1DM	226	208	244
Schmidt S et al. (A)	7783416	EUR	Ins/Del	T1DN	114	86	142	T1DM	133	101	165
	00024241										
Shestakova MV et al.	0600010	EUR	Ins/Del	T1DN	63	65	61	T1DM	66	78	54
Tarnow L et al.	7729604	EUR	Ins/Del	T1DN	198	175	221	T1DM	190	169	211
van Ittersum FJ et al.	10862638	EUR	Ins/Del	T1DN	30	33	27	T1DM	188	192	184
Walder B et al.	None	EUR	Ins/Del	T1DN	55	49	61	T1DM	44	40	48
Fujisawa T et al.	7555560	EAS	Ins/Del	T2DN	54	71	37	T2DM	35	46	24
Ha SK et al.	12722028	EAS	Ins/Del	T2DN	140	132	148	T2DM	99	123	75
Hsieh MC et al.	10862639	EAS	Ins/Del	T2DN	179	219	139 🥏	T2DM	157	222	92
Mizuiri S et al.	7477652	EAS	Ins/Del	T2DN	80	72	88	T2DM	31	33	29
Nakajima S et al.	8941475	EAS	Ins/Del	T2DN	54	67	41	T2DM	41	55	27
Ohno T et al.	8596493	EAS	Ins/Del	T2DN	25	28	22	T2DM	53	81	25
Shin Shin Y et al.	15331206	EAS	Ins/Del	T2DN	82	112	52	T2DM	59	70	48
Thomas GN et al.	11200871	EAS	Ins/Del	T2DN	51	72	30	T2DM	255	346	164
Wang M et al.	26973293	EAS	Ins/Del	T2DN	106	78	56	T2DM	741	1020	438
Wu SH et al.	11776100	EAS	Ins/Del	T2DN	71	75	67	T2DM	41	58	24

Page	286	of	304
------	-----	----	-----

Young RP et al.	9540028	EAS	Ins/Del	T2DN	20	27	13	T2DM	54	72	36
Dudley CR et al.	8587251	EUR	Ins/Del	T2DN	163	246	288	T2DM	267	246	288
Fradin S et al.	11938025	EUR	Ins/Del	T2DN	39	94	142	T2DM	118	94	142
Ng DP et al.	16936219	EUR	Ins/Del	T2DN	291	147	187	T2DM	167	147	187
Nikzamir A et al.	19502259	EUR	Ins/Del	T2DN	48	159	131	T2DM	145	159	131
Schmidt S et al. (B)	9269698	EUR	Ins/Del	T2DN	311	278	416	T2DM	347	278	416
Al-Harbi EM et al.	21207118	ME	Ins/Del	T2DN	110	63	157	T2DM	196	125	267
	00041506										
Alharbi SA et al.	3100003	ME	Ins/Del	T2DN	61	31	91	T2DM	61	47	75
Araz M et al.	11640993	ME	Ins/Del	T2DN	62	52	72	T2DM	123	103	143
El-Baz R et al.	22554825	ME	Ins/Del	T2DN	102	66	138	T2DM	100	82	118
Ergen HA et al.	15365253	ME	Ins/Del	T2DN	25	21	29	T2DM	50	31	69
Eroglu Z et al.	18413162	ME	Ins/Del	T2DN	46	43	49	T2DM	56	50	62
Felehgari V et al.	20830509	ME	Ins/Del	T2DN	68	42	94	T2DM	72	60	84
	00036754										
Sancakdar E et al.	1400005	ME	Ins/Del	T2DN	194	180	208	T2DM	100	62	138
Ahluwalia TS et al.	19108684	SAS	Ins/Del	T2DN	240	152	328	T2DM	200	215	
Kumar R et al.	23846111	SAS	Ins/Del	T2DN	407	448	366	T2DM	185	190	
Movva S et al.	17616353	SAS	Ins/Del	T2DN	174	182	166	T2DM	175	222	
Naresh VV et al.	20535249	SAS	Ins/Del	T2DN	30	19	41	T2DM	30	35	
	00031205										
Shaikh R et al.	3000001	SAS	Ins/Del	T2DN	168	134	202	T2DM	296	394	
Vishwanathan V et al.	11867868	SAS	Ins/Del	T2DN	86	79	93	T2DM	23	28	
				T2DN-							
Doi Y et al.	8720609	EAS	Ins/Del	ESRD	100	115	85 🧹	T2DM	124	168	
				T2DN-							
Jayapalan JJ et al.	21031056	EAS	Ins/Del	ESRD	127	163	91	T2DM	81	93	
				T2DN-							
Lu M et al.	27633502	EAS	Ins/Del	ESRD	210	238	182	T2DM	222	307	
				T2DN-							
Park HC et al.	16385653	EAS	Ins/Del	ESRD	103	103	103	T2DM	88	111	1

				T2DN-							
Taniwaki H et al.	11522715	EAS	Ins/Del	ESRD	42	53	31	T2DM	69	88	
				T2DN-							
Grzeszczak W et al.	9727375	EUR	Ins/Del	ESRD	127	128	126	T2DM	254	244	
				T2DN-							
Ringel J et al.*	9049480	EUR	Ins/Del	ESRD	161	150	172	T2DM	140	141	
				T2DN-							
Schmidt S et al. (A)	9075119	EUR	Ins/Del	ESRD	61	29	93	T2DM	347	416	

*Burg M et al., Pawlik M et al., and Ringel J et al., are included twice as these articles contained two phenotypic comparisons

Abbreviations: EAS, East Asian; EUR, European; ME, Middle Eastern; SAS, South Asian; CKD, Chronic Kidney Disease; ESRD, End-Stage Renal Disease; IgAN, IgA Nephropathy; GN, Glomerulonephritis; RTx, Renal Transplant; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

review only

Supplementary Table S5: Data included in quantitative analysis for AGT

						Cases			(Controls	
Author	PMID/ WOS ID	Ethnicity	SNP	Definition	N	T Allele Frequency	C Allele Frequency	Definition	N	T Allele Frequency	C Allele Frequency
Beige J et al.	8856207	EUR	rs699	ESRD	269	285	253	Healthy	269	307	229
Buraczynska M et al.	16384824	EUR	rs699	ESRD	745	734	756	Healthy	520	564	476
Losito A et al.	12454231	EUR	rs699	ESRD	160	165	155	Healthy	169	190	148
Lovati E et al.	11422735	EUR	rs699	ESRD	260	299	221	Healthy	327	393	261
Doria A et al.	8621207	EUR	rs699	T1DN	139	158	120	T1DM	75	96	54
Fogarty DG et al.	8772723	EUR	rs699	T1DN	95	114	76	T1DM	100	129	71
Möllsten A et al.	18413189	EUR	rs699	T1DN	73	62	34	T1DM	197	220	174
Ringel J et al.	9049480	EUR	rs699	T1DN	134	145	123	T1DM	226	257	195
Schmidt S et al.*	8918618	EUR	rs699	T1DN	108	121	95	T1DM	120	132	108
van Ittersum FJ et al.	10862638	EUR	rs699	T1DN 🧹	30	31	29	T1DM	188	238	138
Walder B et al.	None	EUR	rs699	T1DN	55	60	50	T1DM	44	63	25
Ohno T et al.	8596493	EAS	rs699	T2DN	25	16	34	T2DM	53	25	81
Oue T et al.	10580616	EAS	rs699	T2DN	27	6	36	T2DM	40	13	47
Thomas GN et al.	11200871	EAS	rs699	T2DN	51	18	84	T2DM	255	79	431
Wang M et al.	26973293	EAS	rs699	T2DN	189	19	175	T2DM	473	154	792
Wu SH et al.	11776100	EAS	rs699	T2DN	71	21	121	T2DM	41	26	56
Young RP et al.	9540028	EAS	rs699	T2DN	20	4	36	T2DM	54	25	83
Fradin S et al.	11938025	EUR	rs699	T2DN	39	45	33	T2DM	118	139	97
Freire MB et al.	9535411	EUR	rs699	T2DN	117	134	96	T2DM	125	148	88
Makuc J et al.	28488548	EUR	rs699	T2DN	276	294	258	T2DM	375	394	356
Schmidt S et al.*	8918618	EUR	rs699	T2DN	127	149	105	T2DM	107	117	97
Zychma MJ et al.	11096141	EUR	rs699	T2DN	127	133	121	T2DM	243	242	244
Eroglu Z et al.	18413162	ME	rs699	T2DN	46	48	44	T2DM	56	62	50
Reis KA et al.	21500980	ME	rs699	T2DN	108	114	102	T2DM	111	89	133
Sancakdar E et al.	000367541 400005	ME	rs699	T2DN	194	189	199	T2DM	100	95	105

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Gao J et al.	26588355	EAS	rs699	IgAN	351	144	556	Healthy	310	125	495
	000386653										
Guo Y et al.	400063	EAS	rs699	IgAN	45	19	71	Healthy	45	16	74
Huang HD et al.	21163122	EAS	rs699	IgAN	130	35	225	Healthy	120	40	200
Kim SM et al.	19729965	EAS	rs699	IgAN	238	89	387	Healthy	300	115	485
Lau YK et al.	15153745	EAS	rs699	IgAN	118	27	209	Healthy	94	31	157
	000071880										
Kawada N et al.	400005	EAS	rs699	ESRD	216	91	333	Healthy	208	64	340
Su SL et al.											
	29296205	EAS	rs699	ESRD	634	194	1074	Healthy	739	279	1478
Wang AY et al.	12675870	EAS	rs699	ESRD	246	76	416	Healthy	183	64	302

*Schmidt S et al., is included twice as the article contained two phenotypic comparisons.

Abbreviations: EAS, East Asian; EUR, European; ME, Middle Eastern; ESRD, End-Stage Renal Disease; IgAN, IgA Nephropathy; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

						Cases				Controls	
Author	PMID	Ethnicity	SNP	Definition	N	A Allele Frequency	C Allele Frequency	Definition	N	A Allele Frequency	C Allele Frequency
Gao J et al.	26588355	EAS	rs5186	IgAN	351	659	43	Healthy	310	577	43
Huang HD et al.	21163122	EAS	rs5186	IgAN	130	243	17	Healthy	120	220	20
Kim SM et al.	19729965	EAS	rs5186	IgAN	238	452	24	Healthy	300	576	24
Lau YK et al.	15153745	EAS	rs5186	IgAN	118	227	9	Healthy	94	178	10
Currie D et al.	20854388	EUR	rs5186	T1DN	718	1029	385	T1DM	749	1052	418
Doria A et al.	9389421	EUR	rs5186	T1DN	73	99	47	T1DM	79	119	39
Möllsten A et al.	18413189	EUR	rs5186	T1DN	72	78	18	T1DM	197	290	104
Savage DA et al.	10328465	EUR	rs5186	T1DN	95	136	54	T1DM	97	137	57
Tarnow L et al.	8671962	EUR	rs5186	T1DN	198	287	109	T1DM	190	274	106
van Ittersum FJ et al.	10862638	EUR	rs5186	T1DN	30	47	13	T1DM	188	238	138
Thomas GN et al.	11200871	EAS	rs5186	T2DN	51	99	3	T2DM	255	483	27
Wu SH et al.	11776100	EAS	rs5186	T2DN	71	127	15	T2DM	41	74	8
Young RP et al.	9540028	EAS	rs5186	T2DN	20	38	2	T2DM	54	103	5
Ahluwalia TS et al.	19108684	SAS	rs5186	T2DN	240	320	160	T2DM	255	381	129
Prasad P et al.	16672053	SAS	rs5186	T2DN	196	360	26	T2DM	225	417	33
Shah VN et al.	23081748	SAS	rs5186	T2DN	596	789	403	T2DM	566	840	282

Supplementary Table S6: Data included in quantitative analysis for *AGTR1*

 Abbreviations: EAS, East Asian; EUR, European; SAS, South Asian; IgAN, IgA Nephropathy; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

 BMJ Open

Supplementary Table S7. Included studies not complying with Hardy Weinberg equilibrium in cases or controls

						Cases		Controls
Gene	Author	PMID/ WODS ID	Ethnicity	SNP	Definition	P value (where significant)	Definition	P value (where significant)
ACE	Jung ES et al.	21150220	EAS	Ins/Del	IgAN		Healthy	0.016
	Shanmuganathan R et al.	26440392	SAS	Ins/Del	CKD	1.31x10 ⁻⁰⁴	Healthy	1.9x10 ⁻⁰⁵
	Tang FY et al.	18629615	EAS	Ins/Del	ESRD	1.8x10 ⁻⁰⁵	Healthy	1x10 ⁻⁰⁶
	Nicod J et al.	11918733	EUR	Ins/Del	ESRD	0.0008	Healthy	0.004
	McLaughlin KJ et al.	8901844	EUR	Ins/Del	ESRD	0.04	Healthy	
	Yorioka T et al.	8529313	EAS	Ins/Del	IgAN	0.013	Healthy	
	Yoshida H et al.	7593601	EAS	Ins/Del	IgAN	0.01	Healthy	
	Yoon HJ et al.	12220450	EAS	Ins/Del	IgAN	0.002	Healthy	
	Schmidt S et al.	7485124	EUR	Ins/Del	IgAN	0.007	Healthy	
	Suzuki H et al.	15481848	EAS	Ins/Del	IgAN	0.036	Healthy	0.004
	Zsom M et al.	22111818	EUR	Ins/Del	Primary GN	0.005	Healthy	
	Currie D et al.	20854388	EUR	Ins/Del	T1DN		T1DM	0.005
	Ringel J et al.	9049480	EUR	Ins/Del	T1DN		T1DM	0.018
	Tarnow L et al.	7729604	EUR	Ins/Del	T1DN		T1DM	0.013
	Schmidt S et al.	7783416	EUR	Ins/Del	T1DN	0.002	T1DM	
	Mizuiri S et al.	7477652	EAS	Ins/Del	T2DN	0.019	T2DM	
	Hsieh MC et al.	10862639	EAS	Ins/Del	T2DN	4.2x10 ⁻⁰⁵	T2DM	0.004
	Ha SK et al.	12722028	EAS	Ins/Del	T2DN		T2DM	0.026
	Schmidt S et al.	9269698	EUR	Ins/Del	T2DN	0.0147	T2DM	
	El-Baz R et al.	22554825	ME	Ins/Del	T2DN	0.0025	T2DM	1x10 ⁻⁰⁶
	Sancakdar E et al.	000367541400005	ME	Ins/Del	T2DN	0.0076	T2DM	0.003
	Kumar R et al.	23846111	SAS	Ins/Del	T2DN	0.0016	T2DM	0.0003
	Park HC et al.	16385653	EAS	Ins/Del	T2DN-ESRD		T2DM	0.022
AGT	Fogarty DG et al.	8772723	EUR	rs699	T1DN		T1DM	0.044
	Wu SH et al.	11776100	EAS	rs699	T2DN	0.0008	T2DM	
	Freire MB et al.	9535411	EUR	rs699	T2DN	0.022	T2DM	
	Reis KA et al.	21500980	ME	rs699	T2DN	0.006	T2DM	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Fradin S et al.	11938025	EUR	rs699	T2DN	0.008	T2DM	
	Su SL et al.	29296205	EAS	rs699	ESRD		Healthy	0.010
AGTR1	Ahluwalia TS et al.	19108684	SAS	rs5186	T2DN		T2DM	0.0002
	Shah VN et al.	23081748	SAS	rs5186	T2DN		T2DM	4.2x10 ⁻⁰⁸
	Lau YK et al.	15153745	EAS	rs5186	IgAN	0.038	Healthy	
	Möllsten A et al.	8856207	EUR	rs5186	T1DN	0.029	T1DM	

Abbreviations: EAS, East Asian; EUR, European; ME, Middle Eastern; SAS, South Asian; CKD, Chronic Kidney Disease; ESRD, End-Stage Renal Disease; GN, Glomerulonephritis; IgAN, IgA Nephropathy; T1DM, Type 1 Diabetes Mellitus; T1DN, Type 1 Diabetic Nephropathy; T2DM, Type 2 Diabetes Mellitus; T2DN, Type 2 Diabetic Nephropathy.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Data File S1. Allele frequencies for all control populations which consisted of healthy individuals alongside the dbSNP reported frequencies

AGT rs699 – East Asian populations included in meta-analysis

- IgAN vs healthy controls •
 - Five populations included in analysis
 - Allele frequencies are as follows:

AGT	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs699	Gao J et al.(49)	East Asian	538	A=0.202	G=0.798
rs699	Guo Y et al.(77)	East Asian	1265	A=0.178	G=0.822
rs699	Huang HD et al.(50)	East Asian	329	A=0.167	G=0.833
rs699	Kim SM et al.(51)	East Asian	587	A=0.192	G=0.808
rs699	Lau YK et al.(25)	East Asian	212	A=0.165	G=0.835

- ESRD vs healthy controls •
 - Three populations included in analysis
 - Allele frequencies:

AGT	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs699	Kawada N et al.(22)	East Asian	424	A=0.158	G=0.841
rs699	Su SL et al.(157)	East Asian	1373	A=0.189	G=0.811
rs699	Wang AY et al.(63)	East Asian	429	A=0.175	G=0.825

dbSNP frequencies:

13033		ase / tsiam	123	11 0:175	0 0:025
dbSNP frequencies:				2	
AGT	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs699	gnomAD - Genomes	East Asian	1622	A=0.156	G=0.844
rs699	1000Genomes	East Asian	1008	A=0.147	G=0.853

Chi-square calculations for reference allele frequency comparing meta-analysed data • with dbSNP data:

Group	gnomAD - Genomes	1000Genomes
AGT rs699 – East Asian populations IgAN vs Healthy Controls	0.999516	0.999582
AGT rs699 – East Asian populations ESRD vs Healthy Controls	0.984359	0.985654

AGT rs699 – European populations included in meta-analysis

- ESRD vs healthy controls
 - Four populations included in analysis
 - Allele frequencies are as follows:

AGT	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs699	Beige J et al. (146)	European	538	A=0.573	G=0.427
rs699	Buraczynska M et al.(65)	European	1265	A=0.542	G=0.458
rs699	Losito A et al.(67)	European	329	A=0.562	G=0.438
rs699	Lovati E et al.(147)	European	587	A=0.601	G=0.399

• dbSNP frequencies:

AGT	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs699	gnomAD - Genomes	European	18440	A=0.5616	G=0.4384
rs699	gnomAD - Exomes	European	133914	A=0.57665	G=0.42335
rs699	1000Genomes	European	1006	A=0.588	G=0.412
rs699	ExAC	European	73258	A=0.5747	G=0.4253

• Chi-square calculations for alternative allele frequency comparing meta-analysed data with dbSNP data:

Group	gnomAD - Genomes	gnomAD - Exomes	1000Genomes	ExAC
AGT rs699 – European populations ESRD vs Healthy Controls	0.979214	0.980521	0.981483	0.980354

AGTR1 rs5186 – East Asian populations included in meta-analysis

- IgAN vs healthy controls
 - o Four populations included in analysis
 - $\circ \quad \text{Allele frequencies are as follows:} \\$

AGTR1	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs5186	Gao J et al.(49)	East Asian	661	A=0.931	G=0.069
rs5186	Huang HD et al.(50)	East Asian	250	A=0.917	G=0.083
rs5186	Kim SM et al.(51)	East Asian	538	A=0.960	G=0.04
rs5186	Lau YK et al.(25)	East Asian	212	A=0.947	G=0.053

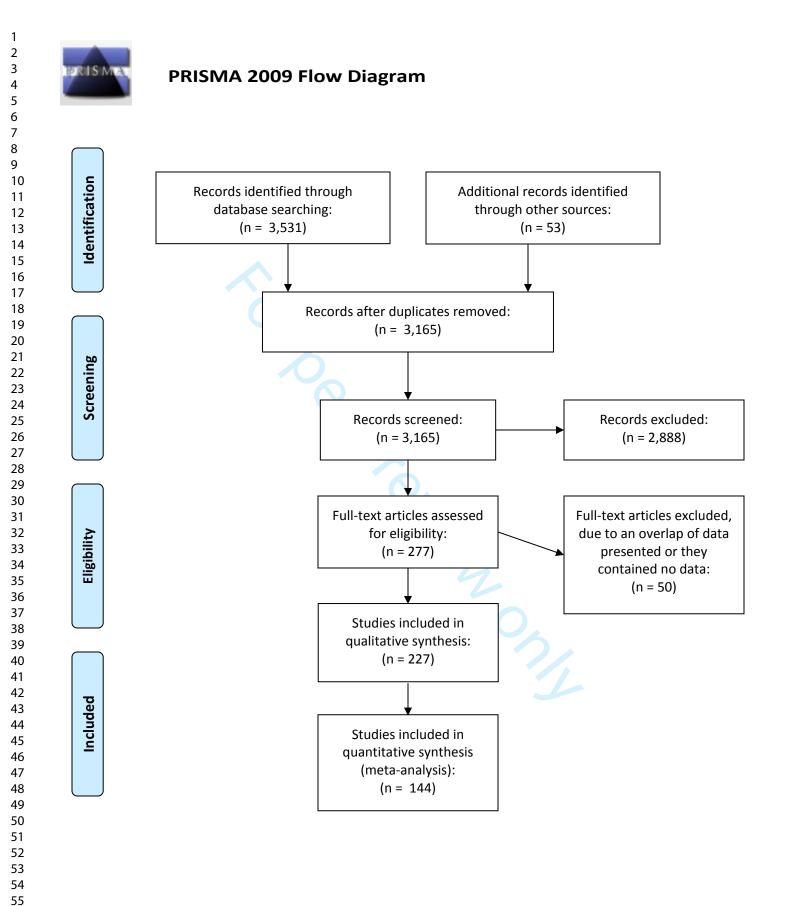
• dbSNP frequencies:

AGTR1	Study	Population	Sample Size	Reference allele frequency	Alternative allele frequency
rs5186	gnomAD - Genomes	East Asian	1618	A=0.944	C=0.056
rs5186	1000Genomes	East Asian	1008	A=0.940	C=0.060

• Chi-square calculations for alternative allele frequency comparing meta-analysed data with dbSNP data:

Group	gnomAD - Genomes	1000Genomes
AGTR1 rs5186 – East Asian populations	0.999615	0.999559
IgAN vs Healthy Controls	0.999013	0.999559

ACE insertion/deletion – European, East Asian, South Asian and Middle Eastern populations included in meta-analysis


• Four reported rs numbers for this SNP rs numbers (rs13447447, rs1799752, rs4340, rs4646994) were not found in dbSNP and therefore no reported allele frequencies were available for comparison.

to peet teries only

57 58

59

60

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE	•	·		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT		·		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1&2	
NTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	2&3	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	1-3	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3-5	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	3 and STS1	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	3-4	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4-5	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4-5	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4-5	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4-5	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta analysis. http://bmjopen.bmj.com/site/about/guidelines.xhtml	4-5	

Page 299 of 304

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	4-5
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5
RESULTS	•		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5 and SFS1
Study characteristics 18		18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	4-6
Results of individual studies 20		For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	
Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.		7&8	
Risk of bias across studies 22 Present results of any assessment of risk of bias across studies (see Item 15).		7&8	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA
DISCUSSION		·	
Summary of evidence 24		Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	7-10
		Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	2, 9&10
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	7-10
FUNDING	<u> </u>	·	
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	12

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.

For more information, visit: www.prisma-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Reporting checklist for meta-analysis of observational studies.

Based on the MOOSE guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the MOOSE reporting guidelines, and cite them as:

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA,

Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-

analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283(15):2008-

2012.

	Reporting Item	Page Number
<u>#1</u>	Identify the study as a meta-analysis of observational	1
<u>#2</u>	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility	1&2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1			criteria, participants, and interventions; study appraisal and	
2 3			synthesis methods; results; limitations; conclusions and	
4 5 6			implications of key findings; systematic review registration	
7 8			number (From PRISMA checklist)	
9 10 11		<u>#3a</u>	Problem definition	3
12 13 14 15		<u>#3b</u>	Hypothesis statement	2
16 17 18		<u>#3c</u>	Description of study outcomes	3-5
19 20 21		<u>#3d</u>	Type of exposure or intervention used	3-4
22 23 24		<u>#3e</u>	Type of study designs used	3-4
25 26 27		<u>#3f</u>	Study population	3-4
28 29 30	Search	<u>#4a</u>	Qualifications of searchers (eg, librarians and investigators)	3-4
31 32 33	strategy			
34 35		<u>#4b</u>	Search strategy, including time period included in the	3-4
36 37			synthesis and keywords	
38 39 40 41		<u>#4c</u>	Effort to include all available studies, including contact with	4
42 43			authors	
44 45 46 47		<u>#4d</u>	Databases and registries searched	3-4
47 48 49		<u>#4e</u>	Search software used, name and version, including special	4
50 51			features used (eg, explosion)	
52 53		<u>#4f</u>	Use of hand searching (eg, reference lists of obtained	3
54 55				
54			articles)	

<u>#4g</u>	List of citations located and those excluded, including	5&Supplementary
	justification	Tables
<u>#4h</u>	Method of addressing articles published in languages other	4
	than English	
<u>#4i</u>	Method of handling abstracts and unpublished studies	3-4
<u>#4j</u>	Description of any contact with authors	NA
<u>#5a</u>	Description of relevance or appropriateness of studies	3&4
	gathered for assessing the hypothesis to be tested	
<u>#5b</u>	Rationale for the selection and coding of data (eg, sound	3&4
	clinical principles or convenience)	
<u>#5c</u>	Documentation of how data were classified and coded (eg,	3&4
	multiple raters, blinding, and interrater reliability)	
<u>#5d</u>	Assessment of confounding (eg, comparability of cases and	4&5
	controls in studies where appropriate)	
<u>#5e</u>	Assessment of study quality, including blinding of quality	4&5
	assessors; stratification or regression on possible predictors	
	of study results	
<u>#5f</u>	Assessment of heterogeneity	4&5
<u>#5g</u>	Description of statistical methods (eg, complete description	4&5
	of fixed or random effects models, justification of whether	
	the chosen models account for predictors of study results,	
	-	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtr	ทเ

BMJ Open

1		dose-response models, or cumulative meta-analysis) in	
2 3		sufficient detail to be replicated	
4 5 6 7 8 9	<u>#5h</u>	Provision of appropriate tables and graphics	3,4&6 & additional materials
10 11 12	<u>#6a</u>	Graphic summarizing individual study estimates and overall	Figures &
12 13 14		estimate	Supplementary
15 16 17			Figures
18 19 20	<u>#6b</u>	Table giving descriptive information for each study included	STS4-STS6
21 22 23 24	<u>#6c</u>	Results of sensitivity testing (eg, subgroup analysis)	5
24 25 26 27	<u>#6d</u>	Indication of statistical uncertainty of findings	4&5
28 29 30	<u>#7a</u>	Quantitative assessment of bias (eg. publication bias)	5
31 32	<u>#7b</u>	Justification for exclusion (eg, exclusion of non-English-	4
33 34		language citations)	
35 36 37 38	<u>#7c</u>	Assessment of quality of included studies	3-5
39 40	<u>#8a</u>	Consideration of alternative explanations for observed	9-11
41 42 43 44		results	
44 45 46	<u>#8b</u>	Generalization of the conclusions (ie, appropriate for the	9-11
47 48		data presented and within the domain of the literature	
49 50		review)	
51 52	<i>.</i>		0.44
53 54	<u>#8c</u>	Guidelines for future research	9-11
55 56 57 58	<u>#8d</u>	Disclosure of funding source	12
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtr	nl

Reproduced with permission from JAMA. 2000. 283(15):2008-2012. Copyright © 2000 American Medical Association. All rights reserved. This checklist can be completed online using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai

LEUL