

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association between parity and persistent weight gain at age 40-60 years: a longitudinal prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024279
Article Type:	Research
Date Submitted by the Author:	18-May-2018
Complete List of Authors:	Zoet, Gerbrand; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Paauw, Nina; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Groenhof, Katrien; Universitair Medisch Centrum Utrecht, Julius Center for Health Sciences and Primary Care Franx, Arie; University Medical Center Utrecht, Obstetrics & Gynaecology Gansevoort, Ron T.; University Medical Center Groningen, Division of Nephrology Groen, Henk; University Medical Centre Groningen, Department of Epidemiology Van Rijn, Bas; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Lely, Titia; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology
Keywords:	Pregnancy, Parity, Cardiovascular risk factors, BMI, HDL cholesterol, Hypertension < CARDIOLOGY

SCHOLARONE[™] Manuscripts

1		
2 3 4	1	Association between parity and persistent weight gain at age 40-60 years: a longitudinal
5 6 7	2	prospective cohort study
7 8 9	3	Gerbrand A. Zoet, MD ^a ; Nina D. Paauw, MD ^a ; T. Katrien J. Groenhof, MD ^b , Arie Franx, MD PhD ^a ; Ron T.
10 11	4	Gansevoort, MD, PhD ^c ; Henk Groen ^d , MD, PhD; Bas B. van Rijn, MD, PhD ^{a,e} , A.Titia Lely, MD, PhD ^a .
12 13	5	
14 15	6	^a Wilhelmina Children's Hospital Birth Center, University Medical Center Utrecht, Lundlaan 6, 3508 AB, Utrecht, the Netherlands
16 17	7	^b Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht,
18 19	8	the Netherlands
20 21	9	^c Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen,
22	10	Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
23 24 25	11	^d Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ,
25 26	12	Groningen, the Netherlands
27 28	13	^e Academic Unit of Human Development and Health, University of Southampton, Princess Anne Hospital, Coxford Road,
29 30	14	Southampton SO16 5YA, United Kingdom
31 32	15	
33 34	16	Corresponding author at: G.A. Zoet, University Medical Center Utrecht, Room KE 02.510.2, Lundlaan 6, PO Box 85090, 3508 AB,
35 36	17	Utrecht, The Netherlands. Tel.: +31 88 7557526, e-mail: <u>g.zoet@umcutrecht.nl</u>
30 37	18	
39 40	19	Short title: Parity and persistent weight gain
41 42	20	
43 44	21	Total word count: 3080 (excluding title page, abstract, references, figures and tables)
45 46	22	
47 48		
49 50		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

3 4	23	Abstract
5 6 7	24	Objectives: Physiological metabolic adaptations occur in the pregnant woman. These may persist
7 8 9	25	postpartum and thereby contribute to an unfavorable cardiovascular disease (CVD) risk profile in parous
10 11	26	women. The aim of the current study is to assess time-dependent changes of cardiometabolic health in
12 13	27	parous women compared to nulliparous women.
14 15	28	Design and setting: We studied data of 2459 women who participated in the PREVEND study, a
16 17 18	29	population-based prospective longitudinal cohort for assessment of CVD and renal disease in the
19 20	30	general population.
21 22	31	<i>Participants:</i> We selected women ≥40 years at the first visit, who reported no new pregnancies during
23 24 25	32	the 4 follow-up visits. All women were categorized in parity groups, and stratified for age.
25 26 27	33	Outcome measures: We compared BMI, high-density lipoprotein (HDL) cholesterol, blood pressure as
28 29	34	continuous measurements and as clinical relevant CVD risk factors among parity groups over the course
30 31	35	of six years using generalized estimating equation (GEE) models adjusted for age.
32 33 24	36	Results: The BMI was significantly higher in women para 2 or more in all age categories: per child, the
35 36	37	BMI was 0.6 kg/m ² higher. corresponding with 1.5–2.0 kg weight gain per child. HDL cholesterol was
37 38	38	significantly lower in women para 2 or more aged 40-49 and 50-59 years: per child, the HDL cholesterol
39 40	39	was up to 0.09 mmol/L lower. Blood pressure did not differ among parity groups in any of the age
41 42 42	40	categories.
43 44 45	41	Conclusions: Higher parity is associated with higher BMI, lower HDL cholesterol and a higher
46 47	42	prevalence of cardiovascular risk factors, which is constant over time. These findings warrant for
48 49	43	prospective research assessing determinants of cardiometabolic health at earlier age to understand the
50 51	44	role of pregnancy in the development of cardiovascular disease in women.
52 53 54	45	
55 56 57	46	Keywords: Pregnancy; parity; cardiovascular risk factors; BMI; HDL cholesterol; hypertension.
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47	Study summary: Strengths and limitations of this study
48	• This longitudinal cohort comprised a large, well-phenotyped cohort with uniform assessment of all
49	measurements during a median follow-up of 6 years.
50	• The GEE analysis which was performed, allowed us to assess differences among groups over time,
51	focusing on group effects.
52	• Since parity itself was not assessed in this cohort, we used the number of children as a proxy for the
53	number of childbirths.
54	• Women para > 2 were older, less often used oral contraceptives and more often used
55	antihypertensive medication which might have resulted in a slightly different metabolic profile.
56	• Age at first delivery, inter-pregnancy interval and lactation have not been assessed in this cohort
57	and therefore, adjustment of the analyses for these factors was not possible.
58	
59	Funding: The PREVEND study was supported by Dutch Kidney Foundation (Grant E.033), The Groningen
60	University Medical Center (Beleidsruimte) and Dade Behring, Ausam, Roche, Abbott and Gentian who
61	financed laboratory equipment and reagents for various laboratory determinations. Gerbrand Zoet is
62	supported by the Dutch Heart Foundation (grant number 2013T083). Titia Lely is supported by the
63	ZonMW Clinical Fellowship (40-000703-97-12463).
64	
65	
	3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

66 Introduction

Pregnancy is associated with major alterations to the cardiovascular system and metabolic profile.¹⁻⁴ Increases in weight, lipid levels, blood plasma volume and cardiac output are needed to maintain a healthy, physiological pregnancy. Postpartum, this maternal adaptation reverses to its pre-pregnancy state, although several changes, (e.g. increased body weight and hypercholesterolemia) may persist for several months or longer.⁵ Possibly, these persisting changes contribute to an increased prevalence of metabolic syndrome (MetS) and an unfavorable cardiometabolic profile in parous women.^{6–8} The amount of gestational weight gain (GWG) affects postpartum weight retention.⁹ At long-term follow up, excessive gestational weight gain is associated with an increased BMI, up to a $3-4 \text{ kg/m}^2 21$ years after pregnancy.^{10–12}

Previous studies assessing the relation between parity and cardiometabolic health showed conflicting results and even the association between parity and obesity is questioned in some studies.^{13–16} Long-term effects have only scarcely been investigated and most studies had a follow-up of only 1 to 3 years postpartum.^{17,18} A recent large cross-sectional study among Hispanic women in the US demonstrated that multiparity (i.e. more than 4 or more than 6 children) was associated with obesity, low HDL cholesterol and elevated fasting glucose, also after adjustment for sociodemographic and lifestyle factors.⁸ In addition, results from the cross-sectional Rotterdam study showed an lower HDL cholesterol and higher total cholesterol and glucose/insulin ratios with higher parity in Caucasian women at 70 vears of age.⁶ Studies on the development of cardiovascular risk factors over time and the quantification of this effect per childbirth are conflicting. Some studies suggested a linear association between number of children and an unfavorable cardiometabolic profile, while others stated that only multiparity is associated with an increased cardiovascular disease risk.^{6–8,19,20}

BMJ Open

3 4	90	Some studies even showed a 'J-shaped' association in which women with two children had the lowest
5 6	91	prevalence of coronary heart disease. ^{6–8}
7 8	92	The aim of the current study was to assess time-dependent changes of cardiometabolic health in parous
9 10 11	93	women, stratified for number of children, as compared with nulliparous controls. This study was
12 13	94	performed in a well-defined longitudinal prospective cohort study that primarily assessed development
14 15	95	of CVD, albuminuria and renal disease. ²¹
16 17	96	
18 19 20	97	Methods
21 22	98	Participants
23 24	99	The Prevention of Renal and Vascular End-stage Disease (PREVEND) study is a longitudinal cohort follow-
25 26 27	100	up study for assessment of cardiovascular and renal disease in the general population. Details of this
28 29	101	study have previously been published elsewhere. ^{22,23} In summary, all inhabitants of the city of
30 31	102	Groningen, the Netherlands, from 1997 to 1998 at age 28–75 years (n = 85,421) were invited to
32 33	103	participate. All that applied, filled out a questionnaire and collected a first-morning void urine sample.
34 35 36	104	Pregnant women and subjects with type 1 diabetes mellitus were excluded. The urinary albumin
37 38	105	concentration was assessed in a total of 40,856 (47.8%) responders. A total of 6,000 participants were
39 40	106	enrolled out of 7,768 subjects with a urinary albumin concentration ≥ 10mg/L. In addition, 2,592
41 42 42	107	participants were enrolled out of 3,394 subjects with a urinary albumin concentration < 10mg/L.
45 44 45	108	Thereby, the PREVEND study was enriched by subjects with an elevated albumin excretion.
46 47	109	In total, 4,301 women were enrolled in the PREVEND study (Figure 1). For the current analysis, only
48 49	110	women aged 40 years or older at the first visit and who reported no new pregnancies during the follow-
50 51	111	up visits were included. Women who reported no children were categorized as nulliparous (n = 464;
52 53 54	112	18.9%). Women who reported one child, two children or more than two children, were categorized as
55 56 57 58	113	para 1 (n = 277; 11.3%), para 2 (n = 1021; 41.5%) and para > 2 (n = 697; 28.3%). The PREVEND study has
27		5

2		
- 3 4	114	been approved by the medical ethics committee of the University Medical Centre Groningen. Written
5 6	115	informed consent was obtained from all participants.
7 8	116	
9 10	117	Measurements and visits
11 12 13	118	Between 1997 and 2012, the screening visits took place every 2-4 years. Participants completed
14 15	119	questionnaires and underwent physical examinations. Blood samples and 24-hour urine samples were
16 17	120	taken. The questionnaires included questions regarding parity. Participants reported their number of
18 19	121	children, which was used as a proxy for the number of childbirths. Details of clinical and laboratory
20 21 22	122	measurements have previously been described elsewhere. ²² Prescription data from pharmacies was
22 23 24	123	used to assess the use of antihypertensive and lipid lowering medication. Hypertension was defined as a
25 26	124	systolic blood pressure \geq 140 mmHg and/or a diastolic blood pressure \geq 90 mmHg or the use of blood
27 28	125	pressure lowering medication. Type 2 diabetes mellitus (T2DM) was defined as a fasting plasma glucose
29 30 21	126	\geq 7.0 mmol/L, random sample plasma glucose \geq 11.1 mmol/L, self-reported physician diagnosis of type 2
32 33	127	diabetes mellitus, and/or the use of glucose-lowering medication. ²⁴ Obesity was defined as BMI \ge 30
34 35	128	kg/m².
36 37	129	Data selection for analyses was based on a fixed median time interval of six years between the visits.
38 39	130	
40 41 42	131	Statistical analysis
43 44	132	Data was arranged per patient per visit. Continuous variables with a normal distribution are presented
45 46	133	as mean ± standard deviation (SD) and analyzed using Student <i>t</i> -test or One-Way ANOVA followed by
47 48	134	Tukey post-hoc analysis. Continuous variables with a skewed distribution were expressed as median
49 50 51	135	with 25 th –75 th percentile and analyzed using Mann-Whitney U test or Kruskall Wallis. Categorical
52 53	136	variables were analyzed using Pearson Chi square test or Fisher's exact test, where appropriate.
54 55		
56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	137	For longitudinal assessment (time factor) of the outcome measures among the different parity groups
5 6 7	138	(group factor), a generalized estimating equations (GEE) analysis was performed, including the
7 8	139	interaction term group*visit (interaction factor). All analyses were performed using an autoregressive
9 10 11	140	correlation matrix structure. This assumes a variable correlation between measurements depending on
12 13	141	the time between measurements, as was expected in the current analysis. For GEE analyses of
14 15	142	continuous dependent variables (BMI, HDL cholesterol and MAP), participants were further stratified in
16 17 18	143	three age categories (40 – 49 years old, 50 – 59 years old, and \geq 60 years old). In addition, we performed
18 19 20	144	a stepwise correction strategy, correcting for age (model 1), age and education (model 2), age and oral
20 21 22 23 24 25 26 27	145	contraceptive use (model 3) and age, education and oral contraceptive use (model 4).
	146	Data were analyzed using SPSS 22.0 (SPSS Inc. Chicago, IL, USA) and GraphPad prism 5.01 (GraphPad
	147	Software Inc. San Diego, CA, USA). In all analyses, a p-value <0.05 was considered statistically significant.
27 28 20	148	
29 30 31	149	Results
32 33	150	Study population
34 35	151	Table 1 provides an overview of the baseline characteristics of women who were nulliparous, para 1,
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	152	para 2 and para > 2 at the first PREVEND visit. The mean age was significantly higher in women who
	153	were para > 2. The majority of all women were Caucasian. The median follow-up time was 6 years in all
	154	groups. The cardiovascular risk profile among the parity groups differed significantly on BMI, blood
	155	pressure, smoking and use of alcohol. Unfavorable blood glucose measurements and cholesterol profiles
	156	were related to higher parity. The use of blood pressure lowering medication was higher in women who
	157	were para > 2 compared to the other groups, but the use of glucose and lipid lowering medication did
	158	not differ among the groups. Women who were para > 2 less often used oral contraceptives compared
52 53	159	to women who were nulliparous, para 1 or para 2.
54 55 56	160	
50 57 58		
59 60		7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 8 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
111

161 Cardiometabolic profile in relation to parity and age

162 During the 6-year study period, there was a constant, significant difference in BMI among the parity 163 groups at all age categories (Figure 2A). The BMI was higher with every increase of parity at all age 164 categories: per child, the BMI was 0.6kg/m2 higher, equal to 1.5-2.0 kg. In women para > 2, the 165 BMI was 0.7–2.0 kg/m² higher compared to the other parity groups. Over time, BMI increased 166 significantly in all age groups (p_{time} <0.001), the change in BMI over time was similar among all parity 167 groups (p_{interaction}=0.662–0.947). In a stepwise correction model, correction for age alone and correction 168 for age and oral contraceptive use did not influence the differences in BMI among parity groups at all 169 age categories (**Supplemental table 1**). After correction for age, education level and oral contraceptive 170 use, differences among parity groups were not statistically significant anymore at age 50-59 years only. 171 172 The prevalence of obesity increased with increasing parity at entry (p_{for trend}<0.001) and at 6 year follow 173 up (p_{for trend}<0.001; Figure 3). At visit one, 15% of the nulliparous women was obese, compared to 26% of 174 the women para >2. After the course of six years, this was increased to 16% of the nulliparous women 175 compared to 30% of the para >2. The increase in prevalence over time was similar among the groups 176 (p=0.450). In a stepwise correction model, correction for age alone and correction for age and oral 177 contraceptive use did not influence the differences in HDL cholesterol among parity groups at all age 178 categories (Supplemental table 1). After correction for age, education level and oral contraceptive use, 179 differences among parity groups were not statistically significant anymore at all age groups. 180 181 HDL cholesterol differed among the groups, except for participants aged \geq 60 years (Figure 2B). The 182 HDL cholesterol was lower with every increase of parity, except for participants older than 60 183 years: per child, the HDL decreased with 0.05 mmol/L. Women para 2 and women para > 2 had

Page 9 of 25

1 2		
2 3 4 5 6 7	184	significant lower HDL cholesterol at both measurements compared to nulliparous women aged 40–49
	185	years (0.08–0.12 mmol/L) and 50–59 years (0.10–0.17 mmol/L). Over time, HDL cholesterol increased
7 8 0	186	significantly in all age groups (p_{time} =0.001–0.007) and the change in HDL cholesterol over time was
9 10 11	187	similar among all parity groups (p _{interaction} =0.163–0.530).
12 13	188	Low HDL cholesterol (<1.29 mmol/L) prevalence differed among the groups at visit one ($p_{for trend}$ <0.001)
14 15 16 17	189	and at follow up visit (p _{for trend} =0.006); low HDL cholesterol was more common when parity increased
	190	(Figure 3). Low HDL cholesterol prevalence inclined similar in all groups over time (p=0.160).
18 19 20	191	
21 22 23 24 25 26 27 28 29 30 31 32 33	192	There were no differences among the parity groups over time in MAP at all ages, although MAP
	193	increased in all groups at age 40–49 years and 50–59 years and decreased in all groups at age \geq 60 years
	194	(Figure 2C). The change in MAP over time was similar among all parity groups (p _{interaction} =0.348–0.815).
	195	Prevalence of hypertension increased with parity both at entry visit (p _{for trend} <0.001) and at follow up
	196	(p _{for trend} <0.001). Hypertension prevalence increased similar in all groups over time by 4–10% (p=0.761;
	197	Figure 3).
34 35 36	198	
30 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	199	Occurrence of T2DM did not differ among the groups at entry (p _{for trend} =0.094), although a positive
	200	association was found between T2DM prevalence and parity after six years (p _{for trend} =0.018). The increase
	201	in T2DM over time was comparable at all groups (p=0.336). T2DM prevalence was < 10% at all groups at
	202	both visits (Figure 3).
	203	
	204	Discussion
	205	In this longitudinal cohort study, having 2 children or more was associated with a higher BMI in all age
	206	categories and with a lower HDL cholesterol, but not with changes in blood pressure. A higher parity was
54 55 56 57	207	associated with higher prevalence of obesity, low HDL cholesterol and a higher prevalence of
58 59 60		9 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	208	hypertension. These associations were was constant over time. As analyses were stratified and/or
5 6	209	adjusted for age, these results suggest a direct association of parity itself with BMI, HDL cholesterol
7 8	210	levels and cardiovascular risk factor prevalence. Other factors attributing to parity, i.e. socio-economic
9 10 11	211	status and oral contraceptive use, might have contributed to these differences.
12 13	212	
14 15	213	Especially the effect of parity on BMI is of great interest, since BMI appears to be one of the most
16 17	214	important cardiometabolic risk factors. This is not only due to the direct effect on cardiovascular diseas
18 19 20	215	onset, but also due to its adverse effect on lipid profile and blood pressure. ^{25–28} Results from a
20 21 22	216	population-based cohort study among 4699 women suggested that weight or weight chances might be
23 24	217	an important mediator in the effect of parity on metabolic syndrome, thus confirming the importance of
25 26	218	BMI in regard to cardiometabolic health. ¹⁹ In our study, roughly each extra child is associated with 1.5–
27 28	219	2.0 kg weight gain. Similar, each extra child is associated with 0.05 mmol/L decrease in HDL cholesterol,
29 30 31	220	which might be the result of the increased BMI.
32 33	221	
34 35	222	Parallel to these metabolic differences in continuous measurements among the groups, occurrence of
36 37	223	several clinical relevant cardiovascular risk factors, such as obesity and hypertension, differed among
38 39 40	224	the groups as well. This is in line with cross-sectional studies assessing metabolic profile in relation to
41 42	225	the number of children. ^{6–8,19} However, some studies could not confirm the relation between parity and
43 44	226	metabolic health, especially after adjustment for covariates such as lifestyle. ^{14,15,19,29} In the stepwise
45 46	227	correction, we found no or minimal influence of age, age and education level or age and oral
47 48 40	228	contraceptive use on our results. Only after full correction for age, education level and oral
49 50 51	229	contraceptive use, the statistical significance among parity groups diminished. Consequently, our
52 53	230	findings should be interpreted with caution, as these factors and others, such as lifestyle changes
54 55 56 57	231	following childbirth, might influence cardiovascular health next to parity itself. ²⁹ Moreover, lifestyle
58 59		1

60

3 4	232	effects of family life and the protective effect of lactation could explain the influence of parity on
5 6	233	cardiometabolic health. ^{30–32}
7 8	234	
9 10 11	235	Another possible explanation behind the mechanism of this relationship between parity and
12 13	236	cardiovascular risk factors could be found in the effect of disturbances by pregnancy itself that continue
14 15	237	to last postpartum. For example, breastfeeding is associated with a lower risk of cardiovascular risk
16 17	238	factors, i.e. T2DM, although the role of breastfeeding remains controversial and a recent meta-analysis
18 19 20	239	showed no significant effect of breastfeeding on postpartum weight retention. ^{33–36} Other factors
20 21 22	240	involved in the relationship between parity and cardiovascular risk factors might be found in circulation
23 24	241	markers. An example might be found in the ovarian peptide hormone relaxin, produced by the corpus
25 26	242	luteum or placental throughout pregnancy, has emerged as cardiovascular modulator involved in
27 28	243	vasodilatation and inducing angiogenesis. ^{37,38} Moreover, relaxin was positively associated with insulin
29 30 31	244	sensitivity and lipid profile in women with type 2 diabetes mellitus as well. ³⁹
32 33	245	Previous cohort studies showed a 'J-shaped' association between parity and coronary heart disease,
34 35	246	with lowest prevalence in women with two children, or stated that only multiparity (i.e. more than four
36 37	247	or five children) was associated with increased cardiovascular disease risk. ^{6–8} However, our results
38 39 40	248	indicate a stepwise effect of parity on cardiometabolic health and having two children or more than two
40 41 42	249	children already affects BMI, HDL cholesterol levels and cardiovascular risk factor prevalence.
43 44	250	
45 46	251	Our paper is the first study providing detailed assessment of cardiometabolic health development over
47 48 40	252	time in relation to parity. This longitudinal study comprised a large, well-phenotyped cohort with
49 50 51	253	uniform assessment of all measurements during a median follow-up of 6 years. The GEE analysis which
52 53	254	was performed, allowed us to assess differences among groups over time, focusing on group effects.
54 55	255	However, several limitations need to be discussed. The mean age of women para > 2 was significantly
56 57 58		
50 59 60		11 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2

60

3 4	256	higher than women who were nulliparous, para 1 or para 2. In addition, women para > 2 less often used
5 6	257	oral contraceptives and more often used antihypertensive medication. This might result in a slightly
7 8	258	different metabolic profile although correction of the GEE-analysis for age and oral contraceptive use
9 10 11	259	did not significantly change the results. Despite extensive phenotyping, age at first delivery, inter-
12 13	260	pregnancy interval and lactation have not been assessed in the PREVEND study and therefore,
14 15	261	adjustment of the analyses for these factors was not possible. Since parity itself was not assessed in the
16 17	262	PREVEND, we used the number of children as a proxy for the number of childbirths. This might lead to
18 19 20	263	inaccurate estimates of parity numbers, as the possibility of surrogacy or twin pregnancies is not taken
20 21 22	264	into account. Additionally, no information was available regarding subfertility and several pregnancy
23 24	265	complications, which leads to a lower number of children in these women and might reflect influence
25 26	266	the cardiometabolic profile in later life as well. Lastly, pre-pregnancy BMI and gestational weight gain
27 28 20	267	have not been assessed in the PREVEND study either, although their role on postpartum weight
29 30 31	268	retention seemed limited in a recent publication. ^{9,18}
32 33	269	
34 35	270	The PREVEND study was enriched with subjects with an elevated albumin excretion, which mostly
36 37	271	results in an unfavorable cardiovascular risk profile compared to the general population. However,
38 39 40	272	albuminuria did not significantly differ among the groups within our analyses. In addition, adjustment
41 42	273	for albuminuria did not change the results (data not shown). Although our findings suggest an effect of
43 44	274	parity itself on metabolic parameters, it should be noted that causality cannot be determined in our
45 46	275	study. Therefore, one could argue that the relationship is reversed, e.g. women with higher BMI or
47 48 49	276	lower HDL cholesterol are more fertile and therefore have more children. Prospective research assessing
50 51	277	pre-pregnancy determinants of cardiometabolic health are warranted to further assess the possible
52 53	278	causal effect of pregnancy itself.
54 55 56 57 58	279	
59		12

1 ว		
2 3 4	280	Conclusion
4 5 6 7	281	In this longitudinal cohort study, higher parity is associated with higher BMI and lower HDL
7 8 9	282	cholesterol. This difference among parity groups is constant over time. Furthermore, higher parity is
10 11	283	associated with a higher prevalence of cardiovascular risk factors among the parity groups over time.
12 13 14	284	These findings warrant for prospective research assessing determinants of cardiometabolic health at
15	285	earlier age to understand the role of pregnancy in the development of cardiovascular disease in womer
16 17 18	286	
19	287	References
20 21	288	1. Bartels a., O'Donoghue K. Cholesterol in pregnancy: a review of knowns and unknowns. <i>Obstet Med</i> . 2011;4(4):147-
22	289	151. doi:10.1258/om.2011.110003.
23	290	2. Tan EK, Tan EL. Alterations in physiology and anatomy during pregnancy. <i>Best Pract Res Clin Obstet Gynaecol</i> .
24 25	291	2013;27(6):791-802. doi:10.1016/j.bpobgyn.2013.08.0011.
26	292	3. Jebeile H, Mijatovic J, Louie JCY, Prvan T, Brand-Miller JC. A systematic review and metaanalysis of energy intake and
27	293	weight gain in pregnancy. Am J Obstet Gynecol. 2016;214(4):465-483. doi:10.1016/j.ajog.2015.12.049.
28 29	294	4. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiologic adaptation of plasma
30	295	volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2016;d(November
31 22	296	2016):177-187. doi:10.1002/uog.17360.
32 33	297	5. Berge L, Armesen E, Forsdahl A. Pregnancy related changes in some cardiovascular risk factors. Acta Obstet Gynecol
34	298	Scand. 1996;75(5):439-442.
35 36	299	6. Humphries KH, Westendorp ICD, Bots ML, et al. Parity and Carotid Artery Atherosclerosis in Elderly Women: The
37	300	Rotterdam Study. Stroke. 2001;32:2259-2264.
38	301	7. Lawlor D a., Emberson JR, Ebrahim S, et al. Is the association between parity and coronary heart disease due to
39 40	302	biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British
41	303	women's heart and health study and the British regional heart st. <i>Circulation</i> . 2003;107(9):1260-1264.
42	304	doi:10.1161/01.CIR.0000053441.43495.1A.
43 44	305	8. Vladutiu CJ, Siega-Riz AM, Sotres-Alvarez D, et al. Parity and components of the metabolic syndrome among US
45	306	hispanic/latina women: Results from the hispanic community health study/study of latinos. Circ Cardiovasc Qual
46 47	307	Outcomes. 2016;9(2_suppl_1):S62-S69. doi:10.1161/CIRCOUTCOMES.115.002464.
47	308	9. Rong K, Yu K, Han X, et al. Pre-pregnancy BMI, gestational weight gain and postpartum weight retention: a meta-
49	309	analysis of observational studies. Public Health Nutr. 2015;18(12):2172-2182. doi:10.1017/S1368980014002523.
50 51	310	10. Amorim AR, Rössner S, Neovius M, Lourenço PM, Linné Y. Does excess pregnancy weight gain constitute a major risk
52	311	for increasing long-term BMI? Obesity (Silver Spring). 2007;15(5):1278-1286. doi:10.1038/oby.2007.149.
53	312	11. Al Mamun a. Associations of excess weight gain during pregnancy with long-term maternal obesity, hypertension and
54 55	313	diabetes: Evidence from 21 years postpartum follow-up. Obes Rev. 2010;11:51. doi:http://dx.doi.org/10.1111/j.1467-
56	314	789X.2010.00763-4.x.
57		
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 14 of 25

BMJ Open

2			
3	315	12.	Fraser a, Tilling K, Macdonald C, Hughes R, Sattar N. Associations of gestational weight gain with maternal body mass
4 5	316		index, waist circumference, and blood pressure measured 16 y after pregnancy: the Avon Longitudinal Study of Parents
6	317		and Children. Am J Clin Nutr. 2011;93(6):1-4. doi:10.3945/ajcn.110.008326.1.
7	318	13.	Steenland K, Lally C, Thun Mi. Parity and COronary Heart Disease among Women in the American Cancer Society CPS II
8 9	319		Population. Epidemiology. 1996;7:641-643.
10	320	14.	de Kleijn MJ, van der Schouw YT, van der Graaf Y. Reproductive history and cardiovascular disease risk in
11	321		postmenopausal women: a review of the literature. <i>Maturitas</i> . 1999;33(1):7-36.
12	322	15.	Chung E, Kim Y, Usen O. Associations Between Parity, Obesity, and Cardiovascular Risk Factors Among Middle-Aged
14	323		Women. J Women's Heal. 2016;25(8):818-825. doi:10.1089/jwh.2015.5581.
15 16	324	16.	Robinson WR, Cheng MM, Hoggatt KJ, Stürmer T, Siega-Riz AM. Childbearing is not associated with young women's
17	325		long-term obesity risk. <i>Obesity</i> . 2014;22(4):1126-1132. doi:10.1002/oby.20593.
18	326	17.	Schmitt NM, Nicholson WK, Schmitt J. The association of pregnancy and the development of obesity - results of a
19 20	327		systematic review and meta-analysis on the natural history of postpartum weight retention. Int J Obes (Lond).
20	328		2007;31(11):1642-1651. doi:10.1038/sj.ijo.0803655.
22	329	18.	Nehring I, Schmoll S, Beyerlein A, Hauner H, Von Kries R. Gestational weight gain and long-term postpartum weight
23 24	330		retention: A meta-analysis. Am J Clin Nutr. 2011;94(5):1225-1231. doi:10.3945/ajcn.111.015289.
25	331	19.	Cohen A, Pieper CF, Brown AJ, Bastian La. Number of children and risk of metabolic syndrome in women. J Womens
26	332		Health (Larchmt). 2006:15(6):763-773. doi:10.1089/iwh.2006.15.763.
27 28	333	20.	Ness RB. Harris T. Cobb J. et al. Number of pregnancies and the subsequent risk of cardiovascular disease. <i>N Engl J</i>
29	334	-	Med. 1993:328:1528-1533.
30	335	21.	Pinto-Sietsma S-I. Mulder I. Janssen WMT. Hillege HJ. Zeeuw D. De. De Jong PE. Smoking Is Related to Albuminuria and
31 32	336		Abnormal Renal Function in Nondiabetic Persons. Ann Intern Med. 2000;(133):585-591.
33	337	22.	Hillege HL. Janssen WMT. Bak a. a a. et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive
34 25	338		nonulation and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. <i>Lintern Med</i>
35 36	339		2001:249(6):519-526. doi:10.1046/i.1365-2796.2001.00833.x.
37	340	23	Loosten MM Gansevoort RT Mukamal KL Harst P Van Der Geleijnse IM Feskens FIM Urinary and plasma magnesium
38 20	341	_0.	and risk of ischemic heart disease 1 – 3. October 2013;97(13):1299-1306
40	342		doi:10.3945/aicn.112.054114_INTRODUCTION
41	343	24	Abhasi A Corneleiin E Gansevoort BT et al. Role of HDL cholesterol and estimates of HDL particle composition in
42 43	344	24.	future development of type 2 diabetes in the general population: The REVEND study 1 Clin Endocrinol Metab
44	345		
45	346	25	Lamon Eava S. Wilson DWE. Schapfor El. Impact of Rody Mass Index on Coronary Heart Disease Pick Easters in Mon and
46 47	340	25.	Women: The Framingham Offenring Study, Arteriocolar Thread Marce Biol, 1006:16:16:00, 15151
48	247	20	Women: The Frankingham Onspring Study. Arterioscier Thromb Vasc Biol. 1996;16:1509-15151.
49	240 240	26.	wilson PWF, D Agostino RB, Suilivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular
50 51	249		risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867-1872. doi:10.1001/archinte.162.16.1867.
52	350	27.	Bogers R, Bemelmans W, Hoogenveen R, et al. Association of overweight with increased risk of coronary heart disease
53	351		partly independent of blood pressure and cholesterol levels. Arch Intern Med. 2007;167(16):1720-1728.
54 55	352		doi:10.1001/archinte.167.16.1720.
56	353	28.	Mongraw-Chaffin ML, Peters S a E, Huxley RR, Woodward M. The sex-specific relationship between body mass index
57 50			
59			14
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 25

1 2			
3	354		and coronary heart disease: A systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet
4	355		Diabetes Endocrinol. 2015;3(6):437-449. doi:10.1002/aur.1474.Replication.
5 6	356	29.	Hardy R, Lawlor D a., Black S, Wadsworth MEJ, Kuh D. Number of children and coronary heart disease risk factors in
7	357		men and women from a British birth cohort. BJOG An Int J Obstet Gynaecol. 2007;114(6):721-730. doi:10.1111/j.1471-
8	358		0528.2007.01324.x.
9 10	359	30.	Gunderson EP, Jacobs DR, Chiang V, et al. Childbearing is associated with higher incidence of the metabolic syndrome
11	360		among women of reproductive age controlling for measurements before pregnancy: the CARDIA study. Am J Obstet
12 13	361		<i>Gynecol.</i> 2009;201(2):177.e1-177.e9. doi:10.1016/j.ajog.2009.03.031.
14	362	31.	McClure CK, Catov JM, Ness RB, Schwarz EB. Lactation and maternal subclinical cardiovascular disease among
15	363		premenopausal women. Am J Obstet Gynecol. 2012;207(1):1-15. doi:10.1016/j.ajog.2012.04.030.
16 17	364	32.	Natland Fagerhaug T, Forsmo S, Jacobsen GW, Midthjell K, Andersen LF, Ivar Lund Nilsen T. A prospective population-
18	365		based cohort study of lactation and cardiovascular disease mortality: the HUNT study. BMC Public Health.
19 20	366		2013:13(1):1070. doi:10.1186/1471-2458-13-1070.
20 21	367	33.	Baker JL, Gamborg M, Heitmann BL, Lissner L, Sørensen TJ a, Rasmussen KM, Breastfeeding reduces postpartum weight
22	368		retention. <i>Am J Clin Nutr.</i> 2008:88(6):1543-1551. doi:10.3945/aicn.2008.26379.
23 24	369	34.	Jarlenski MP. Bennett WL. Bleich SN. Barry CL. Stuart E a. Effects of breastfeeding on postpartum weight loss among
24 25	370	• · ·	U.S. women, <i>Prev Med.</i> 14AD:69:146-150, doi:10.1016/j.vpmed.2014.09.018.Effects.
26	371	35.	Britz SE, McDermott KC, Pierce CB, Blomquist II, Handa VI, Changes in maternal weight 5-10 years after a first delivery
27 28	372		Womens Health (Lond Enal), 2012;8(5):513-519, doi:10.2217/whe.12.35.
29	373	36.	He X. Zhu M. Hu C. et al. Breast-feeding and postpartum weight retention: a systematic review and meta-analysis.
30	374		Public Health Nutr. 2015:18(18):3308-3316. doi:10.1017/S1368980015000828.
31 32	375	37.	Sherwood OD. Relaxin's physiological roles and other diverse actions. <i>Endocr Rev.</i> 2004:25(2):205-234.
33	376		doi:10.1210/er.2003-0013.
34 25	377	38.	Bani D. Relaxin as a natural agent for vascular health. Vasc Health Risk Manga, 2008:4(3):515-524.
35 36	378	39.	Szepietowska B. Gorska M. Szelachowska M. Plasma relaxin concentration is related to beta-cell function and insulin
37	379		sensitivity in women with type 2 diabetes mellitus. <i>Diabetes Res Clin Pract</i> , 2008;79(3):2007-2009.
38 39	380		doi:10.1016/i.diabres.2007.10.017.
40	381		
41	202	C	
42 43	30Z	Com	
44	383	All au	ithors have completed the Unified Competing Interest form at <u>www.icmje.org/coi_disclosure.pdf</u>
45 46	204	1	
47	384	(avaii	lable on request from the corresponding author) and declare no support from any organization for
48 49	385	the s	ubmitted work; no relationships with companies that might have an interest in the submitted work
50 51 52	386	in the	e previous 3 years; no other relationships or activities that could appear to have influenced the
53 54	387	subm	nitted work.
55 56	388		
57			
58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	389	Author's contributions
5 6 7	390	GAZ, NDP, KJG, RTG, HG and ATL were involved in conception and design of the study. GAZ, KJG
7 8 9	391	and ATL drafted the manuscript. All authors edited the manuscript; all authors read and
10 11 12	392	approved the final manuscript.
12	393	
14 15 16	394	Data sharing statement
17 18	395	Data sharing: patient level data and full dataset and technical appendix and statistical code are available
19 20	396	from the corresponding author (g.zoet@umcutrecht.nl). Informed consent was not obtained but the
21 22 22	397	presented data are anonymized and the risk of identification is low.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	398	
55 56		
57 58		
59 60		16 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1: at entry table PREVEND stratified for parity

	No children (N=464) ‡	One child (N=277) ‡	Two children (N=1021) ‡	More than two children (N=697) ‡	P-1
General characteristics					
Age (years)	52.2 (10.1)	52.2 (9.0)	52.3 (8.4)	56.9 (9.6)	<0.
Follow-up time (years)	11 (11-12)	11 (11-12)	11 (11-12)	11 (11-12)	0.7
Caucasian (n (%))	445 (96.9%)	264 (96.4%)	995 (98.0%)	663 (95.7%)	0.0
Job (n (%))	315 (68.3%)	127 (47.4%)	467 (46.5%)	264 (38.6%)	<0
Cardiovascular risk profile					
BMI (kg/m²)	24.6 (22.5-27.7)	25.3 (22.5-28.6)	25.8 (23.4-28.8)	26.9 (24.0-30.2)	<0.
SBP (mmHg)	120 (109-138)	121 (110-140)	122 (111-138)	130 (115-146)	<0
DBP (mmHg)	71 (65-78)	71 (67-77)	71 (66-78)	73 (67-79)	0.0
Current smoker (n (%))	139 (30.0%)	105 (37.9%)	326 (31.9%)	195 (28.0%)	0.0
Alcohol use (n (%))	203 (44.0%)	137 (49.6%)	503 (49.4%)	378 (54.5%)	0.0
Cardiovascular comorbidity (n (%))	11 (2.4%)	11 (4.1%)	24 (2.4%)	24 (3.6%)	0.3
Renal disease requiring dialysis (n (%))	1 (0.2%)	0 (0%)	3 (0.3%)	1 (0.1%)	0.7
Laboratory results		· · ·			
Glucose (mmol/L)	4.6 (4.3-5.0)	4.7 (4.3-5.1)	4.7 (4.3-5.0)	4.8 (4.4-5.2)	0.0
Insulin (mmol/L)	7.0 (4.9-10.7)	7.6 (5.1-11.5)	7.8 (5.6-11.2)	8.5 (6.0-13.4)	<0
HOMAir	1.4 (1.0-2.4)	1.6 (1.0-2.5)	1.6 (1.1-2.4)	1.8 (1.2-3.0)	<0
Total Cholesterol (mmol/L)	5.7 (5.0-6.4)	5.7 (5.1-6.5)	5.8 (5.0-6.7)	6.0 (5.3-6.7)	<0
HDL Cholesterol (mmol/L)	1.5 (1.2-1.8)	1.5 (1.2-1.8)	1.4 (1.2-1.7)	1.4 (1.2-1.7)	<0
Triglycerides (mmol/L)	1.0 (0.8-1.5)	1.1 (0.9-1.7)	1.1 (0.9-1.6)	1.2 (0.9-1.6)	<0
Medication use					
Total blood pressure lowering (n (%))	65 (16.4%)	39 (16.5%)	140 (15.6%)	151 (24.4%)	<0
ACEi/ARB (n (%))	19 (4.7%)	8 (3.3%)	41 (4.5%)	44 (7.0%)	0.0
Glucose lowering (n (%))	7 (1.7%)	2 (0.8%)	12 (1.3%)	12 (1.9%)	0.6
Lipid lowering (n (%))	19 (4.7%)	15 (6.3%)	32 (3.5%)	37 (5.9%)	0.1
Oral contraceptive use (n (%))	79 (18.2%)	50 (19.5%)	198 (21.1%)	90 (14.6%)	0.0

Data are presented as median (25th – 75th percentile) unless otherwise stated. BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic
 blood pressure; ACEi/ARB: angiotensin converting enzyme inhibitor and/or angiotensin receptor blocker; HOMAir: homeostatic model
 assessment index.

408 ‡ Total number that participated at visit 1 of the study, not all variables were available for each participant at baseline

411 Figure 3: CVD risk factors at entry

Obesity

1 2 3

4

60

BMJ Open

Low HDL-cholesterol

Supplemental table 1: stepwise correction for GEE-analysis

Table 1A: Correction models for GEE-analysis, stratified at age 40 - 50 years

	Unadjusted			Adjusted for age			Adjusted for age & SES			Adjusted for age & OCC			Adjusted for age & SES & OCC		
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.003	< 0.001	0.667	0.011	0.938	0.694	0.323	0.552	0.685	0.010	0.910	0.627	0.342	0.64	0.628
HDL-cholesterol	0.008	< 0.001	0.530	0.003	0.737	0.520	0.047	0.472	0.519	0.006	0.666	0.570	0.080	0.438	0.565
MAP	0.558	0.005	0.815	0.866	< 0.001	0.779	0.871	< 0.001	0.777	0.874	< 0.001	0.875	0.904	< 0.001	0.871

Abbreviations: SES, Socio-economic status; OCC, oral contraceptives

Table 1B: Correction models for GEE-analysis, stratified at age 50 - 60 years

	Undia	II. adding to d			Adjusted for age			Adjusted for age &			Adjusted for age &			Adjusted for age &		
	Unaujusted			Aujusicu ior age			SES			OCC			SES & OCC			
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	
BMI	0.004	< 0.001	0.947	0.006	0.197	0.945	0.009	0.031	0.920	0.011	0.269	0.849	0.017	0.048	0.812	
HDL-cholesterol	0.027	0.007	0.184	0.031	0.040	0.171	0.051	0.152	0.151	0.085	0.035	0.055	0.118	0.126	0.045	
MAP	0.328	0.023	0.494	0.411	< 0.001	0.478	0.522	0.005	0.457	0.637	0.003	0.802	0.669	0.025	0.786	

Abbreviations: SES, So	Abbreviations: SES, Socio-economic status; OCC, oral contraceptives														
Table 1C: Correction models for GEE-analysis, stratified at age > 60 years															
	Unadjusted			Adjusted for age			Adjusted for age & SES			Adjusted for age & OCC			Adjusted for age & SES & OCC		
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.001	< 0.001	0.662	0.001	0.116	0.662	0.006	0.087	0.663	0.002	0.011	0.625	0.006	0.009	0.626
HDL-cholesterol	0.156	0.001	0.163	0.155	0.114	0.191	0.314	0.142	0.201	0.162	0.102	0.358	0.299	0.132	0.384
MAP	0.415	< 0.001	0.348	0.646	< 0.001	0.407	0.649	< 0.001	0.407	0.667	< 0.001	0.508	0.678	< 0.001	0.507

Abbreviations: SES, Socio-economic status; OCC, oral contraceptives

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohort reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title	#1a	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	#1b	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Background / rationale	#2	Explain the scientific background and rationale for the investigation being reported	4, 5
Objectives	#3	State specific objectives, including any prespecified hypotheses	5
Study design	#4	Present key elements of study design early in the paper	5, 6
Setting	#5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Eligibility criteria	#6a For p	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5

Page 2	3 of 25
--------	---------

1 2 3		#6b	For matched studies, give matching criteria and number of exposed and unexposed	na
4 5 6 7 8	Variables	#7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
10 11 12 13 14 15 16 17	Data sources / measurement	#8	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	6
18 19	Bias	#9	Describe any efforts to address potential sources of bias	5, 6, 7
20 21 22	Study size	#10	Explain how the study size was arrived at	5
22 23 24 25 26 27	Quantitative variables	#11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5, 7
28 29 30 31	Statistical methods	#12a	Describe all statistical methods, including those used to control for confounding	6, 7
32 33 34		#12b	Describe any methods used to examine subgroups and interactions	6, 7
35 36 37		#12c	Explain how missing data were addressed	6, 7
38 39		#12d	If applicable, explain how loss to follow-up was addressed	6, 7
40 41		#12e	Describe any sensitivity analyses	na
42 43 44 45 46 47 48 49 50	Participants	#13a	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	5
51 52		#13b	Give reasons for non-participation at each stage	5
53 54		#13c	Consider use of a flow diagram	figure 1
55 56 57 58	Descriptive data	#14a	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7, table 1
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			BMJ Open	Page 24 of 25		
1			confounders. Give information separately for exposed and unexposed groups if applicable.			
3 4 5 5		#14b	Indicate number of participants with missing data for each variable of interest	Figure 2		
7 8 0		#14c	Summarise follow-up time (eg, average and total amount)	6, 8, 9		
9 10 11 12 13 14	Outcome data	#15 Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.				
15 16 17 18 19 20 21	Main results	#16a	Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7, 8, 9		
22 23 24		#16b	Report category boundaries when continuous variables were categorized	7, 8, 9		
26 27 28		#16c	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	na		
29 30 31 32	Other analyses	#17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	na		
33 34 35	Key results	#18	Summarise key results with reference to study objectives	9, 10		
36 37 38 39 40	Limitations	#19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	11, 12		
41 42 43 44 45	Interpretation	#20	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	See note 1		
46 47 48 49	Generalisability	#21	Discuss the generalisability (external validity) of the study results	See note 2		
50 51 52 53 54 55	Funding	#22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3		
56 57	Author notes					
58 59 60	1. 10, 11, 12, 13	For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

2. 10, 11, 12, 13

The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 18. May 2018 using <u>http://www.goodreports.org/</u>, a tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>

ay .ation w

BMJ Open

Association between parity and persistent weight gain at age 40-60 years: a longitudinal prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024279.R1
Article Type:	Research
Date Submitted by the Author:	02-Oct-2018
Complete List of Authors:	Zoet, Gerbrand; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Paauw, Nina; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Groenhof, Katrien; Universitair Medisch Centrum Utrecht, Julius Center for Health Sciences and Primary Care Franx, Arie; University Medical Center Utrecht, Obstetrics & Gynaecology Gansevoort, Ron T.; University Medical Center Groningen, Division of Nephrology Groen, Henk; University Medical Centre Groningen, Department of Epidemiology Van Rijn, Bas; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Lely, Titia; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Cardiovascular medicine, Epidemiology
Keywords:	Pregnancy, Parity, Cardiovascular risk factors, BMI, HDL cholesterol, Hypertension < CARDIOLOGY

1		
2	1	Association between parity and persistent weight gain at age 40-60 years: a longitudinal
4 5		
6 7	2	prospective cohort study
, 8 9	3	Gerbrand A. Zoet, MD ^a ; Nina D. Paauw, MD ^a ; T. Katrien J. Groenhof, MD ^b , Arie Franx, MD PhD ^a ; Ron T.
10 11	4	Gansevoort, MD, PhD ^c ; Henk Groen ^d , MD, PhD; Bas B. van Rijn, MD, PhD ^{a,e} , A.Titia Lely, MD, PhD ^a .
12 13	5	
14 15	6	^a Wilhelmina Children's Hospital Birth Center, University Medical Center Utrecht, Lundlaan 6, 3508 AB, Utrecht, the Netherlands
16 17	7	^b Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht,
18 19	8	the Netherlands
20 21	9	^c Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen,
22 23	10	Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
24	11	^d Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ,
26	12	Groningen, the Netherlands
27 28	13	^e Academic Unit of Human Development and Health, University of Southampton, Princess Anne Hospital, Coxford Road,
29 30	14	Southampton SO16 5YA, United Kingdom
31 32	15	
33	16	Corresponding author at: G.A. Zoet, University Medical Center Utrecht, Room KE 02.510.2, Lundlaan 6, PO Box 85090, 3508 AB,
35 36	17	Utrecht, The Netherlands. Tel.: +31 88 7557526, e-mail: gzoet@umcutrecht.nl
37	18	
39 40	19	Short title: Parity and persistent weight gain
41 42	20	
43 44	21	Total word count: 3080 (excluding title page, abstract, references, figures and tables)
45 46	22	
47 48		
49		
50		
51 52		
53		
54		
55 56		
50 57		
58		
59		For peer review only - http://bmionen.hmi.com/cite/about/quidelines.yhtml
60		For peer review only intep://binjopen.binj.com/site/about/guidelines.xittini

23	Abstract
24	Objectives: Physiological metabolic adaptations occur in the pregnant woman. These may persist
25	postpartum and thereby contribute to an unfavorable cardiovascular disease (CVD) risk profile in parous
26	women. The aim of the current study is to assess time-dependent changes of cardiometabolic health in
27	parous women compared to nulliparous women.
28	Design and setting: We studied data of 2459 women who participated in the PREVEND study, a
29	population-based prospective longitudinal cohort for assessment of CVD and renal disease in the
30	general population.
31	Participants: We selected women ≥40 years at the first visit, who reported no new pregnancies during
32	the 4 follow-up visits. All women were categorized in parity groups, and stratified for age.
33	Outcome measures: We compared BMI, high-density lipoprotein (HDL) cholesterol, blood pressure as
34	continuous measurements and as clinical relevant CVD risk factors among parity groups over the course
35	of six years using generalized estimating equation (GEE) models adjusted for age.
36	Results: The BMI was significantly higher in women para 2 or more in all age categories: per child, the
37	BMI was 0.6 kg/m ² higher. corresponding with 1.5–2.0 kg weight gain per child. HDL cholesterol was
38	significantly lower in women para 2 or more aged 40-49 and 50-59 years: per child, the HDL cholesterol
39	was up to 0.09 mmol/L lower. Blood pressure did not differ among parity groups in any of the age
40	categories.
41	Conclusions: Higher parity is associated with higher BMI, lower HDL cholesterol and a higher
42	prevalence of cardiovascular risk factors, which is constant over time. These findings warrant for
43	prospective research assessing determinants of cardiometabolic health at earlier age to understand the
44	role of pregnancy in the development of cardiovascular disease in women.
45	
46	Keywords: Pregnancy; parity; cardiovascular risk factors; BMI; HDL cholesterol; hypertension.
	2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 40 41 42 43 44 45 46

2 3	47	Study summary: Strengths and limitations of this study
4	-17	Study summary. Strengths and initiations of this study
5 6 7	48	• This longitudinal cohort comprised a large, well-phenotyped cohort with uniform assessment of all
7 8 9	49	measurements during a median follow-up of 6 years.
10 11	50	• The GEE analysis which was performed, allowed us to assess differences among groups over time,
12 13	51	focusing on group effects.
14 15	52	• Since parity itself was not assessed in this cohort, we used the number of children as a proxy for the
16 17	53	number of childbirths.
18 19 20	54	 Women para > 2 were older, less often used oral contraceptives and more often used
21 22	55	antihypertensive medication which might have resulted in a slightly different metabolic profile.
23 24	56	• Age at first delivery, inter-pregnancy interval and lactation have not been assessed in this cohort
25 26 27	57	and therefore, adjustment of the analyses for these factors was not possible.
27 28 29	58	
30 31	59	Funding: The PREVEND study was supported by Dutch Kidney Foundation (Grant E.033), The Groningen
32 33	60	University Medical Center (Beleidsruimte) and Dade Behring, Ausam, Roche, Abbott and Gentian who
34 35	61	financed laboratory equipment and reagents for various laboratory determinations. Gerbrand Zoet is
36 37 38	62	supported by the Dutch Heart Foundation (grant number 2013T083). Titia Lely is supported by the
39 40	63	ZonMW Clinical Fellowship (40-000703-97-12463).
41 42	64	
43 44	65	
45 46		
47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58		
59 60		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

66 Introduction

Pregnancy is associated with major alterations to the cardiovascular system and metabolic profile.¹⁻⁴ Increases in weight, lipid levels, blood plasma volume and cardiac output are needed to maintain a healthy, physiological pregnancy. Postpartum, this maternal adaptation reverses to its pre-pregnancy state, although several changes, (e.g. increased body weight and hypercholesterolemia) may persist for several months or longer.⁵ Possibly, these persisting changes contribute to an increased prevalence of metabolic syndrome (MetS) and an unfavorable cardiometabolic profile in parous women.^{6–8} The amount of gestational weight gain (GWG) affects postpartum weight retention.⁹ At long-term follow up, excessive gestational weight gain is associated with an increased BMI, up to a $3-4 \text{ kg/m}^2 21$ years after pregnancy.^{10–12}

Previous studies assessing the relation between parity and cardiometabolic health showed conflicting results and even the association between parity and obesity is questioned in some studies.^{13–16} Long-term effects have only scarcely been investigated and most studies had a follow-up of only 1 to 3 years postpartum.^{17,18} A recent large cross-sectional study among Hispanic women in the US demonstrated that multiparity (i.e. more than 4 or more than 6 children) was associated with obesity, low HDL cholesterol and elevated fasting glucose, also after adjustment for sociodemographic and lifestyle factors.⁸ In addition, results from the cross-sectional Rotterdam study showed an lower HDL cholesterol and higher total cholesterol and glucose/insulin ratios with higher parity in Caucasian women at 70 vears of age.⁶ Studies on the development of cardiovascular risk factors over time and the quantification of this effect per childbirth are conflicting. Some studies suggested a linear association between number of children and an unfavorable cardiometabolic profile, while others stated that only multiparity is associated with an increased cardiovascular disease risk.^{6–8,19,20}

BMJ Open

3 4	90	Some studies even showed a 'J-shaped' association in which women with two children had the lowest
5 6	91	prevalence of coronary heart disease. ^{6–8}
7 8	92	The aim of the current study was to assess time-dependent changes of cardiometabolic health in parous
9 10 11	93	women, stratified for number of children, as compared with nulliparous controls. This study was
12 13	94	performed in a well-defined longitudinal prospective cohort study that primarily assessed development
14 15	95	of CVD, albuminuria and renal disease. ²¹
16 17	96	
18 19 20	97	Methods
20 21 22	98	Participants
23 24	99	The Prevention of Renal and Vascular End-stage Disease (PREVEND) study is a longitudinal cohort follow-
25 26 27	100	up study for assessment of cardiovascular and renal disease in the general population. Details of this
27 28 29	101	study have previously been published elsewhere. ^{22,23} In summary, all inhabitants of the city of
30 31	102	Groningen, the Netherlands, from 1997 to 1998 at age 28–75 years (n = 85,421) were invited to
32 33	103	participate. All that applied, filled out a questionnaire and collected a first-morning void urine sample.
34 35 26	104	Pregnant women and subjects with type 1 diabetes mellitus were excluded. The urinary albumin
30 37 38	105	concentration was assessed in a total of 40,856 (47.8%) responders. A total of 6,000 participants were
39 40	106	enrolled out of 7,768 subjects with a urinary albumin concentration ≥ 10mg/L. In addition, 2,592
41 42	107	participants were enrolled out of 3,394 subjects with a urinary albumin concentration < 10mg/L.
43 44	108	Thereby, the PREVEND study was enriched by subjects with an elevated albumin excretion.
45 46 47	109	In total, 4,301 women were enrolled in the PREVEND study (Figure 1). For the current analysis, only
48 49	110	women aged 40 years or older at the first visit and who reported no new pregnancies during the follow-
50 51	111	up visits were included. Women who reported no children were categorized as nulliparous (n = 464;
52 53	112	18.9%). Women who reported one child, two children or more than two children, were categorized as
54 55 56 57	113	para 1 (n = 277; 11.3%), para 2 (n = 1021; 41.5%) and para > 2 (n = 697; 28.3%). The PREVEND study has
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	114	been approved by the medical ethics committee of the University Medical Centre Groningen. Written
5 6	115	informed consent was obtained from all participants.
7 8 0	116	
9 10 11	117	Patient and Public Involvement
12 13	118	No participants were involved with setting out the research question, developing the outcome measures
14 15	119	or planning the study design. The results of study results will be disseminated by the newsletter and the
16 17 18	120	study website.
19 20	121	
21 22	122	Measurements and visits
23 24 25	123	Between 1997 and 2012, the screening visits took place every 2-4 years. Participants completed
25 26 27	124	questionnaires and underwent physical examinations. Blood samples and 24-hour urine samples were
28 29	125	taken. The questionnaires included questions regarding parity. Participants reported their number of
30 31	126	children, which was used as a proxy for the number of childbirths. In addition, education level, current
32 33	127	alcohol use and current smoking were assessed in these questionnaires. Details of clinical and laboratory
34 35 36	128	measurements have previously been described elsewhere. ²² Prescription data from pharmacies was
37 38	129	used to assess the use of antihypertensive and lipid lowering medication. Hypertension was defined as a
39 40	130	systolic blood pressure \ge 140 mmHg and/or a diastolic blood pressure \ge 90 mmHg or the use of blood
41 42	131	pressure lowering medication. Type 2 diabetes mellitus (T2DM) was defined as a fasting plasma glucose
43 44 45	132	\geq 7.0 mmol/L, random sample plasma glucose \geq 11.1 mmol/L, self-reported physician diagnosis of type 2
46 47	133	diabetes mellitus, and/or the use of glucose-lowering medication. ²⁴ Obesity was defined as BMI \ge 30
48 49	134	kg/m ² .
50 51	135	Data selection for analyses was based on a fixed time interval of six years between the visits.
52 53 54	136	
55 56 57	137	Statistical analysis
58 59		For peer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml
οU		i or peer review only interproving open.bing.com/site/about/guidelines.kitim

Page 7 of 28

1 2		
3 4	138	Data was arranged per patient per visit. Continuous variables with a normal distribution are presented
5 6	139	as mean ± standard deviation (SD) and analyzed using Student <i>t</i> -test or One-Way ANOVA followed by
7 8	140	Tukey post-hoc analysis. Continuous variables with a skewed distribution were expressed as median
9 10 11	141	with 25 th –75 th percentile and analyzed using Mann-Whitney U test or Kruskall Wallis. Categorical
12 13	142	variables were analyzed using Pearson Chi square test or Fisher's exact test, where appropriate.
14 15	143	For longitudinal assessment (time factor) of the outcome measures among the different parity groups
16 17	144	(group factor), a generalized estimating equations (GEE) analysis was performed, including the
18 19	145	interaction term group*visit (interaction factor). All analyses were performed using an autoregressive
20 21 22	146	correlation matrix structure. This assumes a variable correlation between measurements depending on
22 23 24	147	the time between measurements, as was expected in the current analysis. For GEE analyses of
25 25 26	148	continuous dependent variables (BMI, HDL cholesterol and MAP), participants were further stratified in
27 28	149	three age categories (40 – 49 years old, 50 – 59 years old, and \geq 60 years old). In addition, we performed
29 30	150	a stepwise correction strategy, correcting for age (model 1), age and education (model 2), age and oral
31 32 33	151	contraceptive use (model 3) and age, education and oral contraceptive use (model 4).
34 35	152	Data were analyzed using SPSS 22.0 (SPSS Inc. Chicago, IL, USA) and GraphPad prism 5.01 (GraphPad
36 37	153	Software Inc. San Diego, CA, USA). In all analyses, a p-value <0.05 was considered statistically significant.
38 39	154	
40 41 42	155	Results
43 44	156	Study population
45 46	157	Table 1 provides an overview of the baseline characteristics of women who were nulliparous, para 1,
47 48 49	158	para 2 and para > 2 at the first PREVEND visit. The mean age was significantly higher in women who
50 51	159	were para > 2. The majority of all women were Caucasian. The median follow-up time was 6 years in all
52 53	160	groups. The cardiovascular risk profile among the parity groups differed significantly on BMI, blood
54 55	161	pressure, smoking and use of alcohol. Unfavorable blood glucose measurements and cholesterol profiles
50 57 58		
59 60		7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

were related to higher parity. The use of blood pressure lowering medication was higher in women who were para > 2 compared to the other groups, but the use of glucose and lipid lowering medication did not differ among the groups. Women who were para > 2 less often used oral contraceptives compared to women who were nulliparous, para 1 or para 2. Cardiometabolic profile in relation to parity and age During the 6-year study period, there was a constant, significant difference in BMI among the parity groups at all age categories (Figure 2A). The BMI was higher with every increase of parity at all age categories: per child, the BMI was 0.6kg/m2 higher, equal to 1.5-2.0 kg. In women para > 2, the BMI was 0.7–2.0 kg/m² higher compared to the other parity groups. Over time, BMI increased significantly in all age groups (p_{time}<0.001), the change in BMI over time was similar among all parity groups (p_{interaction}=0.662–0.947). In a stepwise correction model, correction for age alone and correction for age and oral contraceptive use did not influence the differences in BMI among parity groups at all age categories (Supplemental table 1). After correction for age, education level and oral contraceptive use, differences among parity groups were not statistically significant anymore at age 50-59 years only. The prevalence of obesity increased with increasing parity at entry (p_{for trend}<0.001) and at 6 year follow up (p_{for trend}<0.001; Figure 3). At visit one, 15% of the nulliparous women was obese, compared to 26% of the women para >2. After the course of six years, this was increased to 16% of the nulliparous women compared to 30% of the para >2. The increase in prevalence over time was similar among the groups (p=0.450). In a stepwise correction model, correction for age alone and correction for age and oral contraceptive use did not influence the differences in HDL cholesterol among parity groups at all age categories (Supplemental table 1). After correction for age, education level and oral contraceptive use, differences among parity groups were not statistically significant anymore at all age groups.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
1 2								
3 4	186							
5 6 7	187	HDL cholesterol differed among the groups, except for participants aged ≥ 60 years (Figure 2B). The						
7 8 9	188	HDL cholesterol was lower with every increase of parity, except for participants older than 60						
10 11 12	189	years: per child, the HDL decreased with 0.05 mmol/L. Women para 2 and women para > 2 had						
12 13 14	190	significant lower HDL cholesterol at both measurements compared to nulliparous women aged 40–49						
15 16	191	years (0.08–0.12 mmol/L) and 50–59 years (0.10–0.17 mmol/L). Over time, HDL cholesterol increased						
17 18	192	significantly in all age groups (p_{time} =0.001–0.007) and the change in HDL cholesterol over time was						
19 20	193	similar among all parity groups (p _{interaction} =0.163–0.530).						
21 22 22	194	Low HDL cholesterol (<1.29 mmol/L) prevalence differed among the groups at visit one (p _{for trend} <0.001)						
25 24 25	195	and at follow up visit (p _{for trend} =0.006); low HDL cholesterol was more common when parity increased						
26 27	196	(Figure 3). Low HDL cholesterol prevalence inclined similar in all groups over time (p=0.160).						
28 29	197							
30 31 22	198	There were no differences among the parity groups over time in MAP at all ages, although MAP						
33 34	199	increased in all groups at age 40–49 years and 50–59 years and decreased in all groups at age \geq 60 years						
35 36	200	(Figure 2C). The change in MAP over time was similar among all parity groups (p _{interaction} =0.348–0.815).						
37 38	201	Prevalence of hypertension increased with parity both at entry visit (p _{for trend} <0.001) and at follow up						
39 40	202	(p _{for trend} <0.001). Hypertension prevalence increased similar in all groups over time by 4–10% (p=0.761;						
41 42 43	203	Figure 3).						
44 45	204							
46 47	205	Occurrence of T2DM did not differ among the groups at entry (p _{for trend} =0.094), although a positive						
48 49 50	206	association was found between T2DM prevalence and parity after six years (p _{for trend} =0.018). The increa						
51 52	207	in T2DM over time was comparable at all groups (p=0.336). T2DM prevalence was < 10% at all groups at						
53 54	208	both visits (Figure 3).						
55 56	209							
57 58								
59 60		9 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

1 2		
- 3 4	210	Discussion
5 6	211	In this longitudinal cohort study, having 2 children or more was associated with a higher BMI in all age
7 8 0	212	categories and with a lower HDL cholesterol, but not with changes in blood pressure. A higher parity was
9 10 11	213	associated with higher prevalence of obesity, low HDL cholesterol and a higher prevalence of
12 13	214	hypertension. These associations were constant over time. As analyses were stratified and/or adjusted
14 15	215	for age, these results suggest a direct association of parity itself with BMI, HDL cholesterol levels and
16 17	216	cardiovascular risk factor prevalence. Other factors attributing to parity, i.e. socio-economic status and
18 19 20	217	oral contraceptive use, might have contributed to these differences.
20 21 22	218	
23 24	219	BMI appears to be one of the most important cardiometabolic risk factors because it has direct effect on
25 26	220	cardiovascular disease onset, but also due to its adverse effect on lipid profile and blood pressure ^{25–28}
27 28 20	221	and therefore the influence of parity on BMI is of great interest. Results from a population-based cohort
30 31	222	study among 4699 women suggested that weight or weight changes might be an important mediator in
32 33	223	the effect of parity on metabolic syndrome, thus confirming the importance of BMI in regard to
34 35	224	cardiometabolic health. ¹⁹ In our study, roughly each extra child is associated with 1.5–2.0 kg weight gain.
36 37 28	225	Similar, each extra child is associated with 0.05 mmol/L decrease in HDL cholesterol, which might be the
30 39 40	226	result of the increased BMI.
41 42	227	Specific BMI measures, HDL cholesterol levels and MAP measures differed among the three age groups.
43 44	228	Because women from all different ages were seen throughout all screening visits, we expect this to be
45 46	229	an effect of age itself, thereby reflecting the growing influence of age on cardiometabolic health with
47 48 49	230	increasing age.
50 51	231	
52 53	232	Parallel to these metabolic differences in continuous measurements among the groups, occurrence of
54 55	233	several clinical relevant cardiovascular risk factors, such as obesity and hypertension, differed among
56 57 58		
59 60		10 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

the groups as well. This is in line with cross-sectional studies assessing metabolic profile in relation to the number of children.^{6–8,19} However, some studies could not confirm the relation between parity and metabolic health, especially after adjustment for covariates such as lifestyle.^{14,15,19,29} In the stepwise correction, we found no or minimal influence of age, age and education level or age and oral contraceptive use on our results. Only after full correction for age, education level and oral contraceptive use, the statistical significance among parity groups diminished. Consequently, our findings should be interpreted with caution, as these factors and others, such as lifestyle changes following childbirth, might influence cardiovascular health next to parity itself.²⁹ Moreover, lifestyle effects of family life and the protective effect of lactation could explain the influence of parity on cardiometabolic health.^{30–32} Another possible explanation behind the mechanism of this relationship between parity and cardiovascular risk factors could be found in the effect of disturbances by pregnancy itself that continue to last postpartum. For example, breastfeeding is associated with a lower risk of cardiovascular risk factors, i.e. T2DM, although the role of breastfeeding remains controversial and a recent meta-analysis showed no significant effect of breastfeeding on postpartum weight retention.^{33–36} Other factors involved in the relationship between parity and cardiovascular risk factors might be found in circulation markers. An example might be found in the ovarian peptide hormone relaxin, produced by the corpus luteum or placental throughout pregnancy, has emerged as cardiovascular modulator involved in vasodilatation and inducing angiogenesis.^{37,38} Moreover, relaxin was positively associated with insulin sensitivity and lipid profile in women with type 2 diabetes mellitus as well.³⁹ Previous cohort studies showed a 'J-shaped' association between parity and coronary heart disease, with lowest prevalence in women with two children, or stated that only multiparity (i.e. more than four or five children) was associated with increased cardiovascular disease risk.^{6–8} However, our results

Page 12 of 28

BMJ Open

4	258
5 6	259
7 8	260
9 10 11	261
12 13	262
14 15	263
16 17	264
18 19	265
20 21 22	266
23 24	267
25 26	268
27 28	269
29 30 21	270
32 33	271
34 35	272
36 37	273
38 39	274
40 41 42	275
42 43 44	276
45 46	277
47 48	278
49 50	279
51 52 53	280
54 55	281
56 57	
58 50	
60	

1 2

indicate a stepwise effect of parity on cardiometabolic health and having two children or more than two
 children already affects BMI, HDL cholesterol levels and cardiovascular risk factor prevalence.

261 Our paper is the first study providing detailed assessment of cardiometabolic health development over 262 time in relation to parity. This longitudinal study comprised a large, well-phenotyped cohort with 263 uniform assessment of all measurements during a median follow-up of 6 years. The GEE analysis which 264 was performed, allowed us to assess differences among groups over time, focusing on group effects. 265 However, several limitations need to be discussed. The mean age of women para > 2 was significantly 266 higher than women who were nulliparous, para 1 or para 2. In addition, women para > 2 less often used 267 oral contraceptives and more often used antihypertensive medication. This might result in a slightly 268 different metabolic profile although correction of the GEE-analysis for age and oral contraceptive use 269 did not significantly change the results. Despite extensive phenotyping, age at first delivery, inter-270 pregnancy interval and lactation have not been assessed in the PREVEND study and therefore, 271 adjustment of the analyses for these factors was not possible. Since parity itself was not assessed in the 272 PREVEND, we used the number of children as a proxy for the number of childbirths. This might lead to 273 inaccurate estimates of parity numbers, as the possibility of surrogacy or twin pregnancies is not taken 274 into account. Additionally, no information was available regarding subfertility and several pregnancy 275 complications, which leads to a lower number of children in these women and might reflect influence 276 the cardiometabolic profile in later life as well. Lastly, pre-pregnancy BMI and gestational weight gain 277 have not been assessed in the PREVEND study either, although their role on postpartum weight 278 retention seemed limited in a recent publication.^{9,18} 279

The PREVEND study was enriched with subjects with an elevated albumin excretion, which mostly
 results in an unfavorable cardiovascular risk profile compared to the general population. However,

1				
2 3 4	282	album	inuria did not significantly differ among the groups within our analyses. Although our findings	
5 6	283	sugges	st an effect of parity itself on metabolic parameters, it should be noted that causality cannot be	
7 8	284	detern	nined in our study. Therefore, one could argue that the relationship is reversed, e.g. women wit	h
9 10 11	285	higher	BMI or lower HDL cholesterol are more fertile and therefore have more children. Prospective	
12 13	286	resear	ch assessing pre-pregnancy determinants of cardiometabolic health are warranted to further	
14 15	287	assess	the possible causal effect of pregnancy itself.	
16 17	288			
18 19 20	289	Conclu	usion	
21 22	290	In this	longitudinal cohort study, higher parity is associated with higher BMI and lower HDL	
23 24 25	291	choles	sterol. This difference among parity groups is constant over time. Furthermore, higher parity is	
26 27	292	associa	ated with a higher prevalence of cardiovascular risk factors among the parity groups over time.	
28 29	293	These	findings warrant for prospective research assessing determinants of cardiometabolic health at	
30 31 32	294	earlier	age to understand the role of pregnancy in the development of cardiovascular disease in wom	en.
32 33 34	295			
35	296	Refer	ences	
36	297	1.	Bartels a., O'Donoghue K. Cholesterol in pregnancy: a review of knowns and unknowns. Obstet Med. 2011;4(4):147	-
37	298		151. doi:10.1258/om.2011.110003.	
38	299	2	Tan FK Tan FL Alterations in physiology and anatomy during pregnancy. Best Pract Res Clin Obstet Gyngecol	
40	300		2013:27/6):791-802 doi:10.1016/i hpobgyn 2013.08.0011	
41	301	2	Johaila H. Mijatavic I. Javia ICV. Drvan T. Brand Miller IC. A cystomatic raviow and metaanalysis of energy intake an	Ч
42	202	5.	sebelle H, Mijatovic J, Louie JCF, Fivan F, Brand-Miller JC. A systematic review and metaanalysis of energy intake an	J
45 44	202		weight gain in pregnancy. Am J Obstet Gynecol. 2016;214(4):465-483. doi:10.1016/J.ajog.2015.12.049.	
45	303	4.	de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiologic adaptation of plasma	
46	304		volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2016;d(November	
47 48	305		2016):177-187. doi:10.1002/uog.17360.	
40 49	306	5.	Berge L, Armesen E, Forsdahl A. Pregnancy related changes in some cardiovascular risk factors. Acta Obstet Gyneco	í
50	307		Scand. 1996;75(5):439-442.	
51	308	6.	Humphries KH, Westendorp ICD, Bots ML, et al. Parity and Carotid Artery Atherosclerosis in Elderly Women: The	
52 53	309		Rotterdam Study. Stroke. 2001;32:2259-2264.	
54	310	7.	Lawlor D a., Emberson JR, Ebrahim S, et al. Is the association between parity and coronary heart disease due to	
55 56 57	311		biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the Britis	h
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	13

Page 14 of 28

BMJ Open

2			
3	312		women's heart and health study and the British regional heart st. Circulation. 2003;107(9):1260-1264.
4 5	313		doi:10.1161/01.CIR.0000053441.43495.1A.
6	314	8.	Vladutiu CJ, Siega-Riz AM, Sotres-Alvarez D, et al. Parity and components of the metabolic syndrome among US
7	315		hispanic/latina women: Results from the hispanic community health study/study of latinos. Circ Cardiovasc Qual
o 9	316		Outcomes. 2016;9(2_suppl_1):S62-S69. doi:10.1161/CIRCOUTCOMES.115.002464.
10	317	9.	Rong K, Yu K, Han X, et al. Pre-pregnancy BMI, gestational weight gain and postpartum weight retention: a meta-
11 12	318		analysis of observational studies. Public Health Nutr. 2015;18(12):2172-2182. doi:10.1017/S1368980014002523.
13	319	10.	Amorim AR, Rössner S, Neovius M, Lourenço PM, Linné Y. Does excess pregnancy weight gain constitute a major risk
14	320		for increasing long-term BMI? Obesity (Silver Spring). 2007;15(5):1278-1286. doi:10.1038/oby.2007.149.
15 16	321	11.	Al Mamun a. Associations of excess weight gain during pregnancy with long-term maternal obesity, hypertension and
17	322		diabetes: Evidence from 21 years postpartum follow-up. Obes Rev. 2010;11:51. doi:http://dx.doi.org/10.1111/j.1467-
18	323		789X.2010.00763-4.x.
19 20	324	12.	Fraser a, Tilling K, Macdonald C, Hughes R, Sattar N. Associations of gestational weight gain with maternal body mass
21	325		index, waist circumference, and blood pressure measured 16 y after pregnancy: the Avon Longitudinal Study of Parents
22	326		and Children. Am J Clin Nutr. 2011;93(6):1-4. doi:10.3945/ajcn.110.008326.1.
23 24	327	13.	Steenland K, Lally C, Thun Mi. Parity and COronary Heart Disease among Women in the American Cancer Society CPS II
25	328		Population. Epidemiology. 1996;7:641-643.
26	329	14.	de Kleijn MJ, van der Schouw YT, van der Graaf Y. Reproductive history and cardiovascular disease risk in
27 28	330		postmenopausal women: a review of the literature. Maturitas. 1999;33(1):7-36.
29	331	15.	Chung E, Kim Y, Usen O. Associations Between Parity, Obesity, and Cardiovascular Risk Factors Among Middle-Aged
30 21	332		Women. J Women's Heal. 2016;25(8):818-825. doi:10.1089/jwh.2015.5581.
32	333	16.	Robinson WR, Cheng MM, Hoggatt KJ, Stürmer T, Siega-Riz AM. Childbearing is not associated with young women's
33	334		long-term obesity risk. <i>Obesity</i> . 2014;22(4):1126-1132. doi:10.1002/oby.20593.
34 35	335	17.	Schmitt NM, Nicholson WK, Schmitt J. The association of pregnancy and the development of obesity - results of a
36	336		systematic review and meta-analysis on the natural history of postpartum weight retention. Int J Obes (Lond).
37	337		2007;31(11):1642-1651. doi:10.1038/sj.ijo.0803655.
38 39	338	18.	Nehring I, Schmoll S, Beyerlein A, Hauner H, Von Kries R. Gestational weight gain and long-term postpartum weight
40	339		retention: A meta-analysis. Am J Clin Nutr. 2011;94(5):1225-1231. doi:10.3945/ajcn.111.015289.
41	340	19.	Cohen A, Pieper CF, Brown AJ, Bastian La. Number of children and risk of metabolic syndrome in women. J Womens
42 43	341		Health (Larchmt). 2006;15(6):763-773. doi:10.1089/jwh.2006.15.763.
44	342	20.	Ness RB. Harris T. Cobb J. et al. Number of pregnancies and the subsequent risk of cardiovascular disease. <i>N Engl J</i>
45 46	343		Med. 1993:328:1528-1533.
40 47	344	21.	Pinto-Sietsma S-J, Mulder J, Janssen WMT, Hillege HL, Zeeuw D De, De Jong PE, Smoking Is Related to Albuminuria and
48	345		Abnormal Renal Function in Nondiabetic Persons. Ann Intern Med. 2000:(133):585-591.
49 50	346	22.	Hillege HL, Janssen WMT, Bak, a. a. et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive
51	347		population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. <i>I Intern Med</i> .
52	348		2001:249(6):519-526. doi:10.1046/i.1365-2796.2001.00833.x.
53 54	349	23	Loosten MM, Gansevoort RT, Mukamal KI, Harst P.Van Der, Geleijnse IM, Feskens FIM, Urinary and plasma magnesium
55	350	_3.	and risk of ischemic heart disease $1 - 3$. October, 2013;97(13):1299-1306.
56	200		
57 58			
59			14
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 28

1 2			
3	351		doi:10.3945/ajcn.112.054114.INTRODUCTION.
4	352	24.	Abbasi A, Corpeleijn E, Gansevoort RT, et al. Role of HDL cholesterol and estimates of HDL particle composition in
6	353		future development of type 2 diabetes in the general population: The PREVEND study. J Clin Endocrinol Metab.
7	354		2013;98(8):1352-1359. doi:10.1210/jc.2013-1680.
8 9	355	25.	Lamon-Fava S, Wilson PWF, Schaefer EJ. Impact of Body Mass Index on Coronary Heart Disease Risk Factors in Men and
10	356		Women: The Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 1996;16:1509-15151.
11	357	26.	Wilson PWF, D'Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular
12	358		risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867-1872. doi:10.1001/archinte.162.16.1867.
14	359	27.	Bogers R, Bemelmans W, Hoogenveen R, et al. Association of overweight with increased risk of coronary heart disease
15 16	360		partly independent of blood pressure and cholesterol levels. Arch Intern Med. 2007;167(16):1720-1728.
17	361		doi:10.1001/archinte.167.16.1720.
18	362	28.	Mongraw-Chaffin ML, Peters S a E, Huxley RR, Woodward M. The sex-specific relationship between body mass index
19 20	363		and coronary heart disease: A systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet
21	364		Diabetes Endocrinol. 2015;3(6):437-449. doi:10.1002/aur.1474.Replication.
22	365	29.	Hardy R, Lawlor D a., Black S, Wadsworth MEJ, Kuh D. Number of children and coronary heart disease risk factors in
23 24	366		men and women from a British birth cohort. BJOG An Int J Obstet Gynaecol. 2007;114(6):721-730. doi:10.1111/j.1471-
25	367		0528.2007.01324.x.
26 27	368	30.	Gunderson EP, Jacobs DR, Chiang V, et al. Childbearing is associated with higher incidence of the metabolic syndrome
27	369		among women of reproductive age controlling for measurements before pregnancy: the CARDIA study. Am J Obstet
29	370		Gynecol. 2009;201(2):177.e1-177.e9. doi:10.1016/j.ajog.2009.03.031.
30 31	371	31.	McClure CK, Catov JM, Ness RB, Schwarz EB. Lactation and maternal subclinical cardiovascular disease among
32	372		premenopausal women. Am J Obstet Gynecol. 2012;207(1):1-15. doi:10.1016/j.ajog.2012.04.030.
33	373	32.	Natland Fagerhaug T, Forsmo S, Jacobsen GW, Midthjell K, Andersen LF, Ivar Lund Nilsen T. A prospective population-
34 35	374		based cohort study of lactation and cardiovascular disease mortality: the HUNT study. BMC Public Health.
36	375		2013;13(1):1070. doi:10.1186/1471-2458-13-1070.
37 38	376	33.	Baker JL, Gamborg M, Heitmann BL, Lissner L, Sørensen TI a, Rasmussen KM. Breastfeeding reduces postpartum weight
39	377		retention. Am J Clin Nutr. 2008;88(6):1543-1551. doi:10.3945/ajcn.2008.26379.
40	378	34.	Jarlenski MP, Bennett WL, Bleich SN, Barry CL, Stuart E a. Effects of breastfeeding on postpartum weight loss among
41 42	379		U.S. women. <i>Prev Med</i> . 14AD;69:146-150. doi:10.1016/j.ypmed.2014.09.018.Effects.
43	380	35.	Britz SE, McDermott KC, Pierce CB, Blomquist JL, Handa VL. Changes in maternal weight 5-10 years after a first delivery.
44 45	381		Womens Health (Lond Engl). 2012;8(5):513-519. doi:10.2217/whe.12.35.
45 46	382	36.	He X, Zhu M, Hu C, et al. Breast-feeding and postpartum weight retention: a systematic review and meta-analysis.
47	383		Public Health Nutr. 2015;18(18):3308-3316. doi:10.1017/S1368980015000828.
48 ⊿q	384	37.	Sherwood OD. Relaxin's physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205-234.
50	385		doi:10.1210/er.2003-0013.
51	386	38.	Bani D. Relaxin as a natural agent for vascular health. Vasc Health Risk Manag. 2008;4(3):515-524.
52 53	387	39.	Szepietowska B, Gorska M, Szelachowska M. Plasma relaxin concentration is related to beta-cell function and insulin
54	388		sensitivity in women with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2008;79(3):2007-2009.
55 56	389		doi:10.1016/j.diabres.2007.10.017.
57			
50			
50			

2 3	200	
4	390	
5 6	391	Competing interests
7 8	392	All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf
9 10	393	(available on request from the corresponding author) and declare no support from any organization for
11 12	394	the submitted work; no relationships with companies that might have an interest in the submitted work
13 14 15	395	in the previous 3 years; no other relationships or activities that could appear to have influenced the
16 17	396	submitted work.
18 19	397	
20 21	398	Author's contributions
22 23 24	399	GAZ, NDP, KJG, RTG, HG and ATL were involved in conception and design of the study. GAZ, KJG
25 26	400	and ATL drafted the manuscript. All authors edited the manuscript; all authors read and
27 28	401	approved the final manuscript.
29 30 31	402	
32 33	403	Data sharing statement
34 35 26	404	Data sharing: patient level data and full dataset and technical appendix and statistical code are available
30 37 38	405	from the corresponding author (gzoet@umcutrecht.nl). Informed consent was not obtained but the
39 40	406	presented data are anonymized and the risk of identification is low.
41 42	407	
43 44		
45		
46 47		
48		
49		
50		
51		
53		
54		
55		
56		
57 59		
58 59		16
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	408	Figure 1: Flowchart
4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 0 11 22 23 24 25 26 27 28 9 30 31 23 34 5 36 37 8 9 0 41 22 34 25 26 27 8 9 30 31 23 34 5 36 37 8 9 0 41 22 34 25 26 27 8 9 30 31 23 34 5 36 37 8 9 0 41 22 34 25 26 27 8 9 30 31 23 34 5 36 37 8 9 0 41 22 34 5 5 6 7 8 9 0 11 22 34 5 5 6 7 8 9 0 11 22 34 5 6 7 8 9 0 11 22 34 5 6 7 8 9 30 31 23 34 5 36 37 8 9 0 41 22 34 5 5 6 7 8 9 0 41 22 34 5 5 6 7 8 9 0 41 22 34 5 5 6 7 8 9 0 41 22 34 5 5 6 7 8 9 0 41 22 34 5 5 6 7 8 9 0 41 22 34 5 5 6 7 8 9 0 41 22 34 5 5 6 7 8 9 0 41 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	409	
60		i or peer review only intep.//onljopen.onlj.com/site/about/guidelines.xhtmi

Table 1: at entry table PREVEND stratified for parity

	No children (N=464) ‡	One child (N=277) ‡	Two children (N=1021) ‡	More than two children (N=697) ‡	P-
General characteristics					
Age (years)	52.2 (10.1)	52.2 (9.0)	52.3 (8.4)	56.9 (9.6)	<0
Follow-up time (years)	11 (11-12)	11 (11-12)	11 (11-12)	11 (11-12)	0.
Caucasian (n (%))	445 (96.9%)	264 (96.4%)	995 (98.0%)	663 (95.7%)	0.
Job (n (%))	315 (68.3%)	127 (47.4%)	467 (46.5%)	264 (38.6%)	<0
Cardiovascular risk profile					
BMI (kg/m ²)	24.6 (22.5-27.7)	25.3 (22.5-28.6)	25.8 (23.4-28.8)	26.9 (24.0-30.2)	<0
SBP (mmHg)	120 (109-138)	121 (110-140)	122 (111-138)	130 (115-146)	<0
DBP (mmHg)	71 (65-78)	71 (67-77)	71 (66-78)	73 (67-79)	0.
Current smoker (n (%))	139 (30.0%)	105 (37.9%)	326 (31.9%)	195 (28.0%)	0.
Alcohol use (n (%))	203 (44.0%)	137 (49.6%)	503 (49.4%)	378 (54.5%)	0.
Cardiovascular comorbidity (n (%))	11 (2.4%)	11 (4.1%)	24 (2.4%)	24 (3.6%)	0.
Renal disease requiring dialysis (n (%))	1 (0.2%)	0 (0%)	3 (0.3%)	1 (0.1%)	0.
Laboratory results	`				
Glucose (mmol/L)	4.6 (4.3-5.0)	4.7 (4.3-5.1)	4.7 (4.3-5.0)	4.8 (4.4-5.2)	0.
Insulin (mmol/L)	7.0 (4.9-10.7)	7.6 (5.1-11.5)	7.8 (5.6-11.2)	8.5 (6.0-13.4)	<0
HOMAir	1.4 (1.0-2.4)	1.6 (1.0-2.5)	1.6 (1.1-2.4)	1.8 (1.2-3.0)	<0
Total Cholesterol (mmol/L)	5.7 (5.0-6.4)	5.7 (5.1-6.5)	5.8 (5.0-6.7)	6.0 (5.3-6.7)	<0
HDL Cholesterol (mmol/L)	1.5 (1.2-1.8)	1.5 (1.2-1.8)	1.4 (1.2-1.7)	1.4 (1.2-1.7)	<0
Triglycerides (mmol/L)	1.0 (0.8-1.5)	1.1 (0.9-1.7)	1.1 (0.9-1.6)	1.2 (0.9-1.6)	<0
Medication use					
Total blood pressure lowering (n (%))	65 (16.4%)	39 (16.5%)	140 (15.6%)	151 (24.4%)	<0
ACEi/ARB (n (%))	19 (4.7%)	8 (3.3%)	41 (4.5%)	44 (7.0%)	0.
Glucose lowering (n (%))	7 (1.7%)	2 (0.8%)	12 (1.3%)	12 (1.9%)	0.
Lipid lowering (n (%))	19 (4.7%)	15 (6.3%)	32 (3.5%)	37 (5.9%)	0.
Oral contraceptive use (n (%))	79 (18.2%)	50 (19.5%)	198 (21.1%)	90 (14.6%)	0.0

Data are presented as median (25th – 75th percentile) unless otherwise stated. BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; ACEi/ARB: angiotensin converting enzyme inhibitor and/or angiotensin receptor blocker; HOMAir: homeostatic model

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

assessment index.

‡ Total number that participated at visit 1 of the study, not all variables were available for each participant at baseline

1		
2 3 4	416	Figure 2: Development over time of BMI (A), HDL cholesterol (B) and MAP (C), stratified for parity
5	417	
6 7	/	
8		
9		
10		
12		
13		
14 15		
16		
17		
18		
20		
21		
22 23		
24		
25		
26 27		
28		
29		
30 31		
32		
33 34		
35		
36		
37 38		
39		
40 41		
42		
43		
44 45		
46		
47 ⊿∘		
40 49		
50		
51 52		
53		
54		
55 56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	418	Figure 3: Development of CVD risk factors over time
5 6	419	
7 8 9 10 11 12 13 14	420 421 422 423 424	Legend: Hypertension = RR ≥140/90 mm/Hg and/or use of antihypertensive medication; Obesity = BMI ≥30kg/m2; Low HDL cholesterol = HDL cholesterol <1.29 mmol/L; Diabetes = fasting plasma glucose ≥7.0 mmol/L, self-report of a physician diagnosis and/or use of glucose-lowering medication. □ = first visit; ■ = follow-up visit
15 16 17 18		
19 20 21 22		
23 24 25 26		
27 28 29 30		
31 32 33 34		
35 36 37 38		
39 40 41 42 43		
44 45 46 47		
48 49 50 51		
52 53 54 55		
56 57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

101x117mm (300 x 300 DPI)

Supplemental table 1: stepwise correction for GEE-analysis

Table 1A: Correction models for GEE-analysis, stratified at age 40 - 50 years

	Unadju	isted		Adjusted for age		Adjusted for age & education		Adjusted for age & OCC			Adjusted for age & education & OCC				
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.003	< 0.001	0.667	0.011	0.938	0.694	0.323	0.552	0.685	0.010	0.910	0.627	0.342	0.64	0.628
HDL-cholesterol	0.008	< 0.001	0.530	0.003	0.737	0.520	0.047	0.472	0.519	0.006	0.666	0.570	0.080	0.438	0.565
MAP	0.558	0.005	0.815	0.866	< 0.001	0.779	0.871	< 0.001	0.777	0.874	< 0.001	0.875	0.904	< 0.001	0.871

Abbreviation: OCC, oral contraceptives

Table 1B: Correction models for GEE-analysis, stratified at age 50 - 60 years

	Unadjusted			Adjusted for age		Adjusted for age & education		Adjusted for age & OCC			Adjusted for age & education & OCC				
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.004	< 0.001	0.947	0.006	0.197	0.945	0.009	0.031	0.920	0.011	0.269	0.849	0.017	0.048	0.812
HDL-cholesterol	0.027	0.007	0.184	0.031	0.040	0.171	0.051	0.152	0.151	0.085	0.035	0.055	0.118	0.126	0.045
МАР	0.328	0.023	0.494	0.411	< 0.001	0.478	0.522	0.005	0.457	0.637	0.003	0.802	0.669	0.025	0.786

Table 1C: Correction models for GEE-analysis, stratified at age > 60 years

Abbreviation: OCC, oral contraceptives															
Table 1C: Correction models for GEE-analysis, stratified at age > 60 years															
	Unadjusted			Adjusted for age			Adjusted for age &			Adjusted for age &			Adjusted for age &		
						education		occ							
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	$\mathbf{P}_{\text{group}}$	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.001	< 0.001	0.662	0.001	0.116	0.662	0.006	0.087	0.663	0.002	0.011	0.625	0.006	0.009	0.626
HDL-cholesterol	0.156	0.001	0.163	0.155	0.114	0.191	0.314	0.142	0.201	0.162	0.102	0.358	0.299	0.132	0.384
MAP	0.415	< 0.001	0.348	0.646	< 0.001	0.407	0.649	< 0.001	0.407	0.667	< 0.001	0.508	0.678	< 0.001	0.507

Abbreviation: OCC, oral contraceptives

each of the items listed below. provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. as: the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. 2;

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and

In your methods section, say that you used the STROBE cohort reporting guidelines, and cite them

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening

Page

3			Reporting Item	Number
4 5 6 7	Title	#1a	Indicate the study's design with a commonly used term in the title or the abstract	1
8 9 0 1	Abstract	#1b	Provide in the abstract an informative and balanced summary of what was done and what was found	2
2 3 4 5	Background / rationale	#2	Explain the scientific background and rationale for the investigation being reported	4, 5
6 7 8 9	Objectives	#3	State specific objectives, including any prespecified hypotheses	5
0 1	Study design	#4	Present key elements of study design early in the paper	5, 6
2 3 4 5	Setting	#5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
6 7 8	Eligibility criteria	#6a	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5
0		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3		#6b	For matched studies, give matching criteria and number of exposed and unexposed	na
4 5 6 7 8 9 10 11 12 13 14 15 16 17	Variables	#7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
	Data sources / measurement	#8	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	6
18 19	Bias	#9	Describe any efforts to address potential sources of bias	5, 6, 7
20 21 22	Study size	#10	Explain how the study size was arrived at	5
22 23 24 25 26 27	Quantitative variables	#11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5, 7
28 29 30 31	Statistical methods	#12a	Describe all statistical methods, including those used to control for confounding	6, 7
32 33 34 35		#12b	Describe any methods used to examine subgroups and interactions	6, 7
36 37		#12c	Explain how missing data were addressed	6, 7
38 39		#12d	If applicable, explain how loss to follow-up was addressed	6, 7
40 41 42		#12e	Describe any sensitivity analyses	na
42 43 44 45 46 47 48 49 50	Participants	#13a	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	5
51 52		#13b	Give reasons for non-participation at each stage	5
53 54		#13c	Consider use of a flow diagram	figure 1
55 56 57 58	Descriptive data	#14a	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7, table 1
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 27 of 28			BMJ Open	
1 2 3			confounders. Give information separately for exposed and unexposed groups if applicable.	
5 4 5 6		#14b	Indicate number of participants with missing data for each variable of interest	Figure 2
/ 8 9		#14c	Summarise follow-up time (eg, average and total amount)	6, 8, 9
10 11 12 13 14	Outcome data	#15	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	7, 8, 9
15 16 17 18 19 20 21	Main results	#16a	Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7, 8, 9
22 23 24 25		#16b	Report category boundaries when continuous variables were categorized	7, 8, 9
25 26 27 28		#16c	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	na
29 30 31 32	Other analyses	#17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	na
33 34 35	Key results	#18	Summarise key results with reference to study objectives	9, 10
36 37 38 39 40	Limitations	#19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	11, 12
41 42 43 44 45	Interpretation	#20	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	See note 1
46 47 48 49	Generalisability	#21	Discuss the generalisability (external validity) of the study results	See note 2
50 51 52 53 54 55	Funding	#22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3
56 57	Author notes			
58 59 60	1. 10, 11, 12, 13	For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2. 10, 11, 12, 13

The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 18. May 2018 using <u>http://www.goodreports.org/</u>, a tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>

Lion wi

BMJ Open

Association between parity and persistent weight gain at age 40-60 years: a longitudinal prospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024279.R2
Article Type:	Research
Date Submitted by the Author:	17-Feb-2019
Complete List of Authors:	Zoet, Gerbrand; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Paauw, Nina; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Groenhof, Katrien; Universitair Medisch Centrum Utrecht, Julius Center for Health Sciences and Primary Care Franx, Arie; University Medical Center Utrecht, Obstetrics & Gynaecology Gansevoort, Ron T.; University Medical Center Groningen, Division of Nephrology Groen, Henk; University Medical Centre Groningen, Department of Epidemiology Van Rijn, Bas; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology Lely, Titia; Universitair Medisch Centrum Utrecht, Obstetrics & Gynaecology
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Cardiovascular medicine, Epidemiology
Keywords:	Pregnancy, Parity, Cardiovascular risk factors, BMI, HDL cholesterol, Hypertension < CARDIOLOGY
	·

1		
2 3	1	Association between parity and persistent weight gain at age 40-60 years: a longitudinal
4 5		
6 7	2	prospective cohort study
, 8 9	3	Gerbrand A. Zoet, MD ^a ; Nina D. Paauw, MD ^a ; T. Katrien J. Groenhof, MD ^b , Arie Franx, MD PhD ^a ; Ron T.
10 11	4	Gansevoort, MD, PhD ^c ; Henk Groen ^d , MD, PhD; Bas B. van Rijn*, MD, PhD ^{a,e,f} , A.Titia Lely*, MD, PhD ^a .
12 13	5	
14 15	6	* Both authors contributed equally
16 17	7	^a Wilhelmina Children's Hospital Birth Center, University Medical Center Utrecht, Lundlaan 6, 3508 AB, Utrecht, the Netherlands
18 19	8	^b Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht,
20 21	9	the Netherlands
22 23	10	^c Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen,
24 25	11	Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
26	12	^d Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ,
27	13	Groningen, the Netherlands
29 30	14	^e Academic Unit of Human Development and Health, University of Southampton, Princess Anne Hospital, Coxford Road,
31 32	15	Southampton SO16 5YA, United Kingdom
33 34	16	^f Department of Obstetrics and Prenatal Medicine, Erasmus University Medical Center, Wytemaweg 80, 3015CN, Rotterdam,
35 36	17	the Netherlands
37	18	
38 39	19	Corresponding author at: G.A. Zoet, University Medical Center Utrecht, Room KE 02.510.2, Lundlaan 6, PO Box 85090, 3508 AB,
40 41	20	Utrecht, The Netherlands. Tel.: +31 88 7557526, e-mail: gzoet@umcutrecht.nl
42 43	21	
44 45	22	Short title: Parity and persistent weight gain
46 47	23	
48 49 50	24	Total word count: 3080 (excluding title page, abstract, references, figures and tables)
50 51 52 53 54 55 56 57	25	
58 59 60		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	26	Abstract
5 6 7	27	Objectives: Physiological metabolic adaptations occur in the pregnant woman. These may persist
/ 8 0	28	postpartum and thereby contribute to an unfavorable cardiovascular disease (CVD) risk profile in parous
9 10 11	29	women. The aim of the current study is to assess time-dependent changes of cardiometabolic health in
12 13	30	parous women compared to nulliparous women.
14 15	31	Design and setting: We studied data of 2459 women who participated in the PREVEND study, a
16 17	32	population-based prospective longitudinal cohort for assessment of CVD and renal disease in the
18 19 20	33	general population.
21 22	34	Participants: We selected women ≥40 years at the first visit, who reported no new pregnancies during
23 24	35	the 4 follow-up visits. All women were categorized in parity groups, and stratified for age.
25 26	36	Outcome measures: We compared BMI, high-density lipoprotein (HDL) cholesterol, blood pressure as
27 28 29	37	continuous measurements and as clinical relevant CVD risk factors among parity groups over the course
30 31	38	of six years using generalized estimating equation (GEE) models adjusted for age.
32 33	39	Results: The BMI was significantly higher in women para 2 or more in all age categories: per child, the
34 35	40	BMI was 0.6 kg/m ² higher. corresponding with 1.5–2.0 kg weight gain per child. HDL cholesterol was
36 37 38	41	significantly lower in women para 2 or more aged 40-49 and 50-59 years: per child, the HDL cholesterol
39 40	42	was up to 0.09 mmol/L lower. Blood pressure did not differ among parity groups in any of the age
41 42	43	categories.
43 44	44	Conclusions: Higher parity is associated with higher BMI, lower HDL cholesterol and a higher
45 46 47	45	prevalence of cardiovascular risk factors, which is constant over time. These findings warrant for
48 49	46	prospective research assessing determinants of cardiometabolic health at earlier age to understand the
50 51	47	role of pregnancy in the development of cardiovascular disease in women.
52 53	48	
54 55 56	49	Keywords: Pregnancy; parity; cardiovascular risk factors; BMI; HDL cholesterol; hypertension.
57 58		
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	50	Study summary: Strengths and limitations of this study
4 5 6	51	• This longitudinal cohort comprised a large, well-phenotyped cohort with uniform assessment of all
7 8	52	measurements during a median follow-up of 6 years.
9 10 11	53	• The GEE analysis which was performed, allowed us to assess differences among groups over time,
12 13	54	focusing on group effects.
14 15	55	• Since parity itself was not assessed in this cohort, we used the number of children as a proxy for the
16 17 18	56	number of childbirths.
19 20	57	 Women para > 2 were older, less often used oral contraceptives and more often used
21 22	58	antihypertensive medication which might have resulted in a slightly different metabolic profile.
23 24	59	• Age at first delivery, inter-pregnancy interval and lactation have not been assessed in this cohort
25 26 27	60	and therefore, adjustment of the analyses for these factors was not possible.
28 29	61	
30 31	62	Funding: The PREVEND study was supported by Dutch Kidney Foundation (Grant E.033), The Groningen
32 33	63	University Medical Center (Beleidsruimte) and Dade Behring, Ausam, Roche, Abbott and Gentian who
34 35 36	64	financed laboratory equipment and reagents for various laboratory determinations. Gerbrand Zoet is
37 38	65	supported by the Dutch Heart Foundation (grant number 2013T083). Titia Lely is supported by the
39 40	66	ZonMW Clinical Fellowship (40-000703-97-12463).
41 42	67	
43 44 45		
46		
47 48		
49		
50		
51 52		
53		
54		
55 56		
סכ 57		
58		
59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

69 I	ntroduction
------	-------------

Pregnancy is associated with major alterations to the cardiovascular system and metabolic profile.¹⁻⁴ Increases in weight, lipid levels, blood plasma volume and cardiac output are needed to maintain a healthy, physiological pregnancy. Postpartum, this maternal adaptation reverses to its pre-pregnancy state, although several changes, (e.g. increased body weight and hypercholesterolemia) may persist for several months or longer.⁵ Possibly, these persisting changes contribute to an increased prevalence of metabolic syndrome (MetS) and an unfavorable cardiometabolic profile in parous women.^{6–8} The amount of gestational weight gain (GWG) affects postpartum weight retention.⁹ At long-term follow up, excessive gestational weight gain is associated with an increased BMI, up to a 3-4 kg/m² 21 years after pregnancy.^{10–12}

Previous studies assessing the relation between parity and cardiometabolic health showed conflicting results and even the association between parity and obesity is guestioned in some studies.^{13–16} Long-term effects have only scarcely been investigated and most studies had a follow-up of only 1 to 3 years postpartum.^{17,18} A recent large cross-sectional study among Hispanic women in the US demonstrated that multiparity (i.e. more than 4 or more than 6 children) was associated with obesity, low HDL cholesterol and elevated fasting glucose, also after adjustment for sociodemographic and lifestyle factors.⁸ In addition, results from the cross-sectional Rotterdam study showed an lower HDL cholesterol and higher total cholesterol and glucose/insulin ratios with higher parity in Caucasian women at 70 years of age.⁶ Studies on the development of cardiovascular risk factors over time and the quantification of this effect per childbirth are conflicting. Some studies suggested a linear association between number of children and an unfavorable cardiometabolic profile, while others stated that only multiparity is associated with an increased cardiovascular disease risk.^{6–8,19,20}

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3 4	93	Some studies even showed a 'J-shaped' association in which women with two children had the lowest
5 6	94	prevalence of coronary heart disease. ^{6–8}
7 8	95	The aim of the current study was to assess time-dependent changes of cardiometabolic health in parous
9 10 11	96	women, stratified for number of children, as compared with nulliparous controls. This study was
12 13	97	performed in a well-defined longitudinal prospective cohort study that primarily assessed development
14 15	98	of CVD, albuminuria and renal disease. ²¹
16 17	99	
18 19 20	100	Methods
20 21 22	101	Participants
23 24	102	The Prevention of Renal and Vascular End-stage Disease (PREVEND) study is a longitudinal cohort follow-
25 26	103	up study for assessment of cardiovascular and renal disease in the general population. Details of this
27 28 29 30 31 32 33	104	study have previously been published elsewhere. ^{22,23} In summary, all inhabitants of the city of
	105	Groningen, the Netherlands, from 1997 to 1998 at age 28–75 years (n = 85,421) were invited to
	106	participate. All that applied, filled out a questionnaire and collected a first-morning void urine sample.
34 35 26	107	Pregnant women and subjects with type 1 diabetes mellitus were excluded. The urinary albumin
36 37 38	108	concentration was assessed in a total of 40,856 (47.8%) responders. A total of 6,000 participants were
39 40	109	enrolled out of 7,768 subjects with a urinary albumin concentration ≥ 10mg/L. In addition, 2,592
41 42	110	participants were enrolled out of 3,394 subjects with a urinary albumin concentration < 10mg/L.
43 44	111	Thereby, the PREVEND study was enriched by subjects with an elevated albumin excretion.
45 46 47	112	In total, 4,301 women were enrolled in the PREVEND study (Figure 1). For the current analysis, only
48 49	113	women aged 40 years or older at the first visit and who reported no new pregnancies during the follow-
50 51	114	up visits were included. Women who reported no children were categorized as nulliparous (n = 464;
52 53	115	18.9%). Women who reported one child, two children or more than two children, were categorized as
54 55 56	116	para 1 (n = 277; 11.3%), para 2 (n = 1021; 41.5%) and para > 2 (n = 697; 28.3%). The PREVEND study has
57 58		
59 60		5 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	117	been approved by the medical ethics committee of the University Medical Centre Groningen. Written
5 6	118	informed consent was obtained from all participants.
7 8	119	
9 10 11	120	Patient and Public Involvement
11 12 13	121	No participants were involved with setting out the research question, developing the outcome measures
14 15	122	or planning the study design. The results of study results will be disseminated by the newsletter and the
16 17	123	study website.
18 19 20	124	
20 21 22	125	Measurements and visits
23 24	126	Between 1997 and 2012, the screening visits took place every 2-4 years. Participants completed
25 26	127	questionnaires and underwent physical examinations. Blood samples and 24-hour urine samples were
27 28 20	128	taken. The questionnaires included questions regarding parity. Participants reported their number of
29 30 31	129	children, which was used as a proxy for the number of childbirths. In addition, education level, current
32 33	130	alcohol use and current smoking were assessed in these questionnaires. Details of clinical and laboratory
34 35	131	measurements have previously been described elsewhere. ²² Prescription data from pharmacies was
36 37 38	132	used to assess the use of antihypertensive and lipid lowering medication. Hypertension was defined as a
39 40	133	systolic blood pressure \ge 140 mmHg and/or a diastolic blood pressure \ge 90 mmHg or the use of blood
41 42	134	pressure lowering medication. Type 2 diabetes mellitus (T2DM) was defined as a fasting plasma glucose
43 44	135	\geq 7.0 mmol/L, random sample plasma glucose \geq 11.1 mmol/L, self-reported physician diagnosis of type 2
45 46 47	136	diabetes mellitus, and/or the use of glucose-lowering medication. ²⁴ Obesity was defined as BMI \ge 30
47 48 49	137	kg/m².
50 51	138	Data selection for analyses was based on a fixed time interval of six years between the visits.
52 53	139	
54 55	140	Statistical analysis
50 57 58		
59 60		6 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 29

1 2		
2 3 4	141	Data was arranged per patient per visit. Continuous variables with a normal distribution are presented
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	142	as mean ± standard deviation (SD) and analyzed using Student <i>t</i> -test or One-Way ANOVA followed by
	143	Tukey post-hoc analysis. Continuous variables with a skewed distribution were expressed as median
	144	with 25 th –75 th percentile and analyzed using Mann-Whitney U test or Kruskall Wallis. Categorical
	145	variables were analyzed using Pearson Chi square test or Fisher's exact test, where appropriate.
	146	For longitudinal assessment (time factor) of the outcome measures among the different parity groups
	147	(group factor), a generalized estimating equations (GEE) analysis was performed, including the
	148	interaction term group*visit (interaction factor). All analyses were performed using an autoregressive
21 22	149	correlation matrix structure. This assumes a variable correlation between measurements depending on
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 28	150	the time between measurements, as was expected in the current analysis. For GEE analyses of
	151	continuous dependent variables (BMI, HDL cholesterol and MAP), participants were further stratified in
	152	three age categories (40 – 49 years old, 50 – 59 years old, and \geq 60 years old). In addition, we performed
	153	a stepwise correction strategy, correcting for age (model 1), age and education (model 2), age and oral
	154	contraceptive use (model 3) and age, education and oral contraceptive use (model 4).
	155	Data were analyzed using SPSS 22.0 (SPSS Inc. Chicago, IL, USA) and GraphPad prism 5.01 (GraphPad
	156	Software Inc. San Diego, CA, USA). In all analyses, a p-value <0.05 was considered statistically significant.
39 40	157	
41 42	158	Results
43 44	159	Study population
45 46 47	160	Table 1 provides an overview of the baseline characteristics of women who were nulliparous, para 1,
48 49	161	para 2 and para > 2 at the first PREVEND visit. The mean age was significantly higher in women who
50 51	162	were para > 2. The majority of all women were Caucasian. The median follow-up time was 6 years in all
52 53	163	groups. The cardiovascular risk profile among the parity groups differed significantly on BMI, blood
54 55 56	164	pressure, smoking and use of alcohol. Unfavorable blood glucose measurements and cholesterol profiles
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

were related to higher parity. The use of blood pressure lowering medication was higher in women who were para > 2 compared to the other groups, but the use of glucose and lipid lowering medication did not differ among the groups. Women who were para > 2 less often used oral contraceptives compared to women who were nulliparous, para 1 or para 2. Cardiometabolic profile in relation to parity and age During the 6-year study period, there was a constant, significant difference in BMI among the parity groups at all age categories (Figure 2A). The BMI was higher with every increase of parity at all age categories: per child, the BMI was 0.6 kg/m2 higher, equal to 1.5-2.0 kg. In women para > 2, the BMI was 0.7–2.0 kg/m² higher compared to the other parity groups. Over time, BMI increased significantly in all age groups (p_{time}<0.001), the change in BMI over time was similar among all parity groups (p_{interaction}=0.662–0.947). In a stepwise correction model, correction for age alone and correction for age and oral contraceptive use did not influence the differences in BMI among parity groups at all age categories (Supplemental table 1). After correction for age, education level and oral contraceptive use, differences among parity groups were statistically significant at age 50-59 and >60 years only. The prevalence of obesity increased with increasing parity at entry (p_{for trend}<0.001) and at 6 year follow up (p_{for trend}<0.001; Figure 3). At visit one, 15% of the nulliparous women was obese, compared to 26% of the women para >2. After the course of six years, this was increased to 16% of the nulliparous women compared to 30% of the para >2. The increase in prevalence over time was similar among the groups (p=0.450). In a stepwise correction model, correction for age alone and correction for age and oral contraceptive use did not influence the differences in HDL cholesterol among parity groups at all age categories (Supplemental table 1). After correction for age, education level and oral contraceptive use, differences among parity groups were not statistically significant anymore at all age groups.

189	
190	HDL cholesterol differed among the groups, except for participants aged ≥ 60 years (Figure 2B). The
191	HDL cholesterol was lower with every increase of parity, except for participants older than 60
192	years: per child, the HDL decreased with 0.05 mmol/L. Women para 2 and women para > 2 had
193	significant lower HDL cholesterol at both measurements compared to nulliparous women aged 40–49
194	years (0.08–0.12 mmol/L) and 50–59 years (0.10–0.17 mmol/L). Over time, HDL cholesterol increased
195	significantly in all age groups (p _{time} =0.001–0.007) and the change in HDL cholesterol over time was
196	similar among all parity groups (p _{interaction} =0.163–0.530).
197	Low HDL cholesterol (<1.29 mmol/L) prevalence differed among the groups at visit one (p _{for trend} <0.001)
198	and at follow up visit (p _{for trend} =0.006); low HDL cholesterol was more common when parity increased
199	(Figure 3). Low HDL cholesterol prevalence inclined similar in all groups over time (p=0.160).
200	
201	There were no differences among the parity groups over time in MAP at all ages, although MAP
202	increased in all groups at age 40–49 years and 50–59 years and decreased in all groups at age \geq 60 years
203	(Figure 2C). The change in MAP over time was similar among all parity groups (p _{interaction} =0.348–0.815).
204	Prevalence of hypertension increased with parity both at entry visit (p _{for trend} <0.001) and at follow up
205	(p _{for trend} <0.001). Hypertension prevalence increased similar in all groups over time by 4–10% (p=0.761;
206	Figure 3).
207	
208	Occurrence of T2DM did not differ among the groups at entry (p _{for trend} =0.094), although a positive
209	association was found between T2DM prevalence and parity after six years (p _{for trend} =0.018). The increase
210	in T2DM over time was comparable at all groups (p=0.336). T2DM prevalence was < 10% at all groups at
211	both visits (Figure 3).
212	
	9 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210 211 212

Discussion

In this longitudinal cohort study, having 2 children or more was associated with a higher BMI in all age categories and with a lower HDL cholesterol, but not with changes in blood pressure. A higher parity was associated with higher prevalence of obesity, low HDL cholesterol and a higher prevalence of hypertension. These associations were constant over time. As analyses were stratified and/or adjusted for age, these results suggest a direct association of parity itself with BMI, HDL cholesterol levels and cardiovascular risk factor prevalence. Other factors attributing to parity, i.e. education and oral contraceptive use, might have contributed to these differences and therefore, our results should be interpreted with caution. Since BMI appears to be one of the most important cardiometabolic risk factors, the influence of parity on BMI is of great interest. This strong effect of BMI is not only due to the direct effect on cardiovascular disease onset, but also due to its adverse effect on lipid profile and blood pressure.^{25–28} Results from a population-based cohort study among 4699 women suggested that weight or weight chances might be an important mediator in the effect of parity on metabolic syndrome, thus confirming the importance of

BMI in regard to cardiometabolic health.¹⁹ In our study, roughly each extra child is associated with 1.5–

2.0 kg weight gain. Similar, each extra child is associated with 0.05 mmol/L decrease in HDL cholesterol,

which might be the result of the increased BMI.

Specific BMI measures, HDL cholesterol levels and MAP measures differed among the three age groups. Because women from all different ages were seen throughout all screening visits, we expect this to be an effect of age itself, thereby reflecting the growing influence of age on cardiometabolic health with increasing age.

BMJ Open

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
∠ 1 つつ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>10</u>	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

254

60

236 Parallel to these metabolic differences in continuous measurements among the groups, occurrence of 237 several clinical relevant cardiovascular risk factors, such as obesity and hypertension, differed among 238 the groups as well. This is in line with cross-sectional studies assessing metabolic profile in relation to 239 the number of children.^{6–8,19} However, some studies could not confirm the relation between parity and 240 metabolic health, especially after adjustment for covariates such as lifestyle.^{14,15,19,29} In the stepwise 241 correction, we found no or minimal influence of age, age and education level or age and oral 242 contraceptive use on our results. Only after full correction for age, education level and oral 243 contraceptive use, the statistical significance among parity groups diminished. Consequently, our 244 findings should be interpreted with caution, as these factors and others, such as lifestyle changes 245 following childbirth, might influence cardiovascular health next to parity itself.²⁹ Moreover, lifestyle 246 effects of family life and the protective effect of lactation could explain the influence of parity on 247 cardiometabolic health.^{30–32} 248 249 Another possible explanation behind the mechanism of this relationship between parity and 250 cardiovascular risk factors could be found in the effect of disturbances by pregnancy itself that continue 251 to last postpartum. For example, breastfeeding is associated with a lower risk of cardiovascular risk

252 factors, i.e. T2DM, although the role of breastfeeding remains controversial and a recent meta-analysis

involved in the relationship between parity and cardiovascular risk factors might be found in circulation

253 showed no significant effect of breastfeeding on postpartum weight retention.^{33–36} Other factors

255 markers. An example might be found in the ovarian peptide hormone relaxin, produced by the corpus

256 luteum or placental throughout pregnancy, has emerged as cardiovascular modulator involved in

257 vasodilatation and inducing angiogenesis.^{37,38} Moreover, relaxin was positively associated with insulin

258 sensitivity and lipid profile in women with type 2 diabetes mellitus as well.³⁹

> Previous cohort studies showed a 'J-shaped' association between parity and coronary heart disease, with lowest prevalence in women with two children, or stated that only multiparity (i.e. more than four or five children) was associated with increased cardiovascular disease risk.^{6–8} However, our results indicate a stepwise effect of parity on cardiometabolic health and having two children or more than two children already affects BMI, HDL cholesterol levels and cardiovascular risk factor prevalence. Our paper is the first study providing detailed assessment of cardiometabolic health development over time in relation to parity. This longitudinal study comprised a large, well-phenotyped cohort with uniform assessment of all measurements during a median follow-up of 6 years. The GEE analysis which was performed, allowed us to assess differences among groups over time, focusing on group effects. However, several limitations need to be discussed. The mean age of women para > 2 was significantly higher than women who were nulliparous, para 1 or para 2. In addition, women para > 2 less often used oral contraceptives and more often used antihypertensive medication. This might result in a slightly different metabolic profile although correction of the GEE-analysis for age and oral contraceptive use did not significantly change the results. Despite extensive phenotyping, age at first delivery, inter-pregnancy interval and lactation have not been assessed in the PREVEND study and therefore, adjustment of the analyses for these factors was not possible. Since parity itself was not assessed in the PREVEND, we used the number of children as a proxy for the number of childbirths. This might lead to inaccurate estimates of parity numbers, as the possibility of surrogacy or twin pregnancies is not taken into account. Additionally, no information was available regarding subfertility and several pregnancy complications, which leads to a lower number of children in these women and might reflect influence the cardiometabolic profile in later life as well. More extensive information regarding socio-economic status was not measured as well, thereby it was only possible to correct for education but not for other socio-economic factors. Lastly, pre-pregnancy BMI and gestational weight gain have not been assessed

1 2		
2 3 4	283	in the PREVEND study either, although their role on postpartum weight retention seemed limited in a
5 6	284	recent publication. ^{9,18}
7 8 9	285	
9 10 11	286	The PREVEND study was enriched with subjects with an elevated albumin excretion, which mostly
12 13	287	results in an unfavorable cardiovascular risk profile compared to the general population. However,
14 15	288	albuminuria did not significantly differ among the groups within our analyses. Although our findings
16 17	289	suggest an effect of parity itself on metabolic parameters, it should be noted that causality cannot be
18 19 20	290	determined in our study. Therefore, one could argue that the relationship is reversed, e.g. women with
20 21 22	291	higher BMI or lower HDL cholesterol are more fertile and therefore have more children. Prospective
23 24	292	research assessing pre-pregnancy determinants of cardiometabolic health are warranted to further
25 26	293	assess the possible causal effect of pregnancy itself.
27 28 20	294	
29 30 31 32 33 34 35 36 37 38 39 40	295	Conclusion
	296	In this longitudinal cohort study, higher parity is associated with higher BMI and lower HDL
	297	cholesterol. This difference among parity groups is constant over time. Furthermore, higher parity is
	298	associated with a higher prevalence of cardiovascular risk factors among the parity groups over time.
	299	These findings warrant for prospective research assessing determinants of cardiometabolic health at
41 42	300	earlier age to understand the role of pregnancy and the influence of lifestyle factors in the development
43 44 45	301	of cardiovascular disease in women.
46 47	302	
48 49	303	References
50	304	1. Bartels a., O'Donoghue K. Cholesterol in pregnancy: a review of knowns and unknowns. <i>Obstet Med</i> . 2011;4(4):147-
51	305	151. doi:10.1258/om.2011.110003.
52	306	2. Tan EK, Tan EL. Alterations in physiology and anatomy during pregnancy. Best Pract Res Clin Obstet Gynaecol.
53 54	307	2013;27(6):791-802. doi:10.1016/j.bpobgyn.2013.08.0011.
55 56 57	308	3. Jebeile H, Mijatovic J, Louie JCY, Prvan T, Brand-Miller JC. A systematic review and metaanalysis of energy intake and
58 59		12
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว			
3	309		weight gain in pregnancy. Am J Obstet Gynecol. 2016;214(4):465-483. doi:10.1016/j.ajog.2015.12.049.
4 5	310	4.	de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiologic adaptation of plasma
6	311		volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2016;d(November
7	312		2016):177-187. doi:10.1002/uog.17360.
8 9	313	5.	Berge L, Armesen E, Forsdahl A. Pregnancy related changes in some cardiovascular risk factors. Acta Obstet Gynecol
10	314		Scand. 1996;75(5):439-442.
11 12	315	6.	Humphries KH, Westendorp ICD, Bots ML, et al. Parity and Carotid Artery Atherosclerosis in Elderly Women: The
12	316		Rotterdam Study. Stroke. 2001;32:2259-2264.
14	317	7.	Lawlor D a., Emberson JR, Ebrahim S, et al. Is the association between parity and coronary heart disease due to
15 16	318		biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British
17	319		women's heart and health study and the British regional heart st. Circulation. 2003;107(9):1260-1264.
18	320		doi:10.1161/01.CIR.0000053441.43495.1A.
19 20	321	8.	Vladutiu CJ, Siega-Riz AM, Sotres-Alvarez D, et al. Parity and components of the metabolic syndrome among US
21	322		hispanic/latina women: Results from the hispanic community health study/study of latinos. Circ Cardiovasc Qual
22	323		Outcomes. 2016;9(2_suppl_1):S62-S69. doi:10.1161/CIRCOUTCOMES.115.002464.
23 24	324	9.	Rong K, Yu K, Han X, et al. Pre-pregnancy BMI, gestational weight gain and postpartum weight retention: a meta-
25	325		analysis of observational studies. Public Health Nutr. 2015;18(12):2172-2182. doi:10.1017/S1368980014002523.
26 27	326	10.	Amorim AR, Rössner S, Neovius M, Lourenço PM, Linné Y. Does excess pregnancy weight gain constitute a major risk
27	327		for increasing long-term BMI? Obesity (Silver Spring). 2007;15(5):1278-1286. doi:10.1038/oby.2007.149.
29	328	11.	Al Mamun a. Associations of excess weight gain during pregnancy with long-term maternal obesity, hypertension and
30 31	329		diabetes: Evidence from 21 years postpartum follow-up. Obes Rev. 2010;11:51. doi:http://dx.doi.org/10.1111/j.1467-
32	330		789X.2010.00763-4.x.
33	331	12.	Fraser a, Tilling K, Macdonald C, Hughes R, Sattar N. Associations of gestational weight gain with maternal body mass
34 35	332		index, waist circumference, and blood pressure measured 16 y after pregnancy: the Avon Longitudinal Study of Parents
36	333		and Children. Am J Clin Nutr. 2011;93(6):1-4. doi:10.3945/ajcn.110.008326.1.
37	334	13.	Steenland K, Lally C, Thun Mi. Parity and COronary Heart Disease among Women in the American Cancer Society CPS II
38 39	335		Population. Epidemiology. 1996;7:641-643.
40	336	14.	de Kleijn MJ, van der Schouw YT, van der Graaf Y. Reproductive history and cardiovascular disease risk in
41 42	337		postmenopausal women: a review of the literature. <i>Maturitas</i> . 1999;33(1):7-36.
43	338	15.	Chung E, Kim Y, Usen O. Associations Between Parity, Obesity, and Cardiovascular Risk Factors Among Middle-Aged
44	339		Women. J Women's Heal. 2016;25(8):818-825. doi:10.1089/jwh.2015.5581.
45 46	340	16.	Robinson WR, Cheng MM, Hoggatt KJ, Stürmer T, Siega-Riz AM. Childbearing is not associated with young women's
47	341		long-term obesity risk. Obesity. 2014;22(4):1126-1132. doi:10.1002/oby.20593.
48	342	17.	Schmitt NM, Nicholson WK, Schmitt J. The association of pregnancy and the development of obesity - results of a
49 50	343		systematic review and meta-analysis on the natural history of postpartum weight retention. Int J Obes (Lond).
51	344		2007;31(11):1642-1651. doi:10.1038/sj.ijo.0803655.
52	345	18.	Nehring I, Schmoll S, Beyerlein A, Hauner H, Von Kries R. Gestational weight gain and long-term postpartum weight
55 54	346		retention: A meta-analysis. Am J Clin Nutr. 2011;94(5):1225-1231. doi:10.3945/ajcn.111.015289.
55	347	19.	Cohen A, Pieper CF, Brown AJ, Bastian L a. Number of children and risk of metabolic syndrome in women. J Womens
56 57			
58			
59			For peer review only a http://bmionon.hmi.com/site/about/guidelines.yhtml
60			For peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

Page 15 of 29

1 ว				
2 3	348		Health (Larchmt). 2006;15(6):763-773. doi:10.1089/jwh.2006.15.763.	
4	349	20.	Ness RB, Harris T, Cobb J, et al. Number of pregnancies and the subsequent risk of cardiovascular disease. N Engl J	
5 6	350		Med. 1993;328:1528-1533.	
7	351	21.	Pinto-Sietsma S-J, Mulder J, Janssen WMT, Hillege HL, Zeeuw D De, De Jong PE. Smoking Is Related to Albuminuria and	
8	352		Abnormal Renal Function in Nondiabetic Persons. Ann Intern Med. 2000;(133):585-591.	
9 10	353	22.	Hillege HL, Janssen WMT, Bak a. a a, et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive	
11	354		population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med.	
12 13	355		2001;249(6):519-526. doi:10.1046/j.1365-2796.2001.00833.x.	
14	356	23.	Joosten MM, Gansevoort RT, Mukamal KJ, Harst P Van Der, Geleijnse JM, Feskens EJM. Urinary and plasma magnesium	
15	357		and risk of ischemic heart disease 1 – 3. October. 2013:97(13):1299-1306.	
16 17	358		doi:10.3945/aicn.112.054114.INTRODUCTION.	
18	359	24.	Abbasi A. Corpeleiin E. Gansevoort RT, et al. Role of HDL cholesterol and estimates of HDL particle composition in	
19 20	360		future development of type 2 diabetes in the general population: The PREVEND study, J Clin Endocrinol Metab.	
20 21	361		2013:98(8):1352-1359. doi:10.1210/ic.2013-1680.	
22	362	25.	Lamon-Fava S. Wilson PWF. Schaefer FL. Impact of Body Mass Index on Coronary Heart Disease Risk Factors in Men and	
23	363	_0.	Women: The Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 1996;16:1509-15151	
24 25	364	26	Wilson PWE D'Agostino RB Sullivan L Parise H Kannel WB Overweight and obesity as determinants of cardiovascular	
26	365	20.	risk: the Eramingham experience. Arch Intern Med. 2002;162(16):1867-1872. doi:10.1001/archinte.162.16.1867	
27 20	366	27	Bogers R Bemelmans W Hoogenveen R et al. Association of overweight with increased risk of coronary heart disease	
20 29	367	27.	northy independent of blood procesure and choloctoral loyals. Arch Intern Med. 2007;167(16):1720-1729	
30	368		doi:10.1001/archinto.167.16.1720	
31 22	360	20	Monorary Chaffin ML Deters S.a.E. Huyley PR. Weedward M. The say specific relationship between body mass index	
33	305	20.	and coronary boart diseases A systematic raview and mate applying of 05 schorts with 1.2 million participants. (great	
34	271		Digheter Endersing/ 2015;2/C):427,440, doi:10.1002/our 1474 Perliability	
35 36	371 272	20	Diabetes Endocrinol. 2015;5(6):457-449. doi:10.1002/auf.1474.Replication.	
37	572 272	29.	Hardy R, Lawior D a., Black S, wadsworth MEJ, Kuh D. Number of children and coronary heart disease risk factors in	
38	5/5		men and women from a British birth conort. BJOG An int J Obstet Gynaecol. 2007;114(6):721-730. doi:10.1111/j.14/1-	
39 40	574 275	20	0528.2007.01324.x.	
41	5/5	30.	Gunderson EP, Jacobs DR, Chiang V, et al. Childbearing is associated with higher incidence of the metabolic syndrome	
42	3/0		among women of reproductive age controlling for measurements before pregnancy: the CARDIA study. Am J Obstet	
43 44	3//		<i>Gynecol</i> . 2009;201(2):177.e1-177.e9. doi:10.1016/j.ajog.2009.03.031.	
45	3/8	31.	McClure CK, Catov JM, Ness RB, Schwarz EB. Lactation and maternal subclinical cardiovascular disease among	
46	379		premenopausal women. Am J Obstet Gynecol. 2012;207(1):1-15. doi:10.1016/j.ajog.2012.04.030.	
47 48	380	32.	Natland Fagerhaug T, Forsmo S, Jacobsen GW, Midthjell K, Andersen LF, Ivar Lund Nilsen T. A prospective population-	
49	381		based cohort study of lactation and cardiovascular disease mortality: the HUNT study. BMC Public Health.	
50	382		2013;13(1):1070. doi:10.1186/1471-2458-13-1070.	
51	383	33.	Baker JL, Gamborg M, Heitmann BL, Lissner L, Sørensen TI a, Rasmussen KM. Breastfeeding reduces postpartum weight	
53	384		retention. <i>Am J Clin Nutr</i> . 2008;88(6):1543-1551. doi:10.3945/ajcn.2008.26379.	
54	385	34.	Jarlenski MP, Bennett WL, Bleich SN, Barry CL, Stuart E a. Effects of breastfeeding on postpartum weight loss among	
55 56	386		U.S. women. <i>Prev Med</i> . 14AD;69:146-150. doi:10.1016/j.ypmed.2014.09.018.Effects.	
57				
58 50				
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
3	387	35.	Britz SE, McDermott KC, Pierce CB, Blomquist JL, Handa VL. Changes in maternal weight 5-10 years after a first deliv	/ery.
----------------------	-----	---------	--	----------
4 5	388		Womens Health (Lond Engl). 2012;8(5):513-519. doi:10.2217/whe.12.35.	
6	389	36.	He X, Zhu M, Hu C, et al. Breast-feeding and postpartum weight retention: a systematic review and meta-analysis.	
7	390		Public Health Nutr. 2015;18(18):3308-3316. doi:10.1017/S1368980015000828.	
8 9	391	37.	Sherwood OD. Relaxin's physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205-234.	
10	392		doi:10.1210/er.2003-0013.	
11	393	38.	Bani D. Relaxin as a natural agent for vascular health. Vasc Health Risk Manag. 2008;4(3):515-524.	
12	394	39.	Szepietowska B, Gorska M, Szelachowska M. Plasma relaxin concentration is related to beta-cell function and insuli	n
14	395		sensitivity in women with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2008;79(3):2007-2009.	
15 16	396		doi:10.1016/j.diabres.2007.10.017.	
17	397			
18 19	398	Comp	eting interests	
20 21 22	399	All aut	hors have completed the Unified Competing Interest form at <u>www.icmje.org/coi_disclosure.pd</u>	<u>f</u>
23 24	400	(availa	ible on request from the corresponding author) and declare no support from any organization f	or
25 26 27	401	the su	bmitted work; no relationships with companies that might have an interest in the submitted we	ork
27 28 29	402	in the	previous 3 years; no other relationships or activities that could appear to have influenced the	
30 31	403	submi	tted work.	
32 33	404			
34 35	405	Autho	r's contributions	
36 37	406	Gerbra	and A. Zoet, Nina D. Paauw, T. Katrien J. Groenhof, Ron T. Gansevoort, Henk Groen	
38 39 40	407	and A.	Titia Lely were involved in conception and design of the study. Data analyses was performed by	/
41 42	408	Gerbra	and A. Zoet, Nina D. Paauw, T. Katrien J. Groenhof and Henk Groen. Interpretation of the result	S
43 44 45	409	was pe	erformed by Gerbrand A. Zoet, Nina D. Paauw, T. Katrien J. Groenhof, Ron T. Gansevoort, Henk	
45 46 47	410	Groen	, Arie Franx, Bas B. van Rijn and A.Titia Lely. Gerbrand A. Zoet, Nina D. Paauw, T. Katrien J.	
48 49	411	Groen	hof and A.Titia Lely drafted the manuscript. Gerbrand A. Zoet, Nina D. Paauw, T. Katrien J.	
50 51	412	Groen	hof, Ron T. Gansevoort, Henk Groen, Arie Franx, Bas B. van Rijn and A.Titia Lely edited the	
52 53 54	413	manus	script. All authors read and approved the final manuscript.	
55 56 57 58	414			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	16

1 2		
3 4	415	Data sharing statement
5 6	416	Data sharing: patient level data and full dataset and technical appendix and statistical code are available
7 8	417	from the corresponding author (g.zoet@umcutrecht.nl). Informed consent was not obtained but the
4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 32 4 25 26 27 8 9 30 31 23 34 35 37 38 9 40 41 22 33 45 36 37 38 9 40 41 22 31 45 5 6 7 8 9 10 11 22 23 24 25 26 7 8 9 30 31 23 34 35 36 37 8 9 40 41 22 23 24 25 26 7 8 9 30 31 23 34 35 36 37 8 9 40 41 22 23 24 25 26 7 8 9 30 31 22 33 34 35 36 37 8 9 40 41 22 23 24 25 26 7 8 9 30 31 22 33 34 35 36 37 38 9 40 41 22 23 24 25 26 27 28 29 30 31 22 33 45 36 37 38 39 40 41 42 33 44 5 36 37 38 9 40 41 22 33 34 35 36 37 38 9 40 41 22 33 34 35 36 37 38 39 40 41 42 37 38 40 41 42 33 34 35 36 37 38 39 40 41 42 37 38 39 40 41 42 33 34 35 36 37 38 39 40 41 42 33 34 5 36 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	416 417 418	Data sharing: patient level data and full dataset and technical appendix and statistical code are available from the corresponding author (g.zoet@umcutrecht.nl). Informed consent was not obtained but the presented data are anonymized and the risk of identification is low.
47 48 40		
50 51 52 53 54 55		
56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	420	Figure 1: Flowchart
	421	
)		
 <u>2</u>		
> 1 5		
5		
3		
)		
2 3		
+ 5 5		
7 3		
))		
 2 5		
5 1 5		
5		
3		
)		
<u>/</u> } 1		
5		
7 3		
)		
 <u>2</u>		
3 1 -		

	No children	One child	Two children	More than two	P-value						
	(N=464) ‡	(N=277) ‡	(N=1021) ‡	children (N=697) ‡							
General characteristics											
Age (years)	52.2 (10.1)	52.2 (9.0)	52.3 (8.4)	56.9 (9.6)	<0.001						
Follow-up time (years)	11 (11-12)	11 (11-12)	11 (11-12)	11 (11-12)	0.71						
Caucasian (n (%))	445 (96.9%)	264 (96.4%)	995 (98.0%)	663 (95.7%)	0.04						
Job (n (%))	315 (68.3%)	127 (47.4%)	467 (46.5%)	264 (38.6%)	<0.001						
Cardiovascular risk profile											
BMI (kg/m²)	24.6 (22.5-27.7)	25.3 (22.5-28.6)	25.8 (23.4-28.8)	26.9 (24.0-30.2)	<0.001						
SBP (mmHg)	120 (109-138)	121 (110-140)	122 (111-138)	130 (115-146)	<0.001						
DBP (mmHg)	71 (65-78)	71 (67-77)	71 (66-78)	73 (67-79)	0.004						
Current smoker (n (%))	139 (30.0%)	105 (37.9%)	326 (31.9%)	195 (28.0%)	0.02						
Alcohol use (n (%))	203 (44.0%)	137 (49.6%)	503 (49.4%)	378 (54.5%)	0.007						
Cardiovascular comorbidity (n (%))	11 (2.4%)	11 (4.1%)	24 (2.4%)	24 (3.6%)	0.30						
Renal disease requiring dialysis (n (%))	1 (0.2%)	0 (0%)	3 (0.3%)	1 (0.1%)	0.78						
Laboratory results											
Glucose (mmol/L)	4.6 (4.3-5.0)	4.7 (4.3-5.1)	4.7 (4.3-5.0)	4.8 (4.4-5.2)	0.002						
Insulin (mmol/L)	7.0 (4.9-10.7)	7.6 (5.1-11.5)	7.8 (5.6-11.2)	8.5 (6.0-13.4)	<0.001						
HOMAir	1.4 (1.0-2.4)	1.6 (1.0-2.5)	1.6 (1.1-2.4)	1.8 (1.2-3.0)	<0.001						
Total Cholesterol (mmol/L)	5.7 (5.0-6.4)	5.7 (5.1-6.5)	5.8 (5.0-6.7)	6.0 (5.3-6.7)	<0.001						
HDL Cholesterol (mmol/L)	1.5 (1.2-1.8)	1.5 (1.2-1.8)	1.4 (1.2-1.7)	1.4 (1.2-1.7)	<0.001						
Triglycerides (mmol/L)	1.0 (0.8-1.5)	1.1 (0.9-1.7)	1.1 (0.9-1.6)	1.2 (0.9-1.6)	<0.001						
Medication use		/			'						
Total blood pressure lowering (n (%))	65 (16.4%)	39 (16.5%)	140 (15.6%)	151 (24.4%)	<0.001						
ACEi/ARB (n (%))	19 (4.7%)	8 (3.3%)	41 (4.5%)	44 (7.0%)	0.07						
Glucose lowering (n (%))	7 (1.7%)	2 (0.8%)	12 (1.3%)	12 (1.9%)	0.63						
Lipid lowering (n (%))	19 (4.7%)	15 (6.3%)	32 (3.5%)	37 (5.9%)	0.11						
Oral contraceptive use (n (%))	79 (18.2%)	50 (19.5%)	198 (21.1%)	90 (14.6%)	0.01						

 Data are presented as median (25th – 75th percentile) unless otherwise stated. BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; ACEi/ARB: angiotensin converting enzyme inhibitor and/or angiotensin receptor blocker; HOMAir: homeostatic model assessment index.

[‡] Total number that participated at visit 1 of the study, not all variables were available for each participant at baseline

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	428	Figure 2: Development over time of BMI (A). HDL cholesterol (B) and MAP (C). stratified for parity
4		······································
5	<u>1</u> 20	
6	429	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 1		
45 14		
40 17		
4/ ⊿0		
40 /0		
77 50		
50		
57		
52 52		
57		
54		
55		
50		
57		
50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	430	Figure 3: CVD risk factors at entry
4 5		
6	431	
7 8 9 10 11 12 13	432 433 434 435 436	Legend: Hypertension = RR ≥140/90 mm/Hg and/or use of antihypertensive medication; Obesity = BMI ≥30kg/m2; Low HDL cholesterol = HDL cholesterol <1.29 mmol/L; Diabetes = fasting plasma glucose ≥7.0 mmol/L, self-report of a physician diagnosis and/or use of glucose-lowering medication. □ = first visit; ■ = follow-up visit
14 15		
16		
17 18		
19		
20 21		
22 23		
23 24		
25 26		
27		
28 29		
30 21		
32		
33 34		
35		
36 37		
38		
39 40		
41 42		
42		
44 45		
46		
47 48		
49		
50 51		
52 52		
55 54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

101x117mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2: Development over time of BMI (A), HDL cholesterol (B) and MAP (C), stratified for parity 114x160mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental table 1: stepwise correction for GEE-analysis

Table 1A: Correction models for GEE-analysis, stratified at age 40 - 50 years

	Unadjusted			Adjusted for age		Adjusted for age & education		Adjusted for age & OCC			Adjusted for age & education & OCC				
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.003	< 0.001	0.667	0.011	0.938	0.694	0.323	0.552	0.685	0.010	0.910	0.627	0.342	0.64	0.628
HDL-cholesterol	0.008	< 0.001	0.530	0.003	0.737	0.520	0.047	0.472	0.519	0.006	0.666	0.570	0.080	0.438	0.565
MAP	0.558	0.005	0.815	0.866	< 0.001	0.779	0.871	< 0.001	0.777	0.874	< 0.001	0.875	0.904	< 0.001	0.871

Abbreviation: OCC, oral contraceptives

Table 1B: Correction models for GEE-analysis, stratified at age 50 - 60 years

	Unadjusted			Adjusted for age			Adjusted for age & education			Adjusted for age & OCC			Adjusted for age & education & OCC		
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.004	<0.001	0.947	0.006	0.197	0.945	0.009	0.031	0.920	0.011	0.269	0.849	0.017	0.048	0.812
HDL-cholesterol	0.027	0.007	0.184	0.031	0.040	0.171	0.051	0.152	0.151	0.085	0.035	0.055	0.118	0.126	0.045
МАР	0.328	0.023	0.494	0.411	< 0.001	0.478	0.522	0.005	0.457	0.637	0.003	0.802	0.669	0.025	0.786

Table 1C: Correction models for GEE-analysis, stratified at age > 60 years

Abbreviation: OCC, or	Abbreviation: OCC, oral contraceptives														
Table 1C: Correction models for GEE-analysis, stratified at age > 60 years															
	Unadjusted			Adjusted for age			Adjusted for age & education			Adjusted for age & OCC			Adjusted for age & education & OCC		
	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction	Pgroup	P _{time}	Pinteraction
BMI	0.001	< 0.001	0.662	0.001	0.116	0.662	0.006	0.087	0.663	0.002	0.011	0.625	0.006	0.009	0.626
HDL-cholesterol	0.156	0.001	0.163	0.155	0.114	0.191	0.314	0.142	0.201	0.162	0.102	0.358	0.299	0.132	0.384
MAP	0.415	< 0.001	0.348	0.646	< 0.001	0.407	0.649	< 0.001	0.407	0.667	< 0.001	0.508	0.678	< 0.001	0.507

Abbreviation: OCC, oral contraceptives

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohort reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title	#1a	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	#1b	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Background / rationale	#2	Explain the scientific background and rationale for the investigation being reported	4, 5
Objectives	#3	State specific objectives, including any prespecified hypotheses	5
Study design	#4	Present key elements of study design early in the paper	5, 6
Setting	#5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Eligibility criteria	#6a For p	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5

Page	27	of	29
------	----	----	----

1 2 3		#6b	For matched studies, give matching criteria and number of exposed and unexposed	na
4 5 6 7 8 9	Variables	#7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
10 11 12 13 14 15 16 17	Data sources / measurement	#8	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	6
18 19	Bias	#9	Describe any efforts to address potential sources of bias	5, 6, 7
20 21 22	Study size	#10	Explain how the study size was arrived at	5
22 23 24 25 26 27	Quantitative variables	#11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5, 7
28 29 30 31	Statistical methods	#12a	Describe all statistical methods, including those used to control for confounding	6, 7
32 33 34		#12b	Describe any methods used to examine subgroups and interactions	6, 7
35 36 37		#12c	Explain how missing data were addressed	6, 7
38 39		#12d	If applicable, explain how loss to follow-up was addressed	6, 7
40 41		#12e	Describe any sensitivity analyses	na
42 43 44 45 46 47 48 49 50	Participants	#13a	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	5
51 52		#13b	Give reasons for non-participation at each stage	5
53 54		#13c	Consider use of a flow diagram	figure 1
55 56 57 58	Descriptive data	#14a	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7, table 1
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			BMJ Open	Page 28 of 29
 2 3			confounders. Give information separately for exposed and unexposed groups if applicable.	
5 4 5 6		#14b	Indicate number of participants with missing data for each variable of interest	Figure 2
7 8 0		#14c	Summarise follow-up time (eg, average and total amount)	6, 8, 9
9 10 11 12 13 14	Outcome data	#15	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	7, 8, 9
15 16 17 18 19 20 21	Main results	#16a	Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7, 8, 9
22 23 24		#16b	Report category boundaries when continuous variables were categorized	7, 8, 9
26 27 28		#16c	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	na
29 30 31 32	Other analyses	#17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	na
33 34 35	Key results	#18	Summarise key results with reference to study objectives	9, 10
36 37 38 39 40 41 42 43 44 45	Limitations	#19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	11, 12
	Interpretation	#20	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	See note 1
46 47 48 49	Generalisability	#21	Discuss the generalisability (external validity) of the study results	See note 2
50 51 52 53 54 55	Funding	#22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3
56 57	Author notes			
58 59 60	1. 10, 11, 12, 13	For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2. 10, 11, 12, 13

The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 18. May 2018 using <u>http://www.goodreports.org/</u>, a tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>

.ation w