- 1 Supplementary data for
- **RNA** m⁶A methylation regulates the epithelial mesenchymal
- **transition of cancer cells and translation of Snail**
- 5 Lin et al

9 Supplementary Figure 1

13 (A) HeLa and HepG2 cells were treated with or without 10 ng/ml TGF-β for 3 days, the
 14 phenotypic changes of cells were recorded by phase contrast microscope;

(B) HeLa or HepG2 cells were treated with or without 10 ng/ml TGF-β for 48 h, wound healing
 was recorded (*left*) and quantitatively analyzed (*right*);

17 (C) The *in vitro* invasion of HeLa or HepG2 cells treated with or without 10 ng/ml TGF- β for

- 18 24 h were tested by use of CytoSelectTM 24-well Cell Invasion assay kits (8 μm,
 19 colorimetric format);
- 20 (D & E) HeLa or HepG2 cells treated with or without 10 ng/ml TGF- β for 24h (D) or 48h (E),
- 21 the mRNA and protein levels of MMP-2, FN (FNI) and E-Cad (CDH1) were measured by

- 22 qRT-PCR and western blot analysis, respectively.
- 23 Data are presented as means \pm SD from three independent experiments. *p<0.05, **p< 0.01
- 24 compared with control, by Student's *t* test.
- 25 Related to Figure 1
- 26

28

29 Supplementary Figure 2 EMT of cancer cells is regulated by m⁶A levels of mRNAs.

30 (A) Dot-blot analysis of m^6A levels in total mRNA of HeLa and HepG2 cells treated with or

- 32 (B) Cells were treated with or without 10 ng/ml TGF- β for 3 days, the m⁶A/A ratio of total
- 33 mRNA were determined by LC-MS/MS;
- 34 (C) The protein expression of METTL3 in wide type and *Mettl3^{Mut/-}* HeLa cells;
- 35 (D) The m⁶A/A ratio of total mRNA in wide type and *Mettl3^{Mut/-}* HeLa cells;
- 36 (E) Cells were allowed to invade for 24 h and tested by CytoSelect[™] 24-well Cell Invasion
 37 assay kits (8 µm, colorimetric format);
- 38 (F) The protein expression in sh-Control and sh-Mettl3 Huh7 cells or si-NC and si-Mettl3
- transfected HepG2 cells was determined by western blot analysis (*left*) and quantitatively
 analyzed (*right*);
- 41 (G) HeLa cells were transfected with pcDNA (vector) or pcDNA/ALKBH5 for 24 h, the
 42 mRNA levels of MMP-2 and FN were measured by qRT-PCR;
- (H) The sh-Control and sh-Mettl3 Huh7 cells were treated with or without 10 ng/ml TGF-β for
 3 days, protein expression was determined by western blot analysis (*left*) and quantitatively
 analyzed (*right*).
- 46 Data are presented as means ± SD from three independent experiments. *p<0.05, **p< 0.01;
 47 NS, no significant, by Student's *t* test.
- 48 Related to Figure 1
- 49
- 50

54 Supplementary Figure 3 Characterization of m⁶A-regulated genes in cancer cells 55 undergoing EMT.

56 (A) PCA results for the expression levels of all genes from 8 samples;

57 (B) Number of m^6A peaks identified in m^6A -seq from control and EMT cells;

58 (C) Number of m^6A modified genes identified in m^6A -seq. Common m^6A genes contain at least

59 one common m^6A peak, while unique m^6A genes contain no common m^6A peaks;

60 (D) The proportion of m^6A peak distributions in the 5'UTR, start codon, CDS, stop codon or

61 3'UTR region across the entire set of mRNA transcripts;

62 Related to Figure 2

63

- 64
- 65

68

(A) ZEB1 mRNA acted as negative control, without m⁶A peak in its mRNA neither in control
 nor HeLa cells undergoing EMT. Data was obtained from m⁶A RIP-seq;

72 (B) The m⁶A RIP-qPCR analysis of ZEB1 mRNA in control and EMT undergoing HeLa cells;

73 (C) The protein expression of Snail in *si-METTL3* or AKLBH5 transfected (24 h) HepG2 and

- control cells was determined by western blot analysis (*left*) and quantitatively analyzed
 (*right*);
- 76 (D) Wild type or *Mettl3^{Mut/-}* HeLa cells were treated with or without 10 ng/ml TGF- β for 48 h, 77 the expression of Snail was detected by western blot analysis (*left*) and quantitatively

- 78 analyzed (*right*);
- (E) The mRNA expression of CDH1 (E-Cad) in wild type or *Mettl3^{Mut/-}* HeLa cells transfected
 with or without pcDNA/Snail for 48 h.
- B1 Data are presented as means \pm SD from three independent experiments. **p < 0.01, NS, no
- 82 significant, by one-way ANOVA with Bonferroni test.
- 83 Related to Figure 3
- 84
- 85

87

Supplementary Figure 5 m⁶A triggers the translation of Snail mRNA in cancer cells.

(A) Wild-type (WT) or *Mettl3^{Mut/-}* cells were transfected with pGL3-Basic-Snail-luc reporter
and pRL-TK plasmid for 24 h. Results were expressed as the ratios between the activity of
the reporter plasmid and pRL-TK;

(B) The cytoplasmic and nuclear fractions of wild-type (WT) or *Mettl3^{Mut/-}* cells were separated,
 respectively,

94 (C) YTHDF2 RIP-qPCR analysis of SNAI1 mRNA in wild type or *Mettl3^{Mut/-}* HeLa cells;

95 (D) HeLa cells were transfected with vector control or pcDNA/YTHDF2 for 24 and then further

- 96 treated with Act-D for 90 min, then then mature mRNA of Snail was analyzed at the97 indicated time periods;
- 98 (E) The polysome profiling of HeLa cells treated with or without 10 ng/ml TGF- β for 3 days;
- 99 (F) Immunoblot of Snail1 expression in HeLa cells treated with 50 nM rapamycin \pm
- 100 cycloheximide (CHX, 100 μg/ml).
- 101 Data are presented as means \pm SD from three independent experiments. *p<0.05, NS, no
- 102 significant, by Student's *t* test.
- 103 Related to Figure 4
- 104

108 Supplementary Figure 6 m⁶A methylation in CDS binding with YTHDF1 regulates the

- 109 expression of Snail.
- 110 (A) Schematic representation of m^6A RIP-PCR with fragmented RNA from cells;
- (B) m⁶A RIP-qPCR analysis of SNAI1 mRNA in wild type or *Mettl3^{Mut/-}* HeLa cells by using
 fragmented RNA;
- 113 (C) HeLa cells were transfected with or without pmir-GLO-3'UTR or pmir-GLO-
- 114 3'UTR_Mut1/2 and pcDNA/ALKBH5 for 24 h;

- 115 (D) HeLa cells were transfected with si-NC or si-YTHDF1-1~3 for 24 h. The si-YTHDF1-2
- 116 was chosen for further studies because it showed the highest knockdown efficiency;
- 117 (E) HeLa or HepG2 cells were transfected with empty vector (Con) or pcDNA/YTHDF1 for
- 118 24 h. Protein expression was detected by western blot analysis (*left*) and quantitatively119 analyzed (*right*).
- 120 Data are presented as means \pm SD from three independent experiments. *p<0.05, **p< 0.01,
- 121 NS, no significant, by Student's *t* test.
- 122 Related to Figure 5
- 123

134 Supplementary Figure 8 Uncropped images of western blot analysis.

138 Supplementary Table

139

Supplementary Table 1 The EMT-related 84 key genes in cancer cells

Catalog	Genes
	AHNAK, BMP1, CALD1, CAMK2N1, CDH2 (N-cadherin), COL1A2,
Upregulated gene during EMT	COL3A1, COL5A2, FN1, FOXC2, GNG11, GSC, IGFBP4, ITGA5,
	ITGAV, MMP2, MMP3, MMP9, MSN, SERPINE1 (PAI-1), SNAI1,
	SNAI2, SNAI3, SOX10, SPARC, TCF4, TIMP1, TMEFF1, TMEM132A,
	TWIST1, VCAN, VIM, VPS13A, WNT5A, WNT5B.
Upregulated gene	CAV2, CDH1, DSP, IL1RN, KRT19, MITF, MST1R, NUDT13, OCLN,
during EMT	RGS2, SPP1, TFPI2, TSPAN13.
	AKT1, BMP1, BMP7, COL3A1, COL5A2, CTNNB1, DSP, ERBB3, F11R,
Differentiation &	FGFR2, FOXC2, FZD7, GSC, JAG1, KRT14, MST1R, NODAL,
Development	NOTCH1, PPP3R1, PTP4A1, SMAD2, SNAI1, SNAI2, SOX10, TGFB2,
	TGFB3, TMEFF1, TWIST1, VCAN, WNT11, WNT5A, WNT5B.
Cell	CTNNB1, FOXC2, JAG1, RAC1, SMAD2, SNAI1, SOX10, TGFB1,
Morphogenesis	TGFB2, TGFB3, TWIST1, WNT11, WNT5A.
Cell Growth & Proliferation	AKT1, BMP1, BMP7, CAV2, CTNNB1, EGFR, ERBB3, FOXC2,
	IGFBP4, ILK, JAG1, MST1R, NODAL, PDGFRB, TGFB1, TGFB2,
	TGFB3, TIMP1, VCAN, ZEB1.
Cell Migration &	CALD1, CAV2, EGFR, FN1, ITGB1, JAG1, MSN, MST1R, NODAL,
Motility	PDGFRB, RAC1, STAT3, TGFB1, VIM.
Cytoskeleton	CAN2 KDT7 MADID DIEK2 DACI VIM
Regulators	CAV2, KKI7, MAP1B, PLEK2, KAC1, VIM.
Extracellular	BMP1, BMP7, CDH1, CDH2 (N-cadherin), COL1A2, COL3A1, COL5A2,
Matrix (ECM) &	CTGF, CTNNB1, DSC2, EGFR, ERBB3, F11R, FGFR2, FN1, FOXC2,
Cell Adhesion	ILK, ITGA5, ITGAV, ITGB1, MMP2, MMP3, MMP9, PTK2, RAC1,
Molecules	SERPINE1 (PAI-1), SPP1, TGFB1, TGFB2, TIMP1, VCAN.
	Estrogen Receptors: CAV2.
	Estrogen Receptor Signaling: ESR1 (ERa), KRT19, TGFB3.
	G-Protein Coupled Receptor Signaling: AKT1, FZD7, GNG11, RAC1,
	RGS2.
	Integrin-Mediated Signaling: COL3A1, CTGF, ILK, ITGA5, ITGAV,
Signal	ITGB1, PTK2.
Transduction	Notch Signaling: FOXC2, JAG1, NOTCH1.
	Receptor Tyrosine Kinase Signaling: EGFR, ERBB3, FGFR2, PDGFRB,
	RGS2, SPARC.
	TGF β / BMP Signaling: BMP1, BMP7, COL3A1, SMAD2, TGFB1,
	TGFB2, TGFB3.
	WNT Signaling: CTNNB1, FZD7, GSK3B, WNT11, WNT5A, WNT5B.
Transcription	CTNNB1, ESR1 (ERα), FOXC2, GSC, SMAD2, SNAI2, SNAI3, SOX10,
Factors	STAT3, TCF3, TCF4, TCF7L1, TWIST1, ZEB1, ZEB2.

.