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Classical NV Backaction Calculation
As our scheme makes use of many NV centers which impose a magnetic field onto the nuclei, it is important to check
the induced broadening is smaller than the precision of few Hz we need to detect chemical shifts and J-couplings. As
shown in [1], the problem can be reduced to simulating the dimensionless geometric factor∫
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(
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)
,

where r is the distance between a nuclear spin and the NV centers in the volume V over which is integrated, and uNV
is the NV orientation.

This integral was simulated for the geometry of nanoslits with alternately 300nm of analyte and 200nm of diamond
in z-direction, and 6µm × 6µm x-y area taking into account the two nearest layers. The geometric factor is quite
homogeneous, with a standard deviation of < 0.6, and the main deviations origin from the spins on the edges of the
considered (3µm)2 × 300nm volume, while in the center the NV field averages to almost 0.
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Figure 1: The setup of a nanoslit (left) can be used for our protocol, but we need to verify that the magnetic field from
polarized NV centers left and right to the slit does not lead to significant broadening of the analyte two-level systems.
The simulation of the geometric factor (right) shows that the broadening in the indicated plane (similar situation for
the rest of the volume) is smaller than the shifts we want to resolve, in particular for the analyte with some distance to
the NV surface.

This results in a broadening field of the order of 0.25nT , leading to a broadening of the NMR line < 1 ppm.

Backaction on nuclear spins due to NV measurements
The backaction from the measurements on the nuclear spins will decohere the nuclear spins for an infinite number of
measurements, but it has a very limited effect in our case. The signal in equation (1) in the main text is a result of
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measurements after interactions with the effective XY-8 Hamiltonian

Heff =
∑
j

2kj
π
σz ⊗ σ(j)

x (1)

for a time τm, where j denotes the individual nuclear spins, σz (σ(j)
x ) denotes the NV (nuclear) pauli z (x) spin operator

and kj is the perpendicular coupling constant.
It can be shown analytically that the measurements decohere the nuclear spins as

exp
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4k2
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2
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)
for N measurements.

As 1 � (kτm/π)
2 =

∑
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j τ

2
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2 is a condition for the measurement, this interaction is negligible when there

are more nuclear spins involved than measurements done. In addition, spins diffusing in- and outside the detection
volume also limit the effect of this backaction.

Description of the problem in terms of Bayesian statistics

In Bayesian statistics, a model of those aspects of the experiment that are relevant to the detected signal is built,
and within this model parameters are considered as random variables. An estimation problem is then equivalent to
the determination of the distribution of those parameters. For this purpose, the observed data is used to update the
available prior information concerning the model parameters (also called prior or a priori knowledge and typically
provided in the form of a probability distribution) to obtain the a-posteriori information (also known as posterior).

The examined distributions are described by densities p, which represent both the continuous and the discrete case,
and are possibly multi-dimensional. Further let p(·, ·) be a joint and p(·|·) a conditional distribution.

Given that θ = (θ1, ..., θl)
> ∈ Rl is a vector of unknown model parameters and y = (y1, ..., yn)

> ∈ Rn×m are the
data, p(y|θ) is called likelihood of the data. The prior is given by p(θ) and we search for posterior density p(θ|y).
Using Bayes theorem, we can state that

p(θ|y) ∝ p(y|θ) · p(θ), (2)

by neglecting a normalization constant. If not all parameters θi are of interest, we can split them into two groups

θ = (θ>(1),θ
>
(2))
>,θ(1) ∈ Rl1 ,θ(2) ∈ Rl2 , l = l1 + l2 (3)

and one can state a posterior for the marginal density like

p(θ(1)|y) =
∫
Rl2

p(θ|y)dθ(2) =

∫
Rl2

p(θ(1)|θ(2), y)p(θ(2)|y)dθ(2). (4)

Often, a prior is not determined naturally and therefore has to be chosen suitably. This choice can have significant
impact on the performance of the Bayesian inference, especially when the true values are in the margins of the chosen
prior probability distributions.
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Hierarchical Bayesian Models
Hierarchical Bayesian Models depend on special classification or arrangement of the parameters, e.g. θ =
(φ>,ψ>)>,φ ∈ Rk,ψ ∈ Rl−k, such that the distribution of data y gets directly affected by φ, whereas φ depends
on ψ:

p(y,φ,ψ) = p(y|φ,ψ)p(φ|ψ)p(ψ), (5)

where one calls the parameters of the parameters ψ are called hyper parameters. This can of course be extended to
deeper levels of parameter dependency hierarchies.

As the data is just affected indirectly by the hyper parameters, it follows that

p(φ,ψ|y) ∝ p(y|φ,ψ)p(φ,ψ) = p(ψ)p(φ|ψ)p(y|φ). (6)

Therefore there has to be just priors chosen for the hyper parameters on the topmost hierarchy level. To describe the
hierarchical models, which essentially form a graph of random variables, observed values and deterministic operations,
we will further on rely on notation introduced in [8]. This notation gets especially interesting in the context of inference
algorithms or probabilistic programs, which will be explained later and can be mapped directly onto implementation
structure.

Markov Chain Monte Carlo (MCMC)
For a given Bayesian model consisting of likelihood and prior the actual calculation of integrals as in (4) is the essential
problem. For a few limited models an analytical solution of the posterior is possible. Hence in general one has to rely
on numerical methods to calculate the posterior p(θ|y). In a Markov Chain Monte Carlo method, random variables
are iteratively drawn

θ(t) ∈ Rl, t = 1, ..., T (7)

from a density p̃(t)(θ). Every sample just depends on the previous value, which is called the Markov property. The
procedure is designed in such a way that the posterior is the stationary distribution of a Markov chain, i.e.,the distri-
bution p̃(t) of the random numbers converges to the posterior. After a sufficiently long period, a sample approximates
the remaining θ(t) well enough to derive higher statistical moments or do statistical tests on it.

Lets use a simple MCMC algorithm, the so called Metropolis-Hastings-Algorithm as an example. There one first
draws a starting value θ(0) from a start distribution. Depending on that value the further θ(t) values are drawn, which
are distributed due to a proposal distribution p̃(t). The proposal distribution has to be chosen that the support of the
true posterior is completely covered and has roughly the same shape.

Given the values up to θ(t) one can draw a new candidate value θ∗ from p̃(t+1) and accept is as a new value from
the chain with probability

β(θ∗|θ(t)) = min

{
1,

p(θ∗|y) · p̃(t+1)(θ(t)|θ∗)
p(θ(t)|y) · p̃(t+1)(θ∗|θ(t))

}
. (8)

The posterior can be evaluated at the given points, since the normalization constants p(y) in the quotient do cancel.
With the acceptance probability defined one gets

θ(t+1) =

{
θ∗, with probabilityβ
θ(t), with probability(1− β)

. (9)

For details on convergence one can see Gelman et. al. 2014. Practically the performance of the sampling highly
depends on it’s initial starting value [7]. Therefore a maximum a posteriori (MAP) estimate is used as a starting point.
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The step-size and direction are decided according to specific rules of the sampling method, including randomness (the
Monte-Carlo aspect), gradient-seeking and momentum (Hamilton Monte Carlo [3]) for efficiency.

Recently tools for probabilistic programming (PP), automatic differentiation frameworks and advances in MCMC
methods made automatic Bayesian inference on hierarchical models easy to formulate and perform. The tool used in
this work is called PyMC3 [2]. The framework automatically derives a likelihood function for the model and repeats
the sampling and evaluation for a defined upper bound. This reduces implementation effort and makes quick model
changes possible.

Bayesian Parameter Estimation for Spectral Analysis
The above mentioned basic principles and terminology of hierarchical Bayes models and the parameter inference via
MCMC is a starting point for doing spectral analysis. The measured Hypdyne photon count signal y is acquired by
photo detectors. The detection scheme is similar to [4]. On the one hand the detection is extremely lossy, leading
to a very sparse time series of photon counts. On the other hand each NV emits with a finite probability a photon in
both the |↑〉 and |↓〉 state, leading to a just small net difference in detection probability r between (r↑ ≈ 4.0%) and
(r↓ ≈ 2.5%). In the framework of Fourier NMR spectroscopy, this setting leads to quickly decaying SNR.

Under this challenging low SNR conditions, approximating the parameters of an underlying hidden model by
Bayesian inference has shown great benefit in the analysis of various experimental data sources (e.g. in astro- or
particle-physics [6, 5] ). A Maximum likelihood method was applied successfully to a similar problem to recover
central frequencies in [9]. Similar to FFT, the Bayesian method operates on the raw signal vector y without any
preprocessing or reconstruction, but at the same time reducing the required signal to acquire by at least the order of
magnitude. The method relies on a model which captures the hierarchical nature of the underlying oscillation, photon
emission and detection process. This parametric model allows to incorporate prior knowledge of the problem into the
analysis of the sparse signal. In the most simplest case, we analyze signals including a signal frequency.

Inference for a single frequency
By using Bayesian inference NMR, spectroscopy can be interpreted as fitting the distribution of parameters of an
underlying harmonic model. The fit is guided by measured data y and an informed choice of priors of the parameters
ψ. At first we show how inference is done for a signal with spectrum exposing a single peak. In this case the parameter
vectorψ = (g, ω, φ) is simpler than in the case of detecting a frequency shift, which will be shown in the next section.
The hierarchical model used to infer the posteriors of the prior parameters is shown in figure 2. At it’s core, there are
two deterministic transformations. The first approximates the transition probability of an isolated NV-center

p =
1

2
+

1

2
sin(g sin(2πωt+ φ)), (10)

while referencing the hyper parameters. The second relation

P = N(r↓ + (r↑ − r↓)p), (11)

represents the process of measuring the photon emission of N identical NV centers, with given detection probabilities
r↑ and r↓.

With the actual measured values y clamped onto the model, we use MCMC inference to get the posterior distri-
bution of the model’s hyper parameters. If the MCMC algorithm has converged sufficiently well, the samples drawn
approximate the respective posterior distributions of the random variables. The whole procedure can be seen as a
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Figure 2: Hierarchical model for a single peak
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Figure 4: On the left, one can see a density estimate of the random variable ω sampled from the Markov Chain. On
the right, the same data is shown as a so called ”trace”. There the frequency is drawn over the sequence of samples.

stochastic simulation of the experiment and adjustment of the parameters until measured and simulated data is statis-
tically equivalent. Figure 4 depicts the result of this procedure. The more direct view into the method is shown on the
right side, where the value of the random variable ω, which corresponds to the frequency. One can see, that the model
pretty quickly converged to a single value, form which it deviates sometimes, but returns pretty quickly. In the same
figure, on the left side, the same data is aggregated into a density, which shows the approximated posterior distribu-
tion of frequencies ω. Starting from a uniform distribution, this peaked posterior gives a good hint, that the model
approximated pretty well, the underlying, latent frequency of the physical system. In our simulation the groundtruth
frequency ω∗ = 15.1 kHz.

Inference on frequency splitting

In a second step we extend the above model to describe a signal composed of two nearby frequency that exhibit a
small splitting in frequency. The respective model diagram can be found in 3. The transition probability describes a
beating between two (this can be extended to a higher order) frequencies. Therefore it takes the form:

p =
1

2
+

1

2
sin(

1

2
cos(2πω0t+ φ1)(g1 + g2 cos(2πδωt+ φ2 − φ1))−

1

2
g2 sin(2πω0t+ φ1) sin(2πδωt+ φ2 − φ1))

(12)

The inference is also done with an intelligently initialized MCMC algorithm. The posterior parameters are shown in
5. One can see, that there is a pretty good fit to the groundtruth hull frequency ω∗0 = 1.82 kHz the shifted beating
frequency of δω∗ = 7Hz. The true relative weight of (g1/g2)

∗ = 1.4 is still well approximated.

Reconstruction of spectrum from frequency splitting

One has to note, that the inferred posterior parameters in the above described models, are not directly comparable to
the spectra one gets from Fourier analysis on the raw photon count signal. Therefore we combined the information
about ω0, δω and the relative weight (g1/g2) to reproduce a representation of the data comparable to a traditional
power spectral density. The result can be seen in figure 6.

The figure shows the reconstruction result of the Bayesian method. In general the position of the central frequencies
as well as their central frequencies are discovered reasonably well.
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Figure 5: This figure is similar to 4. It shows the trace plots for the envelope frequency ω, the beating frequency δω
and the relative coupling strength g2strength

.

Figure 6: Combined information to make our result comparable to a traditional spectrum. The upper part of the figure
shows the resulting two estimates of the central frequencies by the Bayesian inference process as black lines. The red
vertical lines denote the groundtruth central frequencies. In the height of the estimates are scaled to be proportional
to the inferred relative weight. The groundtruth for this quantity is depicted by the blue horizontal lines. The lower
part of the figure shows, on the same frequency axis the PSD generated by FFT analysis directly on the photon count
signal.
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Simulation parameters
All simulations were performed using a 6.1 nm or 12.2nm deep NV center, with the diffusion coefficient of
10−12m2/s. For the simulation of the toluene molecule, a 12.2 nm deep NV was used with 0.2M concentration
at 0.25 T magnetic field, using XY8-8 sensing sequences for the signal accumulations and a delay time of 64 ns
between the pulses.

At high NV and nitrogen concentrations electronic sources of noise become dominant, namely NV-P1 interactions
and NV-NV interactions. We have verified in experiments that already at the relatively small magnetic fields con-
cidered in this manuscript the XY8-N dynamical decoupling sequences decouple the NV centers from the P1 electron
spins sufficiently, achieving over 30µs of coherence time. This is significantly longer than the XY8-8 sensing time
used in the simulation (τm ∼ 16µs) . Though NV-NV interaction is not decoupled with these sequences, at the pro-
posed concentrations the average distance between adjucent NV centers is around 20nm, resulting in dipolar coupling
gNV−NV < 10 kHz . As τmgNV−NV < 1 the NV-NV interaction will not cause significant decoherence in the mea-
surement time-scale. If necessary, one could always decrease τm further to overcome other noise sources, resulting in
a linear decrease in the SNR, according to Eq. 2 of the main text.
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