
Supplement

GeneSurrounder Analysis of curatedBladderData

In this supplement, we detail the results of applying GeneSurrounder to data from the curatedBladderData
package. The analysis parallels that of the ovarian cancer data described in the main manuscript. We apply
our algorithm to three gene expression data sets of superficial-vs-invasive bladder cancer from the publicly
available and curated collection ‘curatedBladderData’ [1] (Table S1). The three gene expression data sets
and the KEGG network model have 2205 genes in common. After mapping gene symbols in the three bladder
data sets to KEGG identifiers and filtering out genes with missing values in 25% or more of the samples in
any study, 1757 genes remained in common to all three bladder cancer studies.

Disruptive genes found by GeneSurrounder are associated with invasive bladder
cancer

To evaluate GeneSurrounder’s ability to identify biologically relevant genes, we compare our results in all
three bladder cancer studies (Table S2) to existing biological knowledge. Applying GeneSurrounder to the
1757 common genes between studies that were assayed and on the network, we generated three distinct
ranked lists of genes for each study based on the computed pGS

i value. To compare these results to existing
biological knowledge, we consider genes that pass our Bonferroni corrected threshold (at significance level
α = 0.05 and with a diameter of D = 34, our Bonferroni corrected threshold is log10(p) ≥ 2.83).

We used the DOSE R package [2] to analyze the enrichment of these genes with Disease Ontology
(DO) terms [3]. We found that the 379 genes that pass our Bonferroni corrected threshold in at least
one bladder cancer were significantly enriched with the DO term “bladder cancer” (DOID:11054) (p =
1.05 × 10−7), supporting the biological relevance of genes identified by GeneSurrounder. Furthermore, our
method found three genes, C2, ITGAM and VIM, that pass our Bonferroni corrected threshold in all three
studies (Table S2). C2 plays a role in inflammation and removing debris from cells and tissues. ITGAM
plays a role in cell adhesion molecules and transcriptional misregulation in cancer. VIM plays a role in
cell attachment, migration, and signaling and microRNAs in cancer. As we are comparing samples between
superficial-vs-invasive bladder cancer (superficial bladder cancer has not grown into the main muscle layer
of the bladder, whereas invasive bladder has grown into the main muscle layer), the finding of these three
genes from studies of superficial-vs-invasive bladder is sensible and suggests that GeneSurrounder is able to
accurately identify mechanistically relevant genes. A table of the full results is provided as an additional file
[see Additional file 4, Additional file 5, Additional file 6].

GeneSurrounder results represent a true integration of pathway and expression
data

The method that we have developed combines gene expression data with an independent network model. To
investigate whether our results are driven solely by either the network or the expression data or represent
a true integration of biological knowledge (the pathway networks) and experimental data, we consider the
association between our results, the centrality, and the differential expression for each gene. If the results
were driven solely by the network, the evidence a gene is a disruptive gene would correlate strongly with its
centrality in the network. We therefore calculate the correlation between our results and two different mea-
sures of centrality. If the results were driven solely by the expression data, the evidence a gene is a disruptive
gene would correlate strongly with its differential expression We therefore calculate the correlation between
our results and the differential expression for each of the studies. The results are given in Table S3. We find
that for each of the studies, the correlations are small (at most +0.101), confirming that GeneSurrounder
is not driven solely by network features or the expression data, but rather represents a true integration of
biological knowledge (the pathway networks) with experimental data.



GeneSurrounder findings are more concordant than differential expression anal-
ysis

The intuition underlying evaluating cross-study concordance is that methods that detect true biological
signals should find them across different data sets measuring the same conditions. To investigate the cross-
study concordance of our analysis technique (i.e. its consistency across different data sets measuring the
same conditions), we consider each pair of the three studies and calculate the correlation between our
results. As a point of reference, we also calculate the correlation between the gene level statistics obtained
using the customary t-test for differential expression. The results are given in Table S4. As mentioned earlier,
methods that do not take into account systems-level information tend to have poor agreement between studies
because the individual genes contributing to disease-associated mechanisms can vary from one study to the
next. Indeed, we find that the cross-study concordance of differential expression results is remarkably low
(Table S4). By contrast our method is more consistent than differential expression analysis. This cross–study
concordance suggests that our method reliably detects biological effects reproducibly across studies.

GeneSurrounder findings are more concordant than LEAN

We also compare GeneSurrounder to LEAN, a recent method that also attempts to integrate gene expression
and network data to identify significant genes. In contrast to our method, LEAN considers only the immediate
neighborhood (i.e. at a radius of one) and assesses the enrichment of significant genes. To compare the
performance of our analysis technique to LEAN, we compare their respective cross-study concordances. To
ensure comparability between our method and LEAN, we use the same network and expression data for
inputs to LEAN that we used for GeneSurrounder. Again, we consider each pair of the three studies and
calculate the correlation between our results and the correlation between results of LEAN [4] (which is
available as an R package on CRAN). The results are given in Table S4. We found that GeneSurrounder is
more consistent than LEAN. That is, the list of “disruptive” genes detected by GeneSurrounder are more
reproducible across studies than both differentially expressed genes and the results from LEAN.

Tables

GEO Accession No. N(superficial) N(invasive)

GSE13507 103 62
GSE19915.GPL5186 38 41
GSE32894 213 93

Table S1: Bladder cancer datasets used in this study: Comparisons were made between superficial and
invasive bladder cancer using public data. Superficial bladder cancer has not grown into the main muscle
layer of the bladder and invasive bladder cancer has grown into the main muscle layer of the bladder. Sample
sizes for each group in each dataset are given. (GSE19915.GPL5186 originally had 43 superficial samples
and 45 invasive samples, but samples with missing data for 25% or more of the genes were filtered out.) The
data are publicly accessible and available as part of the curatedBladderData package [1] .
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Gene GSE13507 GSE32894 GSE19915.GPL5186

C2 2.994 3.864 2.859
ITGAM 2.859 3.452 3.154
VIM 3.314 3.019 3.944

Table S2: “Disruptive” disease genes in bladder cancer consistently found by GeneSurrounder:
At a threshold of p = 0.05 and with a diameter of D = 34, the Bonferroni corrected threshold is − log10(p) ≥
2.83. Listed are the genes that pass this threshold in all three studies.

Network/Gene Statistic GSE13507 GSE31684 GSE19915.GPL5186

Degree Cor. +0.070 +0.089 +0.045
Betweenness Cor. +0.038 +0.038 +0.036
pDE Cor. +0.101 −0.033 +0.096

Table S3: Correlation between GeneSurrounder results and network/gene statistics: The three
columns are the rank correlation between GeneSurrounder results (pGS) and network/gene statistics (Degree,
Betweenness, and pDE) across all genes in each dataset. The Degree and Betweenness are two different
network centrality measures. The Degree is the number of connections a node has and the Betweenness is
the fraction of shortest paths that passes through the node. pDE is the p-value obtained from a standard
differential expression t-test.

Bladder Cancer Study Pair pGS Cor. pDE Cor. pLEAN Cor.

GSE13507 - GSE32894 +0.276 −0.045 +0.023
GSE13507 - GSE19915.GPL5186 +0.206 +0.058 +0.154
GSE32894 - GSE19915.GPL5186 +0.296 +0.016 −0.076

Table S4: Cross study concordance of GeneSurrounder results compared to differential expres-
sion analysis and LEAN: The columns pGS Cor., pDE Cor., and pLEAN Cor. are the Spearman rank
correlations respectively between the results obtained from GeneSurrounder, differential expression analysis,
and LEAN for each study pair.
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