

Supplemental material

Manieri et al., https://doi.org/10.1084/jem.20181288

Figure S1. Adiponectin quantification and specificity of gender differences in HCC. (a) Circulating levels of adiponectin were measured in 11–12-wk-old female and male mice. Data are normalized to male mice and shown as means \pm SEM; ***, P < 0.001; Student's *t* test; *n* = 6. (b) Representative allografts and tumor volume quantification in WT male and female mice during the experiment and at sacrifice 3 wk after subcutaneous injection with 5 × 10⁵ MC-38 cells (colon adenocarcinoma–derived cells) in each flank. Data are shown as means \pm SEM; nonsignificant differences were found; two-way ANOVA coupled with Bonferroni's multiple comparisons test (allograft growth); Student's *t* test (allograft volume); *n* = 20 tumors (10 mice per genotype). Bar, 1 cm. (c) Representative allografts and tumor volume quantification in WT male and female mice during the experiment and at sacrifice 2 wk after subcutaneous injection with 5 × 10⁵ B16-F10 cells (melanoma-derived cells) in each flank. Data are shown as means \pm SEM; nonsignificant differences were found; two-way ANOVA coupled with Bonferroni's multiple comparisons test (allograft growth); Student's *t* test (allograft volume); *n* = 20 tumors (10 mice per genotype). Bar, 1 cm. (c) Representative allografts and tumor volume quantification in WT male and female mice during the experiment and at sacrifice 2 wk after subcutaneous injection with 5 × 10⁵ B16-F10 cells (melanoma-derived cells) in each flank. Data are shown as means \pm SEM; nonsignificant differences were found; two-way ANOVA coupled with Bonferroni's multiple comparisons test (allograft growth); Student's *t* test (allograft volume); WT male *n* = 18 tumors (10 mice); WT female *n* = 14 tumors (7 mice). Bar, 1 cm.

Figure S2. **Analysis of adiponectin receptors expression and their role in tumor growth. (a)** qRT-PCR analysis of adiponectin receptors 1 and 2 (*AdipoR1* and *AdipoR2*) in Hep53.4, MC-38, or B16-F10 tumor cells. mRNA expression was normalized to the amount of *Gapdh* mRNA in each sample. Data are normalized to Hep53.4 cells and shown as means \pm SEM; **, P < 0.01; ***, P < 0.001; one-way ANOVA coupled with Bonferroni's multiple comparisons test; *n* = 4. **(b)** qRT-PCR analysis of *AdipoR1* and *AdipoR2* in different liver cell populations. mRNA expression was normalized to the amount of *Gapdh* mRNA in each sample. Data are normalized to hepatocytes and shown as means \pm SEM; *, P < 0.05; ***, P < 0.001; one-way ANOVA coupled with Bonferroni's multiple comparisons test; *n* = 4. **(c)** qRT-PCR analysis of *AdipoR1* and *AdipoR2* in healthy hepatocytes and hepatocytes derived from hepatic tumors of C57BL/6J mice treated with DEN at P14 and 300 µg/liter TAA administered in the drinking water for 26 wk. mRNA expression was normalized to the amount of *Gapdh* mRNA in each sample. Data are normalized to healthy hepatocytes and shown as means \pm SEM; *, P < 0.05; **, P < 0.01; Student's t test with Welch's correction; healthy hepatocytes *n* = 6; tumor hepatocytes *n* = 6-8. **(d)** qRT-PCR analysis of *AdipoR1* in Hep53.4 treated with a shRNA against AdipoR2) or a scrambled control sequence, and analysis of *AdipoR2* in Hep53.4 cells treated with a shRNA against AdipoR2) or a scrambled control sequence. mRNA expression was normalized to the amount of *Gapdh* mRNA in each sample. Data are normalized to shScramble cells and shown as means \pm SEM; *, P < 0.01; Student's t test with Welch's correction; healthy hepatocytes *n* = 6; tumor hepatocytes *n* = 6-8. **(d)** qRT-PCR analysis of *AdipoR1* in Hep53.4 cells treated with a shRNA against AdipoR2) or a scrambled control sequence. mRNA expression was normalized to the amount of *Gapdh* mRNA in each sample. Data are normalized to shScramble cells and shown as means \pm

Manieri et al. HCC gender differences are driven by adiponectin

Figure S3. Adiponectin quantification and overexpression in mice and effect of adiponectin deficiency in female mice. (a and b) 6–7-wk-old WT male mice were injected with adeno-associated virus carrying a control sequence (WT male + AAV aP2 CTRL) or the adiponectin gene under control of the aP2 promoter (WT male + AAV aP2 Adipoq) at P1 and received an i.p. DEN injection (50 mg/kg body weight) 14 d later. AAV, adeno-associated virus; CTRL, control. (a) Quantification of circulating levels of adiponectin 3 wk after virus injection. Data are shown as means \pm SEM; **, P < 0.01; Student's *t* test with Welch's correction; WT male + AAV aP2 CTRL *n* = 7; WT male + AAV aP2 Adipoq *n* = 8. (b) Quantification of circulating levels of adiponectin 8.5 mo after virus injection. Data are shown as means \pm SEM; ***, P < 0.001; Student's *t* test; WT male + AAV aP2 CTRL *n* = 12; WT male + AAV aP2 Adipoq *n* = 13. (c) HCC development 8 mo after i.p. injection with DEN (50 mg/kg) on P14 in WT and Adipoq^{-/-} female mice. Bar, 1 cm. (d) Tumor number was determined at sacrifice. Data are shown as means \pm SEM; Student's *t* test with Welch's correction; WT female *n* = 19; Adipoq^{-/-} female *n* = 21.

se JEM

Figure S5. **Deletion of JNK1, cytokines levels in F^{WT} and F^{KO} mice, and adiponectin protection through AMPKα and p38α activation. (a)** Control (F^{WT}) and adipose tissue JNK1-deficient (F^{KO}) mice were sacrificed at 10 wk, and different tissues were extracted and analyzed by immunoblotting. Tissues from *Jnk1^{-/-}* mice were used as a control. EP, epididymal; SC, subcutaneous. Vinculin protein expression was monitored as a loading control. (b) Circulating levels of adiponectin were measured in control (F^{WT}) and adipose tissue JNK1-deficient (F^{KO}) mice. Data are normalized to F^{WT} adiponectin levels and are shown as means ± SEM; ***, P < 0.001; Student's t test; F^{WT} *n* = 11; F^{KO} *n* = 9. (c) Control (F^{WT}) and adipose tissue JNK1-deficient (F^{KO}) mice were injected i.p. with DEN (50 mg/kg) on P14. Serum was analyzed after 8 mo on a Luminex platform to measure the levels of TNFα, IL-1β, and IL-6 adipokines. Data are shown as means ± SEM; nonsignificant differences were found (ns); Student's *t* test; *n* = 20–30. (d and e) F^{WT} and F^{KO} mice were injected i.p. with DEN (50 mg/kg) or saline (CTRL) on P14. (d) Immunoblot analysis of phospho-AMPKα, AMPKα and vinculin in livers obtained 15 d after DEN injection. (e) Immunoblot analysis of phospho-p38a, p38a, and vinculin in livers obtained 1 mo after DEN injection.

Table S1. Characteristics of women and men

Variable	Women (n = 9)	Men (n = 10)	P value	
Age (yr)	49.7 (14.3)	58.1 (14.3)	0.278	
Hypertension (n)	1 (11.1)	2 (20)	0.542	
Diabetes mellitus (n)	0	0	-	
BMI (kg/m²)	25.8 (3.5)	26.8 (4.5)	0.905	
Fasting blood sugar (mg/dl)	86.1 (12.8)	99 (10.5)	0.046	
AST (IU/liter)	24.3 (12.9)	21.1 (5.1)	0.798	
ALT (IU/liter)	32.5 (32.2)	30.3 (20.7)	0.878	
Alkaline phosphatase (IU/liter)	77.4 (21.4)	95.3 (35.3)	0.536	
Bilirubin (mg/dl)	0.5 (0.3)	0.9 (0.5)	0.059	
Albumin (mg/dl)	4.5 (0.3)	4.5 (0.6)	0.607	
Total cholesterol (mg/dl)	205.9 (50)	189.9 (47.9)	0.383	
Triglycerides (mg/dl)	118.7 (67.5)	116 (49.7)	0.902	
LDL-cholesterol (mg/dl)	121.7 (44.5)	123.7 (43.7)	0.945	
HDL-cholesterol (mg/dl)	62.1 (14.6)	42.9 (12.7)	0.035	
Adiponectin (µg/ml)	19.69 (2.663)	14.18 (3.620)	0.0016	

Variables are presented as mean (SD) or absolute frequency (%) and are compared by means of Mann–Whitney *U* test or χ^2 test. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

Table S2. **qRT-PCR primers**

Gene	Forward primer (5′→3′)	Reverse primer (5′→3′)
AdipoR1	AATGGGGCTCCTTCTGGTAAC	GGATGACTCTCCAACGTCCCT
AdipoR2	GGCCCATCATGCTATGGAAC	GTGAGGGATCACTCGCCATC
Gapdh	TGAAGCAGGCATCTGAGGG	CGAAGGTGGAAGAGTGGGA

Table S3. Solutions for hepatic perfusion

Solution (ml)	Α	В	с	D
SC-1	100	-	-	-
SC-2	-	100	100	100
DNAse I (stock solution)	-	-	-	1 ^a
Collagenase D (mg)	-	-	110	80
Pronase E (mg)	-	40	-	50

^aDNase I stock solution: 2 mg/ml in GBSS-B.

Table S4. Stock solutions for hepatic cell isolation

Stock solution (mg)	SC1	SC2	GBSS-A	GBSS-B
EGTA	95	-	-	-
Glucose	450	-	495.5	495.5
HEPES	1,190	1,190	-	-
КСl	200	200	185	185
Na ₂ HPO ₄ ·2H ₂ O	75.5	75.5	37.5	37.5
NaCl	4,000	4,000	-	4,000
$NaH_2PO_4 \cdot H_2O$	39	39	-	-
NaHCO ₃	175	175	113.5	113.5
Phenol Red	3	3	3	3
CaCl ₂ ·2H ₂ O	-	280	112.5	112.5
KH ₂ PO ₄	-	-	15	15
MgCl ₂ ·6H ₂ O	-	-	105	105
MgSO ₄ ·7H ₂ O	-	-	35	35
H ₂ O to (ml)	500	500	500	500

For the density gradient medium, the following solutions were prepared before starting the perfusion of the liver: Nycodenz 1: 5.18 g/total volume 15 ml GBSS-A; Nycodenz 2: 3.63 g/total volume 25 ml GBSS-A.