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Abstract: 

Background: Identifying caseness in primary care electronic medical 
records (EMR) is important for surveillance, research, quality improvement 
and clinical care. We aimed to develop and validate a case definition for 
type 1 diabetes using artificial intelligence machine learning methods.  

Methods: EMR data from the Canadian Primary Care Sentinel Surveillance 
Network (CPCSSN) in Alberta were used from 2008-2016. Patients who 
were identified as having diabetes mellitus  according to the existing 
CPCSSN case definition were selected and their family physician was asked 
to confirm diabetes subtype, forming the reference standard. We then 
applied machine learning to identify variables that correctly distinguish 
between type 1 and 2 cases.  
Results: After excluding non-diabetes patients, a total of 1309 people with 
diabetes were used; 110 of these were confirmed as type 1 by physicians. 
Two machine learning algorithms were found to be useful: 1) definition 
consisting of “type 1” text words or age <30 years with sensitivity 52.3% 
(95% CI 42.6, 61.7), specificity 99.3% (95% CI 98.7, 99.7), PPV 87.9% 

(95% CI 77.0, 94.3), NPV 95.8% (95% CI 94.5, 96.8); 2) definition 
consisting of combinations of medications, endocrinology-specific referrals, 
and age criteria with sensitivity 79.3% (95% CI 70.3, 86.2), specificity 
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89.4% (95% CI 87.5, 91.1), PPV 40.7% (95% CI 34.2, 47.6), NPV 88.6% 
(95% CI 86.7, 90.2).  
Interpretation: The first algorithm may be useful for cohort creation and 
disease registry development given its high PPV. The second algorithm 
may be more appropriate for public health surveillance and epidemiology, 
having better sensitivity and reasonably high specificity. 
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Abstract 
Background: Identifying caseness in primary care electronic medical records (EMR) is 

important for surveillance, research, quality improvement and clinical care. We aimed to develop 

and validate a case definition for type 1 diabetes using artificial intelligence machine learning 

methods. 

Methods: EMR data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) 

in Alberta were used from 2008-2016. Patients who were identified as having diabetes mellitus  

according to the existing CPCSSN case definition were selected and their family physician was 

asked to confirm diabetes subtype, forming the reference standard. We then applied machine 

learning to identify variables that correctly distinguish between type 1 and type 2 diabetes cases.  

Results: After excluding those without diabetes from the study, a total of 1309 people with 

diabetes were used; 110 of these were confirmed as type 1 by physicians. Two machine learning 

algorithms were found to be useful: 1) definition consisting of “type 1” text words or age <30 

years with sensitivity 52.3% (95% CI 42.6, 61.7), specificity 99.3% (95% CI 98.7, 99.7), PPV 

87.9% (95% CI 77.0, 94.3), NPV 95.8% (95% CI 94.5, 96.8); 2) definition consisting of 

combinations of medications, endocrinology-specific referrals, and age criteria with sensitivity 

79.3% (95% CI 70.3, 86.2), specificity 89.4% (95% CI 87.5, 91.1), PPV 40.7% (95% CI 34.2, 

47.6), NPV 88.6% (95% CI 86.7, 90.2). 

Interpretation: The first algorithm may be useful for cohort creation and disease registry 

development given its high PPV. The second algorithm may be more appropriate for public 

health surveillance and epidemiology, having better sensitivity and reasonably high specificity. 
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Introduction 

The use of large clinical datasets coupled with high performance computing and advanced 

analytics offers significant potential for understanding disease distribution in the community, 

effective management, risk and prevention, at levels of statistical precision that smaller datasets 

cannot achieve. Diabetes had an Ontario prevalence of 8.8% and an annual incidence of 8.2 per 

1000 in 2007 [1]. More recently the Public Health Agency of Canada reported an age adjusted, 

overall population prevalence of 7.8% in 2013/4 [2], while Diabetes Canada [3] report an 

estimated 9.3% in 2015. But these rates aggregate all forms of diabetes, and importantly do not 

differentiate between type 1 and type 2 diabetes. The management of diabetes in Canada, 

including of type 1, has shifted to a more interdisciplinary, team-based, integrated approach 

based on implementation of the Chronic Care Model [4]. Therefore, developing a valid case 

definition for type 1 diabetes using primary care data is important and timely. 

 

Existing validated case definitions for diabetes include those developed by Clottey et al [5], Hux 

et al [6], Amed et al  [7] and Guttmann et al [8]. A recent systematic review [9] identified 16 

studies which utilized International Classification of Diseases (ICD) - coded data to derive 

validated case definitions for diabetes in adults using administrative data sources. None are able 

to differentiate between type 1 and type 2. We sought to generate and validate a case definition 

for type 1 diabetes using routinely collected clinical and demographic data derived from primary 

care EMRs. This approach eliminates the requirement for costly and delayed linkage to 

administrative data or other sources. The Canadian Primary Care Sentinel Surveillance Network 

(CPCSSN) extracts, transforms, cleans and codes the data into a standardized data model and 

makes the processed data available for research, surveillance, quality improvement and panel 

management [10]. Previously, CPCSSN developed a definition for undifferentiated diabetes that 

demonstrates excellent accuracy (95.3% sensitivity and 97.1% specificity) [11]. This study 

builds on that CPCSSN definition by identifying patients by type using artificial intelligence 

machine learning. This is a data-oriented method designed to find patterns or generate predictive 

models using large and complex datasets to identify the most accurate case definition within the 

data. [12] 

 

Methods 
 

Data source and reference standard 
CPCSSN extracts de-identified clinical data from the EMR systems of around 1500 sentinel 

family physicians, nurse practitioners and community pediatricians, who contribute data for 

approximately 1.8 million patients in seven provinces and one territory across Canada. CPCSSN 

extracts, transforms, cleans and codes the data into a standardized data model and makes the 

processed data available for research, surveillance, quality improvement and panel management. 

These data include patient demographics, diagnoses, prescribed medications, laboratory results, 

physical measurement (i.e. weight, blood pressure), medical procedures, behavioural risk factors, 

physician billing, allergies, vaccinations, and referrals.  

 

Data from one of CPCSSN’s participating practice-based research networks, the Southern 

Alberta Primary Care Research Network, extracted on December 31, 2016 and derived from the 
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period 2008-2016 inclusive, were used. A cohort of 1399 patients of all ages, believed to have 

diabetes, was identified using the current CPCSSN case definition. Family physicians who 

agreed to participate in this study were able to re-identify the CPCSSN-defined diabetes patients 

in their own practice EMR system and were asked first to confirm that the patient had diabetes 

and then to determine whether the patient had type 1, type 2, another diabetes subtype or no 

diabetes, based on their clinical expertise and any supporting evidence they chose to make use 

of. This list of physician-confirmed diabetes cases along with their diabetes subtype (type 1, 2 or 

other) constituted the reference standard for the analysis. 

 

Machine Learning 
This study employed “supervised machine learning” to combine the large, complex, multi-

variable CPCSSN dataset with the reference standard (physician confirmed diabetes subtype) to 

“learn” the clinical characteristics (called ‘features’) that differentiated those with type 1 diabetes 

mellitus from those with other subtypes of the disease.  

 

Feature Selection 
All plausibly relevant variables within the CPCSSN data were selected and defined as binary 

outcomes before the machine learning processing occurred. In our study, features were selected 

using information from various parts of the patient chart: age, sex, physician billing, current and 

historical diagnoses, referrals, and prescribed medication. Diagnoses in Canadian primary care 

are generally coded using the International Classification of Diseases version 9 (ICD-9). 

Therefore, every unique ICD-9 code present in the EMR database was considered as a feature. 

Special consideration was also given to two instances of a code within one year, and two within 

two years. A similar approach was used for all coded information in the EMR database. Any 

diagnoses, referrals, and medications that were recorded as free text were included using a 

simple bag-of-words approach. This creates a binary indicator for each unique word that appears 

in any free text field within the CPCSSN database. Similarly, non-case sensitive wildcard 

searches for keywords and phrases related to diabetes status were added. These were the 

following phrases: “type 1”, “insulin-dependent”, “t1dm”, "type 2","type I ","type II", "insulin 

dependent", "insulin dep","tIdm","tIIdm", "non-insulin dependent" and "type 1 insulin 

dependent". The following combinations were also included as features: "type 1+ insulin 

dependent+ insulin dep+ type 1 insulin dependent", and "type I+ tIdm". 

 

For each prescribed medication recorded in the EMR, CPCSSN assigns codes from the 

Anatomical Therapeutic Chemical (ATC) classification system (WHO, 2018))[13]. Each unique 

ATC code appearing in the medication table was included as a feature, including truncated codes 

to identify families of drugs rather than individual ones. The frequency of ATC codes was also 

assessed, particularly whether two instances of the same code were used within one year, and 

two within two years. 

 

Laboratory values were also included. The diabetes-related tests available in the CPCSSN data 

are hemoglobin A1c and fasting plasma glucose measures. Binary indicators were created for 

whether or not a patient had certain laboratory values over ranges of thresholds (e.g., HbA1c 

>6.3%, 6.4%, 6.5%, 6.6%, etc.).  
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Age was included as a variable because 53% of type 1 cases are diagnosed before the age of 30 

years, with a peak around 14 years. Recent evidence suggests that the remaining 47% of type 1 

cases are diagnosed between ages 30 and 60y [14], [15]. We included each age-year between 18 

and 50 inclusive as candidate features.  

 

Algorithms 
 

Machine learning feature selection algorithms used in this analysis include the C5.0 decision tree 

[16], the Classification and Regression Tree (CaRT) decision tree [17,18], the Chi-Squared 

Automated Interaction Detection (CHAID) decision tree [19, 20], and Least Absolute Shrinkage 

and Selection Operator (LASSO) logistic regression [21,22]. These algorithms are commonly 

used in machine learning settings and were selected for their ability to generate human-readable 

rule sets that can be used as case definitions [12].  

 

 

Statistical Analysis 
 

Each of the machine learning algorithms have tuning parameters that can be manipulated to 

control the complexity and size of the final case definition. Tuning parameters were selected 

using a bootstrap method. A random sample with replacement of the study population was taken 

for a range of possible tuning parameter values. These were repeated 30 times per tuning 

parameter value, until it could be determined which tuning parameter values optimized the 

accuracy metrics. Specifically, the misclassification rate, the F1 Score, G-Mean, and the 

unweighted mean of sensitivity and specificity (known as the 'naïve mean') were all investigated. 

The F1 score is defined as 

 

�1 = 	
����	
	�	
�	 × 	���
����	
	�	
� + ���

 

And the G-mean is defined as  

�-���� = 	�����	
	�	
� × ��� 
 

Once the tuning parameters were selected, 10-fold cross validation was used to determine the 

validity estimates [23]. This was done by splitting the study population into 10 segments or 

“folds”. The training of the model is conducted on 9 of them, and testing is performed on the 

remaining fold. This was repeated 10 times, such that each fold was used once for testing. After 

the validity estimates were determined, the model was fitted on the entire study population to get 

the final case definition. All statistical analysis was conducted using R Statistical Software 

version 3.3.1 [24]. 

 

Results 
Of the 1399 total sample of CPCSSN diabetes patients, 1309 individuals were confirmed with 

the disease and were included in the analysis. Ninety (6.4%) were excluded for a variety of 

reasons, including being (on investigation) misclassified as having type 1 by their family 

physician, identified as not having diabetes at all, being deceased or no longer active in a 
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physician's panel, having gestational diabetes or a relatively rare diabetes subtype (e.g. latent 

autoimmune diabetes of adults (LADA), mature onset diabetes of the young (MODY), etc.). This 

resulted in confirmation of 1199 people with type 2 diabetes (91.6%) and 110 people with type 1 

(8.4%). 

 

Table 1 describes the demographic and clinical characteristics of the 1309 individuals with type 

1 or type 2 diabetes. Type 1 patients were younger and included more females. People with type 

1 diabetes had substantially more insulin prescriptions, both issued in the past year (27.3% vs 

6.3%) and at any time (75.7% vs 12.9%).  

 

The 10-fold cross validation results are presented in table 2. Generally, sensitivities were found 

to range from 40% to 55%, and specificities from 97-99%. Due to the low prevalence of type 1 

diabetes, the natural inclination of the machine learning algorithms is to achieve high specificity 

at the expense of sensitivity. However, the set of algorithms minimizing the naïve mean of 

sensitivity and specificity show much higher sensitivities for the C5.0 and CaRT decision trees. 

Here the sensitivities are 81.1% and 79.3%, and the specificities are 87.9% and 89.4%. These 

approaches have a tuning parameter that allows a user to weight false negatives higher than false 

positives, thereby producing a case definition with a higher sensitivity. 

 

Table 3 shows the final case definitions for two notable models from the 10-fold cross validation 

results. The first is the CaRT case definition which minimizes the misclassification rate. This is a 

simple case definition with high specificity (99.3%), very modest sensitivity (52.3%), but good 

positive and negative predictive values (87.9%, 95.8% respectively).  

 

The second case definition in table 3 is the CaRT implementation maximizing the naïve mean. 

This has good sensitivity (79.3%), specificity (89.4%) and negative predictive value (97.9%) but 

poor positive predictive value (40.7%). This case definition includes as a feature the presence of 

the text “metabolism” in the referral table. This feature appears when a patient is referred to an 

“Endocrinology & Metabolism” specialist.  

Interpretation 
 

We have shown that machine learning methods can be used to create interpretable case 

definitions that distinguish between type 1 and type 2 diabetes in CPCSSN processed primary 

care EMR data. Although we found no single case definition that boasts high sensitivity, 

specificity and predictive values, we judge that two useful case definitions have been 

demonstrated here. The first (table 3) adopts the CaRT implementation minimizing 

misclassification. This is a simple case definition that has high positive and negative predictive 

values. High predictive values are ideal for cohort creation in observational studies, and for other 

screening purposes because patients for whom there is a strong probability of having the 

condition of interest are identified with high accuracy. The second adopts the CaRT approach 

maximizing the naive mean and has good sensitivity and specificity (79.3% and 89.4% 

respectively). This case definition is useful for epidemiologic and surveillance purposes, such as 

examining population level temporal trends of incidence and prevalence.  
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Clottey et al [5] developed a case definition for undifferentiated diabetes consisting of at least 

one of the following criteria: at least two physician billing claims within a two-year period or one 

hospitalization with an ICD code for diabetes. Hux et al [6] generated two definitions including 

one or two claims and a hospital admission. In British Columbia, Amed and colleagues [7] 

developed two additional definitions intended for use in children and adolescents. The first 

consists of one hospitalization, two physician billing claims in a single year, and combinations of 

insulin or oral anti-diabetic medications. The second consists of four billing codes over two 

years. Guttmann and colleagues [8] developed a definition for pediatric diabetes using claims 

data exclusively, concluding that four physician billing claims using ICD-9 250.X in a two-year 

period provided optimal sensitivity and specificity. Each study included in the recent systematic 

review by Khokhar et al [9] used physician claims either alone or in combination with hospital 

discharge data. Physician billing is not necessarily an accurate reflection of the content of a given 

encounter. Wyse [25] identified a 15% under-reporting of polypectomy validated against clinical 

records. Mujaharine et al [26] identified similar misclassification rates for hypertension. Hux et 

al [6] reported positive predictive values for their case definitions ranging from 0.61 to 0.80 

indicating substantial misclassification of diabetes compared to chart review. Hence the ability of 

our study to exploit the usefulness of data other than hospital admission and physician claims in 

determining caseness, to create case definitions which, together, maximize sensitivity and 

specificity as well as positive and negative predictive values, and to present case definition 

validation metrics in support of the differentiation between type 1 and type 2 diabetes are 

significant achievements. 

 

Limitations to our study include a fairly small number of confirmed type 1 diabetes cases (n = 

110). We believe the under-recording of insulin prescription for patients confirmed as Type 1 

derives from their receiving most of their diabetes-specific care from their endocrinologist or 

other diabetes specialist in an outpatient clinic setting. These transactions are usually not 

subsequently recorded in primary care EMRs as well. Future research on a larger sample would 

result in more stable validity results and feature selection. The validity measures should also be 

interpreted with caution, as our diabetes cohort was selected from patients meeting the 

previously validated case definition for diabetes and are conditional upon CPCSSN-processed 

data, criteria and the validity of that definition. Further study is required to determine the 

validation metrics of case definitions for type 1 diabetes mellitus in non-CPCSSN EMR data. 

Despite these limitations, this study has resulted for the first time in the development and 

validation of usable case definitions about patients with type 1 diabetes in primary care settings 

using routinely collected primary care EMR data which has undergone CPCSSN processing.  

 

In conclusion, we have developed and validated two case definitions using machine learning that 

achieve different goals in distinguishing between type 1 and type 2 diabetes in CPCSSN data. 

One case definition is suited for screening and cohort development, with high positive and 

negative predictive values. The other is suited for epidemiological purposes, having a reasonable 

balance between sensitivity and specificity. Further validation and testing using a larger and 

more diverse sample are recommended. 
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Table 1: Demographic and relevant clinical features comparing type 1 and type 2 patients from 

this sample. Confidence intervals for proportions are exact. 

Feature Type 2 Diabetes 

(n=1,199) 

Type 1 Diabetes 

(n=110) 

Total (n=1309) 

Sex [% male (95% CI)]  53.5 (50.6, 56.3) 

 

47.3 (37.7, 57) 

 

52.9 (50.2, 55.7) 

 

Age [mean (95% CI)] 64.6 (63.9, 65.3) 

 

46 (42.8, 49.2) 

 

63 (62.3, 63.8) 

 

# Encounters in past year 

[Median (Q1, Q3)] 

5 (2, 8) 4 (1, 6) 5 (2, 8) 

# HbA1c tests in past year 

[Median (Q1, Q3)] 

1 (1, 1) 

 

1 (0, 1) 

 

1 (1, 1) 

 

Insulin Prescription in past year 

(A10AB) [% (95% CI)] 

6.3 (5, 7.8) 

 

27.3 (19.2, 36.6) 

 

8 (6.6, 9.6) 

 

Insulin at any time 12.9 (11.1, 14.9) 

 

75.7 (66.6, 83.3) 

 

18.2 (16.1, 20.4) 

 

Anti-Hyperglycemic Drugs 

(excluding Insulin) in past year 

(A10B) [% (95% CI)] 

44.5 (41.6, 47.3) 

 

12.7 (7.1, 20.4) 

 

41.8 (39.1, 44.5) 

 

Anti-Hyperglycemic Drugs 

(excluding Insulin) at any time 

71.2 (68.6, 73.8) 

 

26.1 (18.2, 35.3) 

 

67.4 (64.8, 70) 

 

Occurrence of “type 1” in any 

text field 

0.7 (0.3, 1.3) 

 

40.5 (31.3, 50.3) 

 

4 (3, 5.2) 
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Table 2: 10-fold cross validation results for each of the four machine learning algorithms, 

minimizing/maximizing different metrics. The misclassification rate is minimized, while the G-

Mean, F1 Score, and Naïve mean were maximized. 

 

 

 

 

 

Metric Method Sensitivity Specificity PPV NPV Accuracy 

M
iscla

ssifica
tio

n
 R

a
te

 

C5.0 49.6 (40.0, 59.1) 99.3 (98.5, 99.6) 85.9 (74.5, 93.0) 95.5 (94.2, 96.6) 95.1 (93.7, 96.2) 

CaRT 52.3 (42.6, 61.7) 99.3 (98.7, 99.7) 87.9 (77.0, 94.3) 95.8 (94.5, 96.8) 95.4 (94.1, 96.4) 

CHAID 51.4 (41.7, 60.9) 99.3 (98.7, 99.7) 87.7 (76.6, 94.2) 95.7 (94.4, 96.7) 95.3 (94.0, 96.4) 

LASSO 40.5 (31.5, 50.3) 99.3 (98.7, 99.7) 84.9 (71.9, 92.8) 94.8 (93.4, 95.9) 94.4 (93.0, 95.6) 

G
-M

e
a

n
 

C5.0 46.9 (37.4, 56.5)  99.1 (98.3, 99.5)  82.5 (70.5, 90.6)  95.3 (94.0, 96.4)  94.7 (93.3, 95.8) 

 

CaRT 52.3 (42.6, 61.7) 

 

99.3 (98.7, 99.7) 

 

87.9 (77.0, 94.3) 

 

95.8 (94.5, 96.8) 

 

95.4 (94.1, 96.4) 

 

CHAID 50.5 (40.9, 60.0) 99.3 (98.7, 99.7)  87.5 (76.3, 94.1) 95.6 (94.3, 96.7)  95.2 (93.9, 96.3)  

LASSO 40.5 (31.5, 50.3) 

 

99.3 (98.7, 99.7) 

 

84.9 (71.9, 92.8) 

 

94.8 (93.4, 95.9) 

 

94.4 (93.0, 95.6) 

 

F
1

-S
co

re
 

C5.0 54.1 (44.4, 63.5) 

 

97.4 (96.3, 98.2) 

 

65.9 (55.2, 75.3) 

 

95.9 (94.5, 96.9) 

 

93.8 (92.3, 95.0) 

 

CaRT 52.3 (42.6,61.7) 

 

99.3 (98.7, 99.7) 

 

87.9 (77.0, 94.3) 

 

95,8 (94.5, 96.8) 

 

95.4 (94.1, 96.4) 

 

CHAID 53.2 (43.5,62.6) 

 

99.0 (98.2, 99.5) 

 

83.1 (71.9, 90.6) 

 

95.8 (94.5, 96.9) 

 

95.2 (93.8, 96.2) 

 

LASSO 40.5 (31.5, 50.3) 

 

99.3 (98.7, 99.7) 

 

84.9 (71.9, 92.8) 

 

94.8 (93.4, 95.9) 

 

94.4 (93.0, 95.6) 

 

N
a

ïv
e

 M
e

a
n

 S
e

n
s +

 

S
p

e
c 

C5.0 81.1 (72.3, 87.7) 

 

87.9 (85.9, 89.7) 

 

38.1 (32.0, 44.7) 

 

98.1 (97.0, 98.8) 

 

87.4 (85.4, 89.1) 

 

CaRT 79.3 (70.3, 86.2) 

 

89.4 (87.5, 91.1) 

 

40.7 (34.2, 47.6) 

 

97.9 (96.8, 98.7) 

 

88.6 (86.7, 90.2) 

 

CHAID 56.8 (47.0, 66.0) 

 

98.0 (97.0, 98.7) 

 

72.4 (61.6, 81.2) 

 

96.1 (94.8, 97.1) 

 

94.6 (93.2, 95.7) 

 

LASSO 40.5 (31.5, 50.3) 

 

99.3 (98.7, 99.7) 

 

84.9 (71.9, 92.8) 

 

94.8 (93.4, 95.9) 

 

94.4 (93.0, 95.6) 
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Table 3: The final case definitions for 3 notable instances of the cross-validation results.  

Disease status assumed to be type 2 diabetes or a diabetes subtype, unless a patient meets the T1 

criteria. 

 

Type Case Definition 

CaRT with Minimized Misclassification Anywhere text “Type 1” 

OR 

Age less than 30 

CaRT with Maximized Naïve Mean  Medication ATC code A10AB (Insulin) and 

not Medication ATC code A10B twice in one 

year (Glucose Lowering Drugs, excluding 

Insulin) 

OR 

Referral text “Metabolism” and Medication 

ATC code A10B twice in one year and 

Medication ATC code A10AB 

OR 

Age less than 34 and ATC code A10AB 
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