Supplementary Information for

Caspase-1 initiates apoptosis in the absence of gasdermin D

Tsuchiya et al.

Supplementary Table 1. Oligonucleotides used in this study

Oligonucleotide	Sequence	Method
mGsdmd_gRNA_1_top	CACCGCAGCATCCTGGCATTCCGAG	CRISPR/Cas9-mediated
		genome editing
mGsdmd_gRNA_1_bott	AAACCTCGGAATGCCAGGATGCTGC	CRISPR/Cas9-mediated
om		genome editing
mGsdmd_gRNA_2_top	CACCGCAACAGCTTCGGAGTCGTG	CRISPR/Cas9-mediated
mCadmd aDNA 2 hatt		genome editing
mGsdmd_gRNA_2_bou	AAACCACGACICCGAAGCIGIIGC	CRISPR/Cas9-mediated
mGsdme gRNA 1 top	CACCGTGGAGAGTCACTCTTCGTT	CRISPR/Cas9_mediated
mosume_grav_1_top		genome editing
mGsdme gRNA 1 bott	AAACAACGAAGAGTGACTCTCCAC	CRISPR/Cas9-mediated
om		genome editing
mGsdme_gRNA_2_top	CACCGTCCCAATAGCCCCGCTCTTA	CRISPR/Cas9-mediated
		genome editing
mGsdme_gRNA_2_bott	AAACTAAGAGCGGGGGCTATTGGGAC	CRISPR/Cas9-mediated
om		genome editing
mBid_gRNA_1_top	CACCGGTCAGCAACGGTTCCGGCC	CRISPR/Cas9-mediated
		genome editing
mBid_gRNA_1_bottom	AAACGGCCGGAACCGTTGCTGACC	CRISPR/Cas9-mediated
DI DNA 2 to a		genome editing
mBid_gRNA_2_top	CACCGCCAGCCGCTCCTTCAACCA	CRISPR/Cas9-mediated
mBid α RNA 2 bottom		CRISPR/Cas9 mediated
mbld_gRNA_2_00ttom		genome editing
mCasp2 gRNA 1 top	CACCGAGTCTGTGACCCGGTGTGC	CRISPR/Cas9-mediated
sicuspsicur_i_cop		genome editing
mCasp2_gRNA_1_botto	AAACGCACACCGGGTCACAGACTC	CRISPR/Cas9-mediated
m		genome editing
mCasp3_gRNA_1_top	CACCGACTACTGCCGGAGTCTGAC	CRISPR/Cas9-mediated
		genome editing
mCasp3_gRNA_1_botto	AAACGTCAGACTCCGGCAGTAGTC	CRISPR/Cas9-mediated
m G (D) Lt (genome editing
mCasp6_gRNA_1_top	CACCGIGAAGCAATCGGCATCTATG	CRISPR/Cas9-mediated
mCoonf aDNA 1 hatta		CDISDD/Cos0 modiated
mCaspo_gKNA_1_bollo	AAACCATAGATGCCGATTGCTTCAC	ckiSPR/Cas9-mediated
mCasp7 gRNA 1 top	CACCGGTCCCGGCCGGTCCTGACG	CRISPR/Cas9_mediated
		genome editing
mCasp7 gRNA 1 botto	AAACCGTCAGGACCGGCCGGGACC	CRISPR/Cas9-mediated
m		genome editing
mCasp8_gRNA_1_top	CACCGAGCCTGCTGGGGGAAGATCG	CRISPR/Cas9-mediated
		genome editing
mCasp8_gRNA_1_botto	AAACCGATCTTCCCCAGCAGGCTC	CRISPR/Cas9-mediated
m		genome editing
mCasp9_gRNA_1_top	CACCGACCCGTCACAGCCTGCCGT	CRISPR/Cas9-mediated
		genome editing

mCasp9_gRNA_1_botto	AAACACGGCAGGCTGTGACGGGTC	CRISPR/Cas9-mediated
m		genome editing
mCasp9_gRNA_2_top	CACCGAAGTTTGTCACGGTCCAAGT	CRISPR/Cas9-mediated
		genome editing
mCasp9_gRNA_2_botto	AAACACTTGGACCGTGACAAACTTC	CRISPR/Cas9-mediated
m		genome editing
mRipk3_gRNA_1_top	CACCGAGGGTTCGGAGTCGTGTTC	CRISPR/Cas9-mediated
		genome editing
mRipk3_gRNA_1_botto	AAACGAACACGACTCCGAACCCTC	CRISPR/Cas9-mediated
		genome editing
BamHI-SpeI-HA_top		Generation of CL26-
		iCaspases cens
BamHI Snel	GATCGTCGACGATATCTTATGCGTAG	Generation of CL26
HA bottom	TCTGGTACGTCGTACGGATAACTAGT	iCaspases cells
	TCCGGATCCG	icaspases cens
mCasp1 FL S	AGAAACGCCATGGCTGACAAG	Generation of CL26-
		iCaspases cells
mCasp1_FL_A	GGATTCTTCGTTTAATGTCC	Generation of CL26-
		iCaspases cells
mCasp8_FL_S	ATGGATTTCCAGAGTTGTCTT	Generation of CL26-
		iCaspases cells
mCasp8_FL_A	TCATTAGGGAGGGAAGAAGA	Generation of CL26-
		iCaspases cells
pLentiCas9T2ABFP_Hp	GATCCGTTAACCATGGTGGCAGCGCT	Generation of pLenti-
al_Al	CTAGAAC	T2A-BFP
pLentiCas9T2ABFP_Hp	CCATGGTTAACGGATCCGGAGAGGG	Generation of pLenti-
al_SI		12A-BFP
pLentiCas912ABFP_52	ACAGAAICAGGGGAIAACGCAGG	Generation of plenti-
pLentiCos0T2ABED A2		Generation of planti
		T2A_RFP
pLentiT2ABFP_HpaIFy	GCTGCCACCATGGTTGCCGCCACCAT	Generation of L929-
Casp S	GGCTTCTAG	iCasp1 cells
pLentiT2ABFP HpaIFv	CTCTCCGGATCCGTTTGCGTAGTCTG	Generation of L929-
Casp_A	GTACGTCGTAC	iCasp1 cells
mGsdmd_qPCR_S	GCGATCTCATTCCGGTGGACAG	Quantitative RT-PCR
mGsdmd_qPCR_A	TTCCCATCGACGACATCAGAGAC	Quantitative RT-PCR
mGsdme aPCR S	CAGCTGGTGGGATACAGGATAC	Ouantitative RT-PCR
mGsdme_qPCR_A	CTGTCATCAGACAGAGCATGGAG	Quantitative RT-PCR
mBax aPCR S1	TGAAGACAGGGGCCTTTTTG	Quantitative RT_PCR
mBax_qPCP_A1		Quantitative RT PCR
IIIDax_qrCK_AI		Quantitative RT-PCR
mbak1_qPCK_S1		Quantitative RT-PCR
mBak1_qPCK_A1		Quantitative RT-PCR
mGapdh_qPCR_S	TGACCACAGTCCATGCCATC	Quantitative RT-PCR
mGapdh_qPCR_A	GACGGACACATTGGGGGGTAG	Quantitative RT-PCR
mGsdmd_FL_S	AGGTCCTCGCTTCGCTTGGTGGAC	Rescue experiments

mGsdmd_FL_A	AGGCTAACAAGGTTTCTGGCCTAGA	Rescue experiments
	С	
M13F-97	TCGGTGCGGGCCTCTTCGCTATTAC	Rescue experiments
mGsdmd_DelSTOP_A	GGCCCGAATTCCCACAAGGTTTCTGG	Rescue experiments
	CCTAGACTT	
mCasp9_T2ABFP_HpaI	GCTGCCACCATGGTTGACGAGGCGG	Rescue experiments
_S1,	ACCGGCAGCTC	
mCasp9_T2ABFP_HpaI	CTCTCCGGATCCGTTTGAAGTTTTAA	Rescue experiments
_A1	AAAACAGCTTTTTCC	
pLSFFV_mGSDMDs_	ATGCTACGCGTCCATCGGCCTTTGAG	Rescue experiments
MluI	AAAGTG	
pLSFFV_mGSDMDa_	ATGCTACGCGTACAAGGTTTCTGGCC	Rescue experiments
MluI	TAGACT	
mGsdmd_I105N_S	GGGAAAAATTCTGGTGGGGGCTGCAG	Site-directed
	Т	mutagenesis
mGsdmd_I105N_A	CACCAGAATTTTTCCCTTCTCCCATG	Site-directed
	С	mutagenesis
mBid_D59A_S	CAGACAGCTGGCAGCCAGGCCAGCC	Site-directed
	G	mutagenesis
mBid_D59A_A	GCTGCCAGCTGTCTGCAGCTCGTCTT	Site-directed
		mutagenesis
mBid_D75A_S	GAGCCAGCTTCTGAAAGTCAGGAAG	Site-directed
	Α	mutagenesis
mBid_D75A_A	TTCAGAAGCTGGCTCTATTCTTCCTT	Site-directed
		mutagenesis

Supplementary Fig. 1 Protein levels of GSDMD, GSDME, caspase-1, Bid, and ASC in cell lines used in this study. Proteins were extracted from BMMs, RAW264.7 cells, CL26-iCasp1 cells, and L929 cells and subjected to Western blotting (20 μ g protein per lane). Data are from one representative of two independent experiments with similar results.

Supplementary Fig. 2 GSDMD-deficient RAW264.7 cells undergo apoptosis after Val-boroPro treatment. **a-c** RAW264.7 cells of the indicated genotypes were treated with 4 μ M Val-boroPro for the indicated times. Cleaved caspase-3 in the cells was detected by Western blotting (a). Microscopic images of the cells (b). LDH release (c). Graph depicts the mean ± SD of triplicate cultures. Statistical significance was determined using Bonferroni's multiple comparisons test. **p < 0.01. Data are from one representative of three independent experiments with similar results (a-c). Source data are provided as a Source Data file.

Supplementary Fig. 3 GSDMD-null cells undergo apoptosis after caspase-1 activation. **a** Time-lapse images of CL26-iCasp1 cells and CL26-iCasp8 cells after treatment with 50 nM AP20187 in the presence of Yo-Pro-1, a cell-impermeant fluorescent dye. Yo-Pro-1 fluorescence is shown in green. **b-d** WT and *Gsdmd*-KO CL26-iCasp1 cells were treated with or without AP20187 for the indicated times. LDH release was measured, and GSDMD in cell lysates was detected by Western blotting (b). PI uptake and PS exposure were analyzed by flow cytometry (c). Gating strategy, representative flow

cytometry profiles, and the graphs that show percentages of PI^+ (necrotic) cells and Annexin V⁺ PI (early apoptotic) cells from four independent experiments (untreated and 30 min, n = 4; 60min, n = 3) are shown. Horizontal and vertical bars indicate the mean \pm SD. Cleaved caspase-3 in culture supernatants plus cell lysates was detected by Western blotting (d). **e** Caspase-3/7 activity in cell lysates of AP20187-treated CL26-iCasp1 cell lines was determined using a proluminescent caspase-3/7 substrate. **f** WT CL26-iCasp1 cells were treated with AP20187, and the release of ATP and LDH was monitored. In b, e and f, graphs depict the mean \pm SD of triplicate cultures. Data are from one representative of two (a,f) or three (b,d,e) independent experiments with similar results. Statistical significance was determined using Bonferroni's multiple comparisons test (b,c,e). *p < 0.05 and ***p < 0.001. Source data are provided as a Source Data file.

Supplementary Fig. 4 Caspase-1-induced apoptosis depends on caspase-3. **a** Time-lapse images of AP20187-treated *Gsdmd*-KO CL26-iCasp1 cells stably transfected with SCAT3, a fluorescence resonance energy transfer (FRET) probe used to detect caspase-3 activation. **b** Flow cytometric analysis of PI uptake and PS exposure in *Gsdmd*-KO and *Gsdmd/Casp3*-DKO CL26-iCasp1 cells treated with AP20187 as in Fig. 3c. Percentages of Annexin V⁺ cells (n = 3.4 as shown at the bottom) from three independent experiments are plotted. Horizontal and vertical bars indicate the mean \pm SD. Statistical significance was determined using Bonferroni's multiple comparisons test. ***p < 0.001. **c** *Gsdmd*-KO and *Gsdmd/Casp3*-DKO RAW264.7 cells were treated with Val-boro-Pro (4 μ M), and microscopic images of the cells are shown. **d-g** *Gsdmd*^{-/-} BMMs were infected with *Salmonella* at an MOI of 5 (d) or treated with 100 ng ml⁻¹ of recombinant Fas ligand plus 1 μ g ml⁻¹ of cycloheximide (e). *Gsdmd* KO CL26-iCasp1 cells (f) and CL26-iCasp8 cells (g) were treated with AP20187. At the indicated time points, LDH release was measured, and Caspase-3/7 activity in cell lysates was determined (d-g). In g-f, graphs depict the mean \pm SD of triplicate cultures. Data are from one representative of two (a,f,g) or three (c) independent experiments or two biologically independent experiments (d,e) with similar results. Source data are provided as a Source Data file.

а

Supplementary Fig. 5 Role for GSDME in caspase-1-induced apoptosis. **a** Genomic sequences of *Gsdmd/Gsdme*-DKO CL26-iCasp1 cells. **b-d** *Gsdmd*-KO and *Gsdmd/Gsdme*-DKO CL26-iCasp1 cells were treated with AP20187. GSDME and cleaved caspase-3 were detected by Western blotting (b). Time-lapse images of the cells in the presence of Yo-Pro-1 (c). Yo-Pro-1 fluorescence is shown in green. Flow cytometric analysis of PI uptake and PS exposure in cells treated with AP20187 as in Fig. 3g (d). Percentages of Annexin V⁺ PI⁺ and Annexin V⁺ PI cells (untreated and 1.5 h, n = 4; 4 h, n = 3) from three independent experiments are plotted. Horizontal and vertical bars indicate the mean \pm SD. **e-g** *Gsdmd*-KO, *Gsdmd/Casp3*-DKO, and *Gsdmd/Gsdme*-DKO CL26-iCasp1 cells were treated with AP20187 for the indicated times. LDH release (e). Cell viability by WST-1 assay (f). Microscopic images (g). In e and f, graphs depict the mean \pm SD of triplicate cultures. **h** BMMs of the indicated genotypes were infected with *S*. Typhimurium as in Fig. 1b. GSDME in culture supernatants plus cell lysates was detected by Western blotting. In d-f, statistical significance was determined using Bonferroni's multiple comparisons test. ***p < 0.001. In b, c, and e-h, data are from one representative of two (c) or three (b, e-h) independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 6 Caspase-2, -6, -7, and -8 are dispensable for the caspase-1-induced PS externalization. **a,b** CL26-iCasp1 cells of the indicated genotypes were treated with 50 nM AP20187 for 1.5 h. PI uptake and PS exposure of the cells were analyzed by flow cytometry. Representative flow cytometry profiles and the graphs that indicate percentages of Annexin V⁺ cells (n = 3 - 6 as shown beneath the graphs) from two (b) or three (a) independent experiments are shown. Horizontal and vertical bars indicate the mean \pm SD. Source data are provided as a Source Data file.

Supplementary Fig. 7 Expression of caspase-9 restores caspase-1-induced apoptosis in *Gsdmd/Casp9*-DKO cells. **a,b** *Gsdmd*-KO and *Gsdmd/Casp9*-DKO CL26-iCasp1 cells transduced or not transduced with Casp9 or empty vector control were treated with AP20187. Flow cytometric analysis of PI uptake and PS exposure (a). Representative flow cytometry profiles and the graph that shows percentages of Annexin V⁺ cells (n = 7) from three independent experiments are shown. Horizontal and vertical bars indicate the mean \pm SD. LDH release (b). The graph depicts the mean \pm SD of triplicate cultures. Data are from one representative of three independent experiments with similar results. In a and b, statistical significance was determined using Bonferroni's multiple comparisons test. *p < 0.05, **p < 0.01, and ***p < 0.001. Source data are provided as a Source Data file.

Supplementary Fig. 8 Mitochondrial depolarization and apoptosome formation during caspase-1induced apoptosis. **a** *Gsdmd*-KO and *Gsdmd/Bid*-DKO CL26-iCasp1 cells left untreated or treated with AP20187 for the indicated times were stained with TMRM and analyzed by flow cytometry. The graph shows relative fluorescence intensity of cells to that of *Gsdmd/Bid*-DKO cells cultured under the same conditions from three independent experiments (n = 6). Horizontal and vertical bars indicate the mean \pm SD. **b** CL26-iCasp1 cells of the indicated genotypes were treated with or without

AP20187 for 1 h. Whole cell lysates and immunoprecipitates with or without anti-caspase-9 antibody were subjected to Western blotting for Apaf-1 and caspase-9. **c-f** *Gsdmd*-KO CL26-iCasp1 cells were transfected with control siRNA or *Bax* siRNA plus *Bak1* siRNA. Two days after transfection, the cells were again transfected with the same siRNAs and incubated for an additional 2 days. Cells were then treated with or without AP20187. Quantitative RT-PCR analysis of Bax (c) and Bak1 (d) mRNA expression without AP20187 treatment. Cleaved caspase-3 and Bid in cell lysates were detected by Western blotting (e). Caspase-3/7 activity in the cell lysates (f). In c, d and f, graphs depict the mean \pm SD of triplicate cultures. In a, c, d and f, statistical significance was determined using an unpaired Student's t-test. ***p < 0.001. Data are from one representative of three independent experiments with similar results (b-f). Source data are provided as a Source Data file.

Supplementary Fig. 9 Role of Bid in caspase-1-induced apoptosis. **a** Western blot detection of Bid and GSDMD in CL26-iCasp1 cells of the indicated genotypes. **b** *Gsdmd*-KO CL26-iCasp1 cells were transfected with control siRNA or *Bid* siRNA. Two days after transfection, the cells were treated with AP20187 for the indicated times, and cell death was monitored by LDH release assay (upper panel). The graph depicts the mean \pm SD of triplicate cultures. Western blot detection of Bid in *Gsdmd*-KO CL26-iCasp1 cells transfected with control siRNA or *Bid* siRNA (lower panel). **c** Flow cytometric analysis of PI uptake and PS exposure. Representative flow cytometry profiles and the graph that shows percentages of Annexin V⁺ cells from three independent experiments (untreated and 1.5 h, n = 5; 4 h, n = 4) are shown. **d** Flow cytometric analysis of PI uptake and PS exposure in cells treated with AP20187 as in Fig. 6g. Percentages of Annexin V⁺ cells from three independent experiments are plotted (n = 4-5 as shown beneath the graph). In c and d, horizontal and vertical bars in the graphs

indicate the mean \pm SD. In b-d, statistical significance was determined using Bonferroni's multiple comparisons test. n.s. not significant; **p < 0.01; ***p < 0.001. e,f Western blot detection of Bid in CL26-iCasp1 cells of the indicated genotypes. In a, b, e and f, data are from one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 10 Involvement of Bid in caspase-1-induced apoptosis in macrophages. **a-d** RAW264.7 cells of the indicated genotypes were treated with 4 μ M Val-boroPro for the indicated times. Bid and cleaved caspase-3 were detected by Western blotting (a,b). Microscopic images of the cells (c). LDH release (d). Graph depicts the mean \pm SD of triplicate cultures (d). Statistical significance was determined using Bonferroni's multiple comparisons test. ***p < 0.001. Data are from one representative of three independent experiments with similar results (a-d). Source data are provided as a Source Data file.

Supplementary Fig. 11 Effect of caspase-1-induced apoptosis on *S*. Typhimurium growth. **a,b** BMMs (a) and RAW264.7 cells (b) were infected with *S*. Typhimurium as in Fig. 1c (a) and Fig. 1e (b), respectively. The number of bacteria in the cells was assessed at the indicated times after infection. Graphs depict the mean \pm SD of triplicate cultures. Statistical significance was determined using Bonferroni's multiple comparisons test (a) and an unpaired Student's t-test (b). n.s. not significant; **p* < 0.05, ***p* < 0.01, and ****p* < 0.001. Data are from one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 12 A bid-independent pathway depends on caspase-3. **a-c** Gsdmd/Bid-DKO and Gsdmd/Bid/Casp3-triple KO CL26-iCasp1 cells were treated with AP20187 for the indicated times. Microscopic images of Gsdmd/Bid-DKO cells treated with AP20187 for 4 h (a). Caspase-3 and GSDME were detected by Western blotting (b). LDH release (c). Cell viability by WST-1 assay (d). In c and d, graph depicts the mean \pm SD of triplicate cultures. Data are from one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 13 Caspase-1-induced apoptosis may occur in certain cell types. **a** Speculative situations in which caspase-1 may induce apoptosis. **b** Gene expression data [Dataset: GNF Mouse GeneAtlas V3 (GeneAtlas MOE430, gcrma; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =GSE10246); Probes: 1428767_at (*Gsdmd*), 1449265_at (*Casp1*)] were analyzed using BioGPS (http://biogps.org/#goto=welcome, top). Samples that express GSDMD mRNA at high levels (top

10) are listed (middle). Samples in which GSDMD mRNA levels and caspase-1 mRNA levels are relatively low and high, respectively, are listed according to the indicated criteria (bottom). **c** Western blot detection of GSDMD, Bid, and caspase-1 in the spinal cord and TEPMs from WT and *Gsdmd^{-/-}* mice (21.4 μ g protein per lane). **d**,**e** Quantitative RT-PCR analysis of GSDMD and GSDME mRNA expression in the spinal cord and spleen from WT and *Gsdmd^{-/-}* mice and RAW264.7 cells. Each expression was calculated relative to GAPDH mRNA (the Δ Ct method). **f** Western blot detection of GSDMs, Bid, and caspase-1 in primary cortical neurons and BMMs (14.3 μ g protein per lane). **g** WT cortical neurons were treated with 8 and 16 h of OGD and processed for immunofluorescence staining with anti-cleaved caspase-3 (red) and DAPI (blue). Allows indicate apoptotic nuclei. Graphs depict the mean ± SD of technical triplicates (d,e). Data are from one representative of two (c-f) or three (g) biologically independent experiments with similar results: total 6 (c) or 5 (d,e) independent spinal cord samples from WT mice were examined. Source data are provided as a Source Data file.

Supplementary Fig. 14 Proposed model for inflammasome-induced cell death cascades. In the presence of sufficient GSDMD, caspase-1 triggers pyroptosis. On the other hand, in the absence of GSDMD, inflammasomes induce apoptosis through at least three different pathways: the caspase-1-induced bid-dependent pathway, the caspase-1-induced bid-independent pathway, and the ASC/caspase-8-dependent pathway. Note that caspase-8 can also be activated downstream of caspase-1.

Supplementary Fig. 15 Bid is involved in tumor necrosis factor (TNF)-induced apoptosis in CL26iCasp1 cells. *Gsdmd*-KO and *Gsdmd/Bid*-DKO CL26-iCasp1 cells were pretreated with cycloheximide (10 μ g ml⁻¹) for 1 h and then treated with the indicated concentrations of TNF- α for 7 h. Cell viability was assessed by WST-1 assay. Viability of cells cultured without cycloheximide and TNF- α is set as 100%. Graph depicts the mean \pm SD of duplicate cultures, and individual data values are plotted. Data are from one representative of two independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 16 Uncropped scans of western blots.

Supplementary Movie 1 Pyroptotic cell death induced by iCaspase-1. WT CL26-iCasp1 cells were treated with 50 nM AP20187 in the presence of Yo-Pro-1. Yo-Pro-1 fluorescence is shown in green. Scale bar, 50 µm.

Supplementary Movie 2 Apoptosis and secondary necrosis induced by iCaspase-1. *Gsdmd*-KO CL26-iCasp1 cells were treated with 50 nM AP20187 in the presence of Yo-Pro-1. Yo-Pro-1 fluorescence is shown in green. Scale bar, $50 \mu m$.

Supplementary Movie 3 Apoptosis induced by iCaspase-1. *Gsdmd/Gsdme*-DKO CL26-iCasp1 cells were treated with 50 nM AP20187 in the presence of Yo-Pro-1. Yo-Pro-1 fluorescence is shown in green. Scale bar, 50 µm.