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I. DETAILED DESCRIPTION OF DATA

Halo: Reach is a popular online game played by nearly 20 million individuals, and was the 3rd most popular US
video game of 2010 [1]. It was publicly released by Bungie Inc., a former subdivision of Microsoft Game Studios, on
14 September 2010, and since then, players have generated more than 1 billion competitions. Reach is an example of
the kind of virtual combat simulation known as a “first-person shooter” or FPS. Within the Reach system, players
choose from among roughly seven primary game types and numerous subtypes, which are played on more than 33
terrain maps with 74 weapons (the precise number of maps and weapons has varied over time, as the publisher has
periodically revised the online content through downloadable updates).

Instances of the game can be played alone, with or against other players via the Xbox Live online system. Par-
ticipation in this system requires an account, which is distinguished by unique and publicly known “gamertag” or
online pseudonym, chosen by the player. In the Reach system, both individual game and player summaries were made
publicly available through the Halo Reach Stats API. Through this digital interface, we collected detailed data on the
first 53 million competition instances (roughly 1TB of data).

Within our sample, there are three basic game types: campaign games, a sequence of story-driven, player-versus-
environment (PvE) maps that many players complete first; firefight games (also PvE), in which a team of human-
controlled players battle successive waves of computer-controlled enemies; and competitive games, a player-versus-
player (PvP) game type, in which teams of the equal size (2, 4, 6 or 8 players) compete to either be the first to reach
some fixed number of points or have the largest score after a fixed length of time. (The precise number of players per
team, number of points required to win and length of a game depends on the game subtype.) Here, we focus on the
most common type of competitive game, with teams of 4 players, a time limit of 600 seconds and a score limit of 50
points.

Among other information, each competition instance game file includes the sequence of scoring events at the
per-second resolution and a list of players by team. Scoring events are annotated with the gamertag of the player
generating the event, the number of points scored and the player giving up the points (if applicable).

Unlike professional sports, team composition and player resources in Reach competitions are not persistent across
instances. The only attribute that persists is individual player skill, and thus each new instance is a kind of a “blank
slate.” To join a new instance, individual players or small groups (often friends [2]) first enter a general pool of
available competitors. A Bayesian “matchmaking” algorithm, which seeks to build teams of equal skill [3], then fills
teams in the new instance by drawing from this pool. This process substantially randomizes the pairing of individuals
within teams and the pairing of teams across instances. Because of the matchmaking algorithm and the large size of
the pools, a pair of non-friend players are highly unlikely to be paired again in a new instance; friends may elect to
be matched as a unit by forming a “party,” a special grouping that the matchmaking algorithm recognizes.

The non-persistence and the randomization are features absent from most studies of team performance or competi-
tion [4–6], and serve to mitigate the confounding effects of persistent teams and resources present in most competitive
systems, e.g., professional sports. For our purposes, these features make Reach competitions a unique source of data
for studying behavioral dynamics within competitions and how structural factors shape this behavior.

In competitive games, players move their avatars through the game map simultaneously, in real-time, navigating
complex terrain, acquiring avatar modifications and encountering opponents. Teammates may interact through a
private voice channel, or through visual signals. Points are scored by dealing sufficient damage to eliminate an
opposing avatar and for each such success, a team gains a single point. Eliminated players must then wait several
seconds before their avatar is placed back into the game at one of several specified “spawn” locations, equipped with
“default” avatar resources that depend on the competition type being played.

For our analysis, we exclude all PvE games and all PvP games containing corrupt scoring event data. (Our analysis
suggests no specific pattern to the corruption.) In our primary analyses, we further restricted our sample to PvP
competitions (i) between two teams of 4 players and (ii) where no player exited the game early. This latter criterion
was relaxed to calculate the relationship between dropouts and β (see Section VIII).

II. GENERATIVE MODEL FOR SCORING EVENT TIMING AND BALANCE

The timing and balance (which team receives the point) of scoring events within a competition are modeled by a
conditionally independent Markov process, where an incremental change to a team’s score sr is given by

Pr(∆sr(t) > 0) = Pr(∆sr > 0 | θ, event) Pr(event at t | θ ) ,

where θ parameterizes the impact of non-ideal competitive features. That is, the probability that team r’s score
increases at some time t is the probability that a scoring event occurred at time t and that the resulting point was
awarded to r. Furthermore, team labels r and b are arbitrary, and we choose r as our reference team below.
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The generation of scoring events is given by a non-stationary Poisson process, in which the probability that a scoring
event occurs at time t varies linearly with time:

Pr(event at t |λ0, α ) = λ0 + α t , (1)

where λ0 is the event background rate and α is the acceleration. When α = 0, we recover the stationary Poisson
process expected for ideal competitions.

In a real competition, we observe n ≤ T scoring events, for a competition lasting T units of time. Let {ti} denote
the observed times of these events, and {uj} the times at which no event was observed. The model parameters λ0
and α are then jointly estimated by directly maximizing the generative model’s log-likelihood function:

lnL =

n∑
i=1

ln(λ0 + α ti) +

T−n∑
j=1

ln(1− λ0 − αuj) . (2)

To limit the biasing effect of the highly non-stationary behavior found in the early- and end-phases of competitions
(see main text), we restrict our estimation to events occurring in the middle phase, specifically 50 ≤ t ≤ 300. This
heuristic provides robust conclusions: the estimated timing parameters are very close to those found using smaller
middle-phase windows, and the global average trend within this window is roughly linear (Fig. S1A).

For two teams r and b, the outcome of a scoring event (which team receives the point) is given by a biased Bernoulli
process, in which the probability that an event increases the score of team i is

Pr(si increases | θ ) =

{
c i = r
1− c i = b ,

where c ∈ [0, 1] represents the competitive advantage (outcome bias) of the r team. In our model system, 99.99% of
scoring events yield a single point. Although we do not consider the possibility here, in general, the number of points
produced by an event could be drawn from some distribution. Thus, the probability that the competition ends with
final scores Sr and Sb is

Pr(Sr, Sb | c) = cSr (1− c)Sb , (3)

where c denotes the competitive advantage (scoring bias) of team r over team b.
Because team composition varies across competition instances, the competitive advantage of r is modeled as a

random variable, drawn from some distribution Pr(c). The natural choice of the form of this distribution is a
symmetric Beta distribution with parameter β, the conjugate prior for the Bernoulli scheme. (We note that the prior
distribution must be symmetric about c = 1/2 because team labels are arbitrary.) This distributional assumption
agrees well with the global empirical distribution of biases c (Fig. S1A inset).

The posterior probability of observing final scores {Sr, Sb}k in a competition instance k is given by their Bernoulli
likelihood, weighted by the probability of c (Eq. (3)). Given N such instances, the total posterior probability of the
observed final scores is

Pr(β | {Sr, Sb}) =

∫ 1

0

(
N∏
k=1

Pr({Sr, Sb}k | c) Pr(c |β)

)
dc

=

N∏
k=1

(∫ 1

0

cSrk
+α−1(1− c)Sbk

+β−1

B(β, β)
dc

)

=

N∏
k=1

B(Srk + β, Sbk + β)

B(β, β)
, (4)

where B(a, b) is the Beta function.
We estimate the competition balance parameter by numerically maximizing the logarithm of Eq. (4) with respect

to β,

lnL =

N∑
k=1

ln[B(Srk + β, Sbk + β)]− ln[B(β, β)] . (5)

The resulting maximum likelihood estimate β̂ provides a direct measurement of the overall balance within a set of
competition instances: when β →∞, we recover the fair coin c = 1/2 expected for ideal competitions.
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FIG. S1. (a) Global empirical and predicted scoring rates for competitions in Halo:Reach, over the window [50, 300] seconds.
(b) Global empirical and predicted distribution of competitive advantages (smoothed via a Gaussian kernel). (c) For all
competitions, winner predictability (AUC) as a function of team r’s points remaining, for three classifiers (see text).

parameter estimate, global

β balance 29.50 ± 0.21

λ0 base rate 0.1620 ± 0.0001

α acceleration 7.00× 10−5 ± 0.05× 10−5

TABLE S1. Estimated global scoring tempo and balance parameters, with bootstrap uncertainty estimate.

For a set of competition instances, numerically maximizing Eq. (2) with respect to λ0 and α, and Eq. (5) with

respect to β, produces maximum likelihood parameter estimates λ̂0, α̂, and β̂. Uncertainty in these estimates is
then calculated as the standard deviation of the bootstrap distribution [7], where we resample compelte competition
instances with replacement. Table S1 gives the global parameters estimates and uncertainties, when applied to the
full set of Halo:Reach competitions.

III. PREDICTING COMPETITION OUTCOMES

For a set of competitions, the predictability of an instance’s ultimate winner, after observing only part of the game,
provides a second, non-parametric measure non-ideal dynamics. We model scoring as a Markov chain that terminates
when a team reaches a score of 50. (In our data, 99% of competitive instances terminate according to this criteria;
the remainder from the time limit.)

Suppose an instance has evolved so that teams r and b currently hold scores sr and sb. The probability that team
r wins the competition is then

Pr(r wins | sr, sb) = Pr(r wins | sr + 1, sb) · ĉ+

Pr(r wins | sr, sb + 1) · (1− ĉ) , (6)

where ĉ = sr/(sr + sb) is the current maximum likelihood estimate of r’s scoring bias within this instance, and the
two probability terms capture the probability that r wins if r (or b) wins the next point. (Because a team’s score is
cumulative, each state in the Markov chain has only two transitions.) Eq. (6) is then solved recursively by computing
ĉ for the current state and working backwards to the instances’s current state from the winning states where sr = 50
and sb < 50.

We convert this Markov chain into a classifier by predicting that team r wins if Pr(r wins | sr, sb) > 0.5. The
probability of correctly choosing the winning team in this case is equivalent to computing the AUC statistic over
a set of instances. (AUC is defined as the area under the receiver-operating characteristic (ROC) curve [8], and is
mathematically equivalent to the Mann-Whitney U test for distinguishing two classes of items.)
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FIG. S2. Average normalized inter-arrival time between scoring events, computed in 30 second intervals, for cohorts of compe-
titions lasting a specific amount of time. (inset) Auto-correlation function C(n) for inter-event times.

Measuring the AUC as a function of the points remaining provides full information about the way the competition’s
predictability evolves over time. We convert this information into a point measure by computing, with 40 points
remaining for r, the AUC for the Markov classifier, which we then divided by the corresponding AUC for an “ideal”
classifier (with fixed c = 1/2). This provides a direct measure of how much more predictable a real competition’s
outcome is relative to the ideal model described in the main text.

Using the full data set, Figure S1b shows the full AUC-over-time curves, for the Markov classifier, the ideal classifier
(c = 1/2), and for a trivial classifier in which at each moment we predict as the winner the team currently in the lead.
Our Markov classifier outperforms the trivial classifier because it captures information about the size of the lead, i.e.,
it includes information about the bias c in the Bernoulli scoring process, and outperforms the ideal classifier because
the competitions’ dynamics are non-ideal.

IV. TEST OF THE MARKOV ASSUMPTION

We now test the accuracy of our Markov assumption in modeling the scoring dynamics of these competitions. If the
arrival times of scoring events roughly follow a memoryless Poisson process, there will be little correlation between
the sizes of subsequent delays. The correlation function C(n) provides a direct measure of the accuracy of the Markov
assumption, and is calculated as

C(n) =
〈TiTi+n〉 − 〈Ti〉2

〈T 2
i 〉 − 〈Ti〉2

, (7)

where Ti is the inter-event delay after event i, n is a shift size relative to i, and 〈.〉 indicates an average over i. A
memoryless process matching the Markov assumption in our Bernoulli process will produce C(n) ≈ 0 for n > 0;
deviations indicate correlations (or anti-correlations) at the corresponding time scale.

First, a simple rescaling of the observed inter-event delays over the course of competitions of different lengths
produces a data collapse (Fig. S2), illustrating relatively little memory in the system. Second, C(n) for our entire
sample of competitions (Fig. S2, inset) shows little correlation (memory) at any time scale. Thus, the Markov
assumption seems largely justified.

V. MODEL GOODNESS-OF-FIT

We now test the plausibility of our generative model, i.e., how well it matches the underlying data, by comparing
simulated competitions against the empirical data along specific statistical measures. This simulation is parametric
and uses the estimated parameters from our generative model to define the corresponding probability distributions in
the simulator. A close match between the synthetic scoring dynamics and the empirical data along multiple statistical
measure is evidence that our generative model accurately captures the basic features of these competitions.



6

20 30 40 50 60 70 80 90 100
Final total score, S

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
r(

S
)

a

Observed
Simulated

0 5 10 15 20 25 30 35 40
Final lead size, L

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
r(

L)

c

0 10 20 30 40 50
Number of leader changes, m

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
M
 >
 m

)

b Observed
Simulated

0 5 10 15 20
Lead size, L

50

100

150

200

250

300

350

E
la
sp
e
d
 t
im
e
, 
t 
(s
e
co
n
d
s)

d

FIG. S3. Comparison of empirical (dashed blue) and simulated (parametric model, red) data for the (a) distribution of final
total scores S = Sr + Sb, (b) distribution of the number of times the identity of the leading team changes m, (c) distribution
of final lead sizes L = |Sr − Sb|, and (d) time t elapsed as leader given a lead size of L. The close agreement between data and
simulation suggests that our generative model efficiently captures these competitions’ dynamics.

The simulation framework is given in Algorithm S1. The competition clock is started at t = 25 seconds to account
for the early-phase delay in the onset of scoring. The bias in the Bernoulli process is then chosen by drawing a value iid

from the estimated Beta distribution with parameter β̂. While neither of the termination criteria have been reached,

delays between scoring events are drawn from the estimated linear non-stationary process with parameters λ̂0 and
α̂. Finally, given that a scoring event occurs, with probability c, a single point is awarded to team r; otherwise, it is
awarded to b.

Algorithm S1: Competition simulation()

t← 25

sr ← sb ← 0

c← chooseScoringBias()

while t < 600 and sr < 50 and sb < 50

do



T ← interEventDelay()

if t+ T < 600

then


∆s← numPoints()

updateScores(sa,sb, ∆ s,c)

t← t+ T

else break

The goodness-of-fit of the model is measured by comparing the simulated and empirical distributions of (i) the
final score S, (ii) the final lead size L (at termination), (iii) the number of leader changes m, and (iv) the amount
of time t the leading team stays in the lead given a lead of size L. Notably, each of these four quantities is distinct
(although related) to the aspects of the data used to estimate the parametric model’s structure, and thus they
make reasonable checks on the accuracy of the model. Figures S3a-d show the results of these tests, using 1 million
simulated competitions, illustrating very good agreement on all dimensions between simulation and data. Thus, the
basic structure of our generative model seems largely justified.

VI. ADDITIONAL RESULTS FOR HOW STRUCTURE SHAPES DYNAMICS

In the main text, we examined four pairs of competition types that each differed on one structural feature: team
skill, environmental structure, policies, and resource quality. Figures S4a-d show the estimated distributions of Pr(c)

(parameterized by β̂) for these four pairs. For each group of instances, the model parameter β was estimated following
Section II from the scoring events on the interval t ∈ [30, 300] seconds of the competition. These times were chosen
to exclude biases due to early- and end-phase boundary effects.
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FIG. S4. For the four dimensions discussed in the main text, (a, b, c, d) estimated distribution of scoring biases Pr(c), and (e,
f, g, h) the AUC as a function of points remaining in the competition.

Figures S4e-h show the AUC as a function of points remaining for same competitions, estimated following Section III.
In each figure, we show for comparison the AUC curve for an ideal competition (c = 1/2). The large gap between
the Markov classifier’s AUC curve and the ideal curve demonstrates that these competitions are substantially more
predictable than ideal competitions. This gap is largest early in the competition, where scores are still relatively far
from the scoring limit. We also observe modest gaps between the AUC curves for members of each pair, illustrating
that structural features do impact the predictability of competition outcomes.

VII. ADDITIONAL DETAILS OF MULTIVARIATE REGRESSION ANALYSIS

Here we describe additional details of our investigation of how resources, policy, environment, and skill features
explain the variance in the values β, λ0, α, and ρ observed in our data. To quantify the structure of a competition
type ~η, we defined 35 structural features that characterize the different combinations of environment, resources,
policies, and teams. Table S4 gives the full list of features, with descriptions, classified into four types: resources (R),
environment (E), policies (P), and skill (S). Applied to our data yields 125 unique competition types.

For all competition instances with a particular set of features, we estimated the coordinates (β, λ0, α, ρ) following
Sections II and III. Regression models were built on each coordinate independently, and robustness checks were
conducted to verify these results (see below). Table S5 lists the statistically significant (p ≤ 0.1) features and
corresponding coefficients for all four of our models.

For competition balance β, we first used a linear model β = θTx, with a design matrix x composed of the previously
defined 125 observations containing 35 features. Fitting this model via least squares produced r2 = 0.716 (p� 0.001,
F-test), but with strongly skewed residuals. We then fitted the model log β = θTx to the data, which produced
r2 = 0.933 (p � 0.001, F-test), a marked improvement, and more symmetric residuals. Examining the coefficients,
we find that evenly matched teams using medium-to-long-range weapons, competing on large environments without
strategic or defensible positions produce more balanced scoring outcomes (larger β).

For the base scoring rate λ0, a simple linear model yields r2 = 0.955 (p� 0.001, F-test), indicating that structural
features explain almost all the observed variance. The estimated coefficients show that environmental structure
features play a dominant role in setting λ0. In particular, environments that are small, open, and circular correlate
best with base scoring rate. In addition to the environment’s spatial organization, evenly matched teams also correlate
with higher scoring rates. Teams with more experience are likely to be familiar with all terrain options and methods
for its exploitation. Environments that are small do not require competitors to spend much time seeking out scoring
opportunities (other avatars). Lastly, environments that are open do not provide places to avoid encounters, thus
increasing the tempo of competition.

For the acceleration α in the competition tempo, a linear model produces an r2 = 0.652 (p� 0.001, F-test). We find
that few of our features correlate with α, with the exception of long-range weapons and equally-skilled teams, which
correlate with smaller α (more ideal competitions). This suggests that in competitions where players are experienced,
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log β λ0 α ρ

log β – 0.356 0.053 0.776

λ0 0.356 – 0.003 0.398

α 0.053 0.003 – –

ρ 0.776 0.398 – –

TABLE S2. Coefficients of variation r2 for pairs of dependent variables. Cells containing no data are either irrelevant or
statistically insignificant (p > 0.1).

parameter r2 p-value

log β 0.08 0.98

λ0 0.12 0.84

α 0.12 0.8

ρ 0.08 0.98

TABLE S3. Regression results after randomly permuting the vectors of 35 independent variables and tuple of 5 scoring dynamics
parameters, (log β, λ0, α, ρ).

there is less to learn and thus α is low. This agrees well with the results from λ0, where more experience leads to a
higher base scoring rate.

For the winner predictability ρ, a linear model produces an r2 = 0.885 (p� 0.001, F-test). Notably, features related
to neutral environments and equally-skilled teams correlated with less predictable (more ideal) outcomes. As expected
from the correlation between β and ρ (Table S2), features that correlated with greater β typically also correlate with
lower ρ.

Finally, we expected changes in policy to have an impact on scoring balance and tempo of events. However, we find
that policy type features do not by themselves play a role in controlling these dynamics, once we control for other
variables like skill, environmental structure and resources. Specifically, we find that the policy feature coefficients are
insignificant in all of our models (p > 0.1) and thus we excluded from the results of our best-subset selection.

Tests of model robustness

To test the robustness of our results against spurious correlation, due to the high-dimensionality of our data, we
conducted three additional analyses.

First, we consider colinearity among the dependent variables. Table S2 lists the pairwise coefficients of variation r2,
showing a high degree of correlation between ρ and log β, modest correlation between log β and λ0, but little else. To
test whether these correlations impact our results, we conducted a MANOVA on a multiple multivariate regression
model (Table S6). The results show that the same set of features reported in Table S5 are significant, suggesting that
our original results are robust.

Second, we perform a stepwise AIC feature selection procedure to choose the best subset of features under mild
regularization. With the exception of α, the results shown in Tables S7, S8, and S9 indicate that the selected features
and their weights presented in the original regression analysis are robust. The best-subset selection for α produces
a larger list of significant features than in the original model, but a slightly lower r2. The most significant negative
feature, long range resources, is robust to this procedure while equally skilled teams and other resource features are
not.

Finally, we perform a randomization test by randomly permuting the dependent variables across the associated
features and repeating the original multivariate regression. This randomization destroys any natural correlation
between the features and the dependent variable. Table S3 shows the resulting coefficients of variation, none of which
are statistically significant. These results further support the robustness of our original results.
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FIG. S5. Patterns in tempo dynamics for (a) professional basketball (NBA), (b) American football (NFL), and (c) hockey
(NHL). For each sport, the probability of a scoring event at time t, in regular competition; The global average (dashed) patterns
are also shown.

VIII. PLAYER PREFERENCE AND COMPETITION BALANCE

When competitions are predictable they become less enjoyable. In professional sports this manifests itself as fans
leaving a stadium well before the end of a game when one team is winning by such a large amount that there is little
chance that the trailing team will make a comeback.

In our model system, the same decision can occur for players themselves, who can effectively walk off the field
by voluntarily exiting the competition early. For each of the competition types in our sample we calculated the
competition dropout rate as

ω =
1

N

N∑
i=1

1{at least 1 player quits early}, (8)

where N is the number of instances of the given type.
From the first 25 million games, we extracted a total of 4.1 million competitive type games that did not contain

corrupt data. From these 4.1 million games we selected only those where at least one player left the game early.
Using the remaining 1.9 million games we then tested for a correlation between the dropout rate ω and the overall
balance β. If players prefer more balanced competitions, as β increases (more ideal competitions), the dropout rate
should decrease. A simple linear regression yields the equation lnω = 1.593−1.371 lnβ (r2 = 0.43, p� 0.001, t-test).
These results corroborate our hypothesis, illustrating that the more predictable the scoring dynamics of a competition
(small β), the more likely at least one player will exit early. Quantitatively, this relationship predicts that increasing
competition balance β by a factor of 1.66 correlates with reducing the early exit probability ω by a factor of 2.

As a caveat, we note that there are several involuntary reasons a player may exit early, e.g., network issues,
power loss, system error, being “booted” for excessive friendly fire, and several voluntary reasons unrelated to player
engagement, e.g., to join friends in another game, to change competition types, etc. Most of these variables are
inaccessible to us for analysis; however, we cannot conceive of a mechanistic relationship between most of these reasons
and the scoring balance of a competition. Additional investigation may further illuminate the precise mechanism by
which increase in β produce decreased exit rates.

IX. TEMPO PATTERNS IN PROFESSIONAL SPORTS

We study the timing of scoring events in professional basketball, hockey, and American football by analyzing data
drawn from 10 consecutive seasons. For each sport, the data contain records of all scoring events that occur in each
competition. Each record is annotated with the time at which the event occurred, to the nearest second, the player
and corresponding team that won the event, and the event’s point value [9].

The timing of scoring events in sports such as professional basketball, hockey, and American football, exhibit similar
patterns to those observed in Reach. In particular, we observe three distinct, phases of play: an early phase, a middle
or steady-state phase, and an end phase. In sports whose games are subdivided into distinct blocks of time (quarters in
basketball and American football; thirds in hockey), these patterns are repeated within each block. At the beginning
of a period, tempo grows towards a steady-state, a pattern that agrees with players moving from initial set locations
on the court or playing field and “warming up” to a well-mixed state. Similar to Reach, during the middle, or steady-
state phase, tempo remains roughly stationary and scoring events occur with nearly equal probability, illustrated in
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Fig. S5 by the scoring rate holding at roughly the full-game mean (indicated by the dashed line). Finally, as each
game approaches its final seconds of play, scoring rates increase dramatically, in agreement with teams engaging in
more risky strategies (including aggressive clock management through timeouts) in order to score additional points.

While all sports exhibit the three phases observed in Reach, there are notable differences in tempo dynamics.
Specifically, the end phase in professional sports never tapers, as observed in some competition types in Reach.
Additionally, because sports have multiple periods of competition within a single game, we observe distinct end-like
phases leading up to each. This pattern is most pronounced in football (particularly at the half-way point) and
basketball (at the end of each quarter), but also appears to some degree in hockey. Additional features in these
time series are attributable either to the particular rules of the game, e.g., in football, some quarters end by players
resuming their set locations while other quarters do not, or to the particular dynamics of the game, e.g., in hockey,
both players the puck can move very quickly across the rink, leading to very short delays between set positions and
a well-mixed state. Finally, base rates λ0 differ substantially across games, reflecting the fundamental difference in
scoring rates in these different types of competitions.

[1] Entertainment Software Association, “Essential Facts about the Computer and Video Game Industry,” (2011),
http://bit.ly/kLHJ2Q, (access date February, 2012).

[2] W. Mason and A. Clauset (2013) 16th ACM Conference on Computer Supported Cooperative Work and Social Computing.
[3] R. Herbrich, T. Minka, and T. Graepel, Advances in Neural Information Processing Systems 20, 569 (2007).
[4] M. Ruef, H. E. Aldrich, and N. M. Carter, American Sociological Review 68, 195 (2003).
[5] T. T. Baldwin, M. D. Bedell, and J. L. Johnson, Acad. of Manag. Journal 40, 1369 (1997).
[6] P. Balkundi and D. A. Harrison, Acad. of Manag. Journal 49, 49 (2006).
[7] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, NY, 1993).
[8] J. A. Hanley and B. J. McNeil, Radiology 143, 29 (1982).
[9] Data Source: STATS LLC, c©2013.



11

feature code domain description

re
so

u
rc

es

loadout 1 R1 {0, 1} short range and medium range

loadout 2 R2 {0, 1} low quality resources

loadout 3 R3 {0, 1} long range and grenades

loadout 4 R4 {0, 1} short and long range

loadout 5 R5 {0, 1} medium range

vehicles revenant R6 {0, 1} lightly armored vehicle

vehicles scorpion R7 {0, 1} heavy tank vehicle

vehicles mongoose R8 {0, 1} unarmored vehicle

vehicles ghost R9 {0, 1} rapid attack vehicle

weapons short R10 {0, 1} short range

weapons medium R11 {0, 1} medium range

weapons long R12 {0, 1} long range

weapons grenades R13 {0, 1} grenade type

weapons rocket R14 {0, 1} rocket launcher

weapons unsc R15 {0, 1} high-quality only resources

weapons covenent R16 {0, 1} low-quality only resources

weapons both R17 {0, 1} high- and low-quality resources

sk
il
l TrueSkill matchmaking S1 {0, 1} equally skilled teams

team size S2 {0, 1} 4- or 5-person teams

en
v
ir

o
n
m

en
ta

l
st

ru
ct

u
re

map open E1 {0, 1} open terrain

map vertical E2 {0, 1} vertical environment

map circular E3 {0, 1} circular terrain

map varied E4 {0, 1} no clear organizing principle

map corridors E5 {0, 1} indoor terrain

map bases E6 {0, 1} defensible positions

map towers E7 {0, 1} high ground

map transporters E8 {0, 1} teleporters, jump pads and vents

map outdoor E9 {0, 1} outdoor terrain

map size small E10 {0, 1} small or medium sized map

map size large E11 {0, 1} large arena

map size perim E12 R+ perimeter of map, seconds required to run in game

p
o
li
ci

es

rules noradar P1 {0, 1} HUD radar is off

rules noshields P2 {0, 1} shield is off

rules headshot P3 {0, 1} headshot required for kill (SWAT rules)

rules snipers P4 {0, 1} sniper fight

TABLE S4. Competition features, abbreviations and verbal descriptions, grouped in four categories: resources (R), skill (S),
environmental structure (E), and policy (P).
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parameter feature θ std. error t value Pr(> |t|) r2

log β

E5 1.849 0.320 5.764 � 0.001

0.933

E1 1.391 0.371 3.745 � 0.001

E11 1.123 0.141 7.920 � 0.001

S1 0.822 0.034 23.828 � 0.001

E3 0.570 0.256 2.224 0.028

E9 0.481 0.076 6.265 � 0.001

R10 −0.354 0.134 −2.642 0.009

R8 −0.495 0.215 −2.303 0.023

R15 −0.580 0.233 −2.488 0.014

E6 −0.813 0.150 −5.414 � 0.001

E2 −1.861 0.252 −7.375 � 0.001

E7 −2.126 0.224 −9.467 � 0.001

λ0

E5 0.082 0.008 9.966 � 0.001

0.955

E11 0.059 0.003 16.344 � 0.001

E1 0.045 0.009 4.774 � 0.001

E3 0.029 0.006 4.437 � 0.001

E9 0.023 0.001 12.028 � 0.001

R10 0.008 0.003 2.478 0.014

S1 0.005 0.001 6.010 � 0.001

E4 −0.009 0.004 −2.374 0.019

R8 −0.011 0.005 −1.995 0.048

R13 −0.011 0.004 −2.266 0.025

E6 −0.011 0.003 −2.845 0.005

R2 −0.015 0.008 −1.873 0.063

R1 −0.021 0.008 −2.680 0.008

R4 −0.030 0.008 −3.797 � 0.001

R15 −0.032 0.006 −5.444 � 0.001

E2 −0.081 0.006 −12.448 � 0.001

E7 −0.081 0.005 −13.991 � 0.001

α
R12 −1.9× 10−5 8.1× 10−6 −2.449 0.016

0.652
S1 −2.9× 10−6 1.7× 10−6 −1.692 0.093

ρ

E7 0.138 0.022 6.295 � 0.001

0.885

E2 0.123 0.024 4.989 � 0.001

R4 0.070 0.030 2.299 0.023

E6 0.061 0.014 4.175 � 0.001

R1 0.053 0.030 1.734 0.085

R15 0.046 0.022 2.030 0.044

R8 0.040 0.021 1.937 0.055

E4 0.031 0.015 2.018 0.046

R3 0.029 0.015 1.852 0.066

R14 −0.030 0.012 −2.366 0.019

E9 −0.036 0.007 −4.775 � 0.001

S1 −0.055 0.003 −16.413 � 0.001

E11 −0.089 0.013 −6.410 � 0.001

E5 −0.095 0.031 −3.020 0.003

TABLE S5. Ordered multivariate regression model coefficients for all standard (“slayer”) competitions regressed onto the
estimated generative model parameters log β, λ0, α, and predictability measure ρ.
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feature df W
il
k
s

a
p
p
ro

x
.

F

n
u
m

.
d
f

d
en

.
d
f

Pr(> F )

R1 1 0.533 21.617 4 99 � 0.001

R2 1 0.339 48.147 4 99 � 0.001

R3 1 0.352 45.541 4 99 � 0.001

R4 1 0.716 9.802 4 99 � 0.001

R8 1 0.167 123.322 4 99 � 0.001

R10 1 0.302 57.109 4 99 � 0.001

R11 1 0.418 34.459 4 99 � 0.001

R12 1 0.383 39.799 4 99 � 0.001

R13 1 0.817 5.536 4 99 � 0.001

S1 1 0.112 194.402 4 99 � 0.001

R15 1 0.224 85.703 4 99 � 0.001

E1 1 0.455 29.610 4 99 � 0.001

E2 1 0.358 44.342 4 99 � 0.001

E3 1 0.606 16.076 4 99 � 0.001

E4 1 0.811 5.742 4 99 � 0.001

E5 1 0.246 75.711 4 99 � 0.001

E6 1 0.399 37.133 4 99 � 0.001

E7 1 0.842 4.623 4 99 0.001

E9 1 0.401 36.896 4 99 � 0.001

E11 1 0.239 78.378 4 99 � 0.001

TABLE S6. MANOVA results of multiple multivariate regression model, providing a robustness check on the results given in
Table S5.
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parameter feature θ std. error t value Pr(> |t|) r2

log β

E5 1.803 0.229 7.867 � 0.001

0.933

E1 1.320 0.228 5.779 � 0.001

E11 1.126 0.124 9.029 � 0.001

S1 0.822 0.034 24.153 � 0.001

E3 0.480 0.122 3.919 � 0.001

E9 0.479 0.069 6.888 � 0.001

R13 0.154 0.069 2.243 0.027

R14 0.119 0.074 1.598 0.113

R1 -0.322 0.054 -5.952 � 0.001

R3 -0.232 0.092 -2.505 0.013

R12 -0.310 0.110 -2.822 0.005

R10 -0.367 0.113 -3.232 0.001

R8 -0.472 0.181 -2.596 0.01

R4 -0.504 0.062 -8.081 � 0.001

R15 -0.644 0.092 -6.931 � 0.001

E6 -0.827 0.130 -6.353 � 0.001

E2 -1.860 0.207 -8.957 � 0.001

E7 -2.093 0.193 -10.840 � 0.001

λ0

E5 0.084 0.006 13.770 � 0.001

0.954

E11 0.061 0.002 20.759 � 0.001

E3 0.029 0.003 8.648 � 0.001

E9 0.024 0.001 12.383 � 0.001

R10 0.008 0.003 2.794 0.006

R3 0.005 0.002 2.080 0.039

S1 0.005 0.001 6.085 � 0.001

E1 0.048 0.005 8.880 � 0.001

R13 -0.009 0.002 -3.979 � 0.001

E4 -0.008 0.002 -3.178 0.001

R8 -0.011 0.004 -2.467 0.015

E6 -0.012 0.003 -3.860 � 0.001

R2 -0.015 0.005 -2.939 0.004

R1 -0.022 0.005 -4.191 � 0.001

R4 -0.031 0.005 -5.852 � 0.001

R15 -0.034 0.004 -8.469 � 0.001

E7 -0.080 0.004 -16.695 � 0.001

E2 -0.081 0.005 -14.457 � 0.001

TABLE S7. Ordered multivariate regression model coefficients for all standard (“slayer”) competitions regressed onto log β,
λ0, selected via stepwise AIC, providing a second check on the robustness of the results in Table S5.
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parameter feature θ std. error t value Pr(> |t|) r2

ρ

E7 0.124 0.010 11.934 � 0.001

0.882

E2 0.111 0.011 9.943 � 0.001

R4 0.067 0.010 6.444 � 0.001

E6 0.052 0.005 8.998 � 0.001

R1 0.049 0.010 4.958 � 0.001

R8 0.046 0.016 2.779 0.006

R15 0.045 0.006 7.335 � 0.001

E4 0.039 0.007 5.456 � 0.001

R2 0.037 0.010 3.533 � 0.001

R3 0.027 0.008 3.420 � 0.001

E9 −0.034 0.006 −4.912 � 0.001

R14 −0.036 0.006 −5.971 � 0.001

S1 −0.055 0.003 −16.763 � 0.001

E5 −0.076 0.010 −7.429 � 0.001

E11 −0.081 0.006 −12.389 � 0.001

TABLE S8. Ordered multivariate regression model coefficients for all standard (“slayer”) competitions regressed onto ρ selected
via stepwise AIC, providing a second check on the robustness of the results in Table S5.

parameter feature θ (×10−5) std. error (×10−6) t value Pr(> |t|) r2

α

R3 1.570 2.583 6.077 � 0.001

0.637

R11 1.446 3.328 4.345 � 0.001

R2 1.432 2.965 4.832 � 0.001

E5 1.105 2.114 5.226 � 0.001

E3 0.454 2.368 1.918 0.057

S1 −0.294 1.689 −1.746 0.083

R1 −0.470 2.529 −1.859 0.065

R15 −1.591 2.583 −6.157 � 0.001

R8 −1.868 7.159 −2.609 0.010

R12 −2.551 2.538 −10.053 � 0.001

TABLE S9. Ordered multivariate regression model coefficients for all standard (“slayer”) competitions regressed onto α selected
via stepwise AIC, providing a second check on the robustness of the results in Table S5.


