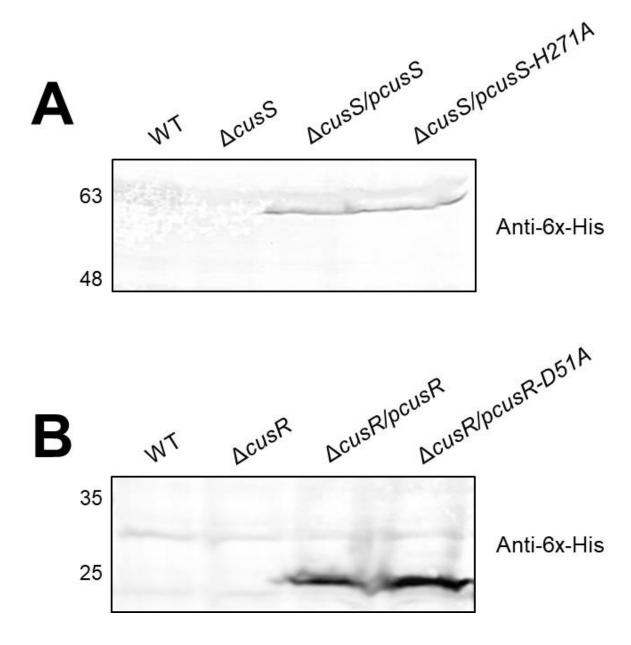
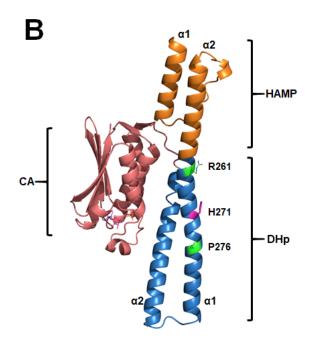

Plasmid	Genotype	Source/Reference
pTXB3	pBR322 derivative, <i>amp^R</i>	NEB
<i>pcusS</i> (39-187)	pTXB3/ <i>cusS</i> (39-187)	Previous work (20)
$pStrep-cusS_{(39-187)}-WT$	pTXB3/ <i>cusS</i> ₍₃₉₋₁₈₇₎ with N-terminal Strep tag and S192A	This work
pStrep-cusS ₍₃₉₋₁₈₇₎ -AIA	$pStrep-cusS_{(39-187)}-WT + H42A/F43I/H176A$	This work
pStrep-cusS ₍₃₉₋₁₈₇₎ -IIA	<i>pStrep-cusS</i> ₍₃₉₋₁₈₇₎ - <i>WT</i> + M133I/M135I/H145A	This work
pET21b(+)	pBR322 ori, <i>lac</i> coding sequence, amp^{R}	Novagen
pcusS-WT	pET21b(+)/cusS with C-terminal 6xHis tag	Previous work (22)
pcusS-H271A	pET21b(+)/cusS-H271A	This work
pcusS-AIA	pET21b(+)/cusS-H42A/F43I/H176A	Previous work (22)
pcusS-IIA	pET21b(+)/cusS-M133I/M135I/H145A	Previous work (22)
$pcusS_{cp}$ -short	pET21b(+)/cusS _{cp} -6xHis	This work
$pcusS_{cp}$ -short-H271A	pET21b(+)/ <i>cusS_{cp}-H271A</i>	This work
$pcusS_{cp}$ -short-AA	pET21b(+)/ <i>cusS_{cp}-N386A/N414A</i>	This work
pcusS _{cp} -short-AAA	pET21b(+)/ <i>cusS_{cp}-H271A/N386A/N414A</i>	This work
pET28b(+)	pBR322 ori, <i>lac</i> coding sequence, <i>kan^R</i>	Bio Basic
pcusS _{cp} -long	pET28b(+)/cusScp-Strep-Myc-Strep-FLAG- HA-Strep	This work
$pcusS_{cp}$ -long-H271A	pET28b(+)/ <i>cusS_{cp}</i> -H271A	This work
$pcusS_{cp}$ -long-AA	pET28b(+)/ <i>cusS_{cp}</i> - <i>N386A</i> / <i>N414A</i>	This work
pcusS _{cp} -long-AAA	pET28b(+)/ <i>cusS_{cp}-H271A/N386A/N414A</i>	This work
pET22b(+)	pBR322 ori, <i>lac</i> coding sequence, amp^R	Novagen
pcusR	pET22b(+)/cusR-6xHis	This work
pcusR-D51A	pET22b(+)/cusR-D51A-6xHis	This work

Supplemental Table S1. Plasmids used in this study


	Genotype	Source/Reference
Strain		
BW25113	$lacI^{q}$, $rrnB_{T14}$, $\Delta lacZ_{WJ16}$, $hsdR514$, $\Delta araBAD_{AH33}$, $\Delta rhaBAD_{LD78}$	Datsenko & Wanner (35), Baba et al (34)
JW5082-1	BW25113/ $\Delta cusS::kan^{R}$	Baba et al (34)
JW0560-1	BW25113/ $\Delta cusR::kan^R$	Baba et al (34)
WT	BW25113/ <i>∆cueO∷cat^R</i> /pET21b(+) or pET22b(+)	Previous work (22); This work
$\Delta cusS$	BW25113/ <i>AcueOAcusS/</i> pET21b(+)	Previous work (22)
∆cusR	BW25113/ <i>AcueOAcusR</i> /pET22b(+)	This work

Supplemental Table S2. Bact	terial strains used for in vivo	complementation assay
-----------------------------	---------------------------------	-----------------------

Supplemental Figure S1. *In vitro* crosslinking reactions of apo and Ag(I)- CusS₍₃₉₋₃₈₇₎ wild-type and mutants. (A) Apo- and Ag(I)- CusS₍₃₉₋₃₈₇₎ samples (10 μ M) in the presence and absence of BS³ crosslinker were analyzed by SDS-PAGE followed by silver staining. The expected monomer (~18 kDa) CusS₍₃₉₋₃₈₇₎ is indicated by (*) and the expected dimer (~36 kDa) is indicated by (**). Experiment was repeated twice; a representative experiment is shown. (B) The relative densities of the dimers (**) were calculated and normalized to the apo proteins. Student's t test was used to calculate the *P* value. Error bars indicate standard deviations of duplicate experiments.



Supplemental Figure S2. Relative expression levels of (A) CusS-WT/H271A from pET21b(+) plasmids and (B) CusR-WT/D51A from pET22b(+) plasmids. Cells were grown at 37°C for 2 hr, then cells were induced with 1 mM IPTG and 0.5 mM CuSO₄ and continued shaking at 37°C for 6 hr. Cells were normalized to the same OD_{600} before collecting the pellets. Anti-His tag antibody was used to probe the expressed proteins.

Supplemental Figure S3. (A) Sequence alignment of the entire cytoplasmic domain of *E. coli* CusS (CusS_{cp}, residues 208-480) and *E. coli* CpxA (CpxA_{HDC}, residues 188-455). The conserved catalytic His residues are indicated with white text and highlighted in black. Two residues (S238 and P253) that are responsible in causing helical bending in CpxA_{HDC} structure are highlighted in green. Conserved residues are labeled with asterisks (*). (B) 3D structure of the cytoplasmic domain of *E. coli* CusS (residues 208-480) predicted by Robetta (60). This structure was predicted based on the structure of the cytoplasmic domain of *E. coli* CusS (residues 208-480) predicted by Robetta (60). This structure was predicted based on the structure of the cytoplasmic domain of *E. coli* CpxA (PDB entry 4BIU (54)), which shares significant sequence homology with CusS_{cp} (31.1% identity, 47.9% similarity, calculated by EMBOSS Needle). The catalytic H271 residue is shown in magenta stick representation. Two residues (R261 and P276) that correspond to S238 and P253 on CpxA_{HDC} are shown in green sticks. An ADP molecule adapted from PDB entry 4BIU is shown in line representation in the CA domain. The domains of CusS are labeled as HAMP, histidine kinase, adenylyl cyclases, methyl-accepting proteins, phosphatases; DHp, dimerization and histidine phosphotransfer; CA, catalytic and ATP binding domain.

Λ			
A	CusScp	KGHAPIRSVSRQIQNITSKDLDVRLDPQTVPIELEQLVLSFNHMIERIEDVFTRQSNFSA	267
	CpxAHDC	KPARKLKNAADEVAQGNLRQHPELEAGPQEFLAAGASFNQMVTALERMMT <mark>S</mark> QQRLLS	244
		** * * * * * * * * * * * *	
	CusScp	DIA EIRTPITNLITQTEIALSQSRSQKELEDVLYSNLEELTRMAKMVSDMLFLAQA-DN	326
	CpxAHDC	DIS <mark>H</mark> ELRT <mark>P</mark> LTRLQLGTALLRRRSGESKELERIETEAQRLDSMINDLLVMSRNQQK	300
		** **.*** * * * * * * **** * *. *.	
	CusScp	NQLIPEKKMLN-LADEVGKVFDFFEALAEDRGVELRFVGDKCQVAGDPLMLRRALSNLLS	385
	CpxAHDC	NALVSETIKANQLWSEVLDN-AAFEAEQMGKSLTVNFPPGPWPLYGNPNALESALENIVR	359
		* * . * * * * * * * * * * * * * * * * *	
	CusScp	NALRYTPTGETIVVRCQTVDHLVQVIVENPGTPIAPEHLPRLFDRFYRVDPSRQRKGEGS	445
	CpxAHDC	NALRYSHTKIEVGFAVDKDGITITVDDDGPGVSPEDREQIFRPFYRTDEARDRESGGT	417
		***** * * . * . * *** * * *	
	CusScp	GIGLAIVKSIVVAHKGTVAV-TSDARGTRFVITLPA 480	
	CpxAHDC	GLGLAIVETAIQQHRGWVKAEDSPLGGLRLVIWLPLYK 455	
		* ****	

