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S1 Literature Review

S1.1 Optic Disc Segmentation: State-of-the-Art

The first step in a computer-assisted assessment of glaucoma based on Cup-to-Disc Ratio (CDR), Rim-to-Disc

Ratio (RDR) computation, or a check for Inferior ≥ Superior ≥ Nasal ≥ Temporal (ISNT) rim-width pattern

starting from retinal fundus images, is the localization and segmentation of the optic disc and cup. The problem

of optic disc segmentation has received a lot more attention in the literature than optic cup boundary detec-

tion although both are equally important problems for glaucoma prescreening. The segmentation of optic disc

contour is challenging because of the presence of blood vessels and optic nerve occlusion, and peripapillary

atrophy. In certain cases, there are also large exudative lesions, which pose further challenges. In this section,

we review important literature on optic disc and cup segmentation.

Foracchia et al.1 proposed a method based on a model of the geometrical directional pattern of the retinal

vascular system, considering the optic disc region as the point of convergence of all vessels. Foracchia et al.

fit a model with respect to the entire retinal vascular structure. Morales et al.2 proposed a method based on

mathematical morphology coupled with principal component analysis. The method uses a generalized distance

function, a variant of the watershed transformation, the stochastic watershed and geodesic transformations.

Carmona et al.3 used genetic algorithms to locate and segment the optic nerve head. A set of hypothesis points

were obtained that exhibited geometric properties and intensity levels similar to the optic nerve head contour

pixels. The genetic algorithm was then used to find an ellipse containing the maximum number of hypothesis

points in an offset of its perimeter, which then becomes the approximation to the optic nerve head. Mahfouz

et al.4 presented a fast technique to localize the optic disc based on obtaining two projections of certain image

features that encode the horizontal and vertical coordinates of the optic disc. The resulting 1-D projections

are then searched to determine the location of the optic disc. Aquino et al.5 proposed a new template-based

methodology for segmenting the optic disc. Their method uses morphological and edge detection techniques

followed by the circular Hough transform to obtain a circular optic disc boundary approximation. Yu et al.6

identified the optic disc location using template matching and directional matched filter. Based on the detected

location, a fast hybrid level-set algorithm, which combines the region information and edge gradient to drive

the curve evolution, is used to segment the optic disc boundary. Giachetti et al.7 proposed a method that first

separates the vasculature, in-paints those areas and finally fits a contour model to the optic disc. Youssif et

al.8 proposed a method based on matching the expected directional pattern of the retinal blood vessels using

a matched filter. Illumination equalization and adaptive histogram equalization methods are used as prepro-

cessing steps. The region-based active contour model proposed by Joshi et al.9 uses statistical information

from the background and the foreground region to minimize the energy function to best separate the regions.

Muramatsu et al.10 proposed a pixel classification method for clustering and classifying image pixels as optic

disc or background pixels to segment the optic disc using fuzzy c-means and artificial neural networks. Lowell

et al.11 developed Hough transform-based circular or elliptical template matching techniques.

Pallawala et al.12 used wavelet transform and ellipse fitting for automated optic disc detection and localiza-

tion. Chrastek et al.13 used nonlinear filtering, Canny edge detector, and Hough transform for the localization

and segmentation of optic disc. Welfer et al.14 proposed an adaptive morphology-based technique for the

segmentation of optic disc. Osareh15 used morphological processing and template matching for optic disc

localization and the gradient vector flow snakes for optic disc segmentation. Walter et al.16 proposed marker-

controlled-watershed-transformation to segment the optic disc. Abdullah et al.17 employed circular Hough

transform, and the grow-cut algorithm to precisely segment the optic disc boundary. Gonzalez et al.18 extract

the retinal vascular tree in the first step and then use the graph-cut technique for the segmentation of optic disc.
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Recently, deep convolutional neural networks (CNNs) have been successfully applied to sophisticated tasks

such as object detection and segmentation. Sevastopolysky et al.19 proposed a modified U-Net20 architecture to

generate the optic disc segmentation map. Maninis et al.21 proposed an architecture based on visual geometry

group’s 16-layer model (VGG1622) with specialized layers for retinal vasculature segmentation and optic disc

segmentation.

S1.2 Optic Cup Segmentation: State-of-the-Art

Accurate segmentation of optic cup region is essential in the automatic assessment of glaucoma. The optic

cup depth information is a major indicator of the optic cup boundary with two important landmarks such as

the pallor and vessel bends. Optic cup segmentation is difficult as the fundus images do not carry direct depth

information. Various automated optic cup segmentation methods have been presented in the literature. Joshi

et al.23 proposed a novel, depth discontinuity in the retinal surface-based approach to estimate the optic cup

boundary. The optic cup boundary is approximated with a best-fitting circle. Joshi et al.24 used another method

based on vessel bends at optic cup boundary. Vessels are modeled and detected in a curvature space and bends

in a vessel are robustly detected using a region of support concept. A reliable subset called r-bends is derived

using a multistage strategy and a local spline fitting is used to obtain the desired optic cup boundary. Hatanaka

et al.25 proposed an improved automated optic cup segmentation technique based on detection of blood vessel

bends in retinal fundus images. A concentration feature determined from the density gradient detects the blood

vessels. The blood vessel bends are detected by tracking the blood vessels from the disc edge to the primary

cup edge. Chakravarthy et al.26 proposed a novel, supervised method for depth-based cup segmentation. Xu

et al.27 followed the super-pixel framework and domain prior to segment the optic cup, where the super-pixel

classification task is formulated as a low-rank representation problem with an efficient closed-form solution.

Luangruangrong et at.28 employed a polar space contour detection approach for the segmentation of optic cup.

S1.3 Optic Cup and Disc Segmentation: State-of-the-Art

Few papers in the literature have addressed the problem of both cup and disc segmentation. Cheng et al.29

employed a super-pixel classification approach. In optic disc segmentation, histograms and center surround

statistics are used to classify each super pixel as disc or non-disc. A deformation step using deformable models

is used to fine-tune the disc boundary. For optic cup segmentation, in addition to the histograms and center

surround statistics, the location information is also included. Xu et al.30 used deformable snakes to segment the

optic disc. The contour deforms to the location with minimum energy, and then self-clusters into edge-point

group and uncertain-point group. The method is then extended to detect the optic cup boundary. The contour

is initialized by Hough transformation in edge map, and then processed by contour deformation, knowledge-

based clustering, and updating. Joshi et al.31 used optic disc and optic cup boundaries to estimate the relevant

disk parameters. A deformable model guided by regional statistics detects optic disc boundary. The optic

cup boundary detection is based on the appearance of pallor in Lab color space and the expected optic cup

symmetry. Joshi et al.32 proposed a novel region based active contour model to segment the optic disc. The

optic cup segmentation was done by the detection of vessel bends24 in the optic cup region. Yin et al.33

proposed a statistical model-based method for the segmentation of optic disc and optic cup from fundus images.

The method combines knowledge-based circular Hough transform and a novel optimal channel selection for

segmentation of the optic disc and optic cup. Zahoor et al.34 presented a polar transform based approach for

the segmentation of optic disc and cup. Cheng et al.35 proposed a structure-preserving guided retinal image

filtering approach to remove artifacts. They employed deep learning based technique for optic cup segmentation
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and sparse learning based technique for cup-to-disc ratio measurement. Winder et al.36 reviewed the recent

literature on preprocessing, localization and segmentation of the optic disc and retinal vasculature, localization

of the macula and fovea, and localization and segmentation of retinopathy.
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S2 Automatic Localization of the Optic Disc Region

We localize the optic disc region using a normalized matched filter with a manually segmented and subsampled

optic disc region as the template. For reasons of computational efficiency and speed, the matched filtering

is performed at the lowest level of a four-level pyramid representation of the image and then the location

information is propagated to the highest level of the decomposition. The normalization takes care of intensity

variations between the image and the template. The normalized matched filter is equivalent to computing a

cosine similarity measure and ensures that the localization is unaffected by pathologies such as lesions. The

cosine similarity measure ξ between the image f at the jth level of the pyramid f (j) and the template h is given

by

ξ(xp, yp) = cosφ =

〈
f (j)(x, y)

‖f (j)(x, y)‖
,
h(x− xp, y − yp)
‖h(x− xp, y − yp)‖

〉
,

where ‖ · ‖ denotes the `2-norm. The location corresponding to the peak of the cosine similarity measure is

considered for initializing the active disc (cf. Figure 1 for an illustration).

Figure 1: Localization and selection of region of interest and subsequent initialization of the active disc.
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S3 Active Disc Formulation and Optimization

The active disc template comprises a pair of concentric outer and inner discs parametrized as:(
xi(t)

yi(t)

)
=

(
ri cos t

ri sin t

)
, (1)

for i = 1, 2, and ∀t ∈ (0, 2π], where ri for i = 1, 2 represents the radius of the outer and inner discs which are

set to 1 and 1/
√
2, respectively. An example of such a circular template is shown in Fig. 2. The factor 1/

√
2

is used to make the area of the inner disc equal to that of the annulus, which ensures that the circular active

disc is inert in regions of constant intensity. We consider the transformation comprising isotropic scaling and

translation given as follows: (
Xi(t)

Yi(t)

)
= R

(
xi(t)

yi(t)

)
+

(
xc

yc

)
, (2)

where R is the scale parameter and xc, yc are the translation parameters, accounting for a total of three degrees

of freedom. Figure 2 illustrates the disc template and the active disc. For brevity of notation, we replace

(xi(t), yi(t)) and (Xi(t), Yi(t)) with (xi, yi) and (Xi, Yi), respectively.

(0, 0)

(xc, yc)

r1 r2

x

y

Rr1

Rr2

Figure 2: The disc template and its active counterpart.

S3.1 Active Disc Energy

The active disc energy is the normalized local contrast function defined as

E =
1

R2

( ∫∫
R1\R2

f(X,Y ) dX dY −
∫∫
R2

f(X,Y ) dX dY

)
,

=
1

R2

(∫∫
R1

f(X,Y )dX dY

︸ ︷︷ ︸
E1

−2
∫∫
R2

f(X,Y )dX dY

︸ ︷︷ ︸
E2

)
,

E =
1

R2
(E1 − 2E2), (3)
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where E1 and E2 are the energies of the outer and inner discs, respectively. f(X,Y ) is the coordinate-axes-

transformed image of f(x, y) and is given by

f(X,Y )← f

(
X − xc
R

,
Y − yc
R

)
.

Minimizing E with respect to the parameters {R, xc, yc} enables the active disc to lock on to the optic disc,

which is brighter than its immediate surroundings. The area based normalization ensures that the tightest fit

outline is obtained. A typical optic disc image, the initialization and the converged active disc are shown in

Figure 3.

E1 E2
E1 E2

(a) (b) (c)

Figure 3: (a) Optic disc image; (b) Active disc initialization; and (c) Optimized active disc.

S3.2 Optimization

We minimize the disc energy using gradient-descent. Although the disc energy is not convex in its arguments,

we found that incorporating Nesterov’s37 momentum factor led to an acceleration of the optimization. One starts

with an initial guess of the parameter θ0 = θ−1, where θ is a generic variable used to denote the parameters

xc, yc, and R. The optimization is carried out over positive real numbers. The iterations are given by

θn+1 = ϑn − γn∇E[θn]; E[θ0] ≥ E[θ1] ≥ E[θ2] · · · ,

where

ϑn = θn−1 +
n− 2

n+ 1
(θn−1 − θn−2) , n = 1, 2, 3, · · ·

The iterates require partial derivatives of the disc energy E with respect to the parameters. Since the

integrals are two-dimensional and the contours are closed, one could compute the partial derivatives efficiently

using Green’s38 theorem. Applying Green’s theorem to E2 gives

E2 =

∮
R2

fXdY = −
∮
R2

fY dX, (4)

where fX(X,Y ) =
∫ X
−∞ f(ζ, Y )dζ and fY (X,Y ) =

∫ Y
−∞ f(X, ζ)dζ. E2 is a function of (X,Y ), which are

functions of the parameters of the disc. The partial derivative of E2 with respect to R is given by

∂E2

∂R
=
∂E2

∂X

∂X

∂R
+
∂E2

∂Y

∂Y

∂R
. (5)
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Substituting (4) in (5) and simplifying gives

∂E2

∂R
=

∮
R2

∂fX

∂X

∂X

∂R
dY −

∮
R2

∂fY

∂Y

∂Y

∂R
dX,

∂E2

∂R
=

R

2

∫ 2π

t=0
f(X2, Y2) dt. (6)

Similarly, applying Green’s theorem to E1 gives

E1 =

∮
R1

fXdY = −
∮
R1

fY dX. (7)

The partial derivative of the energy E1 with respect to R is given by

∂E1

∂R
=
∂E1

∂X

∂X

∂R
+
∂E1

∂Y

∂Y

∂R
. (8)

Substituting (7) in (8) and simplifying we get that

∂E1

∂R
=

∮
R1

∂fX

∂X

∂X

∂R
dY −

∮
R1

∂fY

∂Y

∂Y

∂R
dX,

∂E1

∂R
= R

∫ 2π

t=0
f(X1, Y1) dt. (9)

The partial derivative of the energy with respect to R is

∂E

∂R
=

∂

∂R

{
1

R2
(E1 − 2E2)

}
=

1

R2

{
∂E1

∂R
− 2

∂E2

∂R

}
− 2

R3

{
E1 − 2E2

}
. (10)

Substituting (6) and (9) in (10), and simplifying gives

∂E

∂R
=

1

R

(∫ 2π

t=0
f(X1, Y1) dt−

∫ 2π

t=0
f(X2, Y2) dt− 2E

)
. (11)

Similarly, the partial derivatives of the energy with respect to the coordinates of the center of the disc xc and yc
can be computed as:

∂E

∂xc
=

1

R2

(∫ 2π

t=0
(
√
2f(X1, Y1) dt− 2f(X2, Y2)) cos t dt

)
, (12)

∂E

∂yc
=

1

R2

(∫ 2π

t=0
(
√
2f(X1, Y1) dt− 2f(X2, Y2)) sin t dt

)
. (13)
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S4 Segmentation of Optic Cup

We use Otsu’s multilevel thresholding algorithm39, 40 to classify and cluster the pixels corresponding to the

optic cup, and then determine the size of the optic cup using circular active disc. Otsu’s multilevel threshold-

ing algorithm assumes the image comprising N pixels to be grouped into M classes and calculates optimum

thresholds separating classes such that the intra-class variance is minimum. Intra-class variance is the weighted

sum of variances of the M classes. Let the grayscale intensities range between 0 and L − 1 and let fi be the

number of pixels with grey-level i. In a frequentist sense, the probability of the grey-level i is given by pi = fi
N .

The thresholds 1 ≤ t1 < t2 · · · < tM−1 ≤ L, divide the image into M classes {C1, C2, ..., CM}. The optimal

thresholds can be chosen by maximizing the inter-class variance given by

σ2B =
M∑
k=1

(µk − µ)2∑
i∈Ck

pi
,

where µ is the mean intensity of the whole image and

µk =

∑
i∈Ck

i pi∑
i∈Ck

pi
.

We found that a four-level thresholding scheme works best for clustering the optic cup pixels. Fig. 4 illustrates

the result at the end of each level of thresholding. The corresponding optic cup region is fitted by the circular

active disc, the procedure for which has been described in Section S3.

Image 1st level output 2nd level output 3rd level output 4th level output

Figure 4: An illustration of the clustering process using Otsu’s four-level thresholding scheme. The fourth-level
output highlights most of the pixels corresponding to the optic cup.
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S5 Screenshots of the iOS App

In the following, we show screenshots of our iOS app in action. We call our app Nayana (meaning, “The Eye”

in Sanskrit). We have also developed an Android counterpart of the app. The apps are ready for deployment on

fundus-on-phone devices.

(a) (b)

Figure 5: (a) A screenshot of the iOS app; and (b) An example of a Glaucoma prescreening report generated
by the app.
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S6 Comparison with the State-of-the-Art:

The algorithm performance has been evaluated on five retinal fundus image databases having images with

varied size, resolution, contrast, and illumination. A quantitative comparison of the automatic segmentation

of the proposed method and clinician outlining (ground truth) is done using the performance metrics such as

sensitivity (Se), specificity (Sp), accuracy (Ac), % error (Pe), Jaccard similarity index (JI), Dice similarity

index (DI), and time per image (TI). The performance of the proposed method in comparison with the state-

of-the-art OD and OC segmentation techniques is shown in Table 1 and Table 2, respectively. The performance

metrics obtained reveal that the algorithm outlining has a higher degree of agreement with the expert outlines

over several images randomly selected from five different databases. The average time taken to segment OD

and OC in comparison with state-of-the-art techniques is also shown in Table 1 and Table 2, respectively.

The results show that the proposed segmentation technique is fast and offers reliable and robust segmentation

performance.

Table 1: Optic disc segmentation: Performance comparison of various algorithms.

Algorithm Database (# images) Se Sp Ac Pe JI DI TI in seconds

Morales et al.2 Drive (40) — —- 0.9903 0.0097 0.7163 0.8169 —
DiaretDB1 (89) — — 0.9957 0.0043 0.8173 0.8930 —
ONHSD (99) — — 0.9941 0.0059 0.8045 0.8867 —

Drions-DB (110) — — 0.9934 0.0066 0.8424 0.9084 —
Messidor (1200) — — 0.9949 0.0051 0.8228 0.8950 —

Abdullah et at.17 Drive (40) 0.8188 0.9966 0.9672 0.0328 0.7860 0.8722 59.2
DiaretDB1 (89) 0.8510 0.9984 0.9772 0.0228 0.8510 0.8910 40.0
ONHSD (99) 0.8857 0.9992 0.9967 0.0033 0.8477 0.9197 65.3

Drions-DB (110) 0.8508 0.9966 0.9989 0.0011 0.8510 0.9102 43.2
Messidor (1200) 0.8954 0.9995 0.9989 0.0011 0.8793 0.9339 71.3

Dashtbozorg et al.41 ONHSD (89) — — — — 0.7094 0.8300 —
Messidor (1200) — — — — 0.8018 0.8900 —

INSPIRE-AVR (1200) — — — — 0.7391 0.8500 —
Kumar et al.42 Drishti-GS (101) — — — — 0.8310 0.9077 —

Drions-DB (110) — — — — 0.7212 0.8380 —
Messidor (1200) — — — — 0.7325 0.8456 —

Proposed method Drishti-GS (101) 0.9962 0.9698 0.9732 0.0268 0.8707 0.9309 9.35
Drions-DB (110) 0.8410 0.9960 0.9850 0.0150 0.8341 0.9095 6.50
Messidor (1200) 0.8840 0.9894 0.9882 0.0118 0.7858 0.8801 8.44

Forus (126) 0.9457 0.9957 0.9911 0.0089 0.9319 0.9647 8.12
Bosch (60) 0.9649 0.9994 0.9968 0.0032 0.9109 0.9534 8.45

The symbol “—” indicates that those values were not reported by the corresponding authors.
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Table 2: Optic cup segmentation: Performance comparison of various algorithms.

Algorithm Database (# images) Se Sp Ac Pe JI DI TI in seconds

Sivaswamy et al.43 and Drishti-GS (50) — — — — 0.5873 0.7400 —
Joshi et al.32

Kumar et al.44 Drishti-GS (50) — — — — 0.5749 0.7302 —
Drions-DB (100) — — — — 0.5445 0.7050 —
Messidor (100) — — — — 0.5527 0.7120 —

Sivaswamy et al.43 and Drishti-GS (50) — — — — 0.6260 0.7700 —
Joshi et al.23

Proposed method Drishti-GS (50) 0.8589 0.9698 0.9690 0.0310 0.6143 0.7611 5.46
Drions-DB (100) 0.6175 0.9979 0.9884 0.0116 0.5898 0.7420 3.54
Messidor (100) 0.8357 0.9883 0.9823 0.0177 0.5911 0.7430 4.35

Forus (126) 0.7466 0.9952 0.9867 0.0133 0.6801 0.8096 4.12
Bosch (60) 0.7584 0.9959 0.9917 0.0083 0.5804 0.7345 4.28

The symbol “—” indicates that those values were not reported by the corresponding authors.
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