

Supplementary Fig. 1. Expression of REG3 \langle in human *REG3A*^{tg} mice or **Reg3**//adenovirus injected mice. a, ORT-PCR of human REG3A in the ileum tissues from 6-8 week old male wt and human REG3A tg mice. **b**, QRT-PCR of mouse Reg3 \langle in the ileum tissues from mice after ip injecting Reg3 \langle /adenovirus (Reg3 \langle /Ad, 1×10^{9} viral particles/mouse) or control viral particles (NC/Ad, 1×10^{9} control viral particles/mouse) for two weeks. c, Immunoblot of human REG3A of ileum tissues from wt and human REG3A^{tg} mice. **d**, Immunoblot of mouse Reg3 \langle of the ileum tissues from mice with (Reg3 \langle /Ad) or without (NC/Ad) Reg3 \langle adenovirus injection. NC/Ad, empty adenovirus offered by company. e, Immunofluorescent staining of the ileum tissues from wt and human REG3A^{tg} mice. **f**, Immunofluorescent staining of the ileum tissues from the mice with or without Reg3(adenovirus. Anti-human REG3A antibody was used in *wt* and human *REG3A* tg mice; whereas anti-mouse Reg3(antibody was used in the mice with (Reg3(/Ad) or without (NC/Ad) Reg3(/Ad))/adenovirus injection. Scale bars=40 μ m; Student's *t*-test in a and b, mean \pm SD; NS, no significance; R. E., relative expression; Number in c and d indicates different individuals.

Supplementary Fig. 2. The mucus layer and proliferative index in the distal colons of REG3A transgenic mice. a, Staining of mucin in the proximal colon of human *REG3A*^{*tg*} mice (REG3A) and control cohoused littermate *wt* mice at the indicated time (ten slides/mouse; n=6); VCU, villus-crypt units. **b**, QRT-PCR of mucin 2 (MUC2), Clca3, REtnlb and Tff2 in the colonic epithelial cells of human

REG3A^{*tg*} and control cohoused littermate *wt* mice at day 13 (n=6); **c**, Staining of Ki67 cells in the colon (ten slides/mouse, n=6); The regions of interest were analyzed using ImageJ software, and detection of positive staining and cell number was performed with ImageJ software; **d**, QRT-PCR of Cdknla and Cdkn2d (n=6) in the colonic epithelial cells of human *REG3A*^{*tg*} and control cohoused littermate *wt* mice at day 13 (n=6). These mice were treated using 2.5% DSS for 7 days from day 0, and then switched to regular drinking water. Scale bars=40 µm; Student's *t*-test in b and d; ANOVA plus post-Bonferroni analysis in a and c; mean ±SEM in a and c; NS, no significance; R. E, relative expression. Data are a representative of at least three independent experiments.

Supplementary Fig. 3. Representative FACS gating scheme for immune cell analyses in lamina propria (LP) tissues. After eliminating double cells by FCS-W and SSC-W, and dead cells by 7-AAD, we gated on lineage-negative cells for further analyses following initial gating on live CD45(+) cells.

Supplementary Fig. 4. Immune cell populations in *REG3A*^{*tg*} mice. Flow cytometry of CD11c(+) cells, CD11b(+)Ly6G(+), CD11b(+)Ly6C(+), F4/80(+)CD11b(+) and their subsets in the LP of ileum. Student's *t*-test was performed to compare the proportion of CD103(+)CD11b(+), CD11b(+)Ly6G(+), CD11b(+)Ly6C(+), F4/80(+)CD11b(+) cells in *wt* and human *REG3A*^{*tg*} (REG3A) mice (Mean ±SD, n=6). Numbers indicate the cellular proportion. Data are a representative of at least three independent experiments.

Supplementary Fig. 5. The transplantation of REG3A-shaped microbiota causes increased proportion of RORγt (+) IL-22(+) cells in small intestine and colon tissue. a, Mucus staining of colon tissues in WT/WT, REG3A/REG3A, WT/REG3A and REG3A/WT mice. **b,** QRT-PCR of MUC gene in the ileum and colon tissues of WT/WT, REG3A/REG3A, WT/REG3A and REG3A/WT mice; **c**, Flow cytometry of RORγt (+) IL-22(+) cells in the ileum and colon tissues of WT/WT, REG3A/REG3A, WT/REG3A and REG3A/WT mice. WT/WT, the feces of WT mice were transplanted

into pan-antibiotics treated mice; REG3A/REG3A, the feces of REG3A tg mice were transplanted into pan-antibiotics treated REG3A tg mice; WT/REG3A, the feces of REG3A tg mice were transplanted into pan-antibiotics treated WT mice; REG3A/WT, the feces of WT mice were transplanted into pan-antibiotics treated REG3A tg mice. Scale bars=40 µm. Student's *t*-test in a and b, ANOVA plus post-Bonferroni analysis in c and d. NS, no significance; R. E, relative expression.

a

b

CACCTTAGACGGCTGGCTCCAAAGGTTACCCCACCGGCTTT GGGTGTTACAAACTCTCATGGTGTGACGGGCGGTGTGTACA AGGCCCGGGAACGTATTCACCGCGGCATGCTGATCCGCGAT TACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACA ATCCGAACTGAGAACGGCTTTAAGAGATTTGCTAAACCTCG CGGTCTTGCGACTCGTTGTACCGTCCATTGTAGCACGTGTGT AGCCCAGGTCATAAGGGGGCATGATGATTTGACGTCATCCCC ACCTTCCTCCGGTTTGTCACCGGCAGTCTTGCTAGAGTGCCC AACTTAATGCTGGCAACTAACAATAAGGGTTGCGCTCGTTGC GGGACTTAACCCAACATCTCACGACACGAGCTGACGACAAC CATGCACCACCTGTCATTTTGTCCCCGAAGGGAAAGTCCTAT CTCTAGGATTGTCAAAAGATGTCAAGACCTGGTAAGGTTCTT CGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCG GGCCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTAC TCCCCAGGCGGAATGCTTATTGCGTTAGCTGCAGCACTGAA GGGCGGAAACCCTCCAACACTTAGCATTCATCGTTTACGGC GTGGACTACCAGGGTATCTAATCCTGTTTGCTACCCACGCTT TCGAACCTCAGCGTCAGTTACAGACCAGAGAGCCGCTTTCG C CCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACAC ATGGAGTTCCACTCTCTCTCTGCACTCAAGTCTCCCAGTTT CCAATGCACTACTCCGGTTAAGCCGAAAGGCTTTCACATCAG ACTTAAAAGACCGCCTGCGTTCCCTTTACGCCCAATAAATCC CGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCA CGTAGTTAGCCGTGCTTTCTGGTTAGATACCGTCGAAACGTG AACAGTTACTCTCACGCA

0.0

Supplementary Fig. 6. *Lactobacillus* promotes gut mucus layer formation in germ-free mice. a, Sequence of REG3A associated *lactobacillus*, which is named as

Lactobacillus NK.2(L.NK2). The 16s rRNAs from *lactobacillus* were extracted and sequenced by primers (F: 5'-AGAGTTTGATCATGGCTCAG-3'; R: 5'-

TAGGGTTACCTTGTTACGACTT-3'). Fresh feacal samples were collected and diluted in 2 ml PBS solution, and cultured on Rogosa SL selective medium (Sigma-Aldrich) for lactobacillus enumeration, and then colonies were identified and purified using 16s rRNA sequence analyses. **b**, Homology of isolated L. NK2 strain with other lactobacilli. The gut lactobacillus was selected and cultured in lactobacillus selected medium (Barebio, China). Phylogenetic tree shows the relationships among 16S rRNA sequences of L. NK2 strain, including lactobacillus and species representing different lineages within genus lactobacillus. c, The representative caecum in germfree (GF) mice with or without L. NK2 or L. NK1 colonization (n=5, male). d, Immunostaining of RORyt (+)IL-22(+) cells in the ileum of GF mice with or without L.NK2 or L.NK1 colonization. Representative images (n=6). e, Staining of goblet cells in the ileum of GF mice with or without L.NK2 or L.NK1 colonization. Ten slides/mouse, n=6. f, Staining of the Ki67 cells in the ileum of GF mice with or without L.NK2 or L.NK1 colonization. Ten slides/mouse, n=6. Scale bars=40 µm. ANOVA plus post-Bonferroni analysis in e and f; NS, no significance; R. E, relative expression.

Supplementary Fig. 7. *L. NK2* colonization does not change the levels of IAld and IAA in the ileum and colon of GF mice. a, HPLC/MASS of IAld in the ileum and colon contents of GF mice with or without *L. NK2* or *L. NK1* colonization (n=5). b, HPLC/MASS of IAA in the ileum and colon contents of *wt* and *human REG3A*^{*tg*} (REG3a) mice (n=5). ANOVA plus post-Bonferroni analysis in a; Student's *t*-test in b, mean \pm SD. Data are a representative of three independent experiments.

0

WT-

g

REG3A

-TN

7,77

WINDENO

2

1. 10

0

nc

h

10

Supplementary Fig. 8. Gut tryptophan metabolism depends on L-Orn. a,

HPLC/MASS of the gut contents in REG3 associated lactobacillus colonized GF mice. GF-1, GF-2, GF-3 and GF-4 indicated different GF individuals; L.NK2-1, L.NK2-2, L.NK2-3 and L.NK2-4 indicated different GF individuals infused by L. NK2 $(1.10^9/\text{mouse})$. **b**, L-Orn analyses in the ileum and colon contents in REG3 associated lactobacillus (L. NK2) colonized GF mice. GF, germ free mice; GF/L.NK1, control lactobacillus infused GF mice; GF/L.NK2, REG3(associated lactobacillus infused mice; SPF, wt mice raised in specific pathogen-free environment. **c**, L-Orn analyses in the contents of the ileum and colon of human REG3 \int_{a}^{dg} and their control littermate wt mice. d and e, ORT-PCR (d) and immunoblotting (e) of IDO1 in the ileum and colon epithelial cells after exposed to L-Orn. Isolated fresh ileum or colon were stimulated using different concentrations of L-Orn. IDO1 expression was analyzed after 12 hrs. f and g, QRT-PCR (f) and immunoblotting (g) of IDO1 in the ileum epithelial cells after L-Orn or L-Orn inhibitor DFMO (DFMO) administration. L-Ornithine and effornithine monohydrochloride (DFMO) were dissolved in fresh water. The mean L-Orn consumption of mice was ~ 3.3 g/kg/d for 14 days; The mean DFMO consumption of mice was ~ 1.5 g/kg/d for 14 days. WT, wild type mice; WT/Orn, L-Orn fed wt mice; REG3A, human REG3A^{tg} mice; REG3A/DFMO, L-Orn inhibitor DFMO fed human REG3A^{tg} mice. Mice fed with H₂O without L-Orn and DFMO were used as control. h, QRT-PCR of IDO1 in the ileum and colon epithelial cells after exposed to L-Orn. Isolated fresh ileum or colon were stimulated using different concentrations of spermidine and spermine. IDO1 expression was analyzed after 12 hrs. Student's t-test, mean ±SD in c ; ANOVA plus post-Bonferroni analysis in b, d, f and h. NS, no significance; R. E, relative expression. Data in per panel are a representative of at least three independent experiments.

Supplementary Fig. 9. OCT deficiency impedes the role of lactobacillus. a, Map of arginine metabolism in lactobacillus. b, L-Orn analyses in the supernatants of different lactobacillus strain (L. NK2, L. NK1, L. Reuteri (L. Reu) and L. Reuteri/ Δ OCT (L. Reu Δ OCT) with and without arginine. The ratio of L-Orn with and without arginine was compared between 16 h and other time points. c, L-Kyn ELISA in the ileum and colon of mice. d and e, QRT-PCR (d) and immunoblotting (e) of IDO1 in the ileum epithelial cells of mice. f, Immunostaining of IDO1 in the ileum of

mice. **g**, Flow cytometry of CD45+ROR γ t (+) IL-22(+) cells and their subsets in the LP of ileum and colon of mice. **h**, Immunostaining of mucin in the ileum (upper) and colon (lower) of mice. **i**, QRT-PCR of mucin2 (Muc2) in the ileum (left) and colon (right) of mice. **j**, L-Orn analyses in the ileum (left) and colon (right) contents of mice. **k**, Clone forming units (CFU) of small intestine and colon in mice.

In **c-k**, L. Reuteri, L. Reuteri/ Δ OCT, BPS and L. NK2 were respectively infused into antibiotics-treated mice for 7 days (1·10⁹ CFU/mouse); PBS, only PBS; WT, untreated control. Scale bars=40 µm; ANOVA plus post-Bonferroni analysis in b, c, d, g, h, i and j; Student's *t*-test, mean ±SD in f and k. NS, no significance; R. E, relative expression. Data are a representative of at least three independent experiments.

Supplementary Fig. 10. L-Orn promotes resistance to DSS mediated colitis. a, e, i and **m**, QRT-PCR of TNF α , IL-6 and IL1[®] in the colon tissues of wt mice with (L-Orn) or without (Vehicle) administration of L-Orn (n=6, male, a), REG3A^{tg} mice with (REG3A/DFMO) or without (REG3A/Vehicle) administration of DFMO (n=6, male, e), mice after infusing L. Reuteri or L. Reuteri/ ΔOCT mice (n=6, male, i) and mice after infusing L. NK2 or L. NK2 with DFMO mice (n=6, male, m). b, f, j and n, Hematoxylin/eosin staining and histological scores of distal colon samples in wt mice with (L-Orn) or without (Vehicle) administration of L-Orn (n=8, male, b), human REG3A^{tg} mice with (REG3a/DFMO) or without (REG3a/Vehicle) administration of DFMO (n=8, male, f), mice after infusing L. Reuteri or L. Reuteri/ ΔOCT mice (n=8, male, j) and mice after infusing L. NK2 or L. NK2 with DFMO (n=8, male, n). c, g, k and **o**, LPS in the peripheral sera of *wt* mice with (L-Orn) or without (Vehicle) administration of L-Orn (n=6, male, c), human REG3A^{tg} mice with (REG3A/DFMO) or without (REG3A/Vehicle) administration of DFMO (n=6, male, g), mice after infusing L. Reuteri or L. Reuteri/AOCT mice (n=6, male, k) and mice after infusing L. NK2 or L. NK2 with DFMO mice (n=6, male, o). d, h, l and p, Bacterium numbers in the spleen in wt mice with (L-Orn) or without (Vehicle) administration of L-Orn (n=6, male, d), human REG3A^{tg} mice with (REG3A/DFMO) or without (REG3A/Vehicle) administration of DFMO (n=6, male, h), mice after infusing L. Reuteri or L. *Reuteri*/ ΔOCT mice (n=6, male, 1) and mice after infusing L. NK2 or L. NK2 with DFMO (n=6, male, p). Scale bars=40 µm. Student's t-test, mean ±SD; NS, no significance; R. E., relative expression. Data are a representative of three independent experiments.

```
Figure4
```


Supplementary Fig. 11. The full western blot in which the portions of blots and gets have been presented in the main paper.

Supplementary Table 1. 7	The source of the reagents and	primer sequences.
--------------------------	--------------------------------	-------------------

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies for immunoblotting and immunostaining			
β-Actin (C4) mouse	Santa Cruz	Cat: sc-47778 RRID:AB_626632	
REG3a (NP_002571.1) human	Abcam	Cat:ab95316 RRID:AB_10674667	
REG3a (3x1R-7) mouse	Santa Cruz	Cat:sc-80319 RRID:AB_2178696	
Mucin2 (H-300) mouse/human	Santa Cruz	Cat: sc-15334 RRID:AB_2146667	
Ly sozy me (w-20) mouse/human	Santa Cruz	Cat: sc-27956 RRID:AB_2138793	
LGR5 (c-16) mouse/human	Santa Cruz	Cat: sc-68580 RRID:AB_2135160	
IDO1(E-1) mouse/human	Santa Cruz	Cat: sc-376413 RRID:AB_11150511	
Src (Clone 327) mouse	Abcam	Cat: ab16885 RRID:AB_443522	
Src (phospho Y418) mouse/human	Abcam	Cat: ab4816 RRID:AB_304652	
FITC-Goat Anti-Rat IgG(H+L)	Proteintech	Cat: SA00003-11	
Alexa Fluor 488-Goat Anti-Mouse IgG(H+L)	Proteintech	Cat: SA00006-1	
Alexa Fluor 594-Goat Anti-Rabbit	Proteintech	Cat: SA00006-4	
Alexa Fluor 488-Goat Anti-Rabbit IgG(H+L)	Proteintech	Cat: SA00006-2	
Antibodies for flow cytometry	Antibodies for flow cytometry		
PerCP/Cy 5.5-CD45 (30-F11)	Biolegend	Cat:103132 RRID:AB_893340	
BV421-CD4 (GK1.5) mouse	Biolegend	Cat:100438 RRID:AB_11203718	
FITC-CD3 (17A2) mouse	eBioscience	Cat:11-0032-82 RRID:AB_2572431	
FITC-CD19 (eBio1d3) mouse	Biolegend	Cat:115505 RRID:AB_313640	
FITC-Gr1 (RB6-8C5) mouse	eBioscience	Cat:11-5931-85 RRID:AB_465315	
PE-IL22 (Poly5164) mouse	Biolegend	Cat:516404 RRID:AB_2124255	
APC-IL17 (eBio17B7) mouse	eBioscience	Cat:11-7177-81 RRID:AB_763581	
FITC-F4/80 (BM 8) mouse	Biolegend	Cat:123108 RRID:AB_893502	
APC-RORyT (B2D) mouse	eBioscience	Cat:17-6981-82 RRID:AB_2573254	
APC-CD11c (N418) mouse	Biolegend	Cat:117310 RRID:AB_313779	
PE-CD103 (2E7) mouse	Biolegend	Cat:121405 RRID:AB_535948	
PerCP/Cy5.5-CD11b (M1/70) mouse/human	Biolegend	Cat:101227 RRID:AB_893233	
PE/Cy7-NKp46 (29A1.4) mouse	eBioscience	Cat:25-3351-80 RRID:AB_2573441	
PE-Ly6G (1A8) mouse	BD Bioscience	Cat:551461 RRID:AB_394208	
FITC-Ly6C (AL-21) mouse	BD Bioscience	Cat:553104 RRID:AB_394628	
Alexa Fluor 700-CD45 (30-F11)	Biolegend	Cat: 103128 RRID:A B_493715	
7-AAD	Biolegend	Cat. No. 34321X	
Neutralizing antibody			

IL-22	Peprotech	Cat:500-P223 RRID:AB_1268324
Primers for Real-time PCR		
Murine GAPDH-Fs	BGI	5'-TCAACGGCACAGTCAAGG-3'
Murine GAPDH-Rs	BGI	5'-TACTCAGCACCGGCCTCA-3'
Murine MUC2	BGI	5'-ATGCCCACCTCCTCAAAGAC-3'
Murine MUC2	BGI	5'-GTAGTTTCCGTTGGAACAGTGAA-3'
Murine REG3a-Fs	BGI	5'-CAAGGCTTATCGCTCCCACT-3'
Murine REG3a-Rs	BGI	5'-ACGAGATGTCCTGAGGGTCT-3'
Human REG3a-Fs	BGI	5'-CATTGGTAACAGCTACTCATACGTCT-3'
Human REG3a-Rs	BGI	5'-CCTCAGAAATGCTGTGCTTCTCGAC-3'
Murine IFNg-Fs	BGI	5'-AACGCTACACACTGCATCTTGG-3'
Murine IFNg-Rs	BGI	5'-GACTTCAAAGAGTCTGAGG-3'
Murine TNFa-Fs	BGI	5'-GGTCTGGGCCATAGAACTGA-3'
Murine TNFa-Rs	BGI	5'-CAGCCTCTTCTCATTCCTGC-3'
Murine IL-6-Fs	BGI	5'-TCTGAAGGACTCTGGCTTTG-3'
Murine IL-6-Rs	BGI	5'-GATGGATGCTACCAAACTGGA-3'
Murine IL-1β-Fs	BGI	5'-GTGTCTTTCCCGTGGACCTT-3'
Murine IL-1β-Rs	BGI	5'-AATGGGAACGTCACACACCA-3'
Murine IL-22-Fs	BGI	5'-GCTCAGCTCCTGTCACATCA-3'
Murine IL-22-Rs	BGI	5'-CAGACGCAAGCATTTCTCAG-3'
Murine GM -CSF-Fs	BGI	5'-GCATGTAGAGGCCATCAAAGA-3'
Murine GM-CSF-Rs	BGI	5'-CGGGTCTGCACACATGTTA-3'
Murine IDO1-Fs	BGI	5'-CGGACTGAGAGGACACAGGTTAC-3'
Murine IDO1-Rs	BGI	5'-ACACATACGCCATGGTGATGTAC-3'
Murine Clca3-Fs	BGI	5'- AAGCAGCTGTGCTTCAGCAG -3'
Murine Clca3-Rs	BGI	5'- CAGATTGGACTTATCCACAG -3'
Murine Retnlb-Fs	BGI	5'- AAGCCTACACTGTGTTTCCTTTT -3'
Murine Retnlb-Rs	BGI	5'- GCTTCCTTGATCCTTTGATCCAC -3'
Murine Tff2 -Fs	BGI	5'- CTTGGTGTTTCCACCCACTT -3'
Murine Tff2 -Rs	BGI	5'- GGAAAAGCAGCAGTTTCGAC -3'
Murine Cdkn2d -Fs	BGI	5'-CGGTATCCACTATGCTTCTGGAA -3'
Murine Cdkn2d -Rs	BGI	5'-CCGCTGCGCCACTCA -3'
Murine Cadkn1a -Fs	BGI	5'-GTGGCCTTGTCGCTGTCT-3'
Murine Cadkn1a -Rs	BGI	5'-TTTTCTCTTGCAGAAGACCAATC -3'
Perimers for detection of bacteria		
Total Lactobacillus-Fs	BGI	5'-TGGATGCCTTGGCACTAGGA -3'

Total Lactobacillus-Rs	BGI	5'-AAATCTCCGGATCAAAGCTTACTTAT -3'
L. acidophilus-Fs	BGI	5'-GAAAGAGCCCAAACCAAGTGATT -3'
L. acidophilus-Rs	BGI	5'-CTTCCCAGATAATTCAACTATCGCTTA -3'
L.Reuteri-Fs	BGI	5'-ACCGAGAACACCGCGTTATTT -3'
L.Reuteri-Rs	BGI	5'-CATAACTTAACCTAAACAATCAAAGATTGTCT
L.Johnsoni-Fs	BGI	5'-TCTTCCAATTTTTCGGCAGT -3'
L.Johnsoni-Rs	BGI	5'-CAGTGGGAGCTACAGAAGCA -3'
L.Plantorum-Fs	BGI	5'-CTCTGGTATTGATTGGTGCTTGCAT -3'
L.Plantorum-Rs	BGI	5'-GTTCGCCACTCACTCAAATGTAAA -3'
L.M urinus-Fs	BGI	5'-AGCTAGTTGGTGGGGGTAAAG -3'
L.Murinus-Rs	BGI	5'-TAGGATTGTCAAAAGATGTC -3'
L.NK1-Fs	BGI	5'-CATCCAGTGCAAACCTAAGAG -3'
L.NK1-Rs	BGI	5'-GATCCGCTTGCCTTCGCA -3'
L.NK2-Fs	BGI	5'-AGCTAGTTGGTGAGGTAAAG -3'
L.NK2-Rs	BGI	5'-TAGGATTGTCAGAAGATGTC -3'
Bacteroides Phylum-Fs	BGI	5'-GAGAGGAAGGTCCCCCAC -3'
Bacteroides Phylum-Rs	BGI	5'-CGCTACITGGCTGGTTCAG -3'
Firmicutes Phylum-Fs	BGI	5'-GCTGCTAATACCGCATGATATGTC -3'
Firmicutes Phylum-Rs	BGI	5'-CAGACGCGAGTCCATCTCAGA -3'
Perimers for deletion of OCT	•	
Left-Fs	BGI	5'- ATGGCAATCGTTTCAGCAGTGCGAGATTATTAAG AC-3'
Left-Rs	BGI	5'- CAATTTTATTAAAGTTCATCAAGTACTATAATAG GC-3'
Cat-Fs	BGI	5'- GCCTATTATAGTACTTGATGAACTTTAATAAAAT TG-3'
Cat-Rs	BGI	5'- CATGGCAAATGCCTCCTAATTATAAAAGCCAGTC ATTAG-3'
Right-Fs	BGI	5'- CTAATGACTGGCTTTTATAATTAGGAGGCATTTG CCATG-3'
Right-Rs	BGI	5'- CGAATTACGAATTTTTCTTAGTTATCACGAATAA C-3'
36e-Fs	BGI	5'- GTTATTCGTGATAACTAAGAAAAATTCGTAATTC G-3'
36e-R	BGI	5'- GTCTTAATAATCTCGCACTGCTGAAACGATTGCC AT-3'
Perimers for analysis of deletion targets		·
OCT-Fs	BGI	5'-ATGGCTTTTAATTTACGTA-3'
OCT-Rs	BGI	5'-TTAGTTTTGTTCACCCAAAGT-3'

OCT-up	BGI	5'-CTTATTGACTTTGGCTTG-3'
OCT-dw	BGI	5'-CTGTCCAATATGGGAATG-3'
Perimers for generation and identifition	on of Human REC	33atg mice
M13F	BGI	5'-GCCAGGGTTTTCCCAGTCACGA-3'
HD5-REG3A-tR	BGI	5'-GTAGGGTATGATGTGACGTTTG-3'
HD5-tR	BGI	5'-CAGCATGGTGGTACATGCCT-3'
CDS-tF	BGI	5'-GGCAACATATGCCCATATGC-3'
REG3A -tF3	BGI	5'-GAGCCCAATGGAGAAGGTTGG-3'
REG3A -tR3	BGI	5'-GTCCTTCCGAGTGAGAGACAC-3'
Probe		
16S rRNA (Eub338)	PNA BIO	Cy3-GCTGCCTCCCGTAGGAGT
Lactobacillus 16S rRNA (Lac663)	PNA BIO	FAM-O-ACATGGAGTTCCACT
Other reagents		
REG3a/Ad	ABM	Cat: 176974A
LPS ELISA KIT	Elabscience	Cat: E-EL-0025C
Mouse Ornithine ELISA KIT	JiangSu Meibiao	Cat: MB-5610A
Mouse KYN ELISA KIT	ImmuSmol	Cat: BA-E-2200
FITC-dextran (40,000kD)	Sigma	Cat: 53379
AB-PAS staining kits	Leagene	Cat: DG0007
Ampicillin	Sigma	Cat: BP021
Vancomycine	Sigma	Cat: V2002
Neomy cin sulfate	Sigma	Cat: N6386
Metronidazole	Sigma	Cat: M 3761
L-Ornithine	Sigma	Cat: 02375
L-Arginine	Sigma	Cat: W381918
Standard kynurenine	meilunbio	Cat: MB5637
L-kyn sulfate	Sigma	Cat: K3750
Eflornithine (DFMO)	МСЕ	Cat: HY-B0744B
PP2	МСЕ	Cat: HY-13805
rIL-23	Gibco	Cat: PHC9324
High-fat diet	Research Diets	Cat: D12492
Rogosa SL selective medium	Sigma	Cat: R1148
MRS	3M US	Cat: BP0275500
Trizol	Life	Cat: 15596026
QIAquick PCR Purification Kit	Qiagen	Cat:28104
QuantiTect SYBR Green PCR	Qiagen	Cat:208052
IVI ADUCI IVI IA		

FBS	Gibco	Cat:10099141
Collagen ase IV	Sigma	Cat: C5138
Dnase I	Solarbio	Cat: D8071
DMEM	Gibco	Cat:11965118
HBSS	Gibco	Cat:14170161
Pecoll	Solarbio	Cat: P8370
Cell stimulation cocktail	ebioscience	Cat: 00-4975-03
Foxp3 fix/perm buffer	Biolegend	Cat: 421403
PM A	Sigma	Cat: 79346
GolgiStop	BD Biosciences	Cat: 554724
Permeabilization Buffer	eBioscience	Cat: 00-8333-56
Alexa Fluor [™] 488 Tyramide Reagent	Life Technologies	Cat: T20948
Ki67antibody	Elabscience	Cat: E-AB-31869