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Genes with High Network Connectivity
Are Enriched for Disease Heritability

Samuel S. Kim,1,2,* Chengzhen Dai,1 Farhad Hormozdiari,2 Bryce van de Geijn,2 Steven Gazal,2

Yongjin Park,1 Luke O’Connor,2,5 Tiffany Amariuta,5 Po-Ru Loh,6 Hilary Finucane,3

Soumya Raychaudhuri,6 and Alkes L. Price2,3,4,*

Recent studies have highlighted the role of gene networks in disease biology. To formally assess this, we constructed a broad set of

pathway, network, and pathwayþnetwork annotations and applied stratified LD score regression to 42 diseases and complex traits

(average N ¼ 323K) to identify enriched annotations. First, we analyzed 18,119 biological pathways. We identified 156 pathway-trait

pairs whose disease enrichment was statistically significant (FDR < 5%) after conditioning on all genes and 75 known functional anno-

tations (from the baseline-LD model), a stringent step that greatly reduced the number of pathways detected; most significant pathway-

trait pairs were previously unreported. Next, for each of four published gene networks, we constructed probabilistic annotations based

on network connectivity. For each gene network, the network connectivity annotation was strongly significantly enriched. Surprisingly,

the enrichments were fully explained by excess overlap between network annotations and regulatory annotations from the baseline-LD

model, validating the informativeness of the baseline-LD model and emphasizing the importance of accounting for regulatory annota-

tions in gene network analyses. Finally, for each of the 156 enriched pathway-trait pairs, for each of the four gene networks, we

constructed pathwayþnetwork annotations by annotating genes with high network connectivity to the input pathway. For each

gene network, these pathwayþnetwork annotations were strongly significantly enriched for the corresponding traits. Once again, the

enrichments were largely explained by the baseline-LD model. In conclusion, gene network connectivity is highly informative for

disease architectures, but the information in gene networks may be subsumed by regulatory annotations, emphasizing the importance

of accounting for known annotations.
Introduction

Human diseases and complex traits are heritable and

highly polygenic, potentially involving a large number of

disease-associated genes connected by dense cellular net-

works.1–5 Recent work has employed several approaches

to infer gene interaction networks, including protein-pro-

tein interaction networks,6–8 tissue-specific co-expression

networks,9,10 and tissue-specific regulatory networks.11–13

An appealing extension of traditional genome-wide associ-

ation studies (GWASs) is to identify genes and gene path-

ways associated with disease by leveraging gene networks

and network connectivity between disease-associated

genes.9,11–22 However, despite considerable progress on

inferring gene interaction networks and applying newly

developed methods for network connectivity-informed

GWASs to identify specific genes and gene pathways asso-

ciated to disease, an overall assessment and interpretation

of the contribution of gene networks to the genetic archi-

tecture of disease has remained elusive. In particular, the

extent to which this contribution can be explained by dis-

ease enrichments of known functional annotations23–28 is

unknown.

Here, we sought to answer three questions. First, what

is the contribution of disease-associated gene path-
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ways2,14,29–37 to disease heritability, irrespective of

network connectivity? Second, what is the contribution

of genes with high network connectivity in known

gene networks8–10,12 to disease heritability? Third, what

is the contribution of genes with high network connec-

tivity to disease-associated gene pathways to disease

heritability?

To answer these questions, we constructed a broad set of

pathway, network, and pathwayþnetwork annotations.

The pathway annotations were constructed from known

gene pathways by including 100 kb windows around

each gene; the network annotations were constructed by

quantifying network connectivity using closeness central-

ity, a measure of how close a gene is to other genes in the

network;38,39 and the pathwayþnetwork annotations were

constructed by annotating genes with high network con-

nectivity to the input pathway, again quantified using

closeness centrality. We applied stratified LD score regres-

sion23,24 to quantify the contribution of the pathway,

network, and pathwayþnetwork annotations to disease

heritability. We conditioned our analyses on all genes

and on the baseline-LD model, which includes a broad

set of coding, conserved, regulatory, and LD-related anno-

tations.23 In each case, we compared results before and

after conditioning on the baseline-LD model, to assess
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the extent to which the disease enrichments that we

identified could be explained by known functional

annotations.
Material and Methods

Genomic Annotations and the Baseline-LD Model
We define a genomic annotation as an assignment of a numeric

value to each SNP in a predefined reference panel (e.g., 1000 Ge-

nomes;40 see Web Resources). Continuous-valued annotations

can have any real value. Probabilistic annotations can have

any real value between 0 and 1. Binary annotations can have

value 0 or 1 only. A binary annotation can be viewed as a subset

of SNPs (the set of SNPs with annotation value 1). Annotations

that correspond to known or predicted function are referred to

as functional annotations.

The baseline-LD model23 (v.1.1) contains 75 functional annota-

tions (see Web Resources). These annotations include binary

coding, conserved, and regulatory annotations (e.g., promoter,

enhancer, histone marks, transcription factor [TF] binding

sites) and continuous-valued linkage disequilibrium (LD)-related

annotations.

Excess Overlap between Binary and/or Probabilistic

Annotations
To study which annotation(s) from the baseline-LD model cap-

tures information of focal annotation, excess (fold) overlap of

SNPs in annotations can be computed for any pair of binary

and/or probablistic annotations. We define excess (fold) overlap

between a pair of annotations as the fraction of overlap between

the annotations divided by the amount of overlap expected by

chance, computed as the following:

excess overlapðannot1; annot2Þ ¼
PM

j¼1annot1j � annot2jPM
j¼1annot1j�

PM
j¼1annot2j

(Equation 1)

where M is the total number of SNPs (5,961,159). When there

is excess overlap, the excess fold overlap is >1; when there is

depletion, the excess fold overlap is <1. We did not compute

excess overlap for continuous-valued annotations that are not

probabilistic (e.g., those that can have negative values). A sepa-

rate definition of excess overlap between gene sets is provided

below.

Effect Size ðt�Þ and Enrichment Metrics Estimated by

S-LDSC
We used stratified LD score regression (S-LDSC23,24) to estimate the

enrichment and the standardized effect size ðt�Þ of an annotation.

Let acj represent the annotation value of the SNP j for the annota-

tion c. S-LDSC assumes the variance of per normalized genotype

effect sizes is a linear additive contribution to the annotation c:

Var
�
bj

� ¼
X
c

acjtc (Equation 2)

where tc is the per-SNP contribution of the annotation c. S-LDSC

estimates tc using the following equation:

E
h
c2
j

i
¼ N

X
c

[ ðj; cÞtc þ 1 (Equation 3)
The Ame
where N is the sample size of the GWAS and [ðj; cÞ is the LD score

of the SNP j to the annotation c. The LD score is computed as

follow: [ðj; cÞ ¼ P
kackr

2
jk where rjk is the correlation between the

SNPs j and k. The standardized effect size ðt�Þ, the proportionate

change in per-SNP heritability associated with a one standard de-

viation increase in the value of the annotation (conditional on all

the other annotations in the model), is defined as the following by

a previous study:23

tc� ¼ tcsdðCÞ
h2
g

.
M

(Equation 4)

where sd(C) is the standard deviation of the annotation c, h2
g is the

estimated SNP-heritability, andM is the number of variants used to

compute h2
g (in our experiment, M is equal to 5,961,159). Unlike

enrichment, t� quantifies effects that are unique to the focal

annotation.

Enrichment of the annotation is the fraction of heritability ex-

plained by SNPs in the annotation divided by the proportion of

SNPs in the annotation. The definition of enrichment could be

extended to continuous annotations23,41 as the following:

Enrichment ¼ %h2
g ðCÞ

%SNPðCÞ ¼

h2
g ðCÞ
h2
gP
jajc

M

(Equation 5)

where h2
g ðCÞ is the heritability captured by the cth annotation.

When the annotation is enriched for trait heritability, the enrich-

ment is>1; the overlap is greater than one would expect given the

trait heritability and the size of the annotation.

The significance for enrichment for each annotation is

computed using the block jackknife as mentioned in previous

studies.24,41,42 The significance for the effect size for each anno-

tation, as mentioned in previous studies,23,41 is computed as

ððt�=seðt�ÞÞ � Nð0;1ÞÞ, assuming that t�=seðt�Þ follows a normal

distribution with zero mean and unit variance.

In all our analyses, we used the European samples in 1000G40

(see Web Resources) as reference SNPs. Regression SNPs were ob-

tained from HapMap 343 (see Web Resources). SNPs with marginal

association statistics >80 and SNPs in the major histocompatibil-

ity complex (MHC) region were excluded. Unless stated otherwise,

we included the baseline-LDmodel23 in all primary analyses using

S-LDSC, both to minimize the risk of bias in enrichment estimates

due to model mis-specification23,24 and to estimate effect sizes ðt�Þ
conditional on known functional annotations.
Pathway Annotations
We define a pathway as a set of genes (gene set). We considered

18,119 pathways from five sources: 2,118 biological pathways

from the BioSystem (BS) database44 (which includes pathways

from BioCyc,45 Kyoto Encyclopedia of Genes and Genomes

[KEGG],46 Pathway Interaction Database [PID],47 REACTOME,48

WikiPathways49), 1,927 biological pathways from the Pathway

Commons (PC) database50 (which includes pathways from

HumanCyc,51 Integrating Network Objects with Hierarchies

[INOH],52 KEGG,46 PANTHER,53 PID,47 REACTOME,48 SMPDB,54

NetPath55), 7,209 protein-protein interaction gene sets from the

InWeb database,8 3,903 mouse phenotype gene sets from the

Mouse Genome Informatics (MGI; sets of genes whose orthologs

are associated to mouse phenotypes) database56 (i.e., sets of genes

whose orthologs are associated to mouse phenotypes), and 2,961
rican Journal of Human Genetics 104, 896–913, May 2, 2019 897



gene ontology gene sets from the Genome Ontology (GO) data-

base.57 This set of pathways, which contain at least 10 genes and

at most 500 genes (consistent with previous studies31,37), signifi-

cantly overlap with mSigDB58 and pathways analyzed in a previ-

ous study.31 The complete list of pathways is provided in Table

S1, and a histogram of the number of genes in pathways from

each of the five sources is provided in Figure S1.

For each of 18,119 pathways, we constructed a binary pathway

annotation by annotating a value of 1 for variants around the

protein-coding genes in a given pathway (5100 kb as in pre-

vious work37,42) and 0 for all other variants. To evaluate the contri-

bution of each pathway to disease/trait heritability, we applied

S-LDSC23,24 to 18,119 pathway annotations across 42 indepen-

dent diseases and complex traits (average N ¼ 323K; including

30 UK Biobank traits; see Table S2). We conditioned on the 75

functional annotations from the baseline-LD model23 (which in-

cludes a broad set of coding, conserved, regulatory, and LD-related

annotations), as well as an ‘‘all-genes’’ annotation representing the

set of all 19,031 protein-coding genes (5100 kb). We removed 129

pathway-trait pairs whose annotated SNPs are less than 0.02% of

the reference genome (European samples from the 1000 Genomes

Project;40 see Web Resources) as S-LDSC is not well equipped for

annotations that span very small proportion of the genome.

For each of 760,869 pathway-trait pairs (roughly 18,119 path-

ways 3 42 traits), we assessed the statistical significance of the

pathway annotations based on global FDR < 5% on the pathway

annotation’s standardized effect size ðt�Þ p value, defined as the

proportionate change in per-SNP heritability associated to a one

standard deviation increase in the value of the annotation, condi-

tioned on other annotations included in the model. We note that

controlling FDR for each trait and for all traits did not make a ma-

jor difference in the number of identified enriched pathway-trait

pairs. We further note that our choice of two-tailed test on the

significance is conservative, partially attributing to the reduced

number of significantly associated pathway-trait pairs. Among

significantly enriched pathway-trait pairs, we calculated a pairwise

correlation for every pair of annotations and retained themore sig-

nificant pathway for correlated pathways with rR 0.5 (as in a pre-

vious study38). If correlated pathways were enriched for different

traits, we retained both pathways.

For each of 156 significantly enriched pathway-trait pairs, we

also constructed pathway annotations excluding genes implicated

by GWAS. First, we downloaded all GWAS associations from the

GWAS Catalog (see Web Resources); we restricted to significant as-

sociations (p value % 5e�8). For each of the 34 traits, we defined

genes implicated by GWASs by including genes mapped to the

lead SNP; if the SNP was intergenic, we included the nearest up-

stream and downstream genes. (We note that the nearest gene

might not be the correct target gene.59) Then, for each of

the 156 enriched pathway-trait pairs, we removed trait-specific

GWAS significant genes (5% of the genes, on average across 156

pathway-trait pairs) and rebuilt our pathway annotations with a

100 kb window. For pathways significant for multiple traits, we

built unique pathway annotations excluding genes implicated

by GWAS for the corresponding traits.
Gene Networks and Data Processing
A gene network is defined by an edge weight (which we normal-

ized to lie between 0 and 1) for each pair of genes, representing

their connectivity in the network. We considered four gene net-

works: two co-expression networks (Saha10 and Greene9), one pro-
898 The American Journal of Human Genetics 104, 896–913, May 2,
tein-protein interaction network (InWeb8), and one regulatory

network (Sonawane12). We note that the Sonawane regulatory

network contains nonzero edge weights only for pairs of genes

in which at least one of the genes is a known TF.

We processed gene networks into a uniform format. Each gene

network is represented by an N3 3 matrix, where N is the number

of edges in the network. Three columns represent gene 1, gene 2,

and the edge weight between gene 1 and gene 2. We used Entrez

IDs as gene identifiers. We used the Ensembl biomart tool

(GRCh37 assembly; see Web Resources) for gene identifier conver-

sion. We note that the Saha and Sonawane networks can have

negative edge weights. These were transformed to positive edge

weights (see below) to avoid calculating connectivity metrics on

negative edge weights. In all analyses, we considered protein-

coding genes only.

Saha Network

We downloaded Saha transcriptome-wide networks (TWN) for

each of 16 tissues (see Web Resources). (We did not consider the

Saha tissue-specific networks [TSN] in our primary analyses, as

they contained very few edges and small numbers of genes for

computing connectivity metrics.) We collapsed isoforms by con-

verting Ensembl transcript to Entrez gene ID; no conflicting edges

(multiple non-zero edges between a pair of mapped genes) were

found. We treated all edges equally regardless edge types (TE-TE

[total expression], TE-IR [isoform ratio], or IR-IR). We transformed

negative edge weights to positive edge weights by taking the abso-

lute value.

Greene Network

We downloaded top edges gene networks for each of 144 tissues

(see Web Resources). These networks contain edges with evi-

dence supporting a tissue-specific functional interactions. We

used Greene networks as downloaded without any further

modification.

InWeb Network

We downloaded the InWeb protein-protein interaction network

(v.20160912; see Web Resources). We re-formated the network to

follow the consistent format as other gene networks with three

columns (Entrez ID 1, Entrez ID 2, edge weight) and used the con-

fidence score between a pair of genes as the edge weight.

Sonawane Network

We downloaded Sonawane networks for each of 38 tissues (see

Web Resources). We transformed edge weights using the formula

lnðeedge weight þ 1Þ to avoid negative edge weights as stated in Sona-

wane et al.,12 downweighting large negative edge weights. We in-

tersected ‘‘net’’ and ‘‘nets’’ to obtain edge weights of tissue-specific

edges and concatenated with a set of edges to construct three-

column matrix (TF, gene, weight). Then, we converted genes to

Entrez gene ID.
Network Annotations
For each network, we constructed seven different probabilistic

annotations based on the following network connectivities

(centralities, i.e., how connected the gene is to other genes in

the network), which we computed using Graph-tool (see Web

Resources).

Let G be a weighted, undirected graph with a set of vertices (V)

and a set of edges (E).

Closeness centrality (v) means how close gene v is to all other

genes in the network. It is defined as 1=
P

v;vswdvw where dvw is

the weighted distance from v to w. If there is no path between

two genes, the distance of zero is used.
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Degree (v) is the number of vertices connected to v; i.e., the

number of neighboring genes for each gene in the graph.

Maximum edge weight (v) is the maximum of the weights of all

edges connected to v.

Sum edge weight (v) is the sum of the weights of all edges

connected to v.

Betweenneses centrality (v) is the number of shortest paths that

pass through gene v. It is defined as
P

suwðvÞ=suw where suwðvÞ
is the number of shortest paths from node u to w that pass

throughv, and suw is the total number of shortest paths fromu tow.

Eigenvector centrality (v) is as follows: intuitively, the eigencen-

trality of v is proportional to the sum of the centralities of its

neighbors.60 It is defined as the solution of of Ax ¼ lx, where x

is the eigenvector of the weighted adjacency matrix A with the

largest eigenvalue l.

Pagerank (v) is similar to eigenvector centrality, except it contains

adamping factor, theprobability that thepersonwhorandomlyvisit

genes will continue, under the assumption that more important

genes are more likely to receive more visits. It is defined as

ð1� dÞ=N þ d
P

u˛NðvÞPagerankðuÞ=dþðuÞwhered is adamping factor,

N(v) are the in-neighbors of v, and dþðuÞ is the out-degree of u.

Because G is an undirected graph, pagerank treats it as a directed

graph by making edges bidirectional.

After computing network connectivities for all genes that exist

in a network, we linearly transformed scores to lie between 0 to

1 and annotated variants around genes (5100 kb).When a variant

is spanned bymultiple genes with the 100 kb window, we assigned

the maximum connectivity score. For each of 168 network-trait

pairs (4 networks 3 42 traits), we applied S-LDSC and assessed

the statistical significance of the network annotation’s t� condi-

tioned on other annotations. We also computed the enrichment,

which naturally extends to probabilistic annotations.41 As a sec-

ondary analysis, we constructed network annotations with

different window sizes (510 kb and 1 Mb).

Comparison of Closeness Centrality to 18 Gene Sets
To compare closeness centrality to other metrics that quantify the

biological importance of each gene, we considered 18 gene sets

that reflect a broad range of gene essentiality metrics61 (see Web

Resources). The 18 gene sets are provided in Table S3 and briefly

described below; the number of genes corresponds to protein-

coding genes with an Entrez ID.

All genes: 19,031 genes with protein product according to

HGNC62 (HUGO Gene Nomenclature Committee) that have an

Entrez ID.

MGI essential genes:63–65 2,371 genes for which homozygous

knockout in mice results in pre-, peri-, or post-natal lethality.

Autosomal-dominant genes:66,67 698 genes among OMIM

disease genes that are deemed to follow autosomal-dominant

inheritance.

Haploinsufficient genes:68 174 genes of severe, moderate, and

mild haploinsufficiency, where having only a single functioning

copy of a gene is not enough for normal function.

High pLI genes:68 3,104 loss-of-function (LoF) genes with

pLI > 0.9, i.e., strongly depleted for protein-truncating variants.

High shet genes:
69 2,853 constrained genes with shet > 0.1, i.e.,

strong selection against protein-truncating variants.

High Phi genes:70 588 LoF-constrained genes with probability

of haploinsufficiency (Phi) > 0.95.

High missense Z genes:71 1,440 constrained genes strongly

depleted for missense mutations, with exp_syn R 5, syn_z_

sign < 3.09, and mis_z_sign > 3.09, as retrieved in Lek et al.68
The Ame
ClinVar genes:72 5,428 genes with a pathogenic or likely patho-

genic variant with no conflict among studies.

OMIM disease genes:73 2,266 genes deposited in the Online

Mendelian Inheritance in Man (OMIM), as retrieved in Petrovski

et al.74

GWAS nearest genes:75 6,271 genes nearest to peak GWAS signif-

icant loci (p value % 5e�8) in the GWAS Catalog.

Transcription factors:76 1,610 human transcription factors.

DrugBank genes:77 373 genes whose protein products are hu-

man targets of FDA-approved drugs with known mechanisms of

action.

High EDS genes:78 2,664 genes among top 3,000 genes highly

scored in enhancer domain score (EDS).

Olfactory receptors:79 369 olfactory receptor genes.

eQTL-deficient genes:80 604 genes with no significant variant-

gene association in all 48 tissues in GTEx v.7 single-tissue cis-eQTL

data.

Genes with more independent SNPs: 1,884 genes, defined as

the top 10% of genes ranked based on the number of independent

(r2 < 0.1) SNPs near the gene (5100 kb) relative to the length of

the gene. We created PLINK files from 1000 Genomes40 European

Phase 3 reference genome individuals (see Web Resources) and

SNPs with minor allele frequency (MAF) R 5%. We filtered SNPs

by applying LD-pruning to retain SNPs with r2 < 0.1 using PLINK

(see Web Resources) with the window size of 50 kp and the step

size of 10 kp. We excluded SNPs in the major histocompatibility

complex (MHC) region, in our other analyses. We computed the

number of pruned independent SNPs near each protein-coding

gene (5100 kb) and divided by the length of the gene. We

obtained highly correlated gene sets with different r2 thresholds

(< 0.3 and 0.5) and using a 10 kb window.

Genes with more SNPs: 1,884 genes, defined as the top 10% of

genes ranked based on the total number of SNPs near the gene

(5100 kb) relative to the length of the gene. We obtained highly

correlated gene sets using a 10 kb window.

We extend the definition of excess overlap of annotations pro-

vided earlier defined earlier to a definition of excess overlap be-

tween gene sets. Let ‘‘gene set 1’’ denote one of the 18 gene sets

defined above and ‘‘gene set 2’’ denote a given decile bin of close-

ness centrality for a given network. We define:

excess overlapðgene set 1; gene set2Þ ¼ Pd=Ptot (Equation 6)

where Pd ¼ jgene set1Xgene set 2 j
jgene set 2 j and Ptot ¼

jgene set1Xgenes in network j
jgenes in network j : The standard error for the excess

overlap is similarly scaled:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pd 1�Pdð Þ
j gene set 2 j

q

Ptot

(Equation 7)

When there is excess overlap, the excess fold overlap is >1; when

there is depletion, the excess fold overlap is <1. More generally,

excess overlap can be computed for any pair of gene sets.

Assessing whether Genes with High Closeness Centrality

Are Heavily Regulating Other Genes or Are Heavily

Regulated by Other Genes
To assess whether genes with high closeness centrality are heavily

regulating other genes or are heavily regulated by other genes, we
rican Journal of Human Genetics 104, 896–913, May 2, 2019 899



performed three analyses. First, we assessed the excess overlap of

1,610 known human TFs76 in the top decile of closeness centrality

for each network.

Second, we used the ENCODE ChIP-Seq Significance Tool81 (see

Web Resources) to assess the excess overlap of TF binding sites in

the promoters of high closeness centrality genes (top 10% of genes

for each gene network analyzed). We considered 220 TFs from the

union of all 91 available ENCODE28 cell lines. We used all protein-

coding genes with an Entrez ID as background regions and defined

promoters based on 51 kb from the TSS. We report TFs that have

significiant excessoverlapwith thepromotersofhighcloseness cen-

trality genes (Benjamini-Hochberg adjusted p value < 0.05) and

calculated the significance of the excess overlapusing thehypergeo-

metric test. In addition, for eachnetwork,we computed excess over-

lap of the ENCODE TF binding sites annotations28 (from the base-

line-LD model) in 10 deciles of closeness centrality (5100 kb).

Third, we used DAVID82 (see Web Resources) to assess GO en-

richments of high closeness centrality genes (top decile) for each

of four gene networks. We used all protein-coding genes with an

Entrez ID as a background set. We considered three GO categories:

biological process, cellular component, and molecular function.

We reported significant GO terms (Benjamini-Hochberg adjusted

p value < 0.05).
Assessing the Impact of Noise in Gene Networks
We performed three analyses to assess the impact of noise in gene

networks on our results. First, we performed a network perturba-

tion analysis by randomly removing a subset of edges (from 10%

to 90% with 10% increment) using an established protocol.83

We performed five separate perturbation analyses for each value

of the proportion of edges removed. For each network with edges

removed, we computed network connectivity metrics and applied

S-LDSC to estimate disease heritability enrichment and t�.
Second, we applied the diffusion state distance algorithm

(DSD;84 see Web Resources) to de-noise networks. (We note that

the DSD algorithm has been shown to be effective in de-noising

networks; see Wang et al.85 for performance in application to net-

works fromGreene et al. networks.9) We ran DSD using default pa-

rameters. Because smaller values in the DSD output correspond to

stronger interactions, we used the inverse of DSD output as new

edge weights. We computed network connectivity metrics on

the transformed gene networks and applied S-LDSC to estimate

disease heritability enrichment and t�.
Third, we constructed two consensus networks by intersecting

edges in either (1) the Greene and InWeb networks or (2) the

Greene, InWeb, and Sonawane networks. We note that the inter-

section of all four networks did not contain any edges, as the

Saha network is very sparse. We computed consensus networks

both including and excluding the Sonawane network, which con-

tains nonzero edge weights only for pairs of genes in which at least

one of the genes is a known TF. For tissue-specific networks, we

used the same tissue as in our primary analysis (Greene thyroid

and Sonawane testis). For edges weights, we used the mean edge

weight. As each consensus network contained disjoint connected

components, we computed closeness centrality using the con-

nected component with the largest number of edges. We applied

S-LDSC to estimate disease heritability enrichment and t�.
Correlation between Closeness and Gene Expression
To assess the correlation between closeness centrality and gene

expression, we used gene expression (TPM) across 53 tissues from
900 The American Journal of Human Genetics 104, 896–913, May 2,
GTEx RNA sequencing data80 (see Web Resources), restricted to

protein-coding genes that are present in a given network. We

computed the Pearson correlation between a vectors of gene

expression and closeness centrality, for each of 53 GTEx tissues.
PathwayþNetwork Annotations
In our pathwayþnetwork analyses, we considered 156 significant

pathway-trait pairs (from our pathway analyses) and four gene net-

works for a total of 590 (pathway-trait, network) pairs (122

pathway-trait pairs for Saha þ 156 pathway-trait pairs 3 3 other

networks). We constructed pathwayþnetwork annotations, spe-

cific to an input pathway and a gene network. For each of 141

enriched pathways, we first constructed an adjacency matrix by

mapping genes in a pathway to a gene network and identifying

the set of neighboring genes outside the pathway, using Graph-

tool (see Web Resources). In the adjacency matrix representing a

pathway-specific subnetwork, a vector represents an Entrez ID of

a gene in a pathway, an Entrez ID of a neighboring gene, and the

interaction score (e.g., posterior probability of these two genes).

We computed closeness centrality, using the inverse of the interac-

tion score as the cost. Using the set of genes with the linearly trans-

formed closeness scores that lie from 0 to 1, we annotated variants

around genes (5100 kb). When a variant is spanned by multiple

genes within the 100 kb window, we assigned the maximum close-

ness score. For each of 590 (pathway-trait, network) pairs, we

applied S-LDSC and assessed the statistical significance of the path-

wayþnetwork annotation’s t� conditioned on other annotations.
Network Connectivity of a Pathway
Given a pathway and a network, we quantified how tightly con-

nected the pathway is in the network, compared to a null pathway.

Let Pbea set of genes in thepathway that exist in thenetwork.LetQ

be a set of neighboring genes; that is, genes in P are connected

with genes in Q with at least one edge, in the network. We calcu-

lated three metrics: (1) size of Q (number of neighboring genes),

(2) sum of edges among genes in P, and (3) sum of edges between

genes inPandgenes inQ.Wedidnot considergenes in thepathway

that are not coding or do not appear in the network.

For each of 141 enriched pathways, we constructed a corre-

sponding null pathway as follows: (1) randomly choose a pathway

from the full set of 18,119 pathways (as shown in Table S1), (2)

randomly choose a gene from the sampled pathway, and (3) repeat

(1) and (2) N times, where N is the number of genes in the

pathway. For each of four gene networks analyzed, we repeated

this procedure 10,000 times and reported three connectivity met-

rics of enriched and null pathways (for null, the mean of 10,000

permutations is reported).
Set of 42 Independent Traits
Analogous to a previous study,41 we considered 89 GWAS sum-

mary association statistics, including 34 traits from publicly avail-

able sources and 55 traits from the UK Biobank (up to N ¼ 459K);

summary association statistics were computed using BOLT-LMM

v2.3.86,87 Among 47 summary statistics with z-scores of total

SNP heritability of at least 6 (computed using S-LDSC with the

baseline-LD model), we further removed 5 summary statistics

that have genetic correlation of at least 0.9 (computed using

cross-trait LDSC88). Whenever applicable, meta-analysis across

42 independent traits (Table S2), whose GWAS summary statistics

are publicly available (see Web Resources), was performed using a

random-effect meta-analysis using the R package rmeta.
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Figure 1. Enriched Pathways for Three Representative Traits
For (A) Crohn disease, (B) rheumatoid arthritis, and (C) schizophrenia, we report the proportion of heritability explained and proportion
of SNPs for each of 18,119 pathways analyzed. Red points indicate significantly enriched pathways (FDR < 5%) and gray points indicate
non-significant pathways. Numerical results for all 42 diseases and complex traits are reported in Table S4.
Set of 10 Blood-Related and 8 Brain-Related Traits
We analyzed ten independent blood- and autoimmune-related

traits: Crohn disease,89 rheumatoid arthritis,90 and ulcerative coli-

tis89 from publicly available datasets and eczema, autoimmune

diseases. eosinophil count, platelet count, red blood cell count,

white blood cell count, and red blood cell distribution width

from the UK Biobank.

We analyzed eight independent brain-related traits: autism spec-

trum,91 depressive symptoms,92 and schizophrenia93 from pub-

licly available datasets, and age at menarche, body mass index,

neuroticism, smoking status, and years of education from the

UK Biobank. We selected these traits from 42 independent traits

we analyzed, as inferred from heritability enrichment of tissue-

specific gene expression and chromatin annotations24,42 and

eQTL annotations.41 We additionally considered autism spectrum

based on previous studies94,95 that the brains of subjects with

autism have altered expression.
Results

Enrichment of Disease Heritability in Pathway

Annotations

We sought to identify pathways that are enriched for dis-

ease heritability. We applied S-LDSC to 760,869 pathway-

trait pairs, spanning 18,119 pathways from five sources

(Table S1 and Figure S1) and 42 independent diseases and

complex traits, including 30 UK Biobank traits (average

N ¼ 323K; Table S2). We identified 156 pathway-trait pairs

that were significantly enriched after conditioning on the

baseline-LD model and the all-genes annotation (FDR <

5% for positive t�). The 156 pathway-trait pairs spanned

141 pathways and 34 traits, implying that most pathway

enrichments are trait specific. Complete results for

three representative traits2—Crohn disease (IBD [MIM:

266600]), rheumatoid arthritis (RA [MIM: 180300]), and

schizophrenia (SCZ [MIM: 181500])—are reported in

Figure 1, and complete results for all traits are reported in

Table S4. The top pathway (most significant t�) for each

of the 34 traits is reported in Table 1, and the complete
The Ame
set of 156 significant pathway-trait pairs is reported in Ta-

ble S5. Genes in the 141 enriched pathways had a larger

gene size (92 kb on average) compared to all protein-

coding genes (58 kb) and genes in all pathways (76 kb)

(see Table S6). We meta-analyzed the 156 pathway-trait

pairs using random-effect meta-analysis (analogous to pre-

vious work23,24,41). Both the enrichment (4.13, SE ¼ 0.12;

p ¼ 4.74e�158) and t� (0.15, SE ¼ 0.0061; p ¼
3.41e�131) were large and highly statistically significant

(Table S7); we caution that these p values are slightly

inflated because we meta-analyzed across significant

pathway-trait pairs only. When we repeated our analysis

excluding from each associated pathway all genes

harboring genome-wide significant associations for the

corresponding trait (average of 2 genes removed per

pathway-trait pair; see Material and Methods), only 53

pathway-trait pairs remained significant (Table S8). For

each of 156 pathway-trait pairs, genes after excluding

GWAS significant genes are provided in Table S5.

Our results include eight pathway-trait pairs reported in

previous genetic studies (see Tables 1 and S5). These

include ‘‘pathways in cancer’’ for height;109 ‘‘neuropeptide

hormone activity’’ for BMI;110 ‘‘immune response’’ for

both Crohn disease and ulcerative colitis;89 ‘‘T cell recep-

tor,’’ ‘‘cytokine-mediated signaling pathway,’’ and

‘‘abnormal T cell physiology’’ for rheumatoid arthritis;90

and ‘‘absent corpus callosum’’ for years of education.92 In

addition, ‘‘melanin biosynthetic process’’ was overwhelm-

ingly enriched for skin color (Table 1), consistent with the

fact that genetic variants in constituent genes are strongly

associated with skin pigmentation (e.g., MC1R) and other

pigmentation traits (e.g., TYR [MIM: 606933], OCA2

[MIM: 611409], SLC45A2 [MIM: 606202]).96,97

Surprisingly, most pathway-trait pairs reported in

recent studies2,33–36 using genome-wide polygenic

methods24,30,37 were not significant in our analysis. Specif-

ically, we considered 95 significant pathway-trait pairs for

the six traits (schizophrenia, Crohn disease, rheumatoid

arthritis, neuroticism, intelligence, depressive symptoms)
rican Journal of Human Genetics 104, 896–913, May 2, 2019 901



Table 1. Top Enriched Pathway for Each Trait

Trait Top Enriched Pathway Database # Genes Enr. (SE) t� (SE)

Age at menarche SIX homeobox 6 InWeb 11 3.06 (0.45) 0.06 (0.02)

Auto immune traits mismatch repair directed by MSH2:MSH6 BS 14 8.53 (2.05) 0.28 (0.07)

BMI positive regulation of synapse maturation GO 11 3.34 (0.25) 0.07 (0.01)

Dermatologic diseases aldo-keto reductase family 1 member E2 InWeb 12 7.51 (1.80) 0.19 (0.05)

Eczema Th17 cell differentiation BS 102 9.01 (1.56) 0.64 (0.15)

Eosinophil count Jak-STAT signaling pathway BS 152 7.67 (1.11) 0.46 (0.11)

Forced vital capacity absent acrosome MGI 11 2.21 (0.31) 0.04 (0.01)

Heel T Score skeletal system development GO 142 4.43 (0.60) 0.31 (0.07)

Height abnormal trabecular bone morphology MGI 172 2.93 (0.39) 0.20 (0.05)

Hypothyroidism cytokine-mediated signaling pathway GO 235 4.88 (0.78) 0.42 (0.11)

Morning person N-acetylglucosamine metabolic process GO 13 2.07 (0.26) 0.03 (0.01)

Neuroticism HSF1 activation BS 11 2.54 (0.27) 0.04 (0.01)

Platelet count platelet activation GO 208 4.32 (0.62) 0.30 (0.09)

Red blood cell count exogenous drug catabolic process GO 10 3.62 (0.63) 0.08 (0.02)

Red blood cell distribution width decreased erythrocyte cell number MGI 206 4.61 (0.74) 0.39 (0.11)

Respiratory/ear-nose-throat diseases abnormal T cell activation MGI 108 4.28 (0.75) 0.26 (0.07)

Skin color melanin biosynthetic process GO 11 192.14 (55.37) 5.90 (1.73)

Smoking status fibromodulin InWeb 17 2.53 (0.48) 0.06 (0.02)

Systolic blood pressure cGMP-PKG signaling pathway BS 164 3.41 (0.49) 0.25 (0.07)

Type 2 diabetes glucuronidation BS 30 2.74 (0.32) 0.06 (0.01)

Waist-hip ratio negative regulation of transcription GO 496 2.60 (0.22) 0.19 (0.05)

White blood cell count ERK cascade PC 15 4.65 (0.69) 0.11 (0.03)

Years of education absent corpus callosum MGI 45 2.50 (0.33) 0.08 (0.02)

Age first birth receptor signaling protein tyrosine kinase GO 10 3.62 (0.58) 0.10 (0.02)

Anorexia activation of the AP-1 family of TF BS 10 5.64 (1.04) 0.15 (0.03)

Autism spectrum GABA-A receptor activity GO 15 4.01 (0.73) 0.12 (0.02)

Coronary artery disease sodium-independent organic anion
transport

GO 12 7.05 (1.49) 0.22 (0.04)

Crohn disease cytokine-cytokine receptor interaction BS 266 7.59 (1.50) 0.65 (0.18)

Depressive symptoms glycoprotein metabolic process GO 12 5.22 (1.10) 0.15 (0.04)

LDL increased erythroblast number MGI 21 5.63 (1.15) 0.18 (0.05)

Number children even born lipoxygenase pathway GO 12 9.81 (1.59) 0.27 (0.04)

Rheumatoid arthritis Par-6 family cell polarity regulator beta InWeb 16 4.31 (1.01) 0.17 (0.04)

Schizophrenia trigeminal neuroma MGI 10 2.39 (0.31) 0.03 (0.01)

Ulcerative colitis FGFR2b ligand binding and activation BS 10 8.00 (1.97) 0.18 (0.05)

We report the top enriched pathway (most significant t�) for each of 34 traits with at least one significantly enriched pathway. The first 23 traits (above the line) are
UK Biobank traits. Enrichment of the ‘‘melanin biosynthetic process’’ pathway for skin color is consistent with previous studies,96,97 and enrichment of the ‘‘absent
corpus callosum’’ pathway for years of education was reported in a previous genetic study.92 The complete set of 156 significant pathway-trait pairs is reported in
Table S5.
analyzed in five previous studies,2,33–36 restricting to at

most the top 20 pathways per trait per study. We assessed

the significance of these 95 pathway-trait pairs in our anal-

ysis, based on global FDR < 5% across 18,119 pathways

tested (t� < 0.000989). Only 15/95 pathway-trait pairs
902 The American Journal of Human Genetics 104, 896–913, May 2,
were significant in our primary analysis, after conditioning

on the baseline-LD model and all-genes annotation (Table

S9A). However, 67/95 were significant when we repeated

the S-LDSC analysis conditioning on just the all-genes

annotation and not the baseline-LD model (Table S9B).
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We obtained similar results for a pathway-trait pair re-

ported in a very recent study37 (see Web Resources; Tables

S9A and S9B). Enriched pathways that were fully explained

by the baseline-LD model could potentially be due to fac-

tors that do not play a direct role in trait biology,98

although we caution that our analyses do not resolve

which factors are causal (see Discussion).

Our results also highlight pathway-trait pairs that have

not previously been reported but are consistent with

known biology. These include ‘‘GABA-A receptor activity’’

with autism (Table 1), consistent with the finding that

the brains of subjects with autism have altered expression

of GABA receptors;94,95 ‘‘Oncostatin M’’ (OSM [MIM:

165095]) for ulcerative colitis (Table S5), consistent with

the finding that inflamed intestinal tissues from patients

with inflammatory bowel diseases contained higher

expression of OSM and that OSM-deficient mice displayed

significantly attenuated colitis;99 and ‘‘zinc influx into cells

by the SLC39 gene family’’ with schizophrenia (Table S5),

consistent with the finding that SLC39A12A expression

in dorsolateral prefrontal cortex is associated with schizo-

phrenia.100,101

We also analyzed three additional gene sets (distinct

from the 18,119 pathways) reflecting genes under strong

selection: ExAC68 (high pLI genes; genes strongly depleted

for protein-truncating variants), Cassa69 (high shet genes;

genes with strong selection against protein-truncating var-

iants), and Samocha71 (highmissense Z scores genes; genes

strongly depleted for missense mutations), which were

previously shown to be enriched for heritability in a

meta-analysis across traits.41 We identified 13 significantly

enriched gene set-trait pairs (7 for ExAC, 2 for Cassa, and

4 for Samocha) spanning 9 traits, after conditioning

on the baseline-LD model and the all-genes annotation

(FDR < 5% for positive t�; Table S10). In a meta-analysis

of these 13 gene set-trait pairs, both the enrichment

(1.57, SE ¼ 0.053; p ¼ 7.52e�33) and t� (0.13, SE ¼
0.0090; p ¼ 3.30e�48) were highly statistically significant

(Table S7).

Enrichment of Disease Heritability in Network

Annotations

We sought to assess the hypothesis that genes with high

network connectivity are enriched for disease heritability.

We constructed probabilistic annotations based on close-

ness centrality for each of the Saha, Greene, InWeb, and

Sonawane networks (see Material and Methods). For three

networks that include tissue-specific networks, we selected

the Saha-skin (sun-exposed lower leg), Greene-thyroid,

and Sonawane-testis networks for our primary analyses,

as these tissue-specific networksmaximized the correlation

of the resulting network annotations with H3K27ac (Table

S11); we also considered other criteria for selecting tissue-

specific networks (see below). We determined that close-

ness centrality was independent of gene size (r ¼� 0.015

to 0.019) and exon proportion (r ¼� 0.18 to 0.008;

Figure S2). We note that different tissue-specific networks
The Ame
from the same source were only weakly correlated (r ¼
0.027 to 0.076 for Saha, 0.17–0.21 for Greene, 0.062–

0.24 for Sonawane; see Table S11). The number of genes,

number of edges, and distribution of edge weights for

each network are reported in Table S12. The Greene

network is very dense (25,825 genes with mean degree

6,484), the Saha network is very sparse (2,381 genes with

mean degree 7.9), and the InWeb and Sonawane networks

have intermediate density.

To compare closeness centrality to other metrics that

quantify the biological importance of each gene, we

computed the excess overlap between genes in each decile

bin of closeness centrality (for each network) and 18 other

gene sets (Table S3; see Material and Methods). We first

describe results for the Greene network. We determined

that high closeness centrality genes (top decile of closeness

centrality) had high excess overlap with gene sets defined

by constraint metrics (e.g., high pLI (ExAC) genes,68 high

shet (Cassa) genes69), and essentiality metrics (e.g., MGI

essential genes63–65) as compared to other decile bins

(Figure 2A and Table S13), consistent with larger values

of closeness centrality in these gene sets (Figure 2B and

Table S14; r ¼ 0.22 to 0.27 between closeness centrality

and gene set, Table S15). On the other hand, high closeness

centrality genes were highly depleted for olfactory receptor

genes and eQTL-deficient genes (Figure 2A and Table S13),

consistent with smaller values of closeness centrality

in these gene sets (Figure 2B and Table S14; r ¼ � 0.19 to

� 0.21, Table S15). High closeness centrality genes were

also depleted for genes with more independent SNPs and

more total SNPs relative to the length of the gene (which

are less functionally important as they are less likely to

be under negative selection102) (Figure S3 and Table S13),

consistent with smaller values of closeness centrality in

these gene sets (Figure S4 and Table S14; r ¼ � 0.208 to

� 0.211, Table S15); however, this was not the case for

the Saha, InWeb, and Sonawane networks (Figures S3

and S4, Tables S13 and S14; r ¼ � 0.047 to 0.037, Table

S15). For other gene sets, results for the InWeb network,

but not Saha or Sonawane networks, were generally similar

to those for the Greene network (Figures S3 and S4, Tables

S13, S14, and S15).

We computed the excess overlap between each of the

four network annotations (probabilistic annotations based

on closeness centrality) and representative annotations

from the baseline-LD model and determined that each

of the network annotations had substantial excess over-

lap with regulatory annotations (e.g., 1.23–1.36 with

H3K27ac, 1.35–1.66 with H3K9ac; Figure 3A and Table

S16), significantly stronger than the excess overlap be-

tween the all-genes annotation and regulatory annota-

tions (e.g., 1.11 with H3K27ac, 1.14 with H3K9ac;

Figure 3A); this implies that, for each network, genes

with high connectivity to other genes in the network are

enriched for the presence of nearby regulatory marks,

perhaps because they are regulated by many other genes

(see below). Correlations between these annotations
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Figure 2. Comparison of Closeness Cen-
trality to Other Metrics that Quantify the
Biological Importance of Each Gene
(A) For each of 7 gene sets, we report the
excess overlap of genes in each decile bin
of closeness centrality for the Greene thy-
roid network. Error bars represent 95%
confidence intervals.
(B) For each of 7 gene sets, we report the
distribution of closeness centrality for the
Greene thyroid network. Colored dots
denote genes, white dots denote medians,
and gray lines denote boxplots. Numbers
in parentheses below each gene set denote
the number of genes.
Results for all four networks and all 18 gene
sets analyzed are reported in Figure S3 and
Table S13 (for A) and Figure S4 and Table
S14 (for B). Lists of genes for each of the
18 gene sets are provided in Table S3.
produced similar conclusions (Table S17; larger correlation

for H3K27ac than H3K9ac), although we consider excess

overlap to be a more robust metric because the size of the

network annotations varies from 1% to 34% of SNPs. We

also report excess overlap and correlations between base-

line-LD model annotations in Table S18.

To investigate whether genes with high closeness cen-

trality are heavily regulated by other genes, or are heavily

regulating other genes, we performed three analyses; we

did not reach a consistent conclusion. First, we assessed

the excess overlap of 1,610 known human TFs76 in the

top decile of closeness centrality for each network (see Ma-

terial and Methods). We determined that TFs (which regu-

late other genes) were depleted in high closeness centrality

genes for the Greene and Sonawane networks but enriched

in high closeness centrality genes for the Saha and InWeb

networks (Figure S3). Thus, this analysis did not reach a

consistent conclusion. Second, we assessed the excess

overlap of TF binding sites in the promoters (51 kb from

TSS) of high closeness centrality genes, by applying the

ENCODE ChIP-seq significance tool81 to ENCODE ChIP-

seq data28 spanning 220 TFs and 91 cell lines (see Material

andMethods).We determined that, for each gene network,

binding sites for the majority of TFs (132 to 206 out of 220

TFs) had significant excess overlap (FDR< 0.05) in the pro-

moters of high closeness centrality genes (Table S19); we

also observed significant excess overlap throughout high

closeness centrality genes (5100 kb) (Table S20). Thus,

this analysis supports the hypothesis that genes with

high closeness centrality are heavily regulated by other

genes. Third, we assessed the GO enrichment of high close-

ness centrality genes using DAVID82 (see Material and

Methods). We used all protein-coding genes as a back-
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ground set and evaluated gene sets

corresponding to three GO categories:

biological process, cellular compo-

nent, and molecular function. We

determined that high closeness cen-
trality genes from all four networks were often significantly

enriched (FDR < 0.05) in protein/TF/DNA/regulatory re-

gion binding (e.g., ‘‘transcription regulatory region DNA

binding [GO:0044212],’’ ‘‘transcription factor binding

[GO:0008134]’’) and transcriptional regulation (e.g., ‘‘pos-

itive regulation of transcription [GO:0045944]’’) gene sets

(Table S21). Thus, this analysis supports the hypothesis

that genes with high closeness centrality are heavily regu-

lating other genes. Overall, our analyses did not reach a

consistent conclusion on the regulatory role of high close-

ness centrality genes.

For each of the four network annotations, we applied

S-LDSC to the 42 independent diseases and complex traits,

conditioning on the baseline-LD model and the all-genes

annotation, and meta-analyzed the results across traits us-

ing random-effects meta-analysis. We identified strongly

significant enrichments for each network annotation:

1.19 (SE ¼ 0.024; p ¼ 2.5e�30) to 1.37 (SE ¼ 0.049; p ¼
1.6e�17) (Figure 3B and Table S22). However, estimates

of t�, quantifying effects unique to the network annota-

tions, were not significant (p ¼ 0.21 to 0.77) (Figure 3C

and Table S22). This implies that the enrichment signal

in the network annotations (Figure 3B) is entirely ex-

plained by the excess overlap between the network and

baseline-LD model annotations (Figure 3A); accordingly,

when we repeated the S-LDSC analysis conditioning only

on the all-genes annotation and not on the baseline-LD

model, t� estimates were large and highly significant

(Figure 3C). We repeated the S-LDSC analysis conditional

on one annotation from the baseline-LD model at a time

and confirmed that regulatory annotations (primarily his-

tone marks and transcription factor binding sites) reduced

estimates of t� by 74%–100% (Table S23). We note that



Figure 3. Heritability Enrichment of
Network Annotations
We report (A) excess (fold) overlap between
networkannotations andbaseline-LDfunc-
tional categories; (B) heritability enrich-
ment of network annotations, meta-
analyzed across 42 independent traits; and
(C) t� values of network annotations,
conditioned on either just the all-genes
annotation, or the all-genes annotation
and the baseline-LD model, meta-analyzed
across 42 independent traits. The percent-
age under each bar indicates the proportion
of SNPs in each annotation (defined for
probabilistic annotations as the average
value of the annotation), and error bars
represent 95% confidence intervals. Nu-
merical results for (A) are reported in Table
S16, and numerical results for (B) and (C)
are reported in Table S22. The S-LDSC re-
sults for the complete set of 168 network-
trait pairs are reported in Table S22.
other annotations did not have this effect (e.g., 16%–20%

for conservation annotations). We also partitioned all

genes in a given network into 10 deciles of closeness cen-

trality and applied S-LDSC to estimate the heritability en-

richments for each decile. For the Greene, InWeb, and

Sonewane networks, we determined that the top decile of

closeness centrality had the highest enrichment (1.68 [SE

0.062]–1.76 [SE 0.070]) and the bottom decile of closeness

centrality had the lowest enrichment (0.92 [SE 0.031]–1.24

[0.038]; see Table S24). For the Saha network, the top decile

had the highest enrichment (1.98 [SE 0.099]) but the bot-

tom decile had the fourth lowest enrichment (1.464 [SE

0.071]). We also observed that the top decile had signifi-

cantly larger correlations with regulatory annotations

than the bottom decile (Table S20). On the one hand, these

findings represent a negative result for efforts to improve

upon the baseline-LD model. On the other hand, these

findings provide a strong validation of the baseline-LD

model, in that the information about diseases/traits in an-

notations from other sources that broadly reflect the action

of gene regulation are fully captured by the baseline-LD

model.

We performed three analyses to assess the impact of

noise in gene networks on our results. First, we performed

a network perturbation analysis by repeating the S-LDSC

analysis on networks with 10%–90% of edges randomly

removed, following an established protocol83 (see Material

and Methods). We obtained similar results, including sig-

nificant enrichments and non-significant t� (Table S25).

Second, we de-noised each network by applying the diffu-

sion state distance (DSD) algorithm,84 computed closeness
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centrality on the transformed net-

works (see Material and Methods),

and repeated the S-LDSC analysis.

We determined that the DSD-trans-

formed network annotations were
1.9%–25.4% more enriched, but t� remained non-signifi-

cant (Table S26). Third, we constructed two ‘‘consensus’’

networks by intersecting the edges in either (1) the Greene

and InWeb networks or (2) the Greene, InWeb, and Sona-

wane networks (the intersection of all four networks did

not contain any edges, as the Saha network is very sparse),

and repeated the S-LDSC analysis. We obtained similar

results, including significant enrichments and non-signifi-

cant t� (Table S27). These analyses support the robustness

of our results.

Weperformed several secondary analyses. First, we exam-

ined the correlation between closeness centrality (for

each network) and gene expression, using GTEx RNA-seq

data80 (see Material and Methods). We determined that

closeness centrality in the Saha and Sonawane networks

was independent of gene expression (r ¼ � 0.045 to 0.030

for each of 53 GTEx tissues), whereas closeness centrality

in the Greene and InWeb networks was moderately corre-

lated with gene expression, particularly in brain tissues

(e.g., r ¼ 0.17 to 0.27 for cerebellum) (Table S28). Second,

we performed heritability analyses on gene sets defined by

membership in gene networks (analogous to pathway an-

notations). We focused our analyses on the Saha networks,

which are much sparser than the other networks. We

definedgene sets using the 16 Saha transcriptome-widenet-

works (TWN) used in our primary analyses, as well as the 36

Saha tissue-specific networks (TSN), and applied S-LDSC to

these gene sets. All 16 gene sets derived fromTWNs and 4of

36 gene sets derived from TSNs were significantly enriched

for disease/trait heritability, but none had a significant t�

conditional on the baseline-LD model (Table S29). Third,
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Figure 4. Heritability Enrichment of
PathwayþNetwork Annotations
We report (A) excess (fold) overlap between
pathwayþnetwork annotations (averaged
across up to 156 pathway-trait pairs); (B)
heritability enrichment of pathwayþnet-
work annotations, meta-analyzed across
up to 156 pathway-trait pairs; and (C) t�

values of pathwayþnetwork annotations,
conditioned on either just the all-genes
annotation and the correspondingpathway
and network annotations, or the baseline-
LD model as well, meta-analyzed across up
to 156 pathway-trait pairs. The percentage
under each bar indicates the proportion of
SNPs in each annotation (defined for proba-
bilistic annotations as the average value of
the annotation), and error bars represent
95%confidence intervals.Numerical results
for (A) are reported inTable S16, andnumer-
ical results for (B) and (C) are reported in
Table S34. The S-LDSC results for the com-
plete set of 590 pathway-trait pairs are
reported in Table S34.
we repeated the S-LDSC analysis for the three tissue-specific

networks (Saha, Greene, Sonawane) using the tissue that

maximized the excess overlap of the High pLI (ExAC)

gene set with the top decile of closeness centrality of the tis-

sue-specific network (Table S30; seeMaterial andMethods).

We obtained similar results (as compared to our primary

analysis in which tissue-specific networks were selected so

as tomaximize correlationwithH3K27ac), including signif-

icant enrichments for all three tissue-specific networks but

non-significant t� conditional on the baseline-LD model

(Tables S22 and S24). Fourth, for ten blood-related traits

and eight brain-related traits, we repeated the S-LDSC anal-

ysis for the three tissue-specific networks using the most

biologically relevant tissue (as inferred from heritability

enrichment of tissue-specific specifically expressed gene

and chromatin annotations;42 see Table S2 for list of traits

and tissues). For the ten blood-related traits, the resulting

tissue-specific networks (blood) produced slightly larger en-

richments (significant enrichment for all three networks;

significant difference for Sonawane only), but t� condi-

tional on the baseline-LD model remained non-significant

(Table S31; consistent with Table S22). For the eight brain-

related traits, both the resulting tissue-specific networks

(brain) and the default tissue-specific networks produced

non-significant enrichments (Table S31; consistent with

Table S22). Finally, we also obtained similar results when

we repeated the S-LDSC analysis using six connectivity

metrics other than closeness centrality (see Material and

Methods; Table S32), using window sizes other than

100 kb (10 kb and 1 Mb; Table S33).
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Enrichment of Disease Heritability

in Integrated PathwayþNetwork

Annotations

We sought to assess the hypothesis

that genes with high network connec-
tivity to genes in enriched pathways are also enriched for

disease heritability; these enriched pathways serve as rele-

vant, disease-specific signals that network analysis often

lacks. For each of 4 networks and 141 enriched pathways,

we constructed probabilistic pathwayþnetwork annota-

tions based on closeness centrality within the subnetwork

consisting of input genes and their one-degree neighbors.

As most of the pathway enrichments that we identified

are disease specific, the pathwayþnetwork annotations

are expected to harbor disease-specific signals. As before,

for three networks that include tissue-specific networks,

we selected the Saha-skin (sun-exposed lower leg),

Greene-thyroid, and Sonawane-testis networks for our pri-

mary analyses.

For each network, we computed the excess overlap

between the 141 pathwayþnetwork annotations and

representative annotations from the baseline-LD model

and averaged results across the 141 pathways. We observed

higher excess overlap with regulatory annotations

(e.g., 1.27–1.35 with H3K27ac, 1.42–1.70 with H3K9ac;

Figure 4A and Table S16) than the analogous excess over-

laps for network annotations (Figure 3A); this implies

that, for each network, genes with high network connec-

tivity to genes in input pathways are enriched for the

presence of nearby regulatory marks, perhaps because

they are regulated by many other genes. Correlations

between network, pathwayþnetwork, and baseline-LD

model annotations are reported in Table S17. We deter-

mined that pathwayþnetwork annotations were often

correlated with network annotations, particularly for the



Figure 5. Genes in Enriched Pathways Have High Network Con-
nectivity
For each of four networks, we report the sum of edge weights in
the network between genes in the pathway, averaged across 141
enriched pathways. For comparison purposes, we report the
same quantity averaged across 10,000 null pathways with the
same number of genes. Error bars represent 95% confidence inter-
vals (smaller than data points for null pathways). Numerical re-
sults and analogous results for network connectivity between a
pathway and interacting genes outside the pathway are reported
in Table S36.
corresponding network (from r ¼ 0.12 for Saha to r ¼ 0.93

for Greene). We further determined that pathwayþnet-

work annotations constructed using the Greene, InWeb,

and Sonawane networks were moderately correlated (r ¼
0.27 to 0.42), whereas pathwayþnetwork annotations

constructed using the Saha network were more distinct

(r ¼ 0.05 to 0.06), primarily due to its small annotation

size (Table S17).

For each of 590 (pathway-trait,network) pairs (122

pathway-trait pairs for Saha þ 156 pathway-trait pairs 3 3

other networks; see Material and Methods), we applied

S-LDSC to the resulting pathwayþnetwork annotation and

the corresponding trait, conditioning on the baseline-LD

model, the all-genes annotation, and the corresponding

pathway and network annotations, and meta-analyzed the

results for each network using random-effects meta-anal-

ysis. We identified strongly significant enrichments for all

of our pathwayþnetwork annotations: 1.19 (SE ¼ 0.01;

p ¼ 1.5e�49) to 1.44 (SE ¼ 0.06; p ¼ 3.8e�12) (Figure 4B

and Table S34). On average, the pathwayþnetwork annota-

tions most enriched for trait heritability are those derived

from the Saha network (Figure 4B). However, estimates of

t�, quantifying effects unique to the network annotations,
The Ame
were not significant or only weakly significant (p ¼ 0.62 to

4.5e�6) (Figure 4C and Table S34). Once again, this implies

that the enrichment signal in the pathwayþnetwork anno-

tations is entirely explained by the excess overlap between

thepathwayþnetwork andbaseline-LDmodel annotations;

accordingly, when we repeated the S-LDSC analysis condi-

tioning only on the all-genes annotation and the corre-

sponding pathway and network annotations, and not on

the baseline-LD model, t� estimates were large and highly

significant, except for the Saha network (Figure 4C). We

repeated the S-LDSC analysis conditional on one annota-

tion from the baseline-LD model at a time and determined

that inclusion of regulatory annotations (primarily histone

marks and transcription factor binding sites) reduced esti-

mates of t� by 17%–89% (Table S35).

We assessed whether genes in enriched pathways have

higher network connectivity than other genes. For each of

the four gene networks, for each of the 141 enriched path-

ways, we assessed both the network connectivity within

the pathway and the network connectivity between the

pathway and interacting genes (one-degree neighbors)

outside the pathway, as compared to 10,000 null pathways

with the same number of genes, each randomly sampled

from a randomly chosen pathway from the full set of

18,119 pathways (see Material and Methods). We assessed

network connectivity using the sum of edge weights be-

tween genes. For each network, we averaged results across

pathways.We determined that genes in enriched pathways

have higher network connectivity within the pathway

(1.433–7.603 more edges; Figure 5 and Table S36), but do

not necessarily have higher network connectivity with in-

teracting genes outside the pathway (0.693–1.563; Table

S36); we note that there is no significant difference in the

number of interacting genes between the 141 enriched

pathways and the 10,000 null pathways (Table S36).

We repeated the S-LDSC analysis (Figures 4B and 4C) us-

ing new pathwayþnetwork annotations constructed using

a random-forest classifier, Quack,38 that identifies new

candidate genes that have similar topological patterns

and network centrality metrics as genes in the input

pathway. Because genes in enriched input pathways have

high network connectivity (Figure 5), this is closely related

to our primary strategy of defining pathwayþnetwork an-

notations based on genes with high network connectivity

to genes in enriched input pathways. Indeed, Quack

annotations were highly correlated with our main path-

wayþnetwork annotations (r ¼ 0.50–0.67; Table S17) and

produced S-LDSC results similar to our main analysis (Fig-

ures 4B and 4C), including significant enrichments for all

four networks but non-significant t� conditional on the

baseline-LD model (Table S37).
Discussion

We analyzed 42 diseases and complex traits (average N ¼
323K) to show that genes with high network connectivity
rican Journal of Human Genetics 104, 896–913, May 2, 2019 907



are enriched for disease heritability but that it is critical for

gene network and pathway analyses to account for known

functional annotations, such as those from our baseline-

LD model.23 First, in analyses of pathway annotations,

we identified 156 pathway-trait pairs with significant her-

itability enrichment after conditioning on the baseline-

LD model, a stringent step that caused a majority of

pathway-trait pairs reported in recent studies to become

non-significant in our analyses. Second, we determined

that network annotations based on closeness centrality, a

measure of network connectivity, are strongly enriched

for disease heritability, but that these enrichments were

fully explained by annotations from the baseline-LD

model. Third, for each of the 156 significant pathway-trait

pairs, we determined that pathwayþnetwork annotations

constructed from genes with network connectivity to the

input pathway were strongly enriched for the correspond-

ing traits, but that once again these enrichments were

largely explained by annotations from the baseline-LD

model.

Our findings have important ramifications for studies

connecting gene networks and pathways to dis-

ease.2,9,11,14–17,19–22,29–37 Specifically, it is important to ac-

count for known functional annotations when seeking

to elucidate biological mechanisms. For some methods,

such as S-LDSC,2,24,33 it is straightforward to incorporate

known functional annotations such as those from the

baseline-LD model,23 and we emphasize the importance

of doing so. For other methods, it is of high interest to

investigate how functional annotations could be incorpo-

rated. More generally, it is of broad interest to re-assess

previously reported results while accounting for known

functional annotations; for example, this could be

achieved by running S-LDSC both with and without

incorporating functional annotations from the baseline-

LD model.

We note several limitations of our work. First, S-LDSC is

not well suited to analysis of annotations spanning a very

small proportion of the genome24 and does not model

sparsity in trait effect sizes, potentially explaining why

we did not identify enriched pathways for eight traits

that are less polygenic103 (e.g., age at menopause, balding,

hair color, sunburn). Nonetheless, our main results at-

tained high statistical significance. Second, we did not

explicitly compare S-LDSC to other methods. However,

previous work suggests that S-LDSC compares favorably

to other gene set enrichment methods, both in simula-

tions and in analyses of real traits.42 Third, interpretation

of pathway-trait enrichments is complicated by the possi-

bility that enrichment signals may be driven by a small

number of highly significant genes.37 However, we verified

that repeating our main pathwayþnetwork analyses

using the remaining significant pathway-trait pairs (after

excluding genes implicated by GWAS) produced similar

conclusions (Table S38). Fourth, gene networks may

include false-positive interactions, even after correcting

for technical confounding.10,39,104 However, our network
908 The American Journal of Human Genetics 104, 896–913, May 2,
perturbation analysis, DSD-transformed network analysis,

and consensus network analysis all support the robustness

of our results. Fifth, inferences about components of heri-

tability can potentially be biased by failure to account for

LD-dependent architectures.23,105–107 All of our main ana-

lyses used the baseline-LD model, which includes six LD-

related annotations.23 The baseline-LD model is supported

by formal model comparisons using likelihood and poly-

genic prediction methods, as well as analyses using a com-

bined model incorporating alternative approaches;108

however, there can be no guarantee that the baseline-LD

model perfectly captures LD-dependent architectures.

Sixth, although we showed that many pathway-trait pairs

reported in recent studies were fully explained by the base-

line-LD model and thus could potentially be due to factors

that do not play a direct role in trait biology,98 our analyses

do not resolve which factors are causal. Nonetheless,

because it is plausible that the regulatory annotations of

the baseline-LD model may be the causal factors, account-

ing for known functional annotations is an appropriate

conservative measure to avoid incorrect conclusions.

Finally, although we identified many significantly en-

riched pathways conditional on the baseline-LD model,

our results for network and networkþpathway annota-

tions represent a negative result for efforts to improve

upon the baseline-LD model,23 further emphasizing the

importance of accounting for known functional annota-

tions in network and pathway analyses.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.03.020.
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Web Resources

1000 Genomes Project Phase 3 data, ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/release/20130502

Baseline-LDannotations, https://data.broadinstitute.org/alkesgroup/

LDSCORE/

BOLT-LMM software, https://data.broadinstitute.org/alkesgroup/

BOLT-LMM
2019

https://doi.org/10.1016/j.ajhg.2019.03.020
https://doi.org/10.1016/j.ajhg.2019.03.020
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/BOLT-LMM
https://data.broadinstitute.org/alkesgroup/BOLT-LMM


BOLT-LMM summary statistics for UK Biobank traits, https://data.

broadinstitute.org/alkesgroup/UKBB

DAVID (Database for Annotation, Visualization and Integrated

Discovery, v.6.8), https://david.ncifcrf.gov

DSD (Diffusion State Distance) algorithm, http://dsd.cs.tufts.edu/

capdsd/

ENCODE ChIP-Seq Significance Tool, http://encodeqt.simple-

encode.org/

Ensembl biomart, https://grch37.ensembl.org/index.html

GTEx (Release v7), https://www.gtexportal.org/home/datasets

GWAS Catalog (Release v1.0), http://www.ebi.ac.uk/gwas

Graph-tool, https://graph-tool.skewed.de

HapMap, ftp://ftp.ncbi.nlm.nih.gov/hapmap/

HumanBase (Greene tissue-specific co-expression networks),

https://hb.flatironinstitute.org/

inBio Map (InWeb protein-protein interaction network), https://

www.intomics.com/inbio/map

Network Connectivity source codes, gene scores, 18 gene sets,

https://github.com/samskim/networkconnectivity

Online Mendelian Inheritance in Man, http://www.omim.org

Pathway, network, and pathwayþnetwork annotations: https://

data.broadinstitute.org/alkesgroup/LDSCORE/

Kim_pathwaynetwork

PLINK software, https://www.cog-genomics.org/plink2

S-LDSC software, https://github.com/bulik/ldsc

Saha transcriptome-wide networks, https://storage.googleapis.

com/gtex_analysis_v6p/coexpression_networks/coexpression_

networks_v6p.zip

Subset of 18 gene sets, https://github.com/macarthur-lab/gene_

lists

UK Biobank, https://www.ukbiobank.ac.uk/

UK Biobank Genotyping and QC Documentation, http://www.

ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_

genotyping_QC_documentation-web.pdf

Zenodo (Sonawane gene regulatory networks), https://zenodo.

org/record/838734

Zenodo (Zhu & Stephens pathway studies), https://zenodo.org/

record/838734#.W89JDxNKiAw
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Supplementary figures

Figure S1. Summary of pathways analyzed. We analyzed 18,119 pathways, each consisting of at
least 10 and at most 500 coding genes. Number in the boxplot represents the median number of genes
for each database. Number of pathways in each database is shown on the top of the figure. BS: NCBI
BioSystems. PC: PathwayCommons. MGI: Mouse Genome Informatics. GO: Genome Ontology. InWeb:
InWeb protein-protein interactions. See Table S1 for a description of 18,119 pathways analyzed.



Figure S2. Closeness centrality is independent from the gene size and the proportion of exon.
For each of four network annotations, we computed a Pearson correlation between probabilistic annotation
values and (1) gene size and (2) proportion of exon. We calculated the proportion of exon as the size of
coding regions (bp) that lie inside the gene divided by the size of the gene, defined as (transcription stop -
transcription start).



Figure S3. Excess overlap of 18 genes in each decile bin of closeness centrality. For each of 18
gene sets, we report the excess overlap of genes in each decile bin of closeness centrality for (A) Saha skin
network, (B) Greene thyroid network, (C) InWeb network, and (D) Sonawane testis network. Error bars
represent 95% confidence intervals. There is no olfactory receptor gene in Saha network.



Figure S4. Distribution of closeness centrality in 18 gene sets. For each of 18 gene sets, we show
the distribution of closeness for (A) Saha skin network, (B) Greene thyroid network, (C) InWeb network,
and (D) Sonawane testis network. Box plot is shown as a grey line inside the violin plot where white dot
represents median. Each colored dot represents a gene. Outliers are not displayed for Saha and InWeb (see
Web Resources for closeness scores)



Supplementary tables

See Excel file for all supplementary tables. Titles and captions are provided below.

Table S1. List of 18,119 pathways analyzed. For each pathway, we report a pathway ID, pathway
description, database, Entrez IDs for genes, and the number of protein-coding genes.

Table S2. List of 42 independent diseases and traits analyzed. For each trait, we report a trait
identifier, trait description, reference, sample size, and heritability z-score. We selected these 42 traits
based on a heritability z-score > 6 (see Material and Methods). We further indicated brain or
blood-related traits.

Table S3. Lists of genes in 18 gene sets compared with closeness centrality. We compiled lists of
genes for 18 metrics (gene sets) that we compared with closeness centrality. We report Entrez IDs for genes
in the 18 gene sets.

Table S4. S-LDSC results of all pathway-trait pairs We applied S-LDSC to 760,869 pathway-trait
pairs, conditioning on all-genes annotation and the baseline-LD model. For each pathway-trait pair, we
report a proportion of SNPs, enrichment, and τ .

Table S5. S-LDSC results for 156 significantly enriched pathway-trait pairs. For each
significantly enriched pathway-trait pair, we report a proportion of SNPs, enrichment, and a τ∗. The 8
significant pathway-trait pairs were reported in previous genetic studies: ”pathways in cancer” for
height109; ”neuropeptide hormone activity” for BMI110; ”immune response” for both Crohn’s disease and
ulcerative colitis89; ”T-cell receptor,” ”abnormal T-cell physiology,” and ”cytokine-mediated signaling
pathway” for rheumatoid arthritis90; ”absent corpus callosum” for years of education92.

Table S6. Average gene size of annotations. For all-genes annotation, all pathways, pathway,
network, and pathway+network, and Quack annotations, we report an average size of genes (and its
standard deviation) and an average number of genes.

Table S7. Heritability enrichment of enriched pathway-trait pairs. We meta-analyzed (A) 156
enriched pathway-trait pairs; (B) 13 enriched pathway-trait pairs for ExAC, Cassa, and Samocha gene sets;
(C) 169 enriched pathway-trait pairs (a and b combined). In each case, we report meta-analyzed
enrichments and τ∗.



Table S8. S-LDSC results of 156 enriched pathway-trait pairs excluding genes implicated by
GWAS. We removed genes implicated by previous GWAS studies (see Material and Methods; average of
5% of genes ( 2 genes) removed) and applied S-LDSC conditional on all-genes and baseline-LD model
annotations. For each pathway-trait pair, we report a proportion of SNPs, enrichment, τ∗, and the number
of genes in a pathway excluding GWAS significant genes.

Table S9. S-LDSC results of 195 pathway-trait pairs from previous pathway enrichment
studies. We applied S-LDSC to 95 pathway-trait pairs from five previous genetic studies2,33–36 and 100
from a recent study37 (A) conditioning on the baseline-LD model and all-genes annotation and (B)
conditioning on all-genes annotation only. In each pathway-trait pairs for each case, we report a proportion
of SNPs, enrichment, and τ . We assessed the statistical significance based on global FDR < 5% across
18,119 pathways tested (τ∗ < 0.000989).

Table S10. S-LDSC results of 13 enriched pathway-trait pairs for ExAC, Cassa, Samocha
gene sets. For each of 13 enriched pathway-trait pairs, we report a proportion of SNPs, enrichment, and τ .

Table S11. Correlation of network annotations with baseline-LD model annotations. We
report the Pearson correlation between baseline-LD model annotations and (A) Saha network annotations
of different centralities, (B) Saha network annotations of different tissues, (C) Greene network annotations
of different centralities, (D) Greene network annotations of different tissue, (E) InWeb network annotations
of different centralities, (F) Sonawane network annotations of different centralities, and (G) Sonawane
network annotations of different tissue.

Table S12. Summary of gene networks analyzed. We report the number of genes, the number of
edges, and the distribution of edge weights for each of four networks (InWeb, Saha, Sonawane, Greene).

Table S13. Excess overlap of 18 genes in each decile bin of closeness centrality. For each of 18
gene sets, we report the excess overlap (and standard error) of genes in each decile bin of closeness
centrality for (A) Saha skin network, (B) Greene thyroid network, (C) InWeb network, and (D) Sonawane
testis network.

Table S14. Per-gene closeness centrality scores and gene membership in 18 gene sets We
report the closeness centrality for all protein-coding genes that exist in each of (A) Saha skin network, (B)
Greene thyroid network, (C) InWeb network, and (D) Sonawane testis network. We indicate gene
membership in each of 18 gene sets, marking ‘1’ if in the corresponding gene set.

Table S15. Correlation between closeness centrality and 18 gene sets. We report Pearson
correlations between closeness centrality and 18 gene sets analyzed for (A) Saha skin network, (B) Greene
thyroid network, (C) InWeb network, and (D) Sonawane testis network.



Table S16. Excess fold overlap of network and pathway+network annotations with
baseline-LD model annotations. We report the excess fold overlap between baseline-LD model
annotations and network, pathway+network, Quack, and all-genes annotations.

Table S17. Correlation of network and pathway+network annotations with baseline-LD
model annotations. We report the Pearson correlation between baseline-LD model annotations and
network, pathway+network, Quack, and all-genes annotations.

Table S18. Excess fold overlap / correlation among functional annotations from the
baseline-LD model. We report (A) excess fold overlap and (B) correlation among functional annotations
from the baseline-LD model.

Table S19. TFs enriched in high closeness centrality genes. For (A) Saha, (B) Greene, (C) InWeb,
(D) Sonawane networks, for high closeness centrality genes (top decile), we report significantly enriched
TFs (Benjamini-Hochberg adjusted p-value < 0.05). The description of TFs is provided in the ENCODE
Chip-Seq Significance Tool (see Web Resources).

Table S20. Correlation of deciles of closeness centrality with baseline-LD model annotations.
For four networks, we constructed binarized network annotations based on deciles of closeness centrality.
We report the Pearson correlation between these annotations and baseline-LD model annotations.

Table S21. Enriched GO terms of high closeness centrality genes. For (A) Saha, (B) Greene, (C)
InWeb, (D) Sonawane networks, we report significantly enriched GO terms in the following GO categories:
biological process (BP), cellular component (CC), and molecular function (MP) (Benjamini-Hochberg
adjusted p-value < 0.05).

Table S22. Heritability enrichment of network annotations. For each of 4 network annotations, we
report meta-analyzed enrichments and τ∗ across 42 independent traits. We highlight the network attaining
highest enrichment for each trait. For the three tissue-specific networks (Saha, Greene, Sonawane), we also
report meta-analyzed enrichments and τ∗ of network annotations constructed using the tissue that
maximized the excess overlap with the High pLI (ExAC) gene set.

Table S23. Heritability enrichment of network annotations conditioning on one annotation
from the baseline-LD at a time. For (A) Saha, (B) Greene, (C) InWeb, (D) Sonawane networks, we
meta-analyzed network annotations across 42 independent traits, conditioning on one annotation from the
baseline-LD model at a time. We report meta-analyzed enrichments and τ∗ across 42 independent traits.
We highlighted annotations that significantly reduced τ∗ (using Bonferroni-corrected p-val).



Table S24. Heritability enrichment of deciles of closeness centrality. For four networks, we
constructed binarized network annotations based on deciles of closeness centrality. We applied S-LDSC and
meta-analyzed results across 42 independent traits. We report meta-analyzed enrichments and τ∗. For the
three tissue-specific networks (Saha, Greene, Sonawane), we also report meta-analyzed enrichments and τ∗

of binarized network annotations constructed using the tissue that maximized the excess overlap with the
High pLI (ExAC) gene set.

Table S25. Heritability enrichment of network annotations from network perturbation
analysis. We randomly removed 10% to 90% of edges from the original networks and computed closeness
centrality on networks with edges removed; we performed five separate perturbation analyses for each value
of the proportion of edges removed. We applied S-LDSC and meta-analyzed results across 42 independent
traits. We report meta-analyzed enrichments and τ∗.

Table S26. Heritability enrichment of DSD-network annotations. We applied the diffusion state
distance (DSD) algorithm84 to transform gene networks’ edge weights with a random walk (k = 5). Then,
we constructed network annotations by re-computing closeness on DSD-transformed networks and
meta-analyzed results across 42 independent traits. We report meta-analyzed enrichments and τ∗.

Table S27. Heritability enrichment of networks annotations from consensus networks. We
constructed consensus networks and made (A) probabilistic annotations based on closeness centrality and
(B) binary annotations based on deciles of closeness centrality. We applied S-LDSC and meta-analyzed
results across 42 independent traits. We report meta-analyzed enrichments and τ∗.

Table S28. Correlation between closeness and gene expression. For (A) Saha, (B) Greene, (C)
InWeb, (D) Sonawane networks, we report the correlation between closeness centrality and gene expression
across 53 GTEx tissues.

Table S29. Heritability enrichment of Saha TSN and TWN gene sets. We constructed gene sets
based on membership of genes in Saha tissue-specific networks (TSN) and transcriptome-wide networks
(TWN). We applied S-LDSC to 36 TSN and 16 TWN gene sets across 42 independent traits. We report
meta-analyzed enrichments and τ∗.

Table S30. Excess overlap of top deciles of closeness centrality of tissue-specific networks with
High pLI (ExAC) genes. For each tissue-specific network (Saha, Greene, Sonawane), for each tissue, we
report the excess overlap between High pLI (ExAC) genes and the top decile of closeness centrality.

Table S31. Heritability enrichment of network annotations using relevant tissues for
brain-related and blood-related traits. For (A) 8 brain-related traits and (B) 10 blood-related traits,
we report meta-analyzed enrichments and τ∗.



Table S32. Heritability enrichment of network annotations using 6 other network centrality
metrics. For (A) Saha, (B) Greene, (C) InWeb, (D) Sonawane networks, we constructed network
annotations based on 6 other network centrality metrics and meta-analyzed results across 42 independent
traits. We report meta-analyzed enrichments and τ∗.

Table S33. Heritability enrichment of network annotations with different window sizes.
Instead of 100kb windows around genes, we added (A) 10kb or (B) 1Mb windows around genes when
constructing network annotations. We report meta-analyzed enrichments and τ∗ across 42 independent
traits.

Table S34. Heritability enrichment of pathway+network annotations. We meta-analyzed 156
pathway-trait pairs (122 for Saha, which has less pairs as all genes in some pathways do not exist in the
Saha network). For each 590 pathway-trait pair, we report a proportion of SNPs, enrichment, and τ . We
also report meta-analyzed enrichments and τ∗ across 156 pathway-trait pairs (122 for Saha). We
highlighted the network attaining highest enrichment for each pathway-trait pairs.

Table S35. Heritability enrichment of pathway+network annotations conditioning on one
annotation from the baseline-LD at a time. For (A) Saha, (B) Greene, (C) InWeb, (D) Sonawane
networks, we constructed an average annotation across 156 pathway+network annotations and
meta-analyzed averaged pathway+network annotations across 42 independent traits, conditioning on one
annotation from the baseline-LD model at a time. We report meta-analyzed enrichments and τ∗ across 42
independent traits.

Table S36. Network connectivity of enriched pathways and null pathways. Using (A) sum of
edge weights or (B) number of edges as network connectivity metrics, we report the number of interacting
genes and network connectivity between genes in a pathway and neighboring genes outside the pathway.
We constructed null pathways in two ways: (1) each gene sampled from a randomly chosen pathway or (2)
each gene randomly sampled from all protein-coding genes.

Table S37. Heritability enrichment of Quack annotations. We applied the Quack random-forest
classifier algorithm38. We used 18,119 pathways as a training data and applied Quack to four gene
networks. We used the output of Quack to construct Quack pathway+network annotations (with 100kb
window), applied S-LDSC, and meta-analyzed across 156 pathway-trait pairs (122 for Saha). We report
meta-analyzed enrichments and τ∗.

Table S38. Heritability enrichment of 53 pathway+network annotation using pathways
excluding genes implicatd by GWAS. From 53 significant pathway-trait pairs after excluding GWAS
significant genes, we constructed pathway+network annotations and meta-analyzed results across 53
pathway-trait pairs (40 for Saha). We report meta-analyzed enrichments and τ∗.


	Genes with High Network Connectivity Are Enriched for Disease Heritability
	Introduction
	Material and Methods
	Genomic Annotations and the Baseline-LD Model
	Excess Overlap between Binary and/or Probabilistic Annotations
	Effect Size (τ∗) and Enrichment Metrics Estimated by S-LDSC
	Pathway Annotations
	Gene Networks and Data Processing
	Saha Network
	Greene Network
	InWeb Network
	Sonawane Network

	Network Annotations
	Comparison of Closeness Centrality to 18 Gene Sets
	Assessing whether Genes with High Closeness Centrality Are Heavily Regulating Other Genes or Are Heavily Regulated by Other ...
	Assessing the Impact of Noise in Gene Networks
	Correlation between Closeness and Gene Expression
	Pathway+Network Annotations
	Network Connectivity of a Pathway
	Set of 42 Independent Traits
	Set of 10 Blood-Related and 8 Brain-Related Traits

	Results
	Enrichment of Disease Heritability in Pathway Annotations
	Enrichment of Disease Heritability in Network Annotations
	Enrichment of Disease Heritability in Integrated Pathway+Network Annotations

	Discussion
	Supplemental Data
	Acknowledgments
	Declaration of Interests
	Web Resources
	References


