Final	Macro nutrient	Medium											
concentration		С	-N	-P	-К	-S	–Ca	-Mg	–Fe	-NP	-NS	-PS	-NPS
1 mM	NH4NO3	+	-	+	+	+	+	+	+	-	-	+	-
0.6 mM	NaH ₂ PO ₄	+	+	-	+	+	+	+	+	-	+	-	-
0.3 mM	K_2SO_4	+	+	+	-	-	+	+	+	+	-	-	-
0.3 mM	Na ₂ SO ₄	-	-	-	+	-	-	-	-	-	-	-	-
0.3 mM	KCl	-	-	-	-	+	-	-	-	-	+	+	+
0.2 mM	CaCl ₂	+	+	+	+	+	-	+	+	+	+	+	+
0.4 mM	MgCl ₂	+	+	+	+	+	+	-	+	+	+	+	+
45 µM	Fe- EDTA	+	+	+	+	+	+	+	-	+	+	+	+
+S micronutrients*		+	+	+	+	-	+	+	+	+	-	-	-
-S micronutrients**		-	-	-	-	+	-	-	-	-	+	+	+

Table S1 Hydroponic culture media used to investigate effects of nutrient deficiency.

* 50 μM H_3BO3, 9 μM MnSO4, 0.3 μM CuSO4, 0.7 μM ZnSO4, and 0.1 μM NaMoO4

** 50 μM H_3BO_3, 9 μM MnCl_2, 0.3 μM CuCl_2, 0.7 μM ZnCl_2, and 0.1 μM NaMoO_4

C, control; + supplied; – absent.

Primer*	5'-Sequence-3'					
<i>D3-</i> F	CCCAACCTCCGCAAGCT					
<i>D3-</i> R	GACGCAATCGCTGAACCG					
D3-TaqMan	f-TGGCGCCATGCTTGTTCAACCC-t**					
<i>D10</i> -F	CTGTACAAGTTCGAGTGGCACC					
<i>D10</i> -R	CCTCGTCCGTCTCCTCGTAC					
D10-TaqMan	f-CAAGGCCAGCGGCAAGATTG-t					
<i>D14</i> -F	GCCTCTCCCCGGTTCTTG					
<i>D14</i> -R	TGCTGTATCTCCTCCAGCTCG					
D14-TaqMan	f-ACGACAGCGACTACCACGGCGG-t					
<i>D17</i> -F	CCTCGTCCAGAAGCGTGAG					
D17-R	TAGTGGGTGTCGGTGAAGGC					
D17-TaqMan	f-TCGTCGTGCCGGACCACCTCA-t					
<i>D</i> 27-F	AGATGACCCTGCATTGAAGCA					
D27-R	GCAATTCACACCATGATTCTGC					
D27-TaqMan	f-CCATGCTTCCGGACAAAATGCG-t					
<i>Os5100-</i> F	CTCTCCACCAGAAGGGCCTC					
<i>Os5100</i> -R	GAGATGATCGTGTTCCTCATCG					
Os5100-TaqMan	f-TCTTCACAAGGGACGCGAGGTGGT-t					
<i>Os900-</i> F	CGTGAACCTCACGCTCGG					
<i>Os900-</i> R	TTCATTGCAGCCGTCCG					
Os900-TaqMan	f-CAGCTTGACAGGATCGTCGCCGA-t					
<i>Os1400-</i> F	TGCATTGAGTGCGTGTCCA					
<i>Os1400-</i> R	GAAGCCGAGAGCGAGATCG					
Os1400-TaqMan	f-ACCTTGATGGCCAAGAGGACATAACATTCT-t					
<i>Os1500-</i> F	AAGTGCTCAAGAGGATTCCCG					
<i>Os1500-</i> R	CGATGCTGTCCATATGTGTTTTC					
Os1500-TaqMan	f-CAAGATCGACCGGGTCAACCGC-t					
<i>Os1900-</i> F	TACGTGGACGCTCTGGTGG					
<i>Os1900-</i> R	TCTTGCCGATGATGTCGATG					
Os1900-TaqMan	f-TCCCCTTCTGCCAGCTCTCGCTGT-t					
Ubiquitin-F	AAGGTCACCAGGCTCAGGAAG					
Ubiquitin-R	GATCGAAGTGGTTGGCCATG					
Ubiquitin-TaqMan	f-CAACAACGACTGCGGCGCG-t					

Table S2 Primers and TaqMan probes for qRT-PCR.

*F, forward primers; R, reverse primers. **Fluorescent labels: f, FAM; t, TAMRA.

Figure S1 Effect of nutrient deficiency in rice. Wild-type seedlings were grown in hydroponic culture media without the indicated macronutrients for one week. C, control. Outgrowing tillers (>2 mm) were counted in 2-week-old seedlings. **A.** Effect of nutrient deficiency on tiller bud outgrowth. An arrowhead indicates the outgrowth of the second leaf tiller. n.f., not found. Scale bar = 1 cm. **B.** Complementation by 1 μ M GR24. Data are means \pm S.E. (n = 3). * P < 0.05 (Student's *t*-test).

Figure S2 The levels of 4DO in root exudates and roots in WT rice seedlings at various S concentrations. Samples were collected on day 7 after transfer to hydroponic media, and 4DO levels were analyzed using LC-MS/MS. Data are means \pm S.E. (n = 4). Different letters indicate significant differences (Tukey's HSD, P < 0.05).

Figure S3 Time-course analysis of 4DO levels and expression of SL-related genes in WT rice seedlings. **A.** Schematic diagram of experimental conditions. Blue and red lines indicate +S and -S conditions, respectively. Seedlings were transferred to fresh +S or -S medium on day 14, and 4DO levels and gene expression were analyzed on days 14, 15, and 16. **B.** 4DO levels in roots. Data are means \pm S.E. (n = 4). **C.** Transcript levels of SL-related genes in roots. Data are means \pm S.E. (n = 3). Different lowercase letters indicate significant differences (Tukey's HSD, P < 0.05).

Figure S4 Transcript levels of the SL-signaling genes *D3* and *D14* in roots under +S and –S conditions. Data are means \pm S.E. (*n* = 3). The experimental procedure is shown in Fig. 6A. Expression was analyzed on day 15 of culture. **P* < 0.05 (*t*-test).

Figure S5 Effect of S deficiency on chlorophyll content. **A.** Schematic diagram of experimental conditions. Black and gray bars indicate +S and –S conditions, respectively. **B.** SPAD values indicating chlorophyll contents in the third leaves. Data are means \pm S.E. (n = 3). * P < 0.01 (Student *t*-test). **C.** Comparison of the SPAD values of WT and the *d27*, *d10*, and *d14* mutants. Data are means \pm S.E. (n = 3). Significant differences between WT and, *d10*, *d14* and *d27*are shown as +, #, × respectively (ANOVA, P < 0.05).

Figure S6 Effect of S deficiency on chlorophyll content. **A.** Schematic diagram of experimental conditions. Black and gray bars indicate +S and –S conditions, respectively. **B.** SPAD values indicating chlorophyll contents in the third leaves. Data are means \pm S.E. (n = 3). * P < 0.01 (Student *t*-test). **C.** Comparison of the SPAD values of WT and the *d27*, *d10*, and *d14* mutants. Data are means \pm S.E. (n = 3). Significant differences between WT and, *d10*, *d14* and *d27* are shown as +, #, × respectively (ANOVA, P < 0.05).

Figure S7 The levels of 4DO in root exudates and roots of WT and *d27* seedlings. C, control. Samples were collected on day 7 after transfer to hydroponic culture medium (C, -S, or -P) and 4DO levels were analyzed using LC-MS/MS. n.d., not detected. Data are means \pm S.E. (n = 4). Different letters indicate significant differences (Tukey's HSD, P < 0.05).

Figure S8 Effect of P or S deficiency on shoot branching. Outgrowing tillers over 2 mm were counted every 3 days after transfer to hydroponic culture media. C, control; n.f., not found. Data are mean \pm S.D. (n = 8).