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SUMMARY

RNA flow between organisms has been docu-
mented within and among different kingdoms of
life. Recently, we demonstrated horizontal RNA
transfer between honeybees involving secretion
and ingestion of worker and royal jellies. However,
how the jelly facilitates transfer of RNA is still un-
known. Here, we show that worker and royal jellies
harbor robust RNA-binding activity. We report that
a highly abundant jelly component, major royal jelly
protein 3 (MRJP-3), acts as an extracellular non-
sequence-specific RNA-aggregating factor. Multiva-
lent RNA binding stimulates higher-order assembly
of MRJP-3 into extracellular ribonucleoprotein gran-
ules that protect RNA from degradation and enhance
RNA bioavailability. These findings reveal that hon-
eybees have evolved a secreted dietary RNA-binding
factor to concentrate, stabilize, and share RNA
among individuals. Our work identifies high-order
ribonucleoprotein assemblies with functions outside
cells and organisms.

INTRODUCTION

Distinct biochemical activities are often found in specialized sub-

cellular compartments. These compartments are demarcated

either by a membrane barrier or through the process of phase

transition, which drives macromolecular condensation and

formation of membrane-less organelles (Hyman et al., 2014).

Multivalent protein-RNA interactions induce and maintain the

assembly of such membrane-less ribonucleoprotein (RNP) or-

ganelles (Lin et al., 2015;Maharana et al., 2018). RNP assemblies

(or condensates) occur in both the nucleus and the cytoplasm.
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Nuclear condensates include Cajal bodies, nuclear speckles,

and the nucleoli, and cytoplasmic examples are stress granules,

processing bodies (P bodies), and P granules. To date, with the

exception of plasma lipoproteins, high-order RNP assemblies

have been detected only inside cells.

Protein-coding and non-coding RNA can spread among cells

and tissues of an organism. Such mobile RNA has been docu-

mented in plants and animals (Molnar et al., 2010; Winston

et al., 2002). Furthermore, RNA transfer among organisms has

been reported among fungi, plants, and animals (Buck et al.,

2014; Cai et al., 2018; Shahid et al., 2018; Zhu et al., 2017).

Transmissible RNA has been associated mainly with RNAi to

modulate gene expression and immune responses in the recip-

ient organisms. However, much about the biology and mecha-

nisms of mobile and transmissible RNA remains unknown.

The honeybee (Apis mellifera) plays a key role in agriculture,

pollinating a large number of crops that feed humans and

farm animals. In recent years, elevated honeybee losses have

become a major global concern. Bee colony losses have

been linked to various biotic stressors, including the mite Varroa

destructor, Israeli acute paralysis virus (IAPV), and other viruses

(Maori et al., 2007; McMenamin and Genersch, 2015). Previ-

ously, we reported on RNAi-based ingestion systems for the

control of IAPV and the Varroa mite (Garbian et al., 2012; Maori

et al., 2009). Field trials of the double-stranded RNA (dsRNA)-

IAPV treatment showed a potential prolonged disease resis-

tance in treated hives, lasting several months after the final

dsRNA application, at a time when the treated bees would

have been replaced by new generations (Hunter et al., 2010).

Following this observation, we revealed that bees are able to

share RNA among individuals as well as generations, through

secretion and ingestion of worker and royal jelly (RJ) (Maori

et al., 2019). On the basis of the presence of naturally occurring

RNA populations in the jellies and the transmission of biologi-

cally active RNA between honeybees, we hypothesized that

the jelly has evolved means to facilitate environmental transfer

of RNA.
9 Published by Elsevier Inc.
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RJ is a larval food source, secreted by the hypopharyngeal and

mandibular glands of young workers. Whereas worker larvae are

fed on RJ only for the first 3 days of development, queens are

nourished on RJ their entire lives. Therefore, this secretion plays

acentral role in honeybee caste differentiation. RJ is an acidic (pH

3.5–4.5) aqueous solution of proteins, sugars, lipids, vitamins,

salts, free amino acids, and RNA (Maori et al., 2019; Stocker

et al., 2005). Major royal jelly proteins (MRJPs) represent about

90% of the total RJ protein content. Nine MRJPs are encoded

by the Apis mellifera genome (MRJP-1 to MRJP-9), but their

physiological functions are not well understood. MRJP-3 is a

polymorphic protein that represents 10%–15% of the total RJ

protein content (Furusawa et al., 2008). The polymorphic

MRJP-3 alleles vary in the number of repeat units within the tan-

dem-repeat region (TRR) at the C terminus, and it is speculated

that the basic TRR has been selected for an increase in nitrogen

storage to enhance nutrition (Albertová et al., 2005). MRJP-3

expression is upregulated following bacterial infection (Schar-

laken et al., 2008), and purified protein modulates mice immune

responses in vitro and in vivo (Okamoto et al., 2003).

Here we show that MRJP-3, an abundant jelly ingredient, is a

secreted non-sequence-specific RNA-binding protein and that

multivalent RNA binding mediates the transition of MRJP-3 into

extracellular RNP (eRNP) granules that concentrate, stabilize,

and enhance environmental RNA uptake.

RESULTS

RJ Proteins Bind RNA
To investigate the role of RJ in RNA transmission, we fed bee-

hives either on sucrose only or on sucrose mixed with labeled

dsRNA (dsRNA*). On day 5, queens were removed to initiate

queen rearing and RJ secretion (Figure 1A). To exclude any

possible contamination of the newly secreted RJ with the

dsRNA* in the sucrose solution, we harvested RJ 4 days after

the last dsRNA feed (Figure S1A). We then confirmed that RJ

from dsRNA-fed hives contains full-length dsRNA* using RT-

PCR (Figure S1B). Next, we asked how the dsRNA might be

distributed in the RJ. We visualized the dsRNA* in RJ using

immunohistochemistry and observed that the RNA was not

distributed homogeneously in the jelly but rather concentrated

in �0.5–10 mm granule structures (Figure 1B). We then asked if

the non-dispersive RNA localization is due to association with

a jelly factor. To test this, we performed electrophoretic mobility

shift assays (EMSAs) and found that RJ proteins bind dsRNA

(Figure 1C). We observed a similar dsRNA-binding activity also

in worker jelly (WJ) (Figure S1C). However, as the collection of

WJ is challenging and because all bee larvae are fed on RJ for

the first 3 days of life (Wright et al., 2018), we focused on RJ

for all subsequent experiments.

We detected RNA-binding activity in both raw and soluble RJ

extracts (see STAR Methods; Figure S1D). Binding appeared to

be specific to polymeric nucleic acids, as the negatively charged

deoxynucleotides (dNTPs) or nicotinamide adenine dinucleo-

tides (NADs) were not able to compete with dsRNA binding (Fig-

ure S1E). Next, we tested dsRNA binding in serial dilutions of raw

and soluble RJ extracts. RJ showed detectable levels of RNA

binding down to 1% dilution (Figure S1F). RJ concentration
affected complex size (Figure S1F), suggesting a multivalent

mode of RNA binding by jelly proteins. We noticed that the

addition of RNA induces precipitation in RJ extracts. To validate

the effect of RNA on RJ, we introduced increasing amounts

of dsRNA to raw 2% RJ extracts. Interestingly, titrating dsRNA

into raw RJ extracts triggered precipitation, which mostly dis-

solved back into solution at high dsRNA concentration (Fig-

ure 1D). Consistently, EMSA demonstrated that increasing

RNA concentration results in decreased RNP size (Figure S1G).

We conclude that multivalent RNA-binding jelly protein(s) form

RNPs with the ability to aggregate; the protein/RNA ratio affects

both RNP size and solubility, somewhat analogous to the phe-

nomena of phase transition and polyclonal antibody-antigen pre-

cipitation dynamics (Heidelberger and Kendall, 1935; Hyman

et al., 2014).

MRJP-3 Is the RNA-Binding Jelly Protein
To identify RNA-binding proteins in RJ, we fractionated the jelly

using fast protein liquid chromatography (FPLC) and screened

the unbound and eluted fractions for dsRNA-binding activity by

EMSA (see STAR Methods). By using cation exchange chroma-

tography (68 screened fractions) followed by hydroxyapatite

chromatography (82 screened fractions), we isolated a single

protein with RNA-binding activity: MRJP-3. Because we also

observed RNA-binding activity in WJ (Figure S1C), we tested

and confirmed that MRJP-3 is indeed present in both jellies, us-

ing liquid chromatography followed by mass spectrometry (LC-

MS/MS). Twenty-eight unique peptides (overall 538 peptides)

covering 70% of MRJP-3 were detected in RJ, and 27 unique

peptides (overall 250 peptides) covering 63.3% of the protein

were detected in WJ (Table S1). MRJP-3 consists of three do-

mains: an N-terminal secretion signal, an MRJP/protein-yellow

domain, and a TRR (Figure 1E). A taxonomic tree for MRJP-3

suggests that although the MRJP/protein-yellow domain is

widely conserved, the TRR emerged in the Apis genus and is

associated with jelly-secreting bees only (Figure 2A).

Purified MRJP-3 bound to both dsRNA and single-stranded

RNA (ssRNA) (Figure 2B; Figure S2A). As observed in the jelly

extracts, increasing quantity of RNA results in a gradual decrease

in the size of theMRJP-3 RNP complex, again indicatingmultiva-

lent MRJP-3:RNA binding (Figure 2B). Major royal jelly protein 1

(MRJP-1), which shares 80% amino acid sequence similarity

with MRJP-3, assembles into an oligomeric form (Tamura et al.,

2009) but lacks both the TRR and RNA-binding activity (Figures

S2B and S2C; Figure 2B). Using gel filtration, we found that in

the absence of RNA, purified MRJP-3 also assembles into a

higher-order oligomeric form, composed of �20 monomer units

(Figure S2D). We used microscale thermophoresis (MST) to

confirm MRJP-3 self-assembly and showed that a defined olig-

omer size was obtained (Figure S2E). We introduced increasing

concentrations of non-labeled MRJP-3 to fluorescently labeled

monomer and observed elevation of the signal as the labeled

protein bound to the concentration-dependent higher-order

MRJP-3 oligomers. The signal stabilized at once the concentra-

tion of addedMRJP-3 reached approximately 40 mM, confirming

that the labeledMRJP-3 could not bind further to increasing con-

centrations of added protein (i.e., a stable oligomer was present).

TheMST analysis also showed thatMRJP-3 self-association has
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Figure 1. The Honeybee Jelly Harbors RNA-Binding Activity

(A) Experimental design for RNA detection in RJ. Hives were fed with a 10% sucrose solution with or without the addition of Alexa Fluor-488-labeled

dsRNA (dsRNA*).

(B) Immunohistochemistry-based detection of dsRNA* in RJ samples, which were reacted with Alexa Fluor-488 antibody. Scale bar represents 25 mm.

(C) RJ proteins bind dsRNA. dsRNA-binding activity was tested using EMSA. Treatments included dsRNAmixed in RJ buffer, 10%RJmixedwith dsRNA, 10%RJ

digested by Proteinase K (PK) and then mixed with dsRNA, 10% RJ mixed with dsRNA and then digested by PK, 10% RJ mixed with dsRNA and PK buffer,

27.3 mM purified BSA mixed with dsRNA, 10% RJ only, and 10% RJ only digested by PK. dsRNA (0.05 mM) was applied in all dsRNA-containing treatments.

(D) Precipitation dynamics of dsRNA-protein complexes in RJ. Two percent RJ was mixed with increasing dsRNA concentrations.

(E) MRJP-3 and its prion-like TRR. Amino acid sequence in bold: secretion signal peptide. Amino acid sequence highlighted in color: tandem repeats. Alignment

of the tandem repeats, QN (in gray) and positively charged amino acids (in red).

See also Figure S1 and Table S1.
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an apparent Kd of 3.5 mM (Figure S2E). Finally, we estimated the

MRJP-3 concentration in RJ to be �40 mg/mL (648 mM) (Fig-

ure S2F). We therefore conclude that MRJP-3 is a highly abun-

dant RNA-binding oligomer in native RJ.

MRJP-3 binds ssRNA and dsRNA of different length and

sequence, indicating a non-sequence-specific mode of binding

(Figure 2B; Figure S2A). However, we tested whether nucleic

acid length could be a limiting factor for binding and found that

a minimal length of 18 nt was required for efficient MRJP-3

RNA binding (Figure 2C). We used MST to characterize the bind-

ing of MRJP-3 to ssRNA and dsRNA and found that introducing

MRJP-3 to both RNA types results inmulti-phasic binding curves

(Figure 2D). Three discrete binding events were observed for

ssRNA. By fitting these individual binding events, with the

assumption that they were independent of one another, we ob-

tained Kd values of 4 nM, 300 nM, and 25 mM for ssRNA. We

observed two distinct binding events for dsRNA and identified

Kd values of 11 nM and 150 nM. The tight interactions at low

protein concentrations suggest that the MRJP-3 monomer has

high affinity to both unstructured and duplexed RNA. The

defined Kd values also indicate that MRJP-3 binds ssRNA and

dsRNA in different self-associated states: before, during, and

after the completion of oligomerization. Because the Kd for

self-association was 3.5 mM and the MRJP-3 concentration in

RJ is �26 times more than the highest Kd value measured with

RNA, RNA is expected to be bound to the fully self-associated

MRJP-3 oligomers in native conditions.

The repetitive unit of MRJP-3’s TRR includes poly glutamine-

asparagine amino acids (Figure 1E), which are characteristic of

intrinsic disordered proteins and prion-like domains (Halfmann

et al., 2011; Michelitsch and Weissman, 2000). Intrinsic protein

disorder analysis supports this feature of the TRR region (Fig-

ure 2E). The TRR is enriched also with positively charged amino

acids such that whereas the full-length protein has a pI of 6.47,

theTRR (UniProt:Q17060; aa424–523) hasapI of 10.10, implying

that this region is positively charged in the acidic RJ environment

(pH 3.5–4.5). To test if the positively charged TRR plays a role in

RNA binding, we produced recombinant MRJP-3 that lacks

the TRR and demonstrated, using EMSA, that the prion-like

TRR is required for the RNA-binding activity (Figure S2G).

MRJP-3 and RNA Form Dynamic RNP Granules
Both jelly-purified and recombinant full-length MRJP-3, when

mixed with RNA, formed a high–molecular weight RNP complex

(Figure 2B; Figures S2A and S2G). To gain further insight into
Figure 2. MRJP-3 Is a Multivalent RNA-Binding Oligomer

(A) Taxonomy tree analysis suggests that the MRJP-3 tandem-repeats region ev

(B) PurifiedMRJP-3 binds dsRNA and ssRNA as demonstrated by EMSA. MRJP-3

controls: dsRNA and ssRNA only,MRJP-1mixedwith 43.1 nMdsRNA or 0.3 mMss

1-containing treatments.

(C) MRJP-3 efficiently binds ssRNA that is 18 nt and longer. Binding activity was

ssRNA (19.4 pmol) and proteins (42.8 mM) were applied in all ssRNA- and/or pro

(D) Binding curves of Alexa Fluor-488-labeled 22 nt ssRNA and dsRNA to MRJP

estimated equilibrium Kd values are shown as dashed lines.

(E) The TRR of MRJP-3 is predicted to be intrinsically disordered by the PONDR

(F) The TRR of MRJP-3 is required for RNP formation. Proteins (13.6 mM) and ss

Scale bar represents 1 mm.

See also Figure S2.
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these RNP complexes, we imaged jelly-purified or full-length re-

combinant MRJP-3 mixed with labeled RNA and observed the

formation of 0.1–4 mm RNP granules. The prion-like TRR,

required for RNA binding, is also required for the formation of

these RNP granules (Figure 2F). Both ssRNA and dsRNA medi-

ated super-order assembly of the oligomeric MRJP-3 into large

RNPs (Figure S3A). To determine whether the MRJP-3 RNP

granules are dynamic, we first incubated MRJP-3 with labeled

RNA and then introduced increasing quantities of non-labeled

competitor RNA. We observed a gradual decrease in labeled

RNP size, indicating that RNA is reversibly bound by MRJP-3

or that high RNA concentrations de-assemble the RNP granules

by affecting the multivalent protein-RNA interactions (Figure 3A).

EMSA revealed that different RNA/MRJP-3 ratios result in

different binding patterns (Figures 2B and 3A). To test directly

whether the RNA/MRJP-3 ratio affects MRJP-3 RNP size, we

mixed increasing quantities of labeled RNA with fixed MRJP-3

concentrations and imaged the resulting RNPs. Increasing the

RNA/MRJP-3 ratio initially increased the RNP granules size until

a point was reached after which the complexes started to

decrease in size (Figure 3B), thus supporting a multivalent

mode of RNA binding. To provide further evidence that RNAme-

diates super-order assembly of MRJP-3 oligomers into RNP

granules, we used two colors to differentially label MRJP-3

(MRJP-3*; red) and RNA (ssRNA*; green) (Figure S3B). ssRNA*

alone was homogeneously dispersed in buffer. However, green

loci appeared when ssRNA* was mixed with MRJP-3, demon-

strating RNA condensation and RNP formation. When ssRNA*

was mixed with MRJP-3*, green-red RNPs were formed and

co-localized, demonstrating that RNA and MRJP-3 physically

interact, and the presence of RNA leads to super-order assembly

of MRJP-3 oligomers into RNP condensates. We then tested

whether RNA triggers the formation of MRJP-3 RNP granules

in RJ-like conditions (Figure 3C). When ssRNA* is mixed with

soluble RJ fractions containing MRJP-3*, red foci were formed

and co-localized with the green RNA signal. Introducing non-

labeled ssRNA resulted in the formation of red foci, demon-

strating that the RNA itself, not the labeling fluor, mediated

super-order assembly of MRJP-3 oligomers.

MRJP-3 Binds Naturally Occurring Jelly RNA
To determine whether MRJP-3 binds naturally occurring RJ

RNA, we incubated biotinylated MRJP-3 or biotinylated BSA in

RJ, to pull down any associated RNA. MRJP-3 bound RNAs

had similar bioanalyzer electropherogram profiles to total RJ
olved in the genus Apis and is associated with jelly secretion.

was incubated with increasing concentrations of dsRNA or ssRNA. Additional

RNA, andMRJP-3 only. Protein (42.8 mM)was applied in all MRJP-3- orMRJP-

tested using ssRNA substrates with different lengths and analyzed by EMSA.

tein-containing treatments.

-3 in RJ buffer conditions (left and right curves, respectively). Calculated and

VSL2 and IUPred algorithms.

RNA* (0.2 mM) were applied in all RNA- and/or protein-containing treatments.
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RNA (Figure S3C), which is consistent with MRJP-3 binding RNA

non-specifically. RNA sequencing (RNA-seq) revealed that

MRJP-3 bound both endogenous (Apismellifera) and exogenous

(e.g., viral) RJ RNA (Figure 3D). MRJP-3 bound a higher propor-

tion of Varroa destructor virus 1 (VDV-1) RNA than is present in

total RJ RNA (Figure 3D). We observed full genome VDV-1 reads

coverage, indicating that specific VDV-1 RNA fragments were

not skewing the sequencing outcome (Figure S3D). MRJP-3

was not associated with specific honeybee RNAs and bound

diverse protein- and non-coding RNAs (Figure 3E; Table S2).

We previously demonstrated that bees transmit biologically

active dsRNA, and diverse complementary viral RNA fragments

occur in worker and royal jellies (Maori et al., 2019). Consistently,

MRJP-3 boundmatching sense and antisense VDV-1 RNAs (Fig-

ure S3D) as well as honeybee pre-miRNA (microRNA) hairpins

(Figure 3E). We screened for endogenous duplexed RNA and

identified putative honeybee dsRNAs with a broad size distribu-

tion that somewhat vary between total and MRJP-3-bound RNA

(Figure 3F). The majority of putative endogenous dsRNA derived

from unannotated and protein-coding genes. However, MRJP-3

was associated with base-paired RNA fragments derived from

tRNA genes (Figure 3G; Table S3). As base-pairing within the

tRNAmolecule involves 4–7 nt, and our dsRNA detection require

at least 25 base-pairing nucleotides (Figure S3E), the data sug-

gest that MRJP-3 binds duplexed tRNA fragments that are

derived from two distinct RNAmolecules. Our sequence analysis

indicates that MRJP-3 binds diverse ssRNA and dsRNA popula-

tions and may show some specificity for VDV-1 RNA.

MRJP-3 Enhances Environmental RNA Stability and
Uptake
Environmental RNA persistence requires RNA stabilization.

MRJP-3 RNPs could potentially function to protect RJ RNA

from factors such as nucleases. To test this, we mixed ssRNA

with MRJP-3 or MRJP-1 and then introduced RNase-A. MRJP-

3-bound RNA is protected from RNase-A degradation, whereas

MRJP-1, which lacks the TRR domain, neither bound RNA nor

protected it from degradation (Figure 4A). This experiment

further demonstrated that the TRR is required for RNP assembly

and that RNA binding facilitates nuclease protection. MRJP-3

binding also protects dsRNA from RNase-A degradation (Fig-

ure S4A). We imaged ssRNA-MRJP-3 RNPs in the presence or

absence of RNase-A and did not observe substantial difference
(B) MRJP-3 RNPs are affected by the protein/ssRNA mole ratio. Images of RNPs

(ssRNA*). Scale bar represents 10 mm.

(C) RNA mediates super-order assembly of MRJP-3 oligomers, resulting in RNP

MRJP-3 (MRJP-3*) was introduced to 50% soluble RJ fraction. ssRNA (0.15 mM) o

(D) MRJP-3 binds both endogenous (Apismellifera) and exogenous (viral) RNA. On

biological replicates. Bars represent themean across replicates. Horizontal lines in

bound fraction, but not in RJ (*p < 0.05, two-sided t test).

(E) MRJP-3 is not associated with specific honeybee RNA species. Plots show re

fraction of at least 1% are shown. ‘‘Other’’ represents reads mapped to unannotat

across replicates.

(F) Detection and size distribution of putative total and MRJP-3-bound RJ dsRNA

distinct RNA molecules had at least 25 nt base pairs and the overhang on either

(G) MRJP-3 binds diverse putative endogenous dsRNA and is associated with du

are shown.

See also Figure S3 and Tables S2 and S3.
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(Figure 4B). However, MRJP-3 binding does not prevent dsRNA

processing by the Dicer-like RNase-III nuclease, suggesting that

RNA within the MRJP-3 granules could be available for intracel-

lular RNA-interacting factors (Figures S4B and S4C).

In the absence of suitable genetics, we could not directly

determine whether MRJP-3 enhances ingested RNA uptake in

honeybees. Instead, we investigatedMRJP-3 function in a heter-

ologous C. elegans nematode system. C. elegans is susceptible

to environmental RNAi through ingestion (Timmons and Fire,

1998), and its genome does not encode MRJP-3 (Figure 2A). In

C. elegans, UNC-22 is required for normal muscle morphology

and physiology, and RNAi targeting unc-22 mRNA provides a

quantitative uncoordinated (UNC) phenotype (Fire et al., 1998).

Therefore, we used unc-22 RNAi system to test whether

MRJP-3 affected environmental RNAi uptake in C. elegans. An-

imals fed on a bacterial diet supplemented with MRJP-3 bound

to unc-22 dsRNA (dsRNA-unc-22), dsRNA-unc-22 alone,

dsRNA-unc-22mixed with MRJP-1, or MRJP-3 bound to a con-

trol dsRNA (dsRNA-Fluc) (Figure 4C). Animals that were fed on

MRJP-3-bound dsRNA-unc-22 showed enhanced UNC pheno-

type compared with controls.

To test whether MRJP-3 protects dsRNA or also enhances

dsRNA delivery in C. elegans, we designed an imaging experi-

ment to detect dsRNA uptake shortly after ingestion. Animals

were soaked for 2 h with labeled dsRNA alone, and in the pres-

ence of MRJP-3 or MRJP-1, followed by fixation and imaging

(Figure 4D). Enhanced dsRNA uptake was observed in animals

that ingested MRJP-3 RNPs. In C. elegans, dsRNA longer than

50 bp is taken up from the lumen into intestinal cells (McEwan

et al., 2012). Thus, RNA degradationmight hinder dsRNA uptake.

To assess if MRJP-3’s enhancement of RNAi might be due solely

to dsRNA degradation in other treatments, we sampled soaking

solutionsprior tofixationandanalyzedRNA integrity (FigureS4D).

Although RNA was more stable when bound to MRJP-3, no sub-

stantial degradation occurred in any condition. We conclude that

MRJP-3 RNPs actively enhances dsRNA uptake in C. elegans.

DISCUSSION

With the aim to uncover the mechanisms and factors that facili-

tate horizontal RNA transfer between honeybees, we have re-

vealed a secreted RNA-aggregating jelly protein. MRJP-3 binds

18 nt and longer ssRNA and dsRNA in a non-sequence-specific
formed at various mole ratios of MRJP-3 and Alexa Fluor-488 labeled ssRNA

formation in soluble RJ fraction. RJ buffer or 4.28 mM Alexa Fluor-633 labeled

r ssRNA* was used in RNA-containing treatments. Scale bar represents 2 mm.

ly viruseswith amapped fraction of at least 1%are shown. Points are individual

dicate tests for significant enrichment of viral RNA over bee RNA in theMRJP-3

ads from RNA-seq mapping to Apis mellifera. Only RNA types with a mapped

ed regions. Points are individual biological replicates. Bars represent the mean

s that are mapped to the Apis mellifera genome. dsRNA is detected when two

side did not exceed 100 nt.

plexed tRNA fragments. Only RNA types with a mapped fraction of at least 1%
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Figure 4. MRJP-3 RNP Granules Protect RNA From Degradation and Enhance RNA Bioavailability

(A) MRJP-3-bound RNA is protected from RNase-A digestion. Treatments included ssRNA mixed with MRJP-3, ssRNA mixed with MRJP-3 followed by incu-

bation with PK, ssRNA mixed with MRJP-3 and RNase-A, ssRNA mixed with MRJP-3 and RNase-A followed by incubation with PK, ssRNAmixed with MRJP-1,

and ssRNA mixed with MRJP-1 and RNase-A. ssRNA (0.3 mM) and MRJP-3 or MRJP-1 (42.8 mM) were used in all ssRNA- and protein-containing treatments.

RNase challenge was performed by introducing 5 mg RNase-A followed by 1 h incubation at room temperature.

(B) RNase-A presence does not affect MRJP-3 RNPs. Images of RNPs formed with ssRNA* with or without RNase-A. ssRNA* (0.3 mM) and MRJP-3 or MRJP-1

(42.8 mM)were used in all ssRNA*- and protein-containing treatments. RNase challengewas performed by introducing 5 mgRNase-A followed by 1–3 h incubation

at room temperature. Scale bar represents 2 mm.

(C) dsRNA-MRJP-3 RNPs enhance unc-22 RNAi phenotype in C. elegans. Each treatment contained three biological repeats (n = 150 animals per treatment).

(legend continued on next page)
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manner. The protein is assembled into a higher order oligomeric

form in an RNA-independent manner. Multivalent RNA binding

drives super-order assembly of MRJP-3 oligomers into eRNP

granules. These granules concentrate and stabilize RNA and

enhance its uptake by ingestion. Thus, MRJP-3 is a dietary factor

that likely mediates horizontal RNA flow among honeybees

(Figure 4E).

We have shown previously that honeybees are able to share

biologically active dsRNA among individuals and generations in

the hive (Maori et al., 2019). RNA transfer is mediated by secre-

tion and consumption of jelly, which is highly enriched for

MRJP-3. The transmission of RNA could drive social immunity

against the Varroa mite (Garbian et al., 2012) and presumably

against other pathogens such as viruses (Maori et al., 2019).

Consistently, sense and antisense viral RNA fragments represent

a high proportion of the natural substrates of MRJP-3 (Fig-

ure S3D). Furthermore, diverse putative dsRNAs, which aremap-

ped to the honeybee genome, occur in worker and royal jellies

and bound by MRJP-3 (Figures 3F and 3G; Maori et al., 2019).

Notably, MRJP-3 is associated with tRNA fragments, which

have been shown to inhibit retrotransposons activity and regulate

epigenetic inheritance of metabolic traits (Chen et al., 2016;

Schorn et al., 2017). The multivalent interaction of MRJP-3 and

its RNA substrates is somewhat analogous to the polyclonal anti-

body-antigen precipitation dynamics (Heidelberger and Kendall,

1935). Thus, MRJP-3 might act as a factor that sponges environ-

mental RNA reservoirs for downstreamdetection and processing

by RNA receptors or effectors, such as Dicer. The presence of

MRJP-3 in the hemolymph (Chan et al., 2009; Randolt et al.,

2008), and the susceptibility ofMRJP-3 RNPs to RNase-III diges-

tion (in contrast to their RNase-A resistance), supports the

involvement of MRJP-3 eRNPs in mediating ingested RNA

bioavailability (Figures 4C and 4D). Further research is required

to elucidate the mechanism of RNA uptake mediated by

MRJP-3 eRNPs as well as its physiological roles at the individual

and colony levels.

Assembly of membrane-less RNP organelles, such as stress

granules and P bodies, involves liquid-liquid phase separation

(Hyman et al., 2014). RNP compartments can be formed by

another phase-transition mechanism, in which protein self-poly-

merization aggregates into an RNA-recruiting scaffold, as

described for Xvelo in the Balbiani bodies (Boke et al., 2016).

Yet these forms of RNA-scaffolded multi-protein assembly

have been identified onlywithin cells.We suggest thatmacromo-

lecular RNP assemblies may also occur outside the cell and the

organism. Our data show that RNA interconnects MRJP-3 oligo-

mers into an RNP condensate; hence, while self-polymerization

could explain the formation of defined MRJP-3 oligomers, it

does not exclusively drive the phase transition and formation of

MRJP-3 eRNP granules.
(D) MRJP-3 RNPs enhances ingested dsRNA uptake in C. elegans. Animals were

dsRNA-Fluc (dsRNA**). Control groups included soaking animals with dsRNA** m

(2.15 nM) and MRJP-3 or MRJP-1 (42.8 mM) were used in all dsRNA- and protein

(E) A working model describing the role of MRJP-3 in the transmissible RNA pa

endogenous and exogenous (e.g., viral, fungi, bacteria, plant) RNAs. Bee larvae

RNA is taken up to the hemolymph, is systemically spread, and affects gene exp

See also Figure S4.
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Cellular RNP compartments are dynamic in size and content

because of the continuous exchange of material with their sur-

roundings (Hyman et al., 2014). MRJP-3 eRNPs are dynamic as

well, and the RNA/MRJP-3 ratio affects their size, similar to other

prion-like proteins that phase-separate upon RNA binding (Ma-

harana et al., 2018). MRJP-3 binds a diverse RNA population in

a non-sequence-specific manner. However, binding is con-

strained toRNAs that are 18 nt or longer. Therefore,MRJP-3 sub-

strates include nucleic acids that differ in length and structure

complexity, potentially affecting the eRNP granule properties. In-

side cells, RNPorganelles are thought to facilitate specific chem-

ical and enzymatic reactions that are essential for cell viability.

Here we demonstrated that MRJP-3 eRNP granules could func-

tion to shield RNA from hostile environmental factors and to

enhance RNA uptake. We speculate that high-order eRNP as-

semblies play diverse roles within and outside the organism.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Alexa Fluor-488 Thermo Fisher Scientific Cat# A-11094; RRID: AB_221544

Bacterial and Virus Strains

Escherichia coli HB101 strain Caenorhabditis Genetics Center (CGC) HB101 strain

E. coli HT115 (DE3) RNAi strain - empty vector Julie Ahringer lab N/A

E. coli HT115 (DE3) RNAi strain - unc-22 (ZK617.1) Julie Ahringer lab N/A

Biological Samples

Commercial raw RJ Well Bee-ing UK 50 gr pure fresh royal jelly: https://www.

royaljellyinhoney.co.uk/buy-royal-jelly.html

Chemicals, Peptides, and Recombinant Proteins

Recombinant full-length MRJP-3 This paper N/A

Recombinant truncated MRJP-3 This paper N/A

Deposited Data

Raw RNA-seq data This paper ArrayExpress: E-MTAB-6732

Raw imaging data This paper Mendeley Data: https://doi.org/

10.17632/5w7rbd8452.1

Experimental Models: Cell Lines

Sf9 (insect; Spodoptera frugiperda) AATC ATCC Cat# CRL-1711; RRID: CVCL_0549

Experimental Models: Organisms/Strains

Caenorhabditis elegans wild type strain Caenorhabditis Genetics Center (CGC) Wild type strain N2 (var Bristol)

Oligonucleotides

List and sequences of RNA oligos Table S4A) This paper N/A

List and sequences of primers (Table S4B) This paper N/A

Recombinant DNA

Baculovirus expression vector pVL1393 Expression Systems Cat# 91-013

Software and Algorithms

RNA-seq analysis scripts This paper https://doi.org/10.5281/zenodo.1542860

GNU R 3.4.4 R Development Core Team (2018) https://www.r-project.org/

STAR 5.2.5b Dobin et al., 2013 https://github.com/alexdobin/STAR

samtools Li et al., 2009 https://github.com/samtools

cutadapt 1.11 Martin, 2011 https://cutadapt.readthedocs.io/en/stable/

installation.html

bedtools 2.27.1 Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2/

releases/tag/v2.27.1

Subread featureCounts 1.5.0-p2 Liao et al., 2013 http://subread.sourceforge.net/

goseq 1.28 Young et al., 2010 https://bioconductor.org/packages/release/

bioc/html/goseq.html

Other

Labeled ribonucleotide Alexa Fluor 488-5-UTP Thermo Fisher Scientific Cat# C11403

EnvisionTM Flex kit system Agilent Cat# K802421-2

MEGAscript T7 Transcription Kit Thermo Fisher Scientific Cat# AM1334

Ulysis Alexa Fluor 488/647 Nucleic Acid

Labeling Kits

Thermo Fisher Scientific Cat# U21650

Cat# U21660

TruSeq Stranded Total RNA Library Prep kit Illumina Cat# 20020596

ULTRA BEE pollen substitute ManLake FD-374
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the lead contacts, Eyal Maori (eyalmm@gmail.

com) and Eric Miska (eam29@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Reproductive hive system
Caged fertile queen bees, together with approximately 1000 worker bees, were placed in standard 5-frame wooden nuc box with

separate bottom board. The hives were sealed for three days in which the combs were constructed and queen-workers recognition

had been established. During the first three days, the bees were fed on a mixture of 33% honey and 67% sucrose powder (candy).

Next, the hives were transferred into two net-houses separating between dsRNA treated, and untreated hives. The bees were free to

fly within the net-houses and to forage for water from buckets. The first 14 days were an adaptation period, during which the colonies

were fed on demand with candy, and pollen supplement patties (10 g each) which were placed on top of the combs and replaced

once a week. An established colony was determined by at least two constructed combs and egg-laying activity of the queen;

only these hiveswere included in the experiment. During the experiments, established colonies (two per treatment) were fed on pollen

supplement patties (10 g each), and had an unlimited water supply.

Nematode culture
C. elegans Bristol N2 strain was grown and maintained as previously described (Brenner, 1974). The nematodes were kept at 20�C,
unless otherwise indicated. HB101 strain E. coliwas used as a food source. For maintenance, animals were kept in nematode growth

media (NGM) agar plates and transferred using a platinum wire under a dissecting microscope (Leica M50). Alternatively, pieces of

one plate were chunked and placed facing down on a new plate.

METHOD DETAILS

Detection of Alexa Fluor-488 labeled dsRNA in royal jelly
50 mL 10% (v/w) sucrose solutions with or without Alexa Fluor-488 labeled dsRNA (dsRNA*, 4 ng/ml final concentration) were pro-

vided on days: 1, 2, 4 and 5 (two hives per treatment). On day-5, queens were removed to initiate queen rearing and RJ secretion. On

day-9, 3rd-4th instar larvae were carefully removed from queen brood cells with a fine paintbrush, and the larvae were checked to be

intact without any physical damage. RJ was harvested from such queen brood cells and samples from each hive were pooled and

stored at �80�C.

Immunohistochemistry
RJ samples were transferred into a cryomold followed by a frozen section media treatment (Leica, FSC, 22 clear). 10mM sections

were cut by a cryostat (Leica, CM1900), put on slides and left at room temperature to dry. Slides were fixed for 15 min in 4% PFA

(in PBS) and washed twice for 5min with 1xPBS. Immunostaining was performed by the Dako Autostainer Link 48 with the Envision

Flex kit system (Dako) according to themanufacturer’s instructions using 1:250 diluted Alexa Fluor-488 antibody (Thermo Fisher, Cat.

A-11094). More specifically, sections were incubated for 10 min with peroxidase-blocking reagent, 60 min with 1:250 diluted primary

polyclonal rabbit anti-Alexa Fluor-488, 30 min with the EnVision FLEX/HRP Detection Reagent, 5 min with EnVision FLEX DAB+

Chromogen/EnVision FLEX Substrate Buffer mix, and 5 min with EnVision FLEX Hematoxylin. The slides were then dehydrated

(3 min in 70% ethanol, 3 min in 95% ethanol and 3 min in 100% ethanol) followed by 2 times 5 min wash in xylene and then mounted.

Royal and worker jelly samples
Royal and worker jellies, which were directly applied in experiments (raw or soluble fraction), were produced in collaboration with

Springwell Apiaries, UK. RJ was harvested from brood cells containing 3rd-5th instar queen larvae. Worker jelly was collected

from brood cells with 4th-5th instar worker larvae by washing cells with nuclease-free water to resuspend the low jelly quantity avail-

able. Prior to jelly harvest, larvae were carefully removed and checked for any physical damage. Commercial RJ was sourced from

Well Bee-ing UK and was used for MRJP-3 isolation.

dsRNA and ssRNA synthesis
dsRNA and ssRNA that are longer than 50 nt were synthesized by in vitro transcription usingMegascript kit (Ambion) according to the

manufacturer’s instructions including DNase-I treatment. Transcription DNA templates, carrying a single (for ssRNA synthesis) or

double opposite T7 promoters (for dsRNA synthesis), were generated by PCR or gene synthesis. HPLC-purified RNA oligos (up

to 50 nt) were ordered from Integrated DNA Technologies (IDT). List of nucleic acid sequences, their corresponding NCBI accession

number and source is shared in Table S4.
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RNA labeling
Long ssRNA/dsRNA (> 50 nt) was labeled by in vitro transcription reaction using Alexa Fluor-488 labeled UTP (Thermo Scientific). 2 ml

of 1mM labeled UTP was added to a standard 20 ml in vitro transcription reaction of the Megascript kit (Ambion). Ulysis kit (Thermo

Scientific) was used according to the manufacturer’s instructions to label RNA oligos (50 nt and shorter) with Alexa Fluor-488 as well

as the Alexa Fluor-647 labeled dsRNA.

Electrophoretic Mobility Shift Assays (EMSA)
Due to the large size of RNA-MRJP-3 complexes, non-denaturing agarose gel was used for the EMSA assays. Prior to the electro-

phoresis, RNA and protein samples (purified protein or dialysed eluted fraction) were mixed and incubated at room temperature for

0.5-3 hours, and then mixed with 1x loading buffer (Thermo Fisher Scientific, catalog no. R0611). Samples were loaded in Ethidium

Bromide containing 0.8% non-denaturing agarose gel and run in 1xTAE buffer for 45 min in 150 mA.

Extraction of soluble fraction of RJ
Soluble RJ fraction was prepared by diluting raw RJ with ‘‘RJ buffer’’ (v/v) that was formulated based on RJ ash content (Stocker

et al., 2005): 77 mM KCl / 10 mMMgCl2 / 44 mM NaCl / 2.5 mM CaCl2 / 30 mM Acetate pH 4.0. The diluted RJ was then centrifuged

at 16 K rcf. for 10 min at room temperature and the aqueous fraction was collected. The centrifugation and aqueous fraction sepa-

ration were performed three additional times until a pure soluble fraction was extracted.

RNA extraction from royal jelly
1 mL of 25% (v/v) RJ was split into 2 equal aliquots. RNA was purified separately from each aliquot by phenol/chloroform/isoamyl

alcohol extraction and pooled together.

RT-PCR
Two-step primer-specific RT-PCR was performed by following standard SuperScript-III (invitrogen) and KAPA HiFi Hotstart ready

mix PCR (Kapa Biosystems) protocols. Reverse transcription was performed by applying 0.5 ng total RJ RNA template, two

dsRNA-specific primers (0.25 mM final concentration for each primer; sequences are detailed in Table S4). Same primers and 1 ml

cDNA were applied in the PCR.

Protein disorder prediction
Intrinsic disorder in MRJP-3 (UniProt ID Q17060) was predicted by PONDR VSL2 (http://www.pondr.com/) and IUPred (http://iupred.

enzim.hu/), which apply different approaches for disorder prediction (Kovacs et al., 2010). The default cutoff value of 0.5 was used in

both algorithms.

Taxonomic tree
MRJP-3 amino acid sequence (UniProt ID Q17060) was blasted against the available non-redundant protein sequence database (nr).

The outcome was analyzed for the presence of the yellow-related protein and TRR (amino acids 1-419 and 424-523 respectively).

Next, the NCBI taxonomy database was applied to generate a common tree (Federhen, 2012).

Isolation of proteins from royal jelly
MRJP-3 and MRJP-1 were isolated by FPLC using ion exchange chromatography followed by hydroxyapatite chromatography.

RJ sample preparation

50 mL 10% soluble RJ was prepared and dialyzed overnight in MES binding buffer (25 mM MES, 0.15 M, pH 6.0), centrifuged at

16,000 rcf. and passed through a 0.22 mM filter.

MRJP-3 purification

MRJP-3 was purified using cation exchange FPLC. The RJ sample was loaded onto a Source 15S column (103 98 mm; GE Health-

care, cat. 17094401 or 28406415), equilibrated with MES binding buffer (2 mL per min) followed by a 6-column volume wash with

MES binding buffer. Elution was performed with a linear 38 column volume salt gradient, from 25 mM MES pH 6.0 / 0.15M NaCl

(Buffer-A) to 25 mM MES pH 6.0 / 1.0 M NaCl (Buffer-B). The cation exchange included overall 10 unbound and 58 eluted fractions.

20 fractions (approximately 5 mL per fraction) were collected over the first third of the elution gradient and their protein concentration

was measured by Nanodrop spectrophotometer. MRJP-3 eluted over the first 25% gradient. Fractions containing the protein peak

were run on 4%–12%gradient SDS-PAGE gel and thosewith themost concentrated and pureMRJP-3were pooled and dialyzed into

CHAP binding buffer (5 mM phosphate pH6.8 / 0.15 M NaCl). MRJP-3 was further purified on a Ceramic Hydroxyaptatite (CHAP)

column (103 108 mm, CHAP Type I Tricorn 10/100 column; Bio-Rad cat. 157-0020, GE healthcare cat. 28406415). MRJP-3 sample

was passed through the column (2 mL per min) followed by washing with 6 column volumes of CHAP buffer. Elution was performed

with a linear 25 column volume gradient, from 5mMphosphate pH 6.8 / 0.15MNaCl (Buffer-C) to 500mMphosphate pH 6.8 / 0.15M

NaCl (Buffer-D). The hydroxyaptatite chromatography included overall 12 unbound and 70 eluted fractions. MRJP-3 eluted over the

first 30% gradient and 20 fractions (approximately 3 mL per fraction) were collected. Fractions with the most concentrated and pure

MRJP-3 (at least 95% purity; determined by protein gel electrophoresis on 4%–12% gradient SDS-PAGE) were pooled and dialysed
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into RJ Buffer. MRJP-3 concentration was determined by absorbance at 280 nm value using a 1 mg/ml/cm extinction coefficient

of 0.8.

MRJP-1 purification

Startingmaterial was unbound protein in the run-through from the Source 15S column (inMESbinding buffer) under the conditions for

purifying MRJP-3. MRJP-1 was purified using anion exchange FPLC performed on Source 15Q Tricorn 10/100 column (103 98mm;

GE healthcare, cat. 17094720 or 28406415). The unbound protein sample was passed through the column (2mL permin) followed by

washing with 6 column volumes of MES buffer. Elution was performed with a linear 35-column volume gradient, from Buffer-A to

Buffer-B. The anion exchange included overall 12 unbound and 54 eluted fractions. 30 fractions (approximately 5 mL per fraction)

were collected over the first half of the elution gradient. Fractions containing the protein peak were run on 4%–12% gradient

SDS-PAGE gel and those with the most concentrated and pure MRJP-1 were pooled and dialyzed into CHAP binding buffer.

MRJP-1 was further purified on a CHAP column (10 3 108 mm, CHAP Type I Tricorn 10/100 column; Bio-Rad cat. 157-0020, GE

healthcare cat. 28406415). The MRJP-1 sample was passed through the column (2 mL per min) followed by washing with 6 column

volumes of CHAP buffer. Elution was performed with a linear 25-column volume gradient, from Buffer-C to Buffer-D. The hydroxyap-

tatite chromatography included overall 9 unbound and 53 eluted fractions. 20 fractions (approximately 4 mL per fraction) were

collected over the first 40% of the elution gradient and MRJP-1 eluted over the first 30% gradient. Fractions with the most concen-

trated and pure MRJP-1 (at least 95% purity; determined by protein gel electrophoresis on gradient 4%–12% SDS-PAGE) were

pooled and dialysed into RJ Buffer. MRJP-1 concentration was determined by absorbance at 280 nm value using a 1 mg/ml/cm

extinction coefficient of 1.2. MRJP-1 and MRJP-3 aliquots were stored in �80 0c and purified protein identities were validated by

a MALDI/MS peptide mass fingerprinting, performed by the Cambridge Centre for Proteomics.

Recombinant MRJP-3 expression and purification
RecombinantMRJP-3 expressionwas serviced from the Israel Structural ProteomicsCentre,Weizmann Institute. Full-lengthMRJP-3

(1-544) and truncatedMRJP-3 (1-424)were cloned into baculovirus expression vector pVL1393. T7-epitope and three amino-acid (aa)

linker (SAG) followed by 6xHiswere introduced into the gene following the authentic secretion signal (aa 1-20). Each expression vector

constructwasco-transfectedwith theProGreen green fluorescent protein (GFP) linearized baculovirusDNA (ABvector) intoSf9 insect

cells. Viruses were produced for each construct, and were used to infect Sf9 cells for protein expression. Infection efficiency was

monitored by GFP fluorescence of infected cells. Cells were grown in ESF921 protein-free culture medium (Expression Systems).

Three days post-infection, medium containing the secreted protein was collected concentrated and dialyzed against 50 mM Tris

8.0 / 100 mM NaCl. Protein was purified on HisTrap_FF_crude_5 mL column (GE Healthcare) followed by desalting column to

exchange the buffer of the eluted protein. The proteinwas further purified by anion exchange at pH 8.0 on TricornQ 10/100GL column

(GE Healthcare) and eluted at 75 mM salt. The fractions containing the eluted protein were dialyzed against RJ buffer.

Microscale thermophoresis
The binding affinities were measured using the Monolith NT.115 (NanoTemper Technologies, GmbH). Both single- and double-

stranded 22 nt RNA were fluorescently labeled with Alexa Fluor-488 using the Ulysis kit (Thermo Scientific) according to the manu-

facturer’s protocol. Labeling efficiency was determined to be 1:1 (RNA to dye) by measuring the absorbance at 260 and 488 nm. A 16

step dilution series of the unlabeled MRJP-3 was prepared and mixed with the labeled RNA at 1:1 ratio and loaded into capillaries.

Measurements were performed at 25�C in RJ buffer containing 0.01% Tween 20. Data analyses were performed using Nanotemper

Analysis software, v.1.2.101 and were plotted using Origin 7.0. All measurements were conducted as triplicates and the errors were

presented as the standard error of the triplicates.

Size exclusion chromatography
MRJP-3was concentrated to 100 mMand the concentratedMRJP-3was injected onto a 16/100 Superdex 200 size exclusion column

(GE Healthcare, Piscataway, NJ). Protein was eluted at 0.5 ml/min in RJ buffer. The oligomer formation was judged by the appear-

ance of a peak with an earlier retention time. The size exclusion column was calibrated with Thyroglobulin (669 kDa), Ferritin

(440 kDa), Aldolase (158 kDa), Conalbumin (75 kDa), Ovalbumin (43 kDa), Carbonic anhydrase (29 kDa), Ribonuclease (137 kDa)

and Aprotinin (6.5 kDa). Data analyses were performed using Unicorn 7.0 and were plotted using Origin 7.0.

Microscopy
Confocal imaging was performed using an inverted Olympus FV1000microscope equipped with the FLUOVIEW 4.2 software. Nucle-

oprotein images were acquired using a 603UPlanSApo/1.35 oil objective with 1-2x magnification.C. elegans images were acquired

using a UPlanSApo 20x objective with 2x magnification. Imaging settings (laser power and exposure) were set so that negative con-

trol images did not show signal. The same microscope settings were then used for all treatments. Sample mounting was not applied

prior to imaging.

Super-resolution imaging
Super-resolution SIM (structured illuminationmicroscopy) images were acquired using a Deltavision OMX 3D-SIM SystemV3 BLAZE

from Applied Precision (GE Healthcare) equipped with 3 sCMOS cameras, 405, 488, 592.5 nm diode laser illumination, an Olympus
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Plan Apo N 60x 1.42NA oil objective, and standard excitation and emission filter sets. Imaging of each channel was done sequentially

using three angles and five phase shifts of the illumination pattern. The refractive index of the immersion oil (Cargille) was adjusted to

1.513 to minimize spherical aberrations. Sections were acquired at 0.125 mm z steps. Raw OMX data were reconstructed in

SoftWoRx software version 6.5.2 (Applied Precision, GE Healthcare). Reconstructions were carried out using channel specific

Optical Transfer Functions (OTFs) and a Wiener filter of 0.002. OTFs were generated within the SoftWoRx software by imaging

100 nm beads (Life Technologies) using appropriate immersion oils to match the data. For figures, reconstructed data were further

processed in FIJI software (open source) to remove negative values created by the reconstruction algorithm. Sample mounting was

not applied prior to imaging.

Protein biotinylation
11.8 nmol MRJP-3 and BSA were dialysed in 1xPBS. EZ-Link NHS-PEG4-Biotin (Thermo Scientific; catalog no. 21329) was used to

biotinylate the proteins as follows; 170 ml nuclease-free water was added to the EZ-Link NHS-PEG4-Biotin (‘biotin’) powder aliquot

and mixed gently. 3 ml of biotin solution was added per 500 ml MRPP-3 or BSA solution, mixed well and incubated at room temper-

ature for 30min. Biotinylated proteins were then dialyzed in 1xPBSwith Slide-A-lyzer MINI dialysis units 7 KDa (Thermo Scientific) for

2 hours followed by buffer change and additional dialysis for 4 hours.

RJ RNA pull down
1 mL raw RJ was diluted with 1.5 mL nuclease-free water and split into two aliquots (1.25 mL per tube). 500 ml of biotinylated protein

(MRJP-3 or BSA) was added to each RJ aliquot and rotated overnight at 4 0c. Next, the RJ pH was adjusted to 5.0-5.5 by adding

0.23 mL of 500 mM Tris pH 8.8. Each RJ-biotinylated protein mixture was then split into two tubes containing 0.4 mL pre-washed

Pierce Streptavidin magnetic beads (Thermo Scientific; catalog no. 88816) and rotated at room temperature for 3 hours. Beads

were then placed in magnetic stands for 10 min followed by removal of the RJ solutions. Next, beads were washed with 0.5 mL

1xPBS for 10 min at room temperature. After three wash steps, 0.35 mL 1xPBS was added to each beads tube, followed by

Phenol/Chloroform/Isoamyl alcohol RNA extraction.

C. elegans soaking
Animals were grown until young adult stage and washed twice in M9medium. The animals were then transferred into 10 ml treatment

solutions placed on a paraffin film, which was sealed within an empty NGM plate and incubated for 2 hours at room temperature.

Next, the animals were individually picked and washed three times in M9 medium before fixation in 4% formaldehyde with PBS

for 30 min. The animals were then mounted in 1xPBS for imaging.

C. elegans unc-22 RNAi
HT115 empty vector and dsRNA-unc-22 (ZK617.1) expressing RNAi bacterial feeding clones were kindly received from J. Ahringer’s

laboratory, Cambridge University. Bacteria were grown in LB- Ampicillin for 16 hours. The dsRNA-unc-22 expressing bacteria

(positive control for unc-22 RNAi phenotype) were seeded onto 50 mm NGM agar plates containing 1 mM IPTG and 25 g/ml Carbe-

nicillin at a volume of 50 ml bacterial culture per plate and left to dry for 48 hours. Empty vector bacteria were seeded similarly, but in

the absence of IPTG. For unc-22 dsRNA uptake assays, on day-1, 100 ml of treatment solutions were placed on the center of the

empty vector bacterial loan and left to dry for 10 min. Next, 50 L1s synchronized by starvation arrest were spotted onto each plate

in a drop of M9. On day-2, second 100 ml of treatment solutions were applied. On day-4, twitcher phenotype was scored at the adult

stage. Each treatment had three biological repeats. 5.4 pmol (0.05 mM) dsRNA and 4 nmol (39.7 mM) MRJP-3 or 5 nmol (49.9 mM)

MRJP-1 were applied in all dsRNA- and protein-containing treatments in RJ buffer.

Mass spectrometry of royal and worker jelly samples
10% soluble RJ andWJ were dialyzed overnight in 1xPBS buffer, centrifuged at 16 K rcf. and passed through a 0.22 mM filter. Jellies

proteins were identified by LC-MS/MS applied directly on the RJ andWJ solutions (serviced from Cambridge Centre for Proteomics)

RNA library preparation and sequencing
Total RJ RNA or pulled-down MRJP-3 bound RNA was first subjected to Tobacco Acid Pyrophosphatase (Cap-Clip enzyme,

CellScript) and Polynucleotide kinase (T4 PNK, New England Biolabs) treatments according to the manufacturers’ instructions. Total

stranded RNA library preparations were performed using the TrueSeq stranded total RNA sample preparation kit (Illumina) according

to manufacturer’s instructions omitting the rRNA removal and fragmentation steps since input RNA was of lowmolecular weight and

did not contain obvious rRNA contaminants. In brief, total RJ RNA (ca. 20 ng) or 25% of MRJP-3-bound purified RNA was diluted to

8.5 ml total volume in Elution buffer. After addition of 8.5 ml Elute/Prime/Fragment High Mix (containing the Reverse Transcription

primers), RNA was denatured at 65�C for 5 minutes followed by rapid cooling on ice. All subsequent steps were performed following

the manufacturer’s protocol with the following modification: PCR amplification of the MRJP-3 bound input cDNA samples was by

using 20 cycles in total. All libraries were quantified by standard dsDNAHigh Sensitivity Qubit assay (Invitrogen) and sizing of libraries

was controlled by running 1 ml sample each on a D1000 screen tape using a Tapestation 2200 system (Agilent). Sequencing was

performed by a Hiseq 1500 (Illumina, USA) instrument using a 100 bp paired-end read run.
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QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq analysis
Samples included three total RJ RNA libraries (RJ_1 / RJ-11-9; RJ_2 / RJ-12-22; RJ_3 / RJ-14-3) and two MRJP-3 bound RJ

RNA libraries (MRJP-3_1 / MJ3-13-11; MRJP-3_2 / MJ3-8-8). RNA-seq reads were adaptor trimmed using cutadapt v1.11 to a

minimum length of 10 nt (Martin, 2011). Trimmed reads were mapped to a combined reference of Apis mellifera (GCA_000002195.1)

and known honeybee viruses using STAR v2.5.2b (Dobin et al., 2013) with parameters –outFilterMismatchNoverLmax

0.15 –outFilterMultimapNmax 10. Honeybee viruses included Israeli Acute Paralysis Virus (IAPV; accession number NC_009025.1),

Acute Bee Paralysis Virus (ABPV; accession number NC_002548.1), Kashmir Bee Virus (KBV; accession number NC_004807.1),

Deformed Wing Virus (DWV; accession number NC_004830.2), Varroa Destructor Virus 1 (VDV-1; accession number NC_006494.1),

Black Queen Cell Virus (BQCV; accession number NC_003784.1), Sacbrood Virus (SBV; accession number NC_002066.1), Chronic

Paralysis Virus (CPV, RNA-1; accession number NC_010711.1), Chronic Paralysis Virus (CPV, RNA-2; accession number

NC_010712.1), Bee Macula-like virus (BeeMLV; accession number NC_027631.1), Slow Bee Paralysis Virus (SBPV; accession

number NC_014137.1), Lake sinai virus strain-1 (LSV-1; accession number KM886905.1) and Lake sinai virus strain-2 (LSV-2; acces-

sion number HQ888865.2). Gene expression was quantified using featureCounts v1.5.0-p2 from Subread (Liao et al., 2013) on gene

level. For plotting, counts were summed over each species and, in bees, RNA biotype. To compare counts across biological samples,

library size factors were calculated as the fraction of each sample’s total mapped read count divided by themean sample read count.

Afterward, each sample’s counts were normalized by dividing by the sample library size factor. Finally, we tested whether read

counts between A. mellifera and Varroa destructor virus-1 were significantly different, both for the total royal jelly fraction and the

MRJP-3 fraction, using a two-sided Welch two-sample t test.

Viral coverage
RNA-seq coverage of the Varroa Destructor Virus-1 was computed strand-specifically using bedtools genomecov 2.27.1 (Quinlan

and Hall, 2010). Coverage was plotted on a log scale by performing the transformation log10(x+1) on counts x (and flipping the

axis for the antisense strand).

GO analysis
For GO analysis, genes were considered as expressed if they had a read count after RNA-seq mapping and quantification of at least

2. We considered only GO terms with at least 5 annotated genes; GO terms were downloaded from Ensembl Metazoa Biomart. A null

distribution was calculated from expressed genes using the gene lengths (as the mean length of a gene’s transcripts) as a bias term

(via goseq 1.28 (Young et al., 2010)). GO terms were called overrepresented when their Wallenius hypergeometric test p value

was < 0.05.

MicroRNA screen
To discover unannotated microRNAs, reads that mapped to the A. mellifera genome were re-mapped against the ‘‘hairpin.fa’’

pre-miRNA reference from miRBase, release 21 as single-end reads, using STAR with parameters –outFilterMismatchNoverLmax

0.15 –outFilterMismatchNmax 1 –alignIntronMax 1 –scoreDelOpen -10000 –scoreInsOpen -10000 –outFilterMultimapNmax 100.

Double-stranded honeybee RNA screen
Reads that mapped to theApismellifera genomewere analyzed for the occurrence of putative honeybee dsRNA. Long RNA-seq data

were split into first and last read of each fragment. Subsequently, we tested for pairwise overlaps of reads on the forward and reverse

strand via bedtools intersect 2.27.1 (Quinlan and Hall, 2010), where the overlap was at least 25 nt, and the overhang on either side did

not exceed 100 nt. We quantified the count of dsRNA candidates falling on each annotated gene (normalized by their library size as

described in DESeq (Anders and Huber, 2010)). We further classified unique dsRNA candidates (characterized here by unique start

and end coordinates) by noting their length distribution as well as classifying the gene annotation of their loci.

DATA AND SOFTWARE AVAILABILITY

The RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI under accession number E-MTAB-6732. All in-

house scripts have been deposited in Github and can be downloaded: https://github.com/klmr/royal-jelly (https://doi.org/10.5281/

zenodo.1542860). Other Software used in this work are all publicly available, with the links to them in the above tables. The raw

imaging data, including images of gels and blots, have been deposited in Mendeley Data and can be accessed: https://doi.org/

10.17632/5w7rbd8452.1. All the rest of the data are available in the manuscript or the supplementary materials.
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SUPPLEMENTAL INFORMATION  

Fig. S1 (related to Fig. 1) | Royal jelly proteins bind polymeric nucleic acids 

(A) Assessment of Alexa Fluor-488 labeled dsRNA (dsRNA*) stability in hive conditions to control 

for contaminating leakage of dsRNA solution into the newly secreted RJ. 50%, 25% and 10% 

sucrose solutions (w/v) were exposed to living bees for 30 min. Next, the sucrose solutions were 

mixed with dsRNA* (50 ng/ul final concentration) and incubated within hives for 0, 24, 48, 72 and 

96 hours. dsRNA* integrity was analysed by gel electrophoresis of 10 µl samples. dsRNA* mixed 

in 10% sucrose solution could not be detected after 96 hours. Thus, dsRNA* was applied in 10% 

sucrose solution, and RJ was harvested 96 hours after the last dsRNA* application. (B) RT-PCR 

detection of dsRNA* in RJ samples harvested from control and dsRNA*-fed hives. (C) Worker jelly (WJ) 

proteins bind dsRNA. DsRNA-binding activity was tested by Electrophoretic Mobility Shift Assay (EMSA). 

Treatments included dsRNA mixed in RJ-buffer, 10% WJ mixed with dsRNA, 10% WJ was digested by PK 

and then mixed with dsRNA, 10% WJ was mixed with dsRNA and then digested by PK, 10% WJ was mixed 

with dsRNA and PK buffer, purified 27.3 µM BSA mixed with dsRNA, 10% WJ only, 10% WJ only 

digested by PK. 0.05 µM dsRNA was applied in all dsRNA-containing treatments. (D) The RJ dsRNA-

binding proteins are soluble. dsRNA-binding activity was tested by EMSA. Treatments included dsRNA 

mixed in RJ buffer, 10% raw RJ mixed with dsRNA, 10% soluble RJ fraction mixed with dsRNA. 0.05 µM 

dsRNA was applied in all treatments. (E) Free nucleotides do not interfere with dsRNA-binding activity of 

RJ proteins. DsRNA-binding was tested in the presence of increasing concentrations of the negatively 

charged deoxynucleotides or nicotinamide adenine dinucleotide (NAD). 0.05 µM dsRNA was applied in all 

treatments. (F) The effect of RJ dilution factor on dsRNA band shift profile. DsRNA binding-activity was 

tested by EMSA. Constant dsRNA concentration was introduced to different RJ concentrations. Treatments 

included dsRNA mixed in RJ-buffer only and different raw and soluble RJ dilutions mixed with dsRNA. 

0.05 µM dsRNA was applied in all treatments. (G) RJ proteins:dsRNA ratio affects dsRNA band shift 

profile. dsRNA-binding activity was tested by EMSA. Constant RJ concentration was introduced to 

increasing concentrations of dsRNA. Treatments included dsRNA mixed in RJ-buffer only and different 



dsRNA concentrations mixed with 2% raw RJ (upper gel). In the gel below, gel electrophoresis of soluble RJ 

that was extracted from each sample post dsRNA mixture.   

 

Fig. S2 (related to Fig. 2) | MRJP-3 forms an oligomeric structure 

(A) MRJP-3 binds similarly 50 nt ssRNA and dsRNA carrying the same sequence. 42.8 µM proteins and 

0.27 µM ssRNA or dsRNA were used in all RNA- and/or protein-containing treatments. (B) Purified 

MRJP-1 does not bind dsRNA as demonstrated by EMSA. dsRNA was incubated with decreasing 

concentrations of MRJP-3 and MRJP-1. Additional controls: MRJP-3 only, MRJP-1 only and dsRNA only. 

0.08 µM dsRNA was applied in all dsRNA-containing treatments. (C) Graphical representation of MRJP-1 

and MRJP-3. (D) Gel filtration analysis determines MRJP-3 molecular weight in RJ buffer. (E) Binding 

curve of Alexa Fluor-488 labeled MRJP-3 to MRJP-3 in RJ buffer. Calculated equilibrium disassociation 

constant (Kd) value is shown in dashed lines. (F) Evaluation of MRJP-3’s concentration in RJ by 

comparative band intensity. RJ-1 and RJ-2: Two RJ samples collected from different hives. Equal sample 

volumes were loaded in all wells. Red and green spots represent treatments with similar band intensity. (G) 

The tandem-repeats region of MRJP-3 is required for RNA-binding. ssRNA-binding activity was tested by 

EMSA. Treatments included ssRNA only, full-length recombinant MRJP-3 (rMRJP-3) mixed with ssRNA, 

recombinant MRJP-3 lacking the repeats region (rMRJP3Δrepeats) mixed with ssRNA, rMRJP-3 mixed with 

ssRNA followed by proteinase K (PK) digestion, rMRJP-3 only. 0.3 µM ssRNA and 13.65 µM proteins were 

applied in all ssRNA- and/or protein-containing treatments. 

 

Fig. S3 (related to Fig. 3) | RNA mediates super-order assembly of MRJP-3 oligomers into large RNPs, 

and isolation of royal jelly RNA partners of MRJP-3 

(A) Super resolution OMX imaging of RNPs formed by MRJP-3 interaction with Alexa Fluor-488 labeled 

ssRNA or dsRNA. 0.2 µM ssRNA* or 0.03 µM dsRNA* were introduced to 15 µM unlabeled MRJP-3. 

Scale bar represents 1 µm. (B) RNA mediates super-order assembly of MRJP-3 oligomers, resulting in large 

RNPs formation. 0.15 µM ssRNA or ssRNA* were introduced to 42.8 µM unlabeled or Alexa Fluor-633 

labeled MRJP-3 (MRJP-3 or MRJP-3* respectively). Scale bar represents 2 µm. (C) Bioanalyzer 



Electropherograms of MRJP-3 bound RJ RNA. Complexes of RNA and biotinylated MRJP-3 were pulled 

down with strepatividine coated magnetic beads. Treatments also included RNA pull-down with biotinylated 

BSA or with beads only. (D) VDV-1 coverage plot. The y-axis shows the per-base read coverage for each 

RNA-seq library across the genome of VDV-1 (green: MRJP-3 bound RNA; blue: total RJ RNA). Positive 

and negative coverage values represent viral RNA that corresponds to the plus (sense) or minus (antisense) 

VDV-1 genome, respectively. (E) MRJP-3 binds putative long tRNA-dsRNA fragments (≥25 bp).  

 

Fig. S4 (related to Fig. 4) | MRJP-3 bound dsRNA is protected from digestion of  RNaseA, but not 

RNaseIII 

(A) MRJP-3 bound dsRNA is protected from RNaseA digestion. Treatments included dsRNA mixed with 

MRJP-3, dsRNA mixed with MRJP-3 followed by incubation with RNaseA, dsRNA mixed with MRJP-1, 

dsRNA mixed with MRJP-1 followed by incubation with RNaseA, dsRNA mixed in RJ buffer and dsRNA 

mixed in RJ buffer followed by incubation with RNaseA. 0.04 µM  dsRNA and 42.8 µM MRJP-3 or MRJP-

1 were used in all dsRNA- and protein-containing treatments. RNase challenge was performed by 

introducing 0.2 ug RNaseA followed by 3 hours incubation at room temperature. (B) MRJP-3 bound dsRNA 

is digested by RNase-III. Treatments included dsRNA mixed with MRJP-3, dsRNA mixed with MRJP-3 

followed by incubation with RNase-III, dsRNA mixed with MRJP-1, dsRNA mixed with MRJP-1 followed 

by incubation with RNase-III, dsRNA mixed in RJ buffer and dsRNA mixed in RJ buffer followed by 

incubation with RNase-III. 0.04 µM dsRNA and 42.8 µM MRJP-3 or MRJP-1 were used in all dsRNA- and 

protein-containing treatments. RNase-III challenge was performed by introducing 2x10-2 units RNase-III 

followed by 3 hours incubation at room temperature. (C) MRJP-3 RNPs are susceptible to RNase-III. Three 

images of RNPs formed with dsRNA* with or without RNase-III. 0.04 µM dsRNA* and 42.8 µM MRJP-3 

were used in all dsRNA*- and protein-containing treatments. RNase challenge was performed by introducing 

2x10-2 units RNase-III followed by 3 hours incubation in room temperature. Scale bar represents 20 µm. (D) 

Labelled dsRNA stability in animals soaking assay conditions. Gel electrophoresis of animals soaking 

solution treated with PK. 
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