Supporting Information

The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec

Rajaiah Pergu^{1,2}, Sunayana Dagar^{1,3}, Harsh Kumar^{1,2}, Rajesh Kumar⁴, Jayanta Bhattacharya⁴ and Sivaram V.S. Mylavarapu^{1,2,3,#}

Supplementary figure S1

Supplementary figure S1. Western blot of clonally sorted stable cell lines showing expression levels of MSec-MTAP, probed using an antibody against the Flag tag in the MTAP tag. Clone 1 (lane 1) was used for the studies in this manuscript.

Supplementary figure S2. TNTs did not adhere to the substratum and "hung" between the connected cells. Confocal snapshots taken from live cells stably expressing either MSec-MTAP or

empty-MTAP as indicated (both green). TNTs are indicated by boxes. Scale bar = $20\mu m$. X-Z/Y-Z *visualization of confocal Z-stacks of TNTs that were counted in both cell lines.*

Supplementary figure S3

Supplementary figure S3. Functional and structural validation of TNTs. A) Transfer of HIV-1 from the infected (green) towards the uninfected cell through a representative TNT (box). Y-z projection (right middle) clearly showing the TNT "hanging" between the two cell bodies with the HIV-1 signal (green) inside. B) Confocal microscopy images of cells co-stained with AlexaFluorTM594 conjugated phalloidin (red, to visualize F-actin) and DAPI (blue, to visualize the nucleus) and cells stably expressing MSec-MTAP (green) after 24 hours of TNT inhibitor (TNTi) treatment. TNTs are indicated by arrows. C) Quantification of the number of TNTs per 100 cells from the confocal images. Data represent mean \pm SD based on three independent experiments, 100 cells counted per experiment. (Paired t test, two-tailed; *P<0.05;**P<0.01).

Supplementary figure S4. Identification and analysis of the MSec interactome. A) Schematic workflow for the identification of the MSec interactome. SBP affinity purification of MSec-MTAP and empty-MTAP. Mass spectra were evaluated using protein database search program (Mascot).
B) The empty-MTAP interactome from each experiment was subtracted from its cognate MSec-MTAP interactome to obtain the respective "unique" MSec-MTAP interactomes (E1U through E4U). C) The unique MSec interactomes were overlapped using the Venny 2.1 software. D) Analysis of protein-protein interaction networks from at least three experiments of MSec interactome by STRING database.

Supplementary figure S5

Supplementary figure S5. MSec is associated with the ER. Western blots of the whole cell lysate and rough endoplasmic reticulum fractions from various cell lines [HeLa cells, MDAMB231 cells and U2OS (MSec-MTAP) cells respectively] probed for the respective proteins as indicated. ER positive marker – Calnexin, ERp29, cytosolic marker - β -actin, Golgi complex marker - GM130, nuclear marker Histone-3 and cell membrane marker - EGFR.

Supplementary figure S6. Western blot analysis of ERp29 and MSec depletion using sequencespecific siRNA treatment in U2OS cells. A) U2OS cells were transfected with ERp29 and control (luciferase) sequence-specific siRNAs respectively for 48 hours and the efficiency of knock down analyzed by immunoblotting with anti-ERp29, anti-MSec and anti- β -actin (loading control) antibodies respectively. The fold change in expression of ERp29 or MSec protein normalized to

respective β -actin levels was quantified from three independent experiments. (Paired t test, twotailed, *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001).

Supplementary figure S7

Supplementary figure S7. ERp29 is required for TNT formation in HeLa cells. A) HeLa cells were transfected with ERp29 and control (luciferase) sequence-specific siRNAs respectively for 48 hours and the efficiency of knock down analyzed by immunoblotting with anti-ERp29 and anti- β -actin (loading control) antibodies respectively. The fold change in expression of ERp29 protein normalized to respective β -actin levels was quantified from three independent experiments. B) Confocal microscopy images of cells co-stained with AlexaFluorTM594 conjugated phalloidin (red, to visualize F-actin) and DAPI (blue, to visualize the nucleus) after 48 hours of the indicated siRNA transfection. Arrows indicate TNTs connecting neighboring cells. Scale bar, 20 μ m. C) Quantification of the number of TNTs per 100 cells from the confocal images in both normal (10% serum) and stress (2.5% serum) conditions respectively. Data (A and C) represent mean \pm SD based on three independent experiments, 100 cells counted per experiment. (Paired t test, two-tailed, *P<0.05; **P<0.01).

Supplementary fig S8

Supplementary figure S8. Analysis of TNT length, lifetime and rate of elongation. EMTAP U2OS cells were imaged live by confocal, time-lapse microscopy. A) Measurement of the maximal length acquired by TNTs. B) Measurement of the total lifetime of TNTs (from initiation to breakage/ cell collapse). C) Measurement of the rates of TNT elongation (from initiation to reaching maximal length). A total of 65 TNTs was counted for control and ERp29 depletion across 3 independent experiments. Data represents mean \pm SEM based on three independent experiments, 65 TNTs counted in total for each condition. (Paired t test, two-tailed, ****P<0.0001).

Supplementary figure S9

Supplementary figure S9. ERp29 did not stabilize Exocyst complex and RalA. A) siRNA-mediated depletion of ERp29 in U2OS cells using sequence-specific siRNAs. Control = anti-luciferase siRNA. Efficiency of knock down was analyzed by immunoblotting with anti-Sec8, anti-Sec6, anti-Sec5, anti-RalA, anti-MSec, anti-ERp29 and anti- β -actin (loading control) antibodies respectively. **B**) Fold change in protein expression was quantified through densitometry from the immunoblots of three independent experiments.

Supplementary figure S10. Limited proteolysis with proteinase-K (protease protection assay) reveals that stably expressed MSec (HA-MSec and MSec-MTAP) is associated with the ER towards its cytosolic site. Markers used – Calnexin (ER lumen) and Sec61 β -cytosolic side (ER surface).

Supplementary Movies 1 and 2. Time lapse confocal images showing the transport of mitochondria (red, stained with Mitotracker red) from one cell to another through TNTs (green).

Supplementary tables

Supplementary table S1. Mouse MSec cDNA cloned into (pcDNA4-TO-Hygromycin-mVenus-MAP; Addgene #44099) in between HindIII and BamH1 sites.

AAGCTTCCATGTCTGAGGCGTCCTCTGAGGACCTGATGCCATCCCCGGAGGCTCCCGATGGGGAGGAGGA GTCTGCGAAGAAGAAGGAGAAGAAGTCCAAAGGACTGGCCAACATGTTCAGTGTCTTCACCAAAGGGAAA AAGAAAAAAAGGACCAGCCCAGATTATCAGATCTGGAAGTGCAGCCCAAGCCCAGGCCCGAGTTAGATG GTCCACTGCCCACAGTGGAGGAGCTCAAGGAGGCCCTGGAGCACGGGCGGCTGGAGGTGGCCTGGCAGGT GCTGGCGTTGGAGAGGCAGCTCGAGGCTGCGGCAGCGGCGGGTGGCATGAGCAACGAGGAGCTGGTGTGG CGGCAGAGCAAGGTGGAGGCTCTGTACGTGCTGCTGCTGCGACCAGGTGCTCGGGGTACTGCGGCGGCCGC TGGAGGCGGCCCCGAGCGGCTGAGCCAGGCGCTAGCCGTGGTGTCGCAGGAGGAGCTCGAGGACCGGCG GGCGTCCGGGGGGACCCTTGGCGGCGGCGCCTGGAGGCCACGCGCCGCGGCGATGGCTGCAGCGGTGGAGG AGGCGGAGAGCAGGTTCCTGCACATGGGTCGCACCATGAAGGAGGACCTGGAGGTGGTGGTGGAGAGGCT GAAGCCGCTGTTCCCCGACGAGTTCAACGTCGTGCGCACCTACGCCGAAAGCTACCACTACCACTTCGCC AGCCACCTGTGCGCCTTGGCGCAGTTCGAGTTGTGTGAAAGGGATACCTACTTGCTGCTGCTCTGGGTGC AGAACCTCTACCCCAATGATATTCTCAACAGCCCGAAGTTGGCACAGGAGCTTCAAGGTGTCGGGCTTGG GAGCCTCCTGCCCCCAAAGCAGATCAGATTGCTGGAGGCCATGTTCTTGTCCAATGAGGTGACCAGCGTG AAGCAGCTCATGGCCCGAGCTTTAGAGCTGGAGTCTCAGCGCTGGACCCAGGATGTGGCTCCCCAGAGCC TGGATGGCCACTGTCACAGTGAGCTGGCCATCGACATTCTCCAGATCATTTCACAAGGCCAGACTAAGGC AGGAGCTACCAGCGCGCCTTTGATGAGTTTCTAGAGAAGAGCAAACTCCTGAGGAATTACAGAGTCAACA TCATGGCCAACATCAACAACTGCCTGTTCTTCTGGACTTCCGTGGAGCAGAAATGGCAGATATCTCATGA TTCTCTGAACCGCCTGCTGGAGCCTTTGAAAGACCTCAAGGCCCATGGCTTCGACACCCTGCTCCAGAGC CTATTTTTGGACCTGAAGCCGCTGTTTAAGAAGTTCACACAGACCCGTTGGGCAAATCCAGTTGAGACCC TGGAGGAAATCATCACTACTGTGAGCAGCAGCCTGCCTGAATTCTCAGAGCTGCAGGACTGTTTCCGGGA GGAGCTCATGGAGACTGTGCACCTGCACCTAGTGAAAGAATACATCATCAGGCTCTGCAAACGGCGCCTG GTCCTCAAGACGGCCGAGCAGCAGCAGCAGCTGGCAAGGCACATCCTGGCCAACGCGGATGCCATTCAGG TCGCCTGCAAGATTCCAGTGCCATTAAGATCGAGGTGGCCACATACGCCACTTGGTACCCTGACTTCAGC AAAGGCCACCTGAACGCCATCCTGGCCATCAAGGGCAATCTACCAAGCAGTGAAGTCAGGAGCATCCGGA ACATACTGGACATCAACACGGGAGTGCAGGAGCCTCCCAGGCCCCTGTTCTCCCCTTATAAAGGTTACTGG agcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgatgccacctacggcaagctgaccctgaagctgatctg caccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgggctacggcctgcagtgcttc gcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccagg agcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacac cctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctg gagtacaactacaacagccacaacgtctatatcaccgccgacaagcagaagaacggcatcaaggccaact tcaagatccgccacaacatcgaggacggcagcctcgagtccgctcatcaccatcaccatcaccagg gagcagctgcgggccaggctggagcaccaccctcaggggccagcgggagccctccggcggcggtagcgctg actacaaagacgatgacgacaagggcagcgctagcagcggcggcggcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccaag ctgagcaaagaccccaacgagaagcgcgatcacatggtcctgaaggagcgcgtgaccgccgcgggatca ctctcqqcatqqacqaqctqtacaaqtaaTCTAGA

Supplementary table S2. MSec interactome appearing in at least three experiments.

S.No	Protein Name	Accessio	Database from	# of distinct peptides % cov		coverag	verage of each				
		n #	which it is	assigned for each protein			protein assigned				
			derived								
		55560	~ ·	E1	E2	E3	E4	E1	E2	E3	E4
1	Endoplasmic	ERP29_	SwissProt	9	4	5	11	22	18	19	19
	reticulum resident	HUMAN	57.15	(4)	(1)	(2)	(2)				
2	protein 29	A DEX1	Coordina Dava 4	4	5	4		11	16	16	
2	DNA-(apurinic or	APEXI	SWISSPIOL	4	$\frac{3}{2}$	$\frac{4}{2}$	-	11	16	16	-
	apyrimidinic site)	HUMAN	57.15	(1)	(2)	(2)					
3	Iyase Deroviredovin 6	PRDY6	SwissProt	2	2	6		16	6	15	
5	reloxileuoxiii-o	HUMAN	57 15	$\begin{pmatrix} 2\\ (1) \end{pmatrix}$	(2)	(5)	-	10	0	15	-
1	Paraspeckle	PSPC1	SwissProt	(1)	(2)	(3)		11	4	5	
4	component 1	HIMAN	57 15	5(1)	$(1)^{2}$	(1)	-	11	-	5	-
5	Adenosyl	SAHH	SwissProt	1	5	(1)	8	1	8		13
5	homocysteinase	HUMAN	57 15	(2)	(3)	-	(3)	4	0	-	15
6	Radixin	RADI	SwissProt	6	9	_	5	12	11	<u> </u>	5
0	Radixiii	HUMAN	57 15	(3)	(2)	-	(3)	12	11	-	5
7	Nucleosome	NP1L4	SwissProt	3	4	_	3	8	11	_	8
'	assembly protein 1-	HUMAN	57 15	(1)	(1)		(1)	0	11		0
	like 4	monum	07.10	(1)	(1)		(1)				
8	Tubulin alpha-1B	TBA1B	SwissProt	-	24	35	61	-	34	47	47
U	chain	HUMAN	57.15		(19)	(23)	(43)		5.	.,	.,
9	Pyruvate kinase	KPYR	SwissProt	-	5	5	4	_	3	3	4
-	isozymes R/L	HUMAN	57.15		(3)	(1)	(2)		-	-	
10	Splicing factor,	SFR2B	SwissProt	-	2	1	6	-	8	2	8
	arginine/serine- rich	HUMAN	57.15		(1)	(1)	(2)				
	2B										
11	Peroxiredoxin-5,	PRDX5_	SwissProt	-	3	4	3	-	26	24	8
	mitochondrial	HUMAN	57.15		(1)	(2)	(1)				
12	Proteasome subunit	PSB6_	SwissProt	-	1	1	2	-	4	4	4
	beta type-6	HUMAN	57.15		(1)	(1)	(2)				
13	Programmed cell	PDCD5_	SwissProt	-	3	4	3	-	17	28	17
	death protein 5	HUMAN	57.15		(2)	(2)	(1)				
14	Fatty acid-binding	FABP5_	SwissProt	-	2	3	3	-	6	17	14
	protein, epidermal	HUMAN	57.15		(1)	(1)	(1)				
15	Bifunctional purine	PUR9_	SwissProt	-	3	3	2	-	7	9	2
	biosynthesis protein	HUMAN	57.15		(1)	(1)	(1)				
1.6	PURH		G i D i			-			0	1.4	10
16	Acyl carrier protein,	ACPM_	SwissProt	-	2	3	4	-	8	14	13
17	mitochondrial	HUMAN	57.15 ConicePret		(1)	(2)	(1)		4	4	12
1/	Melanoma-associated	MAGB3	SwissProt	-	2	3		-	4	4	13
	antigen B3		57.15		(1)	(0)	(3)				
10	Nucleoside		SwiggDrot		2	2	12		17	21	16
10	dinhosnhate kinase A	HIMAN	57 15	-	$(1)^{2}$	(1)	(6)	-	1/	∠1	40
19	Protein disulfide	PDIAA	SwiseProt	_	3	4	1	-	3	5	1
17	isomerase A4	HUMAN	57 15	_	(M)	(2)	(0)	-	5	5	1
20	Thioredoxin	THIO	SwissProt	-	1	4	5		12	10	31
		HUMĀN	57.15		(1)	(1)	(1)		14	10	51

Note: Numbers in parantheses refer to the number of distinct peptides with significant matches. *Supplementary table S3. PANTHER Gene Ontology (GO) terms assigned to the MSec interactome.*

GO terms	GO ID	Number of hits				
PANTHER GO-Slim molecular function (Total # genes: 19; Total # function hits: 17)						
Binding	(GO:0005488)	TBA1B, NP1L4, ACPM, PRDX6, PSPC1				
Structural molecular activity	(GO:0005198)	TBAIB, RADI				
Molecular function regular	(GO:0098772)	NP1L4				
		PRDX5, PDIA4, PRDX6, KPYR, NDKA, PUR9,				
Catalytic activity	(GO:0003824)	PSB6, APEX1, SAHH				
PANTHER GO-Slim Biological pr	cocess (Total # gen	es: 19; Total # process hits: 22)				
reproduction	(GO:000003)	MAGB3				
response to stimulus	(GO:0050896)	PRDX5, PRDX6, PDIA4, KPYR				
developmental process	(GO:0032502)	RADI				
cellular process	(GO:0009987)	NP1L4, PDIA4, RADI, MAGB3				
		PRDX5,PRDX6, NP1L4, ACPM, KPYR,				
metabolic process	(GO:0008152)	NDKA, PUR9, PSB6, APEX1,				
biological regulation	(GO:0065007)	PRDX1,				
Biogenesis	(GO:0071840)	TBA1B,NP1L4				
PANTHER GO-Slim Cellular com	ponent (Total # ge	nes: 19; Total # component hits: 18)				
supramolecular complex	(GO:0099080)	TBA1B				
protein-containing complex	(GO:0032991)	PSB6				
organelle	(GO:0043226)	ERP29, PDIA4, PSPC1, PDCD5, PSB6				
		PRDX5, PRDX6, PDIA4, TBA1B, KPYR,				
cell	(GO:0005623)	ERP29, PDCD5, RADI, PSB6, SAHH, ACPM				
PANTHER Protein class (Total # g	genes: 19; Total # p	protein class hits: 13)				
membrane traffic protein	(PC00150)	ERP29				
hydrolase	(PC00121)	PUR9, PSB6, SAHH				
oxidoreductase	(PC00176)	PRDX6				
cell adhesion molecule	(PC00069)	MAGB3				
enzyme modulator	(PC00095)	NP1L4, PDCD5				
transfer/carrier protein	(PC00219)	ACPM				
transferase	(PC00220)	PUR9				
nucleic acid binding	(PC00171)	PSPC1				
cytoskeletal protein	(PC00085)	TBA1B, RADI				
PANTHER pathway (Total # genes: 19; Total # pathway hits: 10)						
Pyruvate metabolism	(P02772)	KPYR				
Gonadotropin-releasing hormone						
receptor pathway	(P06664)	TBA1B				
De novo pyrimidine						
deoxyribonucleotide biosynthesis	(P02739)	NDKA				
De novo purine biosynthesis	(P02738)	NDKA, PUR9				
De novo pyrimidine						
ribonucleotides biosythesis	(P02740)	NDKA				
Hypoxia response via HIF						
activation	(P00030)	THIO				
Glycolysis	(P00024)	KPYR				
Parkinson disease	(P00049)	PSB6				
Oxidative stress response	(P00046)	THIO				

Supplementary table S4. Analysis summary of MSec interactome appearing in at least three experiments (analyzed by PANTHER)

Analysis type	PANTHER Overrepresentation Test (Released 20181113)								
Annotation Version and	Reactom	e vers	ion 65 Released 2018-06-12						
Release Date									
Analyzed list	Client Text Box Input (Homo sapiens)								
Reference list	Homo sapiens (all genes in database)								
Test type	Binomial								
Correction	Used the Bonferroni correction for multiple testing								
Results	Results Displayed only results for Bonferroni-corrected for $P < 0.05$								
Reference list Client text box input									
Mapped IDs			20996 0	out of 20)996		19 out of 1	9	
Unmapped IDs			0				1		
Multiple mapping information	n		0				0		
Annotation Data Se	et	Но	mo sapiens (REF)		Client text box input				
			#	#	Expe	cted	Fold enrichment	P value	
PANTHER pathways (Bonfe	rroni count	: 152)						
1) De novo purine biosynth	esis		29	2	0.0	13	76.21	4.88E-02	
2) Unclassified			18402	13	16.	65	0.78	0.00E+00	
PANTHER GO-Slim molecu	lar function	n (Bo	nferroni coun	t: 462)					
1) Unclassified			11259	5	10.	19	0.49	0.00E+00	
PANTHER GO-Slim biologic	cal process	(Bon	ferroni count:	: 1467)					
1) Unclassified			10756	6	9.7	'3	0.62	0.00E+00	
PANTHER GO-Slim cellular	componen	ıt (Bo	nferroni coun	t: 383)					
1) Unclassified			11922	7	10.1	79	0.65	0.00E+00	
PANTHER Protein class (Bo	nferroni co	unt: 2	203)						
1) Unclassified			12726	7	11.:	52	0.61	0.00E+00	
GO molecular function complete (Bonferroni count: 2783)									
1) Unclassified			3290	1	2.9	8	0.34	0.00E+00	
GO biological process complete (Bonferroni count: 8749)									
1) Cell redox homeostasis			77	5	0.0)7	71.76	6.47E-05	
2) Unclassified			3224	1	2.9	2	0.34	0.00E+00	
GO cellular component comp	olete (Bonfe	erroni	count: 1423)						
1) Extracellular exosome			2096	11	1.9	9	5.8	4.91E-04	
2) Extracellular vesicle			2117	11	1.92		5.74	5.43E-04	
3) Vesicle			3812	13	3.45		3.77	2.98E-03	
4) Extracellular organelle		2119	11	1.92		5.74	5.49E-04		
5) Extracellular region part			3529	12	3.19		3.76	1.12E-02	
6) Extracellular space			3335	12	3.0	3.02		6.12E-03	
7) Unclassified			2169	1	1.9	6	0.51	0.00E+00	
Reactome pathways (Bonferroni count: 1974)									
1) Unclassified		10452	8	9.4	-6	0.85	0.00E+00		

Supplementary table S4 (continued). Analysis summary of MSec interactome appearing in at least three experiments (analyzed by PANTHER)

Annotation Data Set	Client text box input

PANTHER pathways (Bonferroni count: 152)					
1) De novo purine biosynthesis	2	NDKA, PUR9			
2) Unclassified	13	PRDX5, PRDX6, NP1L4, ACPM, PDIA4, ERP29, MAGB3,			
		PSPC1, PDCD5, RADI,FABP5, APEX1, SAHH			
PANTHER GO-Slim molecular func	tion (Be	onferroni count: 462)			
1) Unclassified	5	ERP29, MAGB3, PDCD5, FABP5, THIO			
PANTHER GO-Slim biological process (Bonferroni count: 1467)					
1) Unclassified 6 ERP29, PSPC1, PDCD5, FABP5, SAHH, THIO					
PANTHER GO-Slim cellular component (Bonferroni count: 383)					
1) Unclassified	7	THIO, NP1L4, NDKA, MAGB3, PUR9, FABP5, APEX1			
PANTHER Protein class (Bonferroni	count:	203)			
1) Unclassified	7	PRDX5, THIO, PDIA4, KPYR, NDKA, FABP5, APEX1			
GO molecular function complete (Bo	nferron	ii count: 2783)			
1) Unclassified	1	MAGB3			
GO biological process complete (Bor	nferroni	count: 8749)			
1) Cell redox homeostasis	5	PRDX5, PRDX6, THIO, PDIA4, APEX1			
2) Unclassified	1	MAGB3			
GO cellular component complete (Bonferroni count: 1423)					
1) Extracellular exosome	11	PRDX5, PRDX6, THIO, KPYR, NDKA, PUR9, PDCD5, RADI,			
		FABP5, PSB6, SAHH			
2) Extracellular vesicle	11	PRDX5, PRDX6, THIO, KPYR, NDKA, PUR9, PDCD5, RADI,			
		FABP5, PSB6, SAHH			
3) Vesicle	13	ERP29, PDIA4, PRDX5, PRDX6, THIO, KPYR, NDKA, PUR9,			
		PDCD5, RADI, FABP5, PSB6, SAHH			
4) Extracellular organelle	11	PRDX5, PRDX6, THIO, KPYR, NDKA, PUR9, PDCD5, RADI,			
		FABP5, PSB6, SAHH			
5) Extracellular region part	12	PDIA4, PRDX5, PRDX6, THIO, KPYR, NDKA, PUR9, PDCD5,			
		RADI, FABP5, PSB6, SAHH			
6) Extracellular space	12	PDIA4, PRDX5, PRDX6, THIO, KPYR, NDKA, PUR9, PDCD5,			
		RADI, FABP5, PSB6, SAHH			
7) Unclassified	1	MAGB3			
Reactome pathways (Bonferroni count: 1974)					
1) Unclassified	8	PRDX5, NP1L4, PDIA4, KPYR, ERP29, MAGB3, PSPC1,			
		PDCD5			

Supplementary table S5. Primers used for RT-qPCR and site directed mutagenesis.

Name	Primer sequence (5'-3')
MSec	Sense: TCAAGAGGTTCACGCACA

	Antisense: CCCTTGCTGAGTTGGATG
ERp29	Sense: CTTTGAGAACCCAGTCCC
	Antisense: GTTATCTTGCCCCTGCTT
18S	Sense: GAGGGACAAGTGGCGTTCA
	Antisense: CCGGACATCTAAGGGCATCA
(D61A)	Sense: AGTTCGTCTTGGTGAAGTTCGCCACCCAGTACCCCTACGGTGA
	Antisense: TCACCGTAGGGGTACTGGGTGGCGAACTTCACCAAGACGAACT
(Y64S)	Sense: TGGTGAAGTTCGACACCCAGTCCCCCTACGGTGAGAAGCAGGA
	Antisense: TCCTGCTTCTCACCGTAGGGGGGACTGGGTGTCGAACTTCACCA
(Y66K)	Sense: AGTTCGACACCCAGTACCCCAAGGGTGAGAAGCAGGATGAGTT
	Antisense: AACTCATCCTGCTTCTCACCCTTGGGGTACTGGGTGTCGAACT
(Y96Q)	Sense: CAGAGGTGGGGATCTCAGATCAAGGTGACAAGCTGAACATGGA
	Antisense: TCCATGTTCAGCTTGTCACCTTGATCTGAGATCCCCACCTCTG
(P116D)	Sense: AGCTGGACAAAGAGAGCTACGACGTCTTCTACCTCTTCCGGGA
	Antisense: TCCCGGAAGAGGTAGAAGACGTCGTAGCTCTCTTTGTCCAGCT
(C157S)	Sense: TCTACCTAGGTATGCCTGGTAGCCTGCCTGTATACGACGCCCT
	Antisense: AGGGCGTCGTATACAGGCAGGCTACCAGGCATACCTAGGTAGA