Supplemental Materials

Figure S1: Growth phenotypes of relevant strains on MacConkey media containing maltodextrins. The indicated strains were streaked for single colonies on MacConkey indicator media supplemented with maltodextrins and incubated at 30°C or 37°C. Strains that do not contain plasmid-encoded *lamB* carry an empty vector control.

Genotype	MacConkey maltodextrin phenotype (30°C)	MacConkey maltodextrin phenotype (37°C)	Minimal maltodextrin phenotype (30°C, 37°C)
MC4100 wild-type	Red	Red	+
$\Delta lamB$	White	White	-
$\Delta lamB$ plam B^+	Red	Red	+
$\Delta lamB \ plamB_{G439D}$	Red	Red	+
$\Delta lam B \Delta deg P$	White	White	-
$\Delta lam B \Delta deg P p lam B^+$	Red	Red	+
$\Delta lam B \Delta deg P$ plam B _{G439D}	Red	Dead	+

Table S1:	Summary	of relevant	phenotypes
-----------	----------------	-------------	------------

Figure S2: Deletion of *rseA* prevents growth on MacConkey maltodextrins. The indicated

strains were streaked to single colonies on MacConkey media containing maltodextrins

at 37°C. Strains that do not carry a plasmid-encoded *lamB* carry an empty vector control.

Figure S3: Growth phenotype of *degS*_{A323E}. Growth of wild-type and *degS*_{A323E} cells were monitored by OD600 at 30°C and 37°C for 16 hours. The OD600 was plotted over time and represents the average of three biological replicates +/- the standard error of the mean (SEM).

Figure S4: Deletion of *yhcG* in *bamB*, *bamE*, and $\Delta bamB\Delta bamE$ null backgrounds does not alter growth phenotypes. The indicated strains were serially diluted and spotted onto minimal glucose and LB media at the indicated temperatures.

<i>E. coli</i> K-12 strains	Genotype and relevant features	Reference
MC4100	F-araD139 (argF-lac)U169 rpsL150 relA1 flb5301 deoC1	(1)
	ptsF25 thi	
JCM158	MC4100 ara ^{r/-}	(2)
NR669	$\lambda_{\text{att}} rpoHP3-lacZ$	(3)
MG2930	$\Delta lamB$	This study
MG2967	Δ <i>lamB</i> pZS21cam:: <i>lamB</i>	This study
MG2968	$\Delta lamB$ pZS21cam:: $lamB_{G439A}$	This study
MG2969	$\Delta lamB$ pZS21cam:: $lamB_{G439D}$	This study
KT26	$\Delta lamB \Delta degP degS_{A323E} pZS21cam::lamB_{G439D}$	This study
BH17	$\Delta lptD$ pET23-42:: $lptD_{Y721D}$	This study

Table S2: Strains, Plasmids, and Oligonucleotides

BH26	$\Delta lptD$ pET23-42:: $lptD$	This study
BH92	<i>bamB::</i> Tn5KAN-I-SceI (<i>bamB</i> ::kan)	(4)
BH273	$\Delta lamB \Delta degP$	This study
BH290	$\Delta lamB \Delta degP$ pZS21cam:: <i>lamB</i>	This study
BH291	$\Delta lamB \Delta degP$ pZS21cam:: $lamB_{G439D}$	This study
BH1016	MC4100 λ_{att} <i>rpoH-P3-lacZ</i>	This study
BH1017	$\Delta surA \lambda_{att} rpoH-P3-lacZ$	This study
BH1022	$\Delta lamB \Delta degP rseA::kan pZS21cam::lamB$	This study
BH1023	$\Delta lamB \Delta degP rseA::$ kan pZS21cam:: $lamB_{G439D}$	This study
BH1113	MC4100 pZS21cam (empty)	This study
BH1162	$\Delta rseA \lambda_{att} rpoH-P3-lacZ$	This study
BH1190	MC4100 <i>yhcG</i> ::kan	This study
BH1321	<i>degP</i> ::kan <i>yadC</i> ::Tn10	This study
BH1326	MC4100 <i>yhcG</i> ::kan λ_{att} <i>rpoH-P3-lacZ</i>	This study
BH1327	$\Delta surA yhcG::kan \lambda_{att} rpoH-P3-lacZ$	This study
BH1346	$\Delta lamB \Delta degP yhcG::$ kan pZS21cam:: $lamB$	This study
BH1347a	$\Delta lamB \Delta degP yhcG::$ kan pZS21cam:: $lamB_{G439D}$	This study
BH1347b	$\Delta lamB \Delta degP degS_{A323E} yhcG::kan pZS21cam::lamB_{G439D}$	This study
BH1350	MC4100 $degS_{A323E} yhcG$::kan	This study
BH1363	$\Delta bamE \ degS_{A323E} \ yhcG::kan$	This study
BH1366	MC4100 $\Delta yhcG$	This study
BH1367	MC4100 $degS_{A323E} \Delta yhcG$	This study
BH1368	$\Delta bamE \ degS_{A323E} \ \Delta yhcG$	This study

BH1372	$\Delta lptD$ yhcG::kan pET23/42::lptD	This study
BH1373	$\Delta lptD \ degS_{A323E} \ yhcG::kan pET23/42::lptD$	This study
BH1374	$\Delta lptD$ yhcG::kan pET23/42:: $lptD_{Y721D}$	This study
BH1375	$\Delta lptD \ degS_{A323E} \ yhcG::kan pET23/42::lptD_{Y721D}$	This study
BH1378	$\Delta bamE \Delta yhcG$	This study
BH1380	MC4100 $degS_{A323E}$ yhcG::kan λ_{att} rpoH-P3-lacZ	This study
BH1381	$\Delta surA \ degS_{A323E} \ yhcG::kan \lambda_{att} \ rpoH-P3-lacZ$	This study
BH1387	$\Delta rseA$ yhcG::kan λ_{att} rpoH-P3-lacZ	This study
BH1388	$\Delta rseA \ degS_{A323E} \ yhcG::kan \lambda_{att} \ rpoH-P3-lacZ$	This study
BH1392	<i>bamB</i> ::kan Δ <i>yhcG</i>	This study
BH1393	$degS_{A323E} \Delta yhcG \ bamB::kan$	This study
BH1394	$\Delta bamE \ bamB$::kan $\Delta yhcG$	This study
BH1395	$\Delta bamE \ degS_{A323E} \ \Delta yhcG \ bamB::kan$	This study
BH1455a	MC4100 yadC::Tn10	This study
BH1456a	Δ <i>lamB yadC</i> ::Tn10	This study
BH1457a	Δ <i>lamB yadC</i> ::Tn10 pZS21cam:: <i>lamB</i>	This study
BH1458a	$\Delta lamB \ yadC$::Tn10 pZS21cam:: $lamB_{G439D}$	This study
BH1459a	MC4100 <i>degP</i> _{S210A} <i>yadC</i> ::Tn10	(5)
BH1460a	$\Delta lamB \ degP_{S210A} \ yadC::Tn10$	This study
BH1460b	$\Delta lamB$ pZS21cam (empty)	This study
BH1461a	Δ <i>lamB degP</i> _{S210A} yadC::Tn10 pZS21cam:: <i>lamB</i>	This study
BH1461b	$\Delta lamB \Delta degP$ pZS21cam (empty)	This study
BH1462a	$\Delta lamB \ degP_{S210A} \ yadC::Tn10 \ pZS21cam::lamB_{G439D}$	This study

BH1462b	MC4100 <i>rseA</i> ::kan pZS21cam (empty)	This study
BH1463b	$\Delta lamB \Delta degP rseA::$ kan pZS21cam (empty)	This study
BH1464	MC4100 <i>yhcG</i> ::kan pZS21cam (empty)	This study
BH1467	MC4100 <i>degS</i> _{A323E} <i>yhcG</i> ::kan pZS21cam (empty)	This study
BH1466	$\Delta lamB \Delta degP yhcG::$ kan pZS21cam (empty)	This study
BH1469	$\Delta lamB \Delta degP degS_{A323E} yhcG::kan pZS21cam (empty)$	This study
BH1470	$\Delta lamB \Delta degP degS_{A323E} yhcG::kan pZS21cam::lamB$	This study
Plasmids	Description	Reference
pZS21	Low-copy expression vector, P _{LtetO-1} -driven vector	(6)
pET23/42	pET23a(+) with multiple cloning site of pET42a(+), P _{T7} -	(7)
	dependent expression vector	
pBAD33	Cam ^R cloning vector	(8)
pZS21::lamB	<i>lamB</i> cloned into pZS21 vector backbone	This study
plamB	pZS21(cam ^R):: <i>lamB</i> , pZS21:: <i>lamB</i> made to be Cam ^R	This study
plamB _{G439A}	$pZS21(cam^R)::lamB_{G439A}$	This study
plamB _{G439D}	$pZS21(cam^R)::lamB_{G439D}$	This study
p <i>lptD</i>	pET23/42:: <i>lptD</i>	(9)
plptD _{Y721D}	pET23/42:: <i>lptD</i> _{Y721D}	(10)
pCH13	pET24b-ns-lamB-His (V26-W446)	This study
pCH86	pET22b-bamD-His6 (S21-T245)	(11)
pJW384	pET24b-lamB-His (G439A)	This study
pJW387	pET24b-lamB-His (G439D)	This study
pCH167	pET22b-FLAG-bamA 4 th quarter β-barrel (S715-W810)	(12)
pJW392	pET24b-nsFLAG-lamB-His	This study

pJW397	pET24b-nsFLAG-lamB	This study
pJW410	pET24b-ns-lamB (353-446)	This study
pJW411	pET24b-ns-lamB (353-446) (G439A)	This study
pJW412	pET24b-ns-lamB (353-446) (G439D)	This study
pJW413	pET24b-ns-lamB (26-121)	This study
Oligonucleotides	Sequence (5' to 3')	Description
pZS21CamR Gibson F	CGTTCTGAACAAATCCAGATGGAGTTCTGAGGTC AAATTTGCTTTCGAATTTCTGC	Amplifies Cam ^R cassette from pBAD33
pZS21 CamR Gibson R	AGGTTAATGTCATGATAATAATGGTTTCTTAGGG GGAATAAATACCTGTGACGGAAG	Amplifies Cam ^R cassette from pBAD33
pZS21 backbone F	CCCCTAAGAAACCATTATTATC	Amplifies pZS21 backbone
pZS21 backbone R	TGACCTCAGAACTCCATCTG	Amplifies pZS21 backbone
lamB_G439A_F	GCAGCCCAGATGGAAATCTGGTG	Site directed mutagenesis of p <i>lamB</i>
lamB_G439D_F	GATGCCCAGATGGAAATCTGGTG	Site directed mutagenesis of plamB
lamB_G439_R	GAAGGTCCACTCGTCGCTGT	Site directed mutagenesis of plamB
BH84-lamB-Fwd	GTCGACTGCATAAGGAGCCG	Amplify chromosomal <i>lamB</i>
BH85-lamB-Rev	ATTTGACAGCCGTTGTAGGCC	Amplify chromosomal <i>lamB</i>
BH241-degP-Fwd	GTTCGGAACTTCAGGCTATA	Amplify chromosomal <i>degP</i>
BH242-degP-Rev	TTGTGGTGAAGTTCACAGAT	Amplify chromosomal <i>degP</i>
LamB-His (G439A)	CGTGGCGACAGCGACGAGTGGACCTTCGCTGCC CAGATGGAAATCTGGTGG	
LamB-His (G439A)-rc	CCACCAGATTTCCATCTGGGCAGCGAAGGTCCA CTCGTCGCTGTCGCCACG	
LamB-His (G439D)	CGTGGCGACAGCGACGAGTGGACCTTCGATGCC CAGATGGAAATCTGGTGG	

LamB-His (G439D)-rc	CCACCAGATTTCCATCTGGGCATCGAAGGTCCA	
	CTCGTCGCTGTCGCCACG	
FLAG-nsLamB-His	GTTTACTTTAAGAAGGAGATATACATATGGAC	
	TACAAAGACGATGACGACAAGGCTAGC	
FLAG-nsLamB-His-rc	CGTGCATAGCCGTGGAAATCAACGCTAGCCTT	
	GTCGTCATCGTCTTTGTAGTCCATATG	
nsFLAG-LamB	CTTCGGTGCCCAGATGGAAATCTGGTGGTGAGAT	
	CCGGCTGCTACAAGCCCG	
FLAG-bamA∆422-	CGGGCTTGTAGCAGCCGGATCTCACCACCAGAT	
616-rc	TTCCATCTGGGCACCGAAG	
nsLamB(353-446)	GTTTACTTTAAGAAGGAGATATACATATGTAC	
	GACAACGTCGAATCCCAGCGCACCGGC	
nsLamB(353-446)-rc	GCCGGTGCGCTGGGATTCGACGTTGTCGTACATA	
	TGTATATCTCCTTCTTAAAGTAAAC	
nsLamB(26-121)	GGTAAAAACCTGATCGAATGGCTGCCATGAGAT	
	CCGGCTGCTACAAGCCCGAAAGAAGC	
nsLamB(26-121)-rc	GCTTCTTTCGGGCTTGTAGCAGCCGGATCTCA	
	TGGCAGCCATTCGATCAGGTTTTTACC	

References

- Boyd D, Weiss DS, Chen JC, Beckwith J. 2000. Towards Single-Copy Gene Expression Systems Making Gene Cloning Physiologically Relevant: Lambda InCh, a Simple *Escherichia coli* Plasmid-Chromosome Shuttle System. Journal of Bacteriology 182:842– 847.
- Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ. 2006.
 YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in *Escherichia coli*. Mol Microbiol 61:151–164.
- 3. **Button JE**, **Silhavy TJ**, **Ruiz N**. 2007. A suppressor of cell death caused by the loss of σ^{E} downregulates extracytoplasmic stress responses and outer membrane vesicle production in *Escherichia coli*. Journal of Bacteriology **189**:1523–1530.

- Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR. 2004. Systematic Mutagenesis of the *Escherichia coli* Genome. Journal of Bacteriology 186:4921–4930.
- Speiss C, Beil A, Ehrmann M. 1999. A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein. Cell 97:1339–3479.
- Lutz R, Bujard H. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I₁-I₂ regulatory elements. Nucleic Acids Research 25:1203–1210.
- Wu T, McCandlish AC, Gronenberg LS, Chng S-S, Silhavy TJ, Kahne D. 2006. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of *Escherichia coli*. Proc Natl Acad Sci USA 103:11754–11759.
- Guzman L-M, Belin D, Carson MJ, Beckwith J. 1995. Tight Regulation, Modulation, and High-Level Expression by Vectors Containing the Arabinose P_{BAD} Promoter. Journal of Bacteriology 177:4121–4130.
- Chng SS, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D. 2010. Characterization of the two-protein complex in *Escherichia coli* responsible for lipopolysaccharide assembly at the outer membrane. Proc Natl Acad Sci USA 107:5363–5368.
- Lee J, Sutterlin HA, Wzorek JS, Mandler MD, Hagan CL, Grabowicz M, Tomasek
 D, May MD, Hart EM, Silhavy TJ, Kahne D. 2018. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc Natl Acad Sci USA 115:2359–2364.

- Hagan CL, Westwood DB, Kahne D. 2013. Bam Lipoproteins Assemble BamA in vitro. Biochemistry 52:6108–6113.
- Hagan CL, Wzorek JS, Kahne D. 2015. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. Proc Natl Acad Sci USA 112:2011–2016.