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Supplementary Text 

Calculation of the quantum efficiencies for 1- and 2-photon emission 

We present a time dependent calculation of electron tunneling for a one dimensional model, 

illustrated in Fig. S1. The electrons are assumed to be noninteracting, but they interact with a 

photon mode in the vacuum region. For time 𝑡 < 0, the tip is assumed to be very far from the 

substrate, and at 𝑡 = 0 the tip is moved to the position in the figure. For 𝑡 > 0 the Hamiltonian is 

then given by 

 

𝐻 = ∑ 𝜀𝑛

𝑛𝜎

𝑐𝑛𝜎
† 𝑐𝑛𝜎 + Ω𝑎†𝑎 + ∑ 𝑔𝑛𝑚

𝑛𝑚𝜎

𝑐𝑛𝜎
† 𝑐𝑚𝜎(𝑎† + 𝑎) (Eq. 1) 

 

where 𝜀𝑛 is the energy of one-particle solutions to the potential in Fig. S1 and 𝑐𝑛𝜎
†

 is the 

corresponding creation operator for an electron with spin 𝜎. Ω is the energy of a photon and 𝑎† is 

its creation operator. The coupling 𝑔𝑛𝑚 to the photon is calculated by taking matrix elements of 

the operator p ∙ A + A ∙ p, where A is the vector potential in the vacuum region and p is the 

momentum operator. For simplicity, we only consider one photon state, but allow for zero, single 

or double occupancy of this boson mode. 

 

To perform a time dependent calculation with well-defined initial conditions, we require that at 

the beginning of the calculation, the electron is localized well inside the tip (and therefore not 

interacting with photons) and travelling towards the tip surface. Thus, we consider an electron in 

a Gaussian wave package at 𝑡 = 0 with a full width of the order of 𝑎/4 moving towards the tip-

vacuum interface starting with its center at 𝑎/2. The wave function is assumed to take the form 

 

|Ψ(𝑡)⟩ = ∑[𝑑𝑛
(0)(𝑡)𝑐𝑛𝜎

† + 𝑑𝑛
(1)(𝑡)𝑐𝑛𝜎

† 𝑎† + 𝑑𝑛
(2)(𝑡)𝑐𝑛𝜎

† 𝑎†𝑎†]

𝑛

|vacuum⟩   (Eq. 2) 

 

describing states with zero, one and two photons and with one electron in addition to the Fermi 

seas of the tip and the substrate. These Fermi seas are described by |vacuum⟩. The electron in 

the wave package is not allowed to fall into the occupied states of the Fermi seas. The width of 

the wave package, 𝑎/4, ensures that at 𝑡 = 0, the package is fully inside the metal, so the 

amplitude at the tip surface is five orders of magnitude smaller than the maximum value inside 

the tip, so that it justifies the neglect of the interaction with photons at 𝑡 = 0. In other words, 

𝑑𝑛
(𝑖)(𝑡 = 0) = 0 for 𝑖 = 1 and 2. The expansion of the wave package in the eigenstates of the 

potential in Fig. S1 then determines 𝑑𝑛
(0)(𝑡 = 0).  

 

The time dependent Schrödinger equation is then solved, using the ansatz in Eq. 2. When the 

wave package reaches the tip-vacuum interface, most of the package is reflected back into the 

tip, but a small part tunnels through the barrier. In the vacuum region the wave package interacts 

with photons, and we allow for the possibility of the emission of one or two photons. When the 

tunneling part of the wave package is well past the vacuum region, we integrate the parts with 

zero, one or two photons over the substrate region, obtaining the weights 𝑤0, 𝑤1 and 𝑤2, 

respectively. The quantum efficiencies are then 𝑘1 = 𝑤1/𝑤0 and 𝑘2 = 𝑤2/𝑤0. 

 



We first perform calculations only including electronic states at lower energies than the original 

wave package, assuming that the electron can only lose energy due to photon emission. We then 

typically find that 𝑘2 is about three orders of magnitude smaller than 𝑘1
2. For instance, with 𝑎0 

being the Bohr radius, we use the parameters 𝑎 = 𝑐 = 6400 𝑎0, 𝑏 = 15 𝑎0, 𝜀𝐹 = 8 eV, Φ =
4.5 eV, Ω = 2 eV and 𝑉 = 5 eV. These particular values of a, c, and b are chosen based on the 

following considerations. The value of a determines the spread in wave vector space of the wave 

package, and is chosen to be large enough so that the momentum spread, proportional to 1/a, is 

very small (about 0.4 per cent, which is less than a percent of the Fermi wave vector) and the 

electron has a rather well defined k-vector. The value c is chosen to be large enough to ensure 

that at the end of the calculation, the wave package that tunnels through the barrier has moved so 

far from the barrier that it is fully contained in the metal and the interaction with photons can 

again be neglected. This makes it possible to measure the number of emitted photons and the 

electron energy in a well-defined way. The value of 𝑏 = 15 𝑎0 ~ 0.8 nm is chosen to be a typical 

tip-surface distance. 

 

For these parameters we find that 𝑘2/𝑘1
2 = 0.001. In a one photon emission event, the electron 

falls from 𝜀𝐹 to 𝜀𝐹 − Ω. The initial state decays exponentially in (most of) the vacuum region; 

the final state having lower energy, decays even more strongly. The corresponding matrix 

element 𝑔𝑛𝑚 is then small. For a two photon event this effect is even stronger. In the first photon 

emission event the electron falls to a lower state (not necessarily to 𝜀𝐹 − Ω) and in the second 

event it falls to 𝜀𝐹 − 2Ω. The second transition then involves states that are more strongly 

exponentially decaying than for the first transition and the corresponding matrix element 𝑔𝑛𝑚 is 

much smaller. This leads to 𝑘2 ≪ 𝑘1
2 in this calculation. Combined with the experimental 

observation that 𝑘2 can be more than two orders of magnitude larger than 𝑘1
2, this then makes 𝑘2 

about five orders of magnitude larger than might have been expected. 

 

It is interesting, however, that if we include electronic states higher than the initial state 

(extending up to, e.g., 70 eV), we obtain 𝑘2/𝑘1
2 = 0.4 for the parameters above, almost three 

orders of magnitude larger than above. In the dominating two-photon process the electron is now 

excited upwards in energy, getting close to the top or even above the barrier in the first photon 

emission event. The electron can then propagate (more) freely through the vacuum. In the second 

photon emission event it then falls down into a state low enough that the energy of the overall 

process is conserved. This leads to a large enhancement of the two photon process for two 

reasons; (i) in both transitions one of the two wave functions entering the matrix elements is not 

exponentially decaying (over most of the vacuum region) and (ii) the electron excited above (or 

close to the top of) the barrier can more easily propagate through the vacuum region. 

 

Although this new mechanism greatly enhances two-photon events, the corresponding 𝑘2/𝑘1
2 is 

still much smaller than seen experimentally. This could possibly be due to the model being too 

simple, but a more likely explanation may be that this is not the leading mechanism for two-

photon events, raising interesting questions.  

 

 

  



 
 

Fig. S1. Schematic of a one-dimensional model of tunneling. The tunneling begins from the 

tip (left), described by a potential well of width 𝑎, through vacuum region of width 𝑏 to a 

substrate of width 𝑐 (right). The Fermi energy is 𝜀𝐹, the work function Φ, the voltage across the 

barrier 𝑉, and the photon energy Ω. Blue lines indicate energies of electronic levels in the 

vacuum region, blue arrows represent propagation of an electron with a certain energy through 

the vacuum region and red arrows represent two different types of two-photon emission events 

together with electronic transitions. 

  



 
 

Fig. S2. Photon correlation measurements at fixed tunnel conditions with varied spectral 

filtering for a gold tip on Au(111). (A) Measured optical spectrum (red) and its shortpass 600 

nm cutoff spectrum (blue); longpass 600 nm cutoff not shown. (B) Bunching is observed in the 

unfiltered light, just as in Figure 5B. (C) Bunching is also observed when high and low energy 

photons enter separate detectors (F1 = shortpass filter, F2 = longpass filter in Figure 1). Total 

data accumulation time in seconds: (B) 600, (C) 34000. Accidental correlation level in events per 

bin: (B) 11.27, (C) 14.98.  



 
 

Fig. S3. Survey measurements of bunching for a gold tip on Cu(111). Surface topography at 

(A) the start, and (B) the end of bunching measurements; +3 V, 100 pA, scale bar 1 nm, 6 hour 

time interval between scans, X marks the position of all spectroscopy and correlation 

measurements. (C) Light intensity and density of states as a function of bias. (D) Bunching 

degree as a function of bias. The range of observable bunching (~3–6 V) coincides with twice the 

photon counter sensitivity range (~1.5–3 V), and hence, is consistent with a 1e
-
  2γ process. 
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