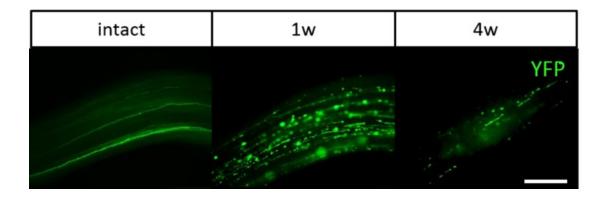
Supplemental Information

Genetic inhibition of CRMP2 phosphorylation promotes axonal regeneration after optic nerve injury

Shunsuke Kondo¹, Kazuya Takahashi¹, Yuki Kinoshita¹, Jun Nagai^{1,2}, Shuji Wakatsuki³, Toshiyuki Araki³, Yoshio Goshima⁴, Toshio Ohshima^{1, 5, 6}

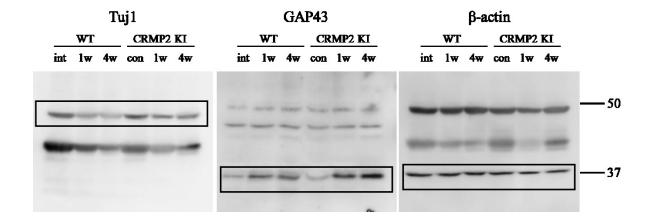

¹Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo, 162-8480 Japan

²Research Fellow of Japan Society for the Promotion of Science

³Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-11 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan

⁴Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 Japan

⁵Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University


Supplemental Fig.1 Axonal degradation after optic nerve injury in YFP-H mouse

Axonal degradation after optic nerve injury in YFP-H mouse

A small percentage of optic nerve axons are YFP-positive in YFP-H mice (intact). Axonal degradation appeared as the fragmentation of fluorescent signals one week after OCN (1w). YFP-positive axons mostly disappeared four weeks after ONC (4w). Scale bar = 200 μ m.

The full scans of Western blotting data are shown in below;

Figure 4 A

