A comprehensive analysis of the *Lactuca sativa*, L. transcriptome during different stages of the compatible interaction with *Rhizoctonia solani*

Bart Verwaaijen^{1,2,3}, Daniel Wibberg¹, Anika Winkler¹, Rita Zrenner², Hanna Bednarz¹, Karsten Niehaus¹, Rita Grosch², Alfred Pühler¹, Andreas Schlüter¹*

¹Center for Biotechnology, Bielefeld University, Bielefeld, Germany
²Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
³Current address, department of Computational Biology, Bielefeld University, Bielefeld, Germany

Table of contents:

Supplementary Figure S1 Supplementary Figure S2 Supplementary Figure S3

Supplementary Figure S1: DESeq based volcano plots depicting the differentially expressed genes of *L. sativa* between the interaction zones 1, 2 and 3 in comparison to the control (zone 4).

Supplementary Figure S2: Enlarged depiction of Figure 6B. Metabolite based heat map; unite variance scaling was applied on rows and Ward clustering was used for rows and columns³¹. The designations of single metabolites include the indicator of the level of identification within the first brackets, according to the reporting standards as proposed by the Metabolomics Standards Initiative ⁴¹ ranging from (1): identified by the measurement of the chemical reference standard, (2): putatively identified by significant database hit, (3) putatively characterized by database hit as compound of a certain chemical class, (4): unknown compound. The chemical name of the compound is accompanied in relevant cases by the information concerning the derivatization status (MEOX,TMS). The last brackets indicate the m/z values, which have been used for the identification and the integration of the signals corresponding to the given metabolite. The asterisks indicate significance as tested with ANOVA.

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

0

-10

-5

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

0

-10

-5

10

0

-10

-5

10

0

-5

-10

10

0

-5

-10

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

0

-5

-10

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

0

-5

-10

10

absolute fold changes of 2 or higher are depicted

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

Only DEG's with p-adjusted values of 0.05 or smaller and absolute fold changes of 2 or higher are depicted

Told change

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

Only DEG's with p-adjusted values of 0.05 or smaller and absolute fold changes of 2 or higher are depicted

fold change

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

5

10

-10

-5

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

Only DEG's with p-adjusted values of 0.05 or smaller and absolute fold changes of 2 or higher are depicted

00941 5/13/13 (c) Kanehisa Laboratories

absolute fold changes of 2 or higher are depicted

5

0

-10

-5

10

absolute fold changes of 2 or higher are depicted

5

0

-10

-5

10

0

-5

-10

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

-10

-5

5

10

KAAS Kegg mapping of *L. sativa* cv. Tizian DEG's

-5

-10

5

10

KAAS Kegg mapping of *L. sativa* cv. Tizian DEG's

5

0

10

-10

-5

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

5

0

-10

-5

10

KAAS Kegg mapping of L. sativa cv. Tizian DEG's

Only DEG's with p-adjusted values of 0.05 or smaller and absolute fold changes of 2 or higher are depicted

Supplementary Figure S3: KEGG Transcriptome mappings of DEGs based on fold changes. Only DEGs with log2 fold changes of 1 or more and p-adj values of 0.05 or less are depicted. KEGG maps were obtained from www.kegg.jp⁴⁰⁻⁴³