

Supplementary Information for

Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhance their bactericidal activity

Xia Ji^a, Jin Zou^{a, 1}, Haibo Peng^{a, 1}, Anne-Sophie Stolle^b, Ruiqiang Xie^a, Hongjie Zhang^a, Bo Peng^{c,d}, John J. Mekalanos^{b, 2}, and Jun Zheng^{a, e, 2}

Affiliations:

^a Faculty of Health Sciences, University of Macau, Macau SAR, China;

^b Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115;

^c School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China;

^d Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;

^e Institute of Translational Medicine, University of Macau, Macau SAR, China.

² To whom corresponding should be addressed: Email: junzheng@um.edu.mo, or john_mekalanos@hms.harvard.edu

This PDF file includes:

Supplementary text Figs. S1 to S5 Tables S1 to S4

SUPPLEMENTARY FIGURES and TABLES

Fig. S1. Characterization of Ap4A. (A) Chemical structure of diadenosine tetraphosphate (Ap4A). (B) Survival of *E. coli* WT upon 100 μ g/ml kanamycin treatment for 30 min. (C) The tandem mass spectrometry (MS/MS) fragmentation of authentic Ap4A (upper panel) and the identified ion (m/z=835.0794) in the lysate of bacteria treated with 100 μ g/ml kanamycin (lower panel) produced the same corresponding ion at m/z = 506. The predicted chemical structure corresponding to m/z= 506 from Ap4A is shown. (D) The standard curve built with authentic Ap4A by UPLC/ESI-Q-TOF/MS for intracellular Ap4A quantification.

Fig. S2. Heat-shock stress induces the expression of LysU. Chromosomally expressed LysU was tagged with FLAG epitope in *lysU::flag* and the expression of the fusion protein was examined with anti-FLAG antibody. The expression of LysU was shown to be induced by heat-shock stress as a control for Fig. 1C. *lysU::flag* was treated at 45°C for 10, 20 and 30 min before protein extraction.

Fig. S3. Ap4A contributes to aminoglycoside killing of *E. coli*. (A) Growth curves for WT, $\Delta apaH$ and $\Delta apaH+plysU$ as measured by CFU counting. (B) Growth inhibition of WT, $\Delta apaH$ and $\Delta apaH+plysU$ caused by kanamycin. The minimum inhibitory concentration (MIC₅₀) of each strain is shown. (C) Survival of WT, $\Delta apaH$, and its complement ($\Delta apaH+papaH$) upon treatment with 100 µg/ml kanamycin. Sample aliquots were harvested at 1, 2, and 3 hours for CFU enumeration. WT and $\Delta apaH$ both contain the pBAD24 empty plasmid. Each point represents the mean \pm SD from one representative experiment in triplicate. At least three biological replicates were performed.

Fig. S4. Schematic illustration of the procedure to normalize the measured Ap4A concentration in each bacterial sample. (1) An Ap4A standard curve is built by plotting the area under the curve measured by UPLC/ESI-TOF/MS against its concentration. A linear relationship over a concentration of 0.125 μ M to 50 μ M is shown. The regression equation of Ap4A was y = 1.3544x - 0.1115, and the correlation coefficient (R²) was 0.9996, indicating a good linearity. (2) *E. coli* WT were grown in LB medium at 37°C to OD₆₀₀ = 0.5. Ten-fold serial dilutions were conducted and divided into two parts: 1 ml sample was used to measure the level of *rpoB* gene by qRT-PCR; another 1 ml of the same sample was then used to build a stand curve of the CFU number of each samples. (3) The measured Ct value of *rpoB* gene in the antibiotic treated bacterial sample was matched to the standard curve to estimate the CFU of the samples. The Ap4A concentration from UPLC/ESI-TOF/MS was normalized based on the estimated bacterial CFU.

Fig. S5. Original image of the Western blot analysis in this study.

Metabolite	Metabolite Matched	MS (Da)	RT (min)	VIP	Increase
					or
110.					decrease
M1	Acetyl-CoA	808.1458	2.07	28.9433	\downarrow
M2	Coenzyme A	766.1304	1.99	27.6813	\downarrow
M3	Glycyl-D-tyrosyl-D-phenylalanyl-D-	730.2789	2.05	18.1724	1
	phenylalanyl-D-tyrosine				
M4	Succinyl-CoA	866.1411	1.98	17.1395	\downarrow
M5	NADH	664.1287	1.62	15.2196	\downarrow
M6	Unknown	809.1478	2.06	15.092	\downarrow
M7	(Methylenecyclopropyl)acetyl-CoA	860.2475	1.74	13.0732	1
M8	Unknown	786.1920	1.97	12.997	1
M9	NADP	742.1007	1.74	12.0936	1
M10	2,3-(Di-glutathion-S-yl)-1,4-	767.1369	1.92	11.4878	Ļ
	naphthoquinone				
M11	FAD	784.1832	2.09	11.3095	1
M12	Unknown	731.2823	2.05	10.7593	1
M13	Ap4A	835.0794	2.04	10.6579	1
M14	PS(O-20:0/22:0)	860.7498	1.75	10.5657	↑
M15	UDP-N-acetylmuraminate	678.1247	1.81	10.3167	1
M16	Unknown	810.1467	2.07	9.91576	\downarrow
M17	Unknown	720.1571	1.71	8.92531	\downarrow
M18	Dephospho-CoA	686.1665	1.93	8.69693	1
M19	Unknown	866.1612	1.75	7.79572	1
M20	Unknown	665.1322	1.62	7.55813	\downarrow
M21	L-Asparaginyl-L-tyrosyl-L-tyrosyl-	730.2592	1.79	7.08896	\downarrow
	L-tryptophyl-L-serine				
M22	Unknown	867.1478	1.93	6.75062	\downarrow
M23	Unknown	687.1701	1.93	4.64844	1
M24	Unknown	768.1457	1.64	3.40754	\uparrow
M25	Unknown	766.5044	1.57	3.12319	↑
M26	Unknown	788.1308	1.67	2.96498	\uparrow

Table S1. The 26 ions with the most prominent increase or decrease in abundance in *E. coli* treated with kanamycin

Note: MS. Molecular Mass; RT: retention time; VIP, Variable importance in the projection; \downarrow denote decrease and \uparrow denote increase in respective metabolite.

Name	Description	Reference/Source
MG1655	Wild type Escherichia coli, WT	ATCC 700926
MC1061 λpir	thi thr-1 leu-6 proA2 his-4 argE2 lacY1 galK2 ara-14	(1)
	xy15 supE44 pir	
DH5a	fhuA2 $\Delta(argF-lacZ)U169$ phoA glnV44 Φ 80 $\Delta(lacZ)M15$	(2)
	gyrA96 recA1 relA1 endA1 thi-1 hsdR17 pir	
WT+papaH	MG1655 with papaH	This study
$\Delta a p a H$	MG1655; in-frame deletion of <i>apaH</i> (deleting amino acids	This study
	from 1 to 280)	
$\Delta a pa H+plys U$	$\Delta apaH$ with plysU	This study
∆ <i>apaH</i> +p <i>apaH</i>	$\Delta a p a H$ with papaH	This study
lysU::flag	MG1655, LysU in-frame tagged with FLAG tag	This study
$\Delta a p a H + p E 264Q$	$\Delta a p a H$ with pE264Q	This study
WT_AB	Acinetobacter baumannii ATCC17978, wild type	ATCC17978
<i>∆apaH</i> _AB	A. baumannii ATCC17978, in-frame deletion of apaH	This study
	(deleting amino acids from 1 to 280)	
WT_PA	Pseudomonas aeruginosa PAO1, wild type	(3)
<i>∆apaH</i> _PA	P. aeruginosa PAO1, in-frame deletion of apaH	This study

Table S2. Bacterial strains used in this study

Name	Description	Source
pDS132	pCVD442 modified suicide plasmid, <i>pir</i> dependent, <i>sac</i> B,	(4)
	Cm ^R ,	
pEXG2	ColE1 mob+, <i>sacB</i> suicide vector (Gm ^R)	(5)
pBAD24	pBR322/ColE1 modified expression plasmid, araC, Amp ^R	(6)
pPSV37	colE1 origin, gentR, PA origin, oriT, lacUV5	(7)
	promoter, <i>lacI</i> ^q lacI ^q	
pDS132∆apaH	pDS132 with flanking regions of <i>apaH</i> for deleting <i>apaH</i> of	This study
	<i>E. coli</i> from amino acids 1 to 280	
pDS132-lysU::flag	pDS132 with a fragment for construction of LysU:: FLAG	This study
р <i>араН</i>	pBAD24 with wild-type <i>apaH</i>	This study
p <i>lysU</i>	pBAD24 with wild-type <i>lysU</i> , arabinose inducible	This study
p <i>E264Q</i>	pBAD24 with E264Q mutant of LysU	This study
pEXG2∆ <i>apaH</i> _AB	pEXG2 with flanking regions of <i>apaH</i> for deleting <i>apaH</i> of	This study
	A. baumannii from amino acids 1 to 280	
pEXG2∆ <i>apaH</i> _PA	pEXG2 with flanking regions of <i>apaH</i> , deleting <i>apaH</i> of <i>P</i> .	This study
	aeruginosa	

Table S3. Plasmids used in this study

Table S4. Primers used in this study

Name	Sequence (5'→3')	Description	
RT-rpoB-for	CCTGCGCAAAGGTATGCCAA	For qRT-PCR of	
RT-rpoB-rev	TACCGGACGCTCGAACTGTT	rpoB	
lysU-flag-CH1-for	GTCAAACGTTTGTTGTCCG	For confirmation	
lysU-flag-CH1-rev	GTCGTCATCGTCTTTGTAGTC	of <i>lysU::flag</i>	
lysU-flag-CH2-for	CAAAGACGATGACGACAAG		
lysU-flag-CH2-rev	GCAAATCGCTGAAATTGTC		
lysU-flag-for	GGATCGATCCTCTAGGAAACCCCGATGATGCAG	For construction	
lysU-flag-rev	ATGCGGTACCTCTAGATGTCGATGAAAGCCTGA	of <i>lysU::flag</i>	
lysU-flag-int-rev	TTACTTGTCGTCATCGTCTTTGTAGTCTTTCTGTGGG		
	CGCATCG		
lysU-flag-int-for	GACTACAAAGACGATGACGACAAGTAAATTTCACTT		
	TAATGAACGAAGC		
delapaH-for	GGATCGATCCTCTAGACCTGCCTTATAACATCTCC	For construction	
delapaH-int-rev	GCTGTGTTTACGCCATATTCTTTTAATGAA	of <i>apaH</i> deletion	
delapaH-int-for	GAATATGGCGTAAACACAGCCTGATATAGG	mutant	
delapaH-rev	ATGCGGTACCTCTAGTTAAGTGAGATCATTACCGA		
delapaH-CH1-for	GCCGAGAAAATGGGTCAG	For confirmation	
delapaH-CH1-rev	TCTTATCCGGCCTTCCTA	of <i>apaH</i> deletion	
delapaH-CH2-for	CTTTCAGCATCGACATTC		
delapaH-CH2-rev	ACAGTATTGTGTCTGCCA		
BADapaH-for	GAGGAATTCACCATGGCGACATACCTTATTGGC	For construction	
BADapaH-rev	GCAGGTCGACTCTAGTGTTTAAGACGCCGCCGCTT	of p <i>apaH</i>	
BADlysU-for	GAGGAATTCACCATGTCTGAACAAGAAACAC	For construction	
BADlysU-rev	GCAGGTCGACTCTAGTTATTTCTGTGGGCGCA	of p <i>lysU</i>	
E264QlysU-int-rev	ACCTTGATTACGGAAGTTACG	For construction of LysU 264	
E264QlysU-int-for	ATCAAGGTATTTCTGTTCGC	amino acid point mutant pE264Q	
DelapaHAB-for	CATAAATGTAAAGCAATGTCGCTGTCGATTTAGC	For construction	
DelapaHAB-int-rev	CTTTTTTTAGTCACCAGCAAACCAGATAA	of <i>apaH</i> deletion	
DelapaHAB-int-for	TGCTGGTGACTAAAAAAAGCCGCTGAAACGG	mutant in A.	
DelapaHAB-rev	TTAAGGTACCGAATTTATGCTTTGCCAGCATTAGT	baumannii	
DelapaHAB-CH1-for	GGGTTTTGGTGAAGCAATCA	For confirmation	
DelapaHAB-CH1-rev	TAATCAGATCTGGATTCGCC	of <i>apaH</i> deletion	
DelapaHAB-CH2-for	AACTCTTGCAGAGTTTGTGG	in A. baumannii	
DelapaHAB-CH2-rev	GGTTGCTTTAGCCATACCTT		
DelapaH-	CCCGTGGAAATTAATTAAGGTACCGTGGCGCCCTTT	For construction	
3'fragment_for	CGCATC	of <i>apaH</i> deletion	
DelapaH-	AACTCGAGCCGCAAGCATGCTGAAGTAGACCGCCA	mutant in <i>P</i> .	
3'fragment_rev	ragment_rev TCAGTGCAGC		
DelapaH-	TTCAGCATGCTTGCGGCTCGAGTTACGCCCGCATGA		
5'fragment for	ATCCCCGGC		

DelapaH- 5'fragment_rev	GAGCCGGAAGCATAAATGTAAAGCAGGCTCGCCGA TCGCC	
DelapaH_for	TCGGCAGCATGCGCGGCAGCT	For confirmation of <i>apaH</i> deletion
DelapaH_rev	ACCACCTGGGCGCCGTTTTCG	in <i>P. aeruginosa</i>

References

- Rubirés X, Saigi, F., Piqué, N., Climent, N., Merino, S., Albertí, S., Tomás, J. M., and Regué, M. (1997) A Gene (wbbL) from Serratia marcescens N28b (O4) Complements the rfb-50 Mutation of Escherichia coli K-12 Derivatives. *Journal* of Bacteriology 179:7581-7586.
- 2. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J. *Mol. Biol.* 166:557-580.
- 3. Stover CK, *et al.* (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. *Nature* 406(6799):959-964.
- 4. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, & Schneider D (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. *Plasmid* 51(3):246-255.
- 5. Rietsch A, Vallet-Gely I, Dove SL, & Mekalanos JJ (2005) ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. *Proc Natl Acad Sci U S A* 102(22):8006-8011.
- 6. Guzman LM, Belin D, Carson MJ, & Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* 177(14):4121-4130.
- 7. Lee PC, Stopford CM, Svenson AG, & Rietsch A (2010) Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. *Mol Microbiol* 75(4):924-941.