

Supplementary Information for

Partial inhibition of the overactivated Ku80-dependent DNA repair pathway rescues neurodegeneration in *C90RF72*-ALS/FTD

Rodrigo Lopez-Gonzalez^{a,1}, Dejun Yang^{a,1}, Mochtar Pribadi^b, Tanya S. Kim^b, Gopinath Krishnan^a, So Yoen Choi^a, Soojin Lee^a, Giovanni Coppola^b, and Fen-Biao Gao^{a,2}

^aDepartment of Neurology, University of Massachusetts Medical School, Worcester, MA 01605; and ^bSemel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095.

¹These authors contributed equally to this work.

²To whom correspondence should be addressed: Fen-Biao Gao

Email: fen-biao.gao@umassmed.edu

This PDF file includes:

Supplementary text Figs. S1 to S11 Tables S1 to S4

Other supplementary materials for this manuscript include the following:

Materials and methods

Motor Neuron Differentiation from iPSC Lines. Motor neurons were differentiated as described (Lopez-Gonzalez et al. 2016). Briefly, iPSCs were plated and expanded in mTSER1 medium (Stem Cell Technologies) in Matrigel-coated wells. Twenty-four hours after plating, the culture medium was replaced with neuroepithelial progenitor (NEP) medium, DMEM/F12, neurobasal medium at 1:1, 0.5X N2, 0.5X B27, 0.1 mM ascorbic acid (Sigma), 1X Glutamax (Invitrogen), 3 µM CHIR99021 (Tocris Bioscience), 2 µM DMH1 (Tocris Bioscience), and 2 µM SB431542 (Stemgent). After 6 days, NEPs were dissociated with accutase, split 1:6 into Matrigel-coated wells, and cultured for 6 days in motor neuron progenitor induction medium (NEP with 0.1 µM retinoic acid and 0.5 µM purmorphamine, both from Stemgent). Motor neuron progenitors were dissociated with accutase to generate suspension cultures. After 6 days, the cultures were dissociated into single cells, plated on laminin-coated plates/coverslips in motor neuron differentiation medium containing 0.5 µM retinoic acid, 0.1 µM purmorphamine, and 0.1 µM Compound E (Calbiochem) for 2 weeks and then in the same medium without Compound E for up to 4 months.

Western Blot Analysis. Fly heads were collected and homogenized with 2X Laemmli sample buffer (BioRad), and lysates from five fly heads were analyzed by SDS-PAGE. Motor neuron cultures were lysed with RIPA buffer (Thermo Scientific), and 20 µg of protein was separated by SDS-PAGE. Fly and motor neuron samples were immunoblotted with antibodies listed in *SI Appendix,* Table S6. After incubation, the membranes were washed with PBST and incubated with IRDye anti-rabbit or anti-mouse secondary antibodies (1:5000, LI-COR Biosciences).

Immunostaining. High-yield human motor neuron cultures from controls and *C9ORF72* carriers were fixed in 4% paraformaldehyde for 15 min and permeabilized with 0.3% Triton X-100 for 5 min. The cells were blocked with 5% bovine serum albumin for 30 min and incubated with the following primary antibodies overnight at 4°C: goat anti-ChAT (1:200, Millipore, Cat. no. AB144P), rabbit anti-phosphorylated ATM (1:1000, Abcam, Cat. no. ab81292), rabbit anti Ku80 (1:500, Cell Signaling, Cat. no. 2753), and cleaved caspase 3 (1:200, Cell Signaling, Cat. no. 9661).

Comet Assay. A comet assay was done as described (Lopez-Gonzalez et al., 2016). Briefly, iPSCs derived neurons from *C9ORF72* line 26L6 and *Ku80* heterozygous lines 26L6-34E and 26L6-64A were dissociated to obtain single-cell suspensions. These cells were mixed with 1% low-gelling agarose solution and placed on glass slides and allowed to gel. These slides were gently submerged in lysis solution and left overnight at 4 °C. Slides were transferred to an electrophoresis solution, run at 0.6 V/cm for 25 min, removed, and submerged in rinse buffer for 30 min at room temperature. The slides were then incubated with 2.5 μ g/ml SYBR Safe (Invitrogen) for 20 min and washed with distilled water. For each experimental condition, 100 cells were analyzed with Image J software and scored according to tail length and the percentage of DNA in the tail.

Genetic Analysis of iPSCs Lines. In order to analyze chromosome abnormalities, we performed genetic analysis using the kit from Stem Cell Technologies, which examines 8 most common karyotype abnormalities found in human embryonic stem cells and iPSCs. qPCR-based analysis was performed to examine the following chromosomes: 1q, 4p, 8q,

10p, 12p, 17q, 18q, 20q and Xp. In order to do the test, genomic DNA was extracted from control and *C9ORF72* iPSC lines as well as all the CRISPR-Cas9 lines used in this study. The qPCR was performed following manufacturer's instructions using 10 ng of genomic DNA per sample.

Short Tandem Repeat (STR) Analysis in iPSCs. Short tandem repeat analysis was performed using The PowerPlex® Fusion 6C System (Promega). Parental *C9ORF72* iPSC lines 26L6 and 27L11 as well as CRISPR-Cas9 modified lines 26L6-34E, 26L664A, 26Z90 and 27M91 were cultured and then genomic DNA was isolated to performed end point PCR following manufacturer's instructions. 1 ng of genomic DNA was amplified. Amplification products were then mixed with WEN Internal Lane Standard 500 and analyzed using an Applied Biosystems® 3500xL Genetic Analyzer and data analyzed with peak scanner software version 2 (Applied biosystems).

RNA Extraction and Quantitative Real-time PCR. Total RNA from fly brains or iPSCderived neurons was extracted with the RNeasy Mini Kit (Qiagen) and reverse transcribed to cDNA with the TaqMan Reverse Transcription Kit (Applied Biosystems). Quantitative PCR was done with SYBR Green Master Mix (Applied Biosystems) Using primers listed in *SI Appendix*, Table S3. Ct values for each gene were normalized to GAPDH. Relative mRNA expression was calculated with the double delta Ct method.

Fig. S1. Quantification of the effects of some suppressor genes on poly(GR)-induced loss of non-neuronal cells. (GR)₈₀-expressing flies with or without non-neuronal cell death were counted. For, w^{1118} or UAS-GFP flies crossed to Vg-Gal4/CyO; UAS-(GR)₈₀/TM6,Tb flies served as negative controls for genetic alleles or UAS-RNAi lines of each modifier gene, respectively. The Drosophila lines for modifier genes are described in Table S2. ***P<0.001 by chi-square analysis. 80-130 flies were analyzed for each genotype.

Fig. S2. Efficiency of *Ku80* RNAi in the fly eye and poly(GR) accumulation in *C9ORF72* iPSC-derived motor neurons. (A) The relative *Ku80* mRNA levels before and after RNAi knockdown in the fly eye. RNAi expression was driven by GMR-Gal4. Thus, the actual knockdown efficiency in photoreceptor neurons might be higher. Values are mean \pm S.D. of 3 independent experiments. ****P*<0.001 by one-way ANOVA. (B) Standard curve for poly(GR) ELISA measurement. (C) The expression level of Poly(GR) in 3 *C9ORF72* iPSC lines-derived motor neuron cultures. These cultures were of 2-month old and derived from two independent differentiations.

Fig. S3. The level of Ku80 protein is also increased in $(G_4C_2)_{58}$ flies. (A) Western blot analysis of Ku80 protein levels in control (*GMR-Gal4/+*) and *Ku80* knockdown flies (*GMR-Gal4/+*; *UAS-Ku80 RNAi*) demonstrates the specificity of the Ku80 antibody. (B) A representative image of western blot analysis of Ku80 protein levels in control (*GMR-Gal4/GMR-Gal4*) and (G4C₂)₅₈-expressing flies (*GMR-Gal4/GMR-Gal4*; *UAS-*(*G*₄*C*₂)₅₈/+). (C) Relative Ku80 protein levels for the indicated fly lines. *n*=4 independent experiments. All values are mean ± SEM. *****P*<0.0001 by Student's t test.

Fig. S4. DNA damage increased pATM levels in both control and *C9ORF72* iPSC-derived motor neurons. (A) Western blot analysis of 1-month-old neurons derived from two control and two *C9ORF72* iPSC lines. Neurons were treated with doxorubicin (1 μ M) or left untreated. (B) Quantification of western blots shows a significant increase in pATM levels after 2.5 h and 5 h of doxorubicin treatment. Values are mean ± SEM of one differentiation of two control and two *C9ORF72* iPSC lines. *P* values were determined by one-way ANOVA and Tukey's test.

Fig. S5. Characterization of isogenic iPSC lines 26Z90 and 27M91 after CRISPR-Cas9 deletion of expanded G_4C_2 repeats from parental *C9ORF72* iPSC lines 26L6 and 27L11. (A) Expression of the pluripotency markers Oct-4, Nanog and SSEA-4 in iPSCs of different lines. Scale bar, 100 µm. (B) Quantitative RT-PCR analysis of expression levels of pluripotent stem cell markers SOX2 and Oct3/4. Values are mean \pm SEM of 2 independent iPSC cultures shows no significant difference between different lines in the mRNA levels of *Oct3/4* (*P*=0.9990) and *SOX2* (*P*=0.9621). These *P* values were determined by one-way ANOVA. (C) Karyotype analysis of iPSC lines 26Z90 and 27M91 shows no chromosomal abnormalities.

Fig. S6. Some apoptotic markers are upregulated in iPSC-derived motor neurons from *C9ORF72* carriers. (A) qPCR analysis of relative levels of PUMA mRNA. (*B*) qPCR analysis of relative mRNA levels of Bax. Values are mean \pm SEM of neurons from two independent differentiations. Two-tailed Student's t test was used to compare 3 control subjects and 3 *C9ORF72* patients. Scale bar, 20 µm. (C) Cleaved caspase-3 and ChAT Immunostaining in iPSC-derived motor neurons. Scale bar, 10 µm.

Fig. S7. Characterization of *Ku80* heterozygous knockout iPSC lines generated by CRISPR-Cas9 technology. (A) Immunostaining analysis of stem cell marker expression in heterozygous *Ku80* knockout lines. Scale bar 10 µm. (B) Genetic deletion of one copy of *Ku80* does not affect the expression levels of some stem cell marker mRNAs. Values are mean \pm SEM of 2 independent iPSC cultures. There is no significant difference between different lines in the mRNA levels of *Oct3/4* (*P*=0.7358) and *SOX2* (*P*=0.6592). These *P* values were determined by one-way ANOVA. (C) Karyotype analysis of the two heterozygous *Ku80* knockout lines. (D) *Ku80* mRNA expression levels in *C90RF72* iPSC lines. Values are mean \pm SEM from two independent iPSC cultures. **P*<0.05, ***P*<0.01 by one-way ANOVA and Tukey's test. (E) Ku80 western blot analysis of iPSCs from the *C90RF72* carrier line 26L6 and heterozygous *Ku80* knockout lines. (F) ELISA analysis of poly(GR) levels in 2-month-old motor neurons derived from three independent differentiations. Values are mean \pm SEM from three independent differentiations analyzed by one-way ANOVA and Tukey's test.

Fig. S8. Comet assay analysis. (A) Representative images of comet assay analysis of motor neurons differentiated from *C9ORF72* iPSC line 26L6 and its isogenic *Ku80* heterozygous knockout lines 26L6-34E and 26L6-64A. (B) Quantification of comet length tail and percentage of DNA in the tail in 2-month-old motor neurons from two independent differentiations. **P*<0.05. ***P*<0.01 by one-way ANOVA and Tukey's test.

Fig S9. Knockdown of Ku80 mediated by small RNA rescues neurodegeneration in *C9ORF72*-ALS/FTD. (A–C) Western blot analysis of the relative levels of several proteins before and after sdRNA-mediated *Ku80* knockdown in neurons derived from two *C9ORF72* iPSC lines. (D–F) Quantification of western blot analysis from panels A–C. (G–I) Western blot analysis of the relative levels of several proteins before and after sdRNA-mediated *Ku80* knockdown in neurons derived from two *C9ORF72* iPSC lines. (J–L) Quantification of western blot analysis from panels G–I. For all quantifications, values are mean ± SEM of 2 independent differentiation experiments. Two-tailed Student's t test was used to compare two *C9ORF72* iPSC lines-derived neurons treated with control or *Ku80*-specific small RNAs.

Fig S10. Genetic characterization and short tandem repeat analysis of CRISPR isogenic iPSCs lines. (A) qPCR based genetic analysis does not detect genetic abnormalities in iPSC lines 26L6, 26z90, 26L6-34E, 26L6-64A, 27L11 and 27m91. (B) Electropherogram showing the peaks of D10S1248 locus in lines listed above.

Fig S11. Further characterization of iPSC lines used in this study. (A) qPCR based genetic analysis did not detect genetic abnormalities in other iPSC lines used in this study. (B, C) phosphorylated P53 level is not elevated in any of iPSC lines used in this study. values are mean ± SEM. Two-tailed Student's t test was used for statistical analysis.

D

FigS12. Immunoblot data from: (A) figure 3, (B) figure 4, (C) figure 5, (D) figure 6 and (E) figure S9.

BL Stock #	Deficiency Name	Locus Deleted	Phenotype
90	Df(2L)C144	22F423C3	Suppressor
744	Df(2L)M24F-B	24E125A2	Suppressor
4959	Df(2L)C'	h3540A1	Suppressor
4961	Df(2R)Kr10	60E1060F5	Suppressor
5330	Df(2L)ed1	24A224D4	Suppressor
6338	Df(2L)BSC6	26D326F7	Suppressor
6507	Df(2L)drm-P2	23F324A2	Suppressor
7548	Df(2R)Exel6066	53F854B6	Suppressor
8045	Df(2R)ED1612	42A1342E6	Suppressor
8904	Df(2L)ED4651	23B823F3	Suppressor
8906	Df(2L)ED678	29F530B12	Suppressor
8908	Df(2L)ED94	21E221E3	Suppressor
8918	Df(2R)ED3683	55C256C4	Suppressor
9266	Df(2L)ED1473	39B440A5	Suppressor
9610	Df(2L)BSC180	23B723C3	Suppressor
9615	Df(2L)BSC188	26F127A2	Suppressor
24626	Df(2L)ED50001	21A121B1	Suppressor
24652	Df(2L)ED441	27A127E1	Suppressor
25430	Df(2R)BSC597	58A258F1	Suppressor
26542	Df(2L)BSC690	35D435D4	Suppressor
282	Df(2R)X58-12	58D159A1	Lethal
7494	Df(2L)Exel6008	22F423A3	Lethal
7783	Df(2L)Exel7011	22E122F3	Lethal
741	Df(2R)M41A10	h38Rh46	Enhancer
1072	Df(2R)X1	46C2;47A1	Enhancer
1469	Df(2L)J39	31C32E5	Enhancer
6478	Df(2L)BSC17	30C330F1	Enhancer
8469	Df(2L)BSC50	30F531B1	Enhancer
23691	Df(2R)BSC308	52B552D15	Enhancer
24335	Df(2R)BSC267	44A444F1	Enhancer
		44A444C4	
24933	Df(2R)BSC429	51C251D1	Enhancer
25428	Df(2R)BSC595	47A347F1	Enhancer
25705	Df(2R)BSC630	41D341F11	Enhancer
25741	Df(2R)BSC651	51C551E2	Enhancer
26782	Df(2L)lt109	40F7H36	Enhancer
27582	Df(2R)BSC821	57D1057E6	Enhancer
29988	Df(2R)BSC865	59A459B7	Enhancer
30590	Df(2R)BSC885	57D257D10	Enhancer

Table S1. Deficiency(Df) modifiers from the primary screen

Table S2. Drosophila lines used in this study

Drosophila lines	Souces
W ^[1118]	Yang et al., 2015
UAS-GFP	Yang et al., 2015
UAS-(GR) ₈₀	Yang et al., 2015
UAS-(GR) ₈₀ -Control	Yang et al., 2015
Vg-Gal4/Cyo; UAS-(GR)80/TM6B	Yang et al., 2015
GMR-Gal4	BDSC(#9146)
Tub-Gal80 ^{ts}	BDSC(#7019)
GMR-Gal4, Gal80 ^{ts} , UAS-(GR) ₈₀	Generated for this work
GMR-Gal4, Gal80 ^{ts} ;UAS-(GR) ₈₀ -Control	Generated for this work
Dificiency Kit for 2nd Chromosome	BDSC(Identified locus were listed in figureS1)

Target genes	Short name in figures	Souces	Identifier	Stock List Description
nAChRalpha6		BDSC	BL9686	nAChRalpha6[DAS2]
nAChRalpha6		BDSC	BL25835	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01853}attP2
Bka		BDSC	BL31629	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01415}attP2
CG12769		BDSC	BL26769	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02333}attP2
CG12769		BDSC	BL13261	y[1] w[67c23]; P{y[+mDint2] w[BR.E.BR]=SUPor-P}CG12769[KG03851]
Dbr		BDSC	BL59280	y[1] w[*]; Mi{y[+mDint2]=MIC}dbr[MI13343]
Dbr		BDSC	BL43222	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GL01567}attP40
Ercc1	RNAi-1	BDSC	BL36906	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GL01110}attP2
Ercc1	RNAi-2	VDRC	V12622	w[1118]; P{GD4103}v12622
FKBP59		BDSC	BL28349	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02985}attP2
FKBP59		BDSC	BL35612	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GL00453}attP2
Ku80	RNAi-1	BDSC	BL27710	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02790}attP2
Ku80	RNAi-2	VDRC	V37110	w[1118]; P{GD1712}v37110
L(2)gl	RNAi-1	BDSC	BL31089	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01553}attP2
L(2)gl	RNAi-2	BDSC	BL31517	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01073}attP2
Lig		BDSC	BL18242	w[1118];
Lig		BDSC	BL14943	y[1]; P{y[+mDint2] w[BR.E.BR]=SUPor-P}lig[KG08209]/CyO; ry[506]
Lig		BDSC	BL61857	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMJ23346}attP40
Lilli		BDSC	BL5726	lilli[A17-2] cn[1] bw[1]/CyO
Lilli		VDRC	V106142	P{KK102916}VIE-260B
Odd		BDSC	BL28295	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02925}attP2
Odd		BDSC	BL34328	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMS01315}attP2/TM3, Sb[1]
Rbp9		BDSC	BL25775	w[*]; Rbp9[Delta1]/CyO
Rbp9		BDSC	BL28669	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF03084}attP2
Rrp1	Mut-1	BDSC	BL10213	w[1118];
Rrp1	RNAi-1	BDSC	BL35420	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GL00343}attP2
Sand	Mut-1	BDSC	BL17895	w[1118];
Sand	RNAi-1	BDSC	BL25853	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01874}attP2
Sec5		BDSC	BL27526	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02676}attP2
Sec5		BDSC	BL50556	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GLC01676}attP2
Snx1		BDSC	BL29177	w[1118]; Mi{ET1}Snx1[MB11025]
Snx1		BDSC	BL38301	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMS01763}attP40
Srp54		BDSC	BL30533	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HM05224}attP2
Srp54		BDSC	BL55254	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMC03941}attP40
Wek		BDSC	BL30471	b[1] wek[RAR14] pr[1] cn[1] bw[1]/CyO
Wek		BDSC	BL35680	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GLV21045}attP2
βggt-II	RNAi-1	BDSC	BL50516	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.GLC01634}attP40
βggt-II	RNAi-2	BDSC	BL34902	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMS01247}attP2
Tefu(dATM)	Mut-1	BDSC	BL29888	w[1118]; Mi{ET1}tefu[MB09945]/TM6C, Sb[1]
Tefu(dATM)	Mut-2	BDSC	BL8626	w[*]; P{ry[+t7.2]=neoFRT}82B tefu[atm-6] e[1]/TM6B, Tb[1]

BDSC BL31635 *y*[1] *v*[1]; *P*{*y*[+t7.7] *v*[+t1.8]=TRiP.JF01422}attP2 RNAi-1 Tefu(dATM)

Bloomington *Drosophila* Stock Center (BDSC) Vienna *Drosophila* Resource Center (VDRC)

Primer	Sequence		
qPCR			
Ku80 forward	CCCCAATTCAGCAGCATATT		
Ku80-reverse	CCTTCAGCCA GACTGGAGAC		
PUMA-forward	GCCCAGACTGTGAATCCTGT		
PUMA-reverse	TCCTCC CTCTTCCGAGATTT		
BAX-forward	TTTGCTTCAGGGTTTCATCC		
BAX-reverse	CAGTT GAAGTTGCCGTCAGA		
GAPDH-forward	CTGAACGGCTGTGATGGGAT		
GAPDH-reverse	GGCATGGACTGTGGTCATGAG		
Drosophila Ku80-forward	CCTTGTACCTCCTGGTGCAT		
Drosophila Ku80-reverse	GGGCAGTAGCACAACCATTT		
Primer to verify CRISPR/Cas9 deletion			
Ku80 forward	GAGGTCTGGTTGTCCTGCTC		
Ku80-reverse	TGCCTCCCAACCTCTCAGTA		
gRNA for C9ORF72 CRISPR/Cas9			
Upstream target oligonucleotides	5'-CACCGAACTCAGGAGTCGCGCGCT-3'		
	5'-AAACAGCGCGCGACTCCTGAGTTC-3'		
Downstream target oligonucleotides	5'-CACCGCGGGGGGGGGGGGGGGGGTTG-3'		
	5'-AAACCAACCGCAGCCCCGCCCGC3'.		
gRNA for ku80 CRISPR/Cas9			
Upstream target oligonucleotides	5'-TACTGATCCCCACCAGAAAG-3'		
Downstream target oligonucleotides	5'-AATCCAACCAGGTTCTCAAC-3'		

Table S3. List of primers and oligonucleotides used in this study.

Table S4. Summary of Quality control assays for C9ORF72 iPSCs lines edited by the CRISPR/Cas9

technology.

iPSC line	Gene	Modification	Karyotyping	Pluripotency	STR	qPCR based
name	edited		test	markers		Genetic analysis
						of chromosomes:
26L6-34E	Ku80	Deletion	G banding at	-qPCR analysis	Fusion 6C TM ,	1q, 4p, 8q, 10p,
			passage 12*	-Immunostaining	locus multiplex	12p, 17q, 18q, 20q
					system	and Xp
26L6-64A	Ku80	Deletion	G banding at	-qPCR analysis	Fusion 6C TM ,	1q, 4p, 8q, 10p,
			passage 12*	-Immunostaining	locus multiplex	12p, 17q, 18q, 20q
					system	and Xp
26Z90	G_4C_2	Deletion	G banding at	-qPCR analysis	Fusion 6C TM ,	1q, 4p, 8q, 10p,
	repeats		Passage 39	-Immunostaining	locus multiplex	12p, 17q, 18q, 20q
					system	and Xp
27M91	G ₄ C ₂	Deletion	G banding at	-qPCR analysis	Fusion 6C TM ,	1q, 4p, 8q, 10p,
	repeats		Passage 48	-Immunostaining	locus multiplex	12p, 17q, 18q, 20q
					system	and Xp

Abbreviations:

qPCR: quantitative polymerase chain reaction, STR: Short tandem repeat analysis

Note:

*: the passage number is after CRISPR/Cas9 deletion was made.

iPSC line name	Source	Clinical Diagnosis	Karyotyping test	Pluripotency Markers tests	<i>In vitro</i> 3 germ layers differentiation	qPCR based Genetic analysis of chromosomes:
Control	•	•	•	I		
24L2	Skin fibroblasts	Healthy control	G banding at passage #14	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
35L11	Skin fibroblasts	Healthy control	G banding at passage #13	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
37L20	Skin fibroblasts	Healthy control	The passage # for the test is unknown	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
C90RF72						
16L14	Skin fibroblasts	FTD	G banding at passage #12	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
40L3	Skin fibroblasts	FTD/ALS	G banding at passage #8	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
ALS30	Skin fibroblasts	ALS	The passage # for the test is unknown	-Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
42L1	Skin fibroblasts	Clinical normal	G banding at passage #14	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
26L6	Skin fibroblasts	Clinical normal	G banding at passage #14	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp
27L11	Skin fibroblasts	FTLD-TDP Type B	G banding at passage #17	-qPCR -Immunostaining	-Endoderm -Mesoderm -Ectoderm	1q, 4p, 8q, 10p, 12p, 17q, 18q, 20q and Xp

Table S5. Summary of iPSCs lines used in this study

Abbreviations:

FTD: Frontotemporal dementia

ALS: Amyotrophic lateral sclerosis

FTLD: Frontotemporal lobar degeneration

FTLD-TDP: FTLD with motor neuron disease and TDP-43 immunoreactive inclusions

qPCR: quantitative polymerase chain reaction

Antibody	Dilution	Vendor
_		
rabbit anti-Ku80	1:1000	Cell Signaling, Cat. no. 2753
mouse anti-Ku70	1:1000	Cell Signaling, Cat. no. 4104
rabbit anti-phosphorylated ATM	1:1000	Abcam, Cat. no. ab81292
rabbit anti-phosphorylated P53 (Ser15)	1:1000	Cell Signaling, Cat. no. 9284
rabbit DNA PKcs	1:1000	Abcam, Cat. no. ab70250
rabbit anti-cleaved caspase 3	1:1000	Cell Signaling, Cat. no. 9661
rabbit anti-BAX	1:1000	Abcam, Cat. No. 32503
rabbit anti-PUMA	1:1000	Proteintech, Cat. no. 55120-1AP
mouse anti-β-actin	1:3000	Sigma-Aldrich, Cat. no. A2228
mouse anti-α-Tubulin	1:2000	Sigma, Cat. no. T6199

Table S6. List of antibodies used in this study.

References

 Lopez-Gonzalez R, et al. (2016) Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. *Neuron* 92:383–391.