
SUPPLEMENTARY INFORMATION: 

Supplementary Figures: 

Figure S1. ​A.​ Comparison of final error after song re-learning. All perturbation schemes re-learn 
the shifted target song with equal accuracy across frequencies of perturbation except for the 
perturbation: ‘paused with synaptic weakening,’ which resulted in slightly less improvement in 
song at higher frequencies of HVC perturbations. Color schemes same as in Fig. 4. ​B. 
Comparison of error improvement after song re-learning. Error improvement is not significantly 
different across all perturbation schemes and frequency. 

Figure S2. ​A​. Distributions of synaptic weights after 10​5 ​maintenance trials for the paused 
perturbation scheme compared to the no perturbation control distribution. ​B​. Distributions of 
synaptic weights after 10​5 ​maintenance trials for the paused with synaptic weakening 
perturbation scheme compared to the no perturbation, control distribution. ​C​. Distributions of 
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synaptic weights after 10​5 ​maintenance trials for the time shifted perturbation scheme compared 
to the no perturbation, control distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3. ​A​. Example of the accumulation of average pairwise correlations over the course of 
10​5 ​maintenance trials for varying time courses of LMAN inputs. As inputs from LMAN become 
more punctate in time, correlations across HVC projection strengths decrease. This shows that 
the build-up of correlations in the weight matrix is due to shared LMAN inputs. In the actual bird 
song system, LMAN synaptic inputs to RA are NMDA receptor mediated with long time courses 
(approximately 70-75 ms in adults) (1) 
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Figure S4. Learning speed depends on pairwise correlations of HVC synaptic weights in random 
Gaussian weight matrices. ​A.​ Example weight matrix with correlation between nearest neighbor 
HVC synaptic projection strengths, r = 0.95. ​B.​ Example weight matrix with correlation between 
nearest-neighbor, HVC synaptic projection strengths, r = 0.05. ​C.​ Comparison of synaptic 
weight distributions in weight matrices with r = 0.05 and r = 0.95. The overall distributions are 
identical and Gaussian distributed. Only the correlations between columns that differ. ​D. 
Average learning trajectory for each correlation level in the initial, random weight matrices 
before learning begins (over 25 trials per correlation level).​ E.​ Time to half decay of the traces in 
panel D. If the initial weight matrix has highly correlated columns, learning proceeds much more 
slowly. 
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Figure S5: RA activity is more sparse when HVC is perturbed. ​A.​ Histogram of the average 
number of spikes in a song iteration for “paused with synaptic weakening.” Red and black 
vertical lines represent means of the distributions. ​B.​ Same as A but with “paused ” HVC 
perturbation scheme, and ​C. ​Same as A and B but “time shift " HVC perturbation. ​D-F. 
Histograms of the number of active cells per time bin of the song (time = 0.5 ms). Red and black 
vertical lines represent means of the distributions. D-F have the same HVC perturbation order 
as in A-C.  
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Statistical Significance: 
 
To test whether the number of perturbations of each type affected the final error, the half time 
for relearning, the error from RA cell loss and the final weight correlations, we carried out 
one-way analysis of variance (ANOVA) using Prism (GraphPad Software). In all cases, there 
was a significant main effect of the number of perturbations (p < 0.0001 in each case). 
 
Extended Methods: 
 
In this section, we lay out the basic framework for the network and then describe the three 
different approaches utilized in the perturbations to HVC activity patterns. Following this, we 
give details on how we measured network robustness.  
 
 
A. ​Base Model and Network Architecture 
 
In this initial approach, the base model comprised three layers with feed-forward connectivity, 
representing the premotor network of HVC, RA and motor pools, with empiric synapses from 
LMAN driving variability (Fig. 1a,b).  
 
1. Neuronal Parameters 
 
Our base model is derived from that of Fiete et al., (2007)(2). We assume a model structure 
shown in Fig. 1b, with 500 active HVC neurons projecting to 48 RA neurons. Each RA neuron is 
represented as a single-compartment, conductance-based model. Each RA neuron projects to 
one of two motor pools, which are low-dimensional representations of song features, such as 
fundamental frequency or amplitude. The LMAN input to each RA neuron is taken to be an 
independent Poisson process. 
 
Each neuron in the HVC and RA layers is modeled as a conductance-based leaky 
integrate-and-fire neuron: 
 

   (dV /dt) (V ) (V ) (V )Cm i =  − gL i − V L − gE,i i − V E − gI ,i i − V I (1) 
 
where  represent the leak, excitatory, and inhibitory conductance, respectively for, g ,  gL,i  E,i gI ,i  
the ith neuron. Within this model, a spike is generated when  crosses the threshold voltageV i  

, and is reset to .V θ V reset   
 
a.  ​HVC Layer 
 
The onset times for HVC bursts were drawn from a uniform random distribution over the 
time-course of the motif.  for all neurons.  for all neurons at all times in the(t) gI ,j = 0 (t) gE,j = 0  
song motif, except for one 6-ms excitatory pulse with magnitude 0.13 mS/cm​2​ to drive a single 
burst. The frequency and duration of the current pulses and subsequent bursts were chosen to 
mimic the actual song system (3). 
 
b. ​RA Layer with LMAN Input 
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RA neurons receive excitatory input from HVC, and both excitatory and inhibitory input from 
LMAN. Biological LMAN neurons are glutamatergic and excitatory; we modeled this excitatory 
connection and also introduced an inhibitory component representing disynaptic inhibition from 
LMAN to RA via RA interneurons (4). This balanced synaptic input allows stable song over long 
time scales. In addition, there is weak, recurrent, inhibitory activity in RA.  
 
In RA, the excitatory, synaptic conductances are described by: 
 

,]g (t) 0.0024 [W  s (t) (t) (t))E,i
RA =  ∑

 

j
ij j

HV C + (si
LMAN+ + siLMAN−

 

 (2) 

 
where W​ij​ represents the synaptic weight from the jth HVC neuron to the ith RA neuron, sjHV C  
represents the synaptic activation level from the jth HVC neuron, and  represents thesiLMAN+  
excitatory component of the synaptic activation from the LMAN input to the ith RA neuron, and 

 represents the inhibitory LMAN input. The recurrent inhibitory synaptic conductances insiLMAN−  
RA are described by: 

,(t) (0.2/N ) (t)gI ,iRA =  RA ∑
 

i
siRA (3) 

where N​RA​ is the number of RA neurons. Following an action potential in neuron i, the synaptic 
activation is increased by one, and decays exponentially with time constant  The(t)s 

i .τ s  
synaptic time course is described by: 
   

s (t)/dt (t)/τ .d i =  − s 
i s  (4) 

 
Throughout the song, each LMAN input is modeled as an independent Poisson process, with a 
constant mean firing rate (5). This firing rate was based on estimates of the song0Hzλ = 8  
system in Leonardo et al. (2004) (5). In the real system there are weak correlations between 
LMAN activity and song. Our model ignores these correlations and treats LMAN simply as a 
pure source of exploration with completely random inputs. We do not believe that introducing a 
more complex experimenter would change our results because the same HVC synapses would 
continue to be influenced by overlapping LMAN activity. 
 
c. ​The Motor Pools 
 
Song production is modeled by two non-spiking motor-pool output units that receive input from 
RA. These motor pools represent premotor nuclei controlling song features such as 
fundamental frequency and amplitude, and are defined by:  

 dm (t)/dt (t) s (t) ,τm k + mk =  ∑
 

i
Aki iRA + bk (5) 

where each motor pool has time constant  and tonic activation . Each motor pool sumsτm bk  
activity from RA weighted by a fixed set of output weights A. Half of the RA neurons project to 
motor pool 1 (m​1​) and half to motor pool 2 (m​2​). Half of m​1​ RA neurons are excitatory (A​ki​ > 0) 
and half are inhibitory (A​ki​ < 0).  
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The goal of learning in the model is for the two motor pools to reproduce a target motor 
trajectory. To generate this trajectory, the weight matrix was assigned random values on the 
interval [0, 4]; this led to a particular trajectory of motor-pool activity and was used as the target 
motor trajectory for subsequent learning throughout our study. 
 
2. Learning Parameters 
 
In our model, only HVC projections to RA are plastic. These changes are determined by  
 

,W /dt η R(t) e (t)d ij =  ij (6) 
 

where R(t) is the reinforcement signal at every time point t in the song motif, and is theη  
learning rate. determines the size of the synaptic changes after each trial, and was empiricallyη  
determined for the longer simulations and optimized to have a stable, decreasing error. The 
eligibility for plasticity at each synapse, at each time point, , is defined by:(t)eij  

    (7)(t) t  G (t ) (s (t ) < ) s (t ),eij =  ∫
t

0
d ′  − t′ i

LMAN  ′ − siLMAN  > ij
HV C ′  

 
where , n=5, and time constant . For learning to occur, coincident activity(t) t eG =  n t/τ e msτ e = 5  
from HVC and LMAN must occur at a single RA site. 
 
The eligibility trace is chosen to be non-zero when there are coincident LMAN and HVC activity 
based on two ideas. First, LMAN activity perturbs song by influencing the RA patterns of 
activation, and the song perturbations that improve performance are then consolidated in the 
HVC to RA pathway. When LMAN activity is high, and song is better than expected, this implies 
the additional, chance input from LMAN improved the song. In order to consolidate this 
improvement, the weights from HVC to RA are changed in the direction of the eligibility value: 
higher than average inputs from LMAN result in a positive eligibility trace and strengthens the 
HVC to RA synapses that were active at that moment in song. Likewise, if inputs from LMAN are 
low and song is better than expected, this implies that reduced input to RA from LMAN 
improved the song. In this scenario, the eligibility trace is negative and weakens synapses from 
HVC to RA that were active at that moment. Second, this type of eligibility trace implies a form 
of input-timing-dependent synaptic plasticity (ITDP) at the HVC-RA-LMAN nexus. Such a form 
of plasticity has been found in slice experiments in RA (6). The exact shape of our eligibility 
trace is not crucial to our results: the key aspect is that HVC cells which synapse onto the same 
RA cell and fire at nearby times would be similarly influenced by LMAN activity. 
 
Calculating eligibility is computationally intensive. To speed up simulation time, we compute the 
convolution using Fourier transforms.  
 
a. ​Learning Dynamics 
 
 The reinforcement signal is created by comparing the motor pool outputs with the target motor 
trajectory and is defined as: 
 

7



,   (8)(t) 2 [D(t) D(t)]R =  * Θ −  ˉ − 1   
 
where is the Heaviside function,  is the time delayed activity for a trial and is theΘ (t)D (t)D̄  
adaptive threshold calculated by averaging the past five trials of . Five trials were chosen(t)D  
such that reward was calculated relative to a recent expectation of song quality, as has been 
shown experimentally in Gadagkar et al. (2016) (7). The exact number of trials is not 
experimentally constrained and was chosen based on Fiete et al. (2007) (2). We do not believe 
the exact number qualitatively impacts our modeling results. is defined as:(t)D   
 

.(t ) [m (t) (t)] m (t) (t)] )D + T delay =  − ( 1ˉ − m1
2 + [ 2ˉ − m2

2 (9)  
 
Thus, when performance is better than the average of the previous five trials, the reinforcement 
signal is +1 and when it is worse than the average of the previous five trials, reinforcement is -1. 
Error shown in figures is the absolute difference between the target and actual motor-pool 
activity summed across both motor pools. 
 
When the network first starts a trial, there must be enough HVC cells active to drive the rest of 
the network. To prevent such edge effects from entering our calculations, we confined our 
analyses of error to within a conservative window, defined as the middle 100 ms of the song.  
 
 
B. Perturbations to HVC sequencing 
 
In the following sections, we describe the network configurations used to perturb HVC and the 
implementation of the tests of robustness. To model changes in HVC firing, we define an 
“epoch” in the learning process by a given number of iterations of the song: 𝑁​stop​. After each 
epoch a perturbation event occurs. We vary the number of perturbations from zero to fifty, and 
extend the simulation as needed beyond 100,000 iterations to provide a complete unperturbed 
final epoch of song. For each number of perturbations, we simulate 50 trials with different 
randomly generated initial weight matrices, by selecting the random seed.  
 
We chose punctate perturbation events for simplicity in our simulations and based on the 
experimental observation by Liberti et al (2016) that more changes in HVC activity appear to 
happen overnight when the bird is not singing (8). However, we believe that our results would 
be the same if we were to allow perturbations to happen continuously over the course of singing 
and would likely even improve the overall performance of song since a continuous method of 
perturbation would not generate the punctate jumps in error that our schemes do. 
 
1. HVC Perturbations: Pausing with Synaptic Weakening 
 
500 HVC neurons were active on each song iteration; 200 additional HVC neurons were 
paused. At the end of each epoch, we perturbed HVC by randomly sampling 30 neurons from 
the conservative window of the “active pool” of HVC cell to be placed in this “paused pool” and 
sample 30 neurons from the “paused pool” to enter the active pool. While neurons are in this 
paused pool, their synapses undergo synaptic weakening via the following equation: 
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 (10)W )/τ ,dt
dW  

ij
paused

=  − ( ij
paused −W ij

initial
LTD   

 
where is the current synaptic weight of the i​th​ synapse of the paused j​th​ HVC neuron andW ij

paused

 is the initial paused synaptic weight. In this way, the synaptic weights of pausedW ij
initial  

neurons decay back to their initial values.  
 
2. HVC Perturbations: Pausing 
 
This framework utilizes the same network configurations as above without synaptic weakening. 
While neurons are in the paused pool, all of the associated synapses are frozen until placed 
back into the active pool.  
 
3. HVC Perturbations: Time-Shifts 
 
In these simulations there are 500 active neurons in the HVC layer. At the end of each epoch, 
we perturb HVC by randomly choosing 5% of the cells and shifting their burst-onset times 
randomly within the song (Fig. 2). The new times are chosen using the equation: 
  

, t ttnew = Δ +  old  (11) 
 
where  is drawn from a uniform distribution between , where T = length of thetΔ − , ][ told T − told  
song.  
  
 
C. Exploring the Impact of Perturbations on Network Robustness 
 
To test the robustness of the network, we developed three measures. First, we quantified the 
ability of the network to learn the target activity under different numbers of perturbations. Next 
we changed the target song and investigated the speed and quality of relearning. Finally, we 
simulated RA neuron loss and measured the error introduced in the song. 
 
1. Error Reduction 
 
To quantify how well the network learned the template, we defined the measure of “error 
improvement” as the difference between the initial error and the average of the last 500 
iterations.  
 
2. Cell Loss in RA 
 
We halted activity in subpopulations (1/12 of the network) of RA, and analyzed how this affected 
performance error. The loss of neurons was restricted so that losses were equal for both the m​1 
and m​2​ motor pools. We repeated this test over 500 randomly drawn subpopulations and report 
the mean resulting error. 
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3. Shifts in Song and Relearning 
 
To shift the target song, we added a gaussian waveform, with temporal width  10 ms,σ =   
centered at the midpoint of the song to the original template motor-pool activity (Fig. 2c). To 
calculate the speed of relearning, we measured the time to half decay of the error.  
 
 
D. Origins of Robustness 
 
1. Quantifying network change due to HVC perturbations: pairwise correlation of HVC 
synaptic weights 
 
The pairwise correlation between individual HVC neurons’ synaptic weights was calculated as a 
function of the difference in timing between the HVC neurons’ burst onsets. We denote the 
outgoing weights for HVC neuron ​p​ at time ​t​ as . For all pairs of HVC projection WW t

p ≡  t
(:,p) 

 
vectors, and for which the HVC neurons’ burst-onset times ​t​ and ​t’​ are within , W t

p  W t′
q  Δττ ±   

we compute the average pairwise correlation at time separation  as:,τ  

 .(W , )Cτ
t
p W t′

q = ⟩  ⟨
(W −W )(W −W )t

p
t
p

t′
q

t′
q

√(W −W ) (W −W )t
p

t
p

2 t′
q

t′
  

q
2
all p,q: (t−t )⊆τ±Δτ′ (10) 

 
We compute ​C​t​ for all timing intervals between 0 and 50 ms; we take = 0.5 ms. To trackτ τ  Δ  
network development, these correlations were computed every 200 iterations throughout 
learning.  
 
 2. Effect of network change on relearning speed: generation of correlated, 
Gaussian-distributed random weight matrices 
 
To test our hypothesis that increasing correlations in the synaptic projections between HVC 
cells that fired at nearby times slows re-learning, we generated random weight matrices such 
that, 

W 1 )W t
p = r p

(t+δt)
 + ( − r2 * X  (11) 

 
where  is a vector of independent gaussian random variables with  and , X μ = 5 σ2 = 1 W p

(t+δt)
 

are the synaptic weights from the HVC cell which fires at the smallest latency after the HVC cell 
that fires at time t with synaptic weights, , and  is the correlation strength between theseW p

t r  
two HVC projection vectors. Changing r changes the pairwise correlation between different HVC 
neurons’ synaptic projection strengths without changing the overall distribution of weights. We 
then used these weight matrices as initial conditions for 3,000 iterations of song learning. We 
measured the relative speed of learning a function of initial correlation strength and found that 
higher correlations in the initial weight matrix lead to slower learning speeds. See figure S4 for 
results.  
 
3. Effect of network change on relearning speed: generation of random weight matrices 
from different weight distributions 
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To compare the effect of correlations within the weight matrices on re-learning speed to the 
effect of synaptic strengths on re-learning speed, we similarly generated two sets of random 
initial weight matrices drawn from two different weight distributions. We generated the first set of 
weights from the synaptic weight distribution of the control (0 perturbation) set of weights (SI 
Appendix, Fig. S2b) and the second set of weights from the synaptic weight distribution of the 
50 perturbation set of weights (SI Appendix, Fig S2b). In both sets, the correlations in the 
matrices were zero.  
 
We then used these weight matrices as initial conditions for 3,000 iterations of learning. We 
found that the distribution of initial weights had no significant impact on re-learning speed (0 
perturbation distribution time to half decay = 107.5+-9.8 iterations, 50 perturbation distribution 
time to half decay = 127.1 +- 15.4 iterations; variation is standard error; each set contains 10 
trials). This suggests that the change in weight distributions across perturbation conditions (SI 
Appendix, Fig. S2b) does not impact re-learning speeds. 
 
4. Quantifying network change due to HVC perturbations: analysis of RA activity and 
participation within song 
 
After all of the maintenance song iterations and HVC perturbations were complete, we 
quantified the resulting RA activity patterns during song. For each HVC perturbation scheme, 
the average activity of RA cells per song was calculated by simulating 50 song realizations of a 
single final weight matrix with different LMAN activity and no learning. Next, we summed across 
time to count the total number of spikes in a song per RA cell. We averaged across the 50 
different learned realizations of the song to establish the average number of spikes per song per 
final weight matrix. We then repeated this for all final weight matrices (N=50). We plot the 
histogram of these average spike counts in figure S5a-c.  

 
Using the previous simulations we calculated the cell participation within each time bin by 
counting the number of RA cells with spikes in each time bin. Time bins were chosen to be 0.5 
milliseconds long. We plot the histogram of RA cell participation in figure S5d-f. 
 
 5. Effect of network change on robustness to cell loss: impact of RA sparseness on m​1 
and m​2​ activity 
 
Based on the analysis in the previous section 3, we then considered what the effects of changes 
in RA activity would have on robustness to cell loss in RA. Because of the feedforward nature of 
the song system, synaptic activity from RA neurons sum to drive changes in m​1​ and m​2​ (see SI 
Appendix eq. 5). HVC perturbations lead to sparser RA activity during song: fewer RA neurons 
fire at any single time point in song and the average firing rate of RA neurons is lower (SI 
Appendix, Fig. S5). ​As a result of sparser RA activity, when a single RA neuron is removed from 
network, ​the change in activity in the motor pool layer is lower in proportion to the firing rate of 
the RA neuron (see SI Appendix eq. 5). The efficiency of sparse RA activity means that any one 
RA neuron’s contribution to the motor pool output is less critical.  
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6. Linear Analysis of correlated LMAN input 
 
We analytically study the effects of correlated LMAN inputs on the buildup of correlations in the 
W matrix by considering a linear, discrete-time version of our learning system. In this reduced 
model, we assume that time is discrete and that at each timestep in song, j, a single, binary 
HVC input is active. RA activity is defined by the sum of active synaptic weights onto each RA 
neuron plus an input from LMAN which is drawn from a Gaussian distribution, 𝜉𝜉ℎ𝑗𝑗 = 𝒩𝒩~(0,𝜎𝜎𝐿𝐿), 
and is independent to each cell. We define the correlation of 𝜉𝜉ℎ𝑗𝑗 across time steps in song as: 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝜉𝜉ℎ,𝑗𝑗, 𝜉𝜉ℎ,𝑗𝑗+𝑟𝑟� ≡ 𝑐𝑐𝐿𝐿(𝑟𝑟) where r is the number of discrete time steps separating the LMAN 
inputs. We assume that the RA network projects to a single, time varying output variable, m, 
which is defined as the sum of the RA activity at each time step weighted by a static projection 
weight vector, 𝐴𝐴𝑖𝑖, whose elements are drawn independently from a Gaussian distribution, 𝐴𝐴𝑖𝑖 =
𝒩𝒩~(0,𝜎𝜎𝑎𝑎) for a single network realization. ‘m’ at time step j is thus,  
 

𝑚𝑚𝑗𝑗 = � 𝐴𝐴ℎ(𝑊𝑊ℎ𝑗𝑗 + 𝜉𝜉ℎ𝑗𝑗)
𝑁𝑁𝑅𝑅𝑅𝑅

ℎ=1
. 

 
We quantify network performance by comparing the network output, 𝑚𝑚𝑗𝑗, to a target output, 𝑚𝑚�𝑗𝑗: 
𝑅𝑅𝑗𝑗
𝜉𝜉 = �𝑚𝑚�𝑗𝑗 − 𝑚𝑚𝑗𝑗�2 = �𝑚𝑚�𝑗𝑗 − �∑ 𝐴𝐴𝑖𝑖�𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖𝑖𝑖�

𝑁𝑁𝑅𝑅𝑅𝑅
𝑖𝑖=1 ��

2
. We define a reinforcement signal as the 

difference between this network performance and a noiseless version of the network, which we 
define as: 𝑅𝑅𝑗𝑗0 = �𝑚𝑚�𝑗𝑗 −𝑚𝑚𝑗𝑗�2 = �𝑚𝑚�𝑗𝑗 − �∑ 𝐴𝐴𝑖𝑖�𝑊𝑊𝑖𝑖𝑖𝑖�

𝑁𝑁𝑅𝑅𝑅𝑅
𝑖𝑖=1 ��

2
 (2). The reward function is therefore: 

 
𝑅𝑅𝑗𝑗 = 𝑅𝑅𝑗𝑗0 − 𝑅𝑅𝑗𝑗

𝜉𝜉 . 
 
When the noise input from LMAN improves the performance of the network relative to no noise 
input, 𝑅𝑅𝑗𝑗 is positive, and when the noise input from LMAN results in worse performance, 𝑅𝑅𝑗𝑗 is 
negative. At the Nth iteration of learning, the weight from the jth HVC neuron to the hth RA neuron 
is given by: 
 

𝑤𝑤ℎ𝑗𝑗𝑁𝑁 = 𝑤𝑤ℎ𝑗𝑗0 + � Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛
𝑁𝑁

𝑛𝑛=1
. 

 
𝑤𝑤ℎ𝑗𝑗0  is the initial, random weight value and Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛  is the change in weight 𝑤𝑤ℎ𝑗𝑗 on the nth song 
iteration. We define the learning rule for the change in weights at each song iteration, n, as: 
 

Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 = 𝜂𝜂𝑅𝑅𝑗𝑗𝑛𝑛𝜉𝜉ℎ𝑗𝑗𝑛𝑛 , 
 
where 𝑅𝑅𝑗𝑗𝑛𝑛 is 𝑅𝑅𝑗𝑗 evaluated on the nth song iteration, and 𝜂𝜂 is the learning rate that determines 
how much each weight changes at each song iteration (2). This learning rule is a discrete 
adaptation of the original learning rule.  
 
We wish to determine whether positive correlations in the noise inputs from LMAN lead to 
positive correlations in weights of neighboring HVC inputs. To do this, we calculate the 
covariance of neighboring weight changes within a single song iteration with respect to all 
LMAN inputs: 〈Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 ,Δ𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟

𝑛𝑛 〉𝜉𝜉𝑎𝑎𝑎𝑎𝑛𝑛 ,𝜉𝜉𝑎𝑎𝑎𝑎+𝑟𝑟
𝑛𝑛 ; 𝑎𝑎=1:𝑁𝑁𝑅𝑅𝑅𝑅 = 𝐸𝐸�Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛  Δ𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟

𝑛𝑛 � − 𝐸𝐸�Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 �𝐸𝐸�Δ𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟
𝑛𝑛 �.    

 
Expanding the terms in 𝑅𝑅𝑗𝑗, we find 
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𝑅𝑅𝑗𝑗𝑛𝑛 = 2𝑚𝑚�𝑗𝑗� 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛𝐴𝐴𝑖𝑖
𝑁𝑁𝑅𝑅𝑅𝑅

𝑖𝑖=1
− 2� � 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛

𝑁𝑁𝑅𝑅𝑅𝑅

𝑘𝑘=1
𝜉𝜉𝑘𝑘𝑘𝑘𝑛𝑛 𝐴𝐴𝑖𝑖𝐴𝐴𝑘𝑘

𝑁𝑁𝑅𝑅𝑅𝑅

𝑖𝑖=1
−� � 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛

𝑁𝑁𝑅𝑅𝑅𝑅

𝑘𝑘=1
𝜉𝜉𝑘𝑘𝑘𝑘𝑛𝑛 𝐴𝐴𝑖𝑖𝐴𝐴𝑘𝑘

𝑁𝑁𝑅𝑅𝑅𝑅

𝑖𝑖=1
. 

 
So,  

Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 = 2𝜂𝜂𝜉𝜉ℎ𝑗𝑗𝑛𝑛 𝑚𝑚�𝑗𝑗� 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛𝐴𝐴𝑖𝑖
𝑁𝑁𝑅𝑅𝑅𝑅

𝑖𝑖=1
− 2𝜂𝜂𝜉𝜉ℎ𝑗𝑗𝑛𝑛 � � 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛

𝑁𝑁𝑅𝑅𝑅𝑅

𝑘𝑘=1
𝜉𝜉𝑘𝑘𝑘𝑘𝑛𝑛 𝐴𝐴𝑖𝑖𝐴𝐴𝑘𝑘

𝑁𝑁𝑅𝑅𝑅𝑅

𝑖𝑖=1
− 𝜂𝜂𝜉𝜉ℎ𝑗𝑗𝑛𝑛 � � 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛

𝑁𝑁𝑅𝑅𝑅𝑅

𝑘𝑘=1
𝜉𝜉𝑘𝑘𝑘𝑘𝑛𝑛 𝐴𝐴𝑖𝑖𝐴𝐴𝑘𝑘

𝑁𝑁𝑅𝑅𝑅𝑅

𝑖𝑖=1
. 

 
 
The covariance 〈Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 ,Δ𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟

𝑛𝑛 〉 can be divided into nine sums of covariances. In computing the 
terms in the covariance, we assume that 𝑤𝑤ℎ𝑗𝑗𝑛𝑛 ≥ 0 for all 𝑤𝑤ℎ𝑗𝑗𝑛𝑛 . This assumption comes from the 
parameters of the bird song system: HVC to RA projections are excitatory. We make use of 
Isserlis’ theorem to compute the high order terms of the multivariate gaussians in the covariance 
expression. The sign of portions of the covariance depends on the specific realizations of 𝐴𝐴𝑖𝑖 ’s. 
The 𝐴𝐴𝑖𝑖 variables are arbitrarily chosen output weights from RA to the motor pool that are 
independently drawn from a Gaussian distribution, 𝐴𝐴𝑖𝑖 = 𝒩𝒩~(0,𝜎𝜎𝑎𝑎), at the beginning of a 
learning trial and are fixed throughout. Thus, we take the expectation over 𝐴𝐴𝑖𝑖 ’s over different 
realizations of this network. 
 
After evaluating each term in the covariance expression as described above, we get this final 
expression:  
 

〈Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 ,Δ𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟
𝑛𝑛 〉 =  4𝜂𝜂2(𝜎𝜎𝐿𝐿2𝑐𝑐𝐿𝐿(𝑟𝑟))2� �3𝜎𝜎𝑎𝑎2(𝑤𝑤𝑘𝑘,𝑗𝑗+𝑟𝑟

𝑛𝑛 𝑤𝑤𝑘𝑘𝑘𝑘𝑛𝑛 ) +  � 𝜎𝜎𝑎𝑎4(𝑤𝑤𝑝𝑝,𝑗𝑗+1
𝑛𝑛 𝑤𝑤𝑝𝑝𝑝𝑝𝑛𝑛 )

𝑁𝑁𝑅𝑅𝑅𝑅

𝑝𝑝=1,≠𝑘𝑘
�

𝑁𝑁𝑅𝑅𝑅𝑅

𝑘𝑘=1,≠ℎ
  

+ 8𝜂𝜂2𝑐𝑐𝐿𝐿2(𝑟𝑟)�3𝜎𝜎𝑎𝑎2𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟
𝑛𝑛 𝑤𝑤ℎ𝑗𝑗𝑛𝑛 + 𝜎𝜎𝑎𝑎4� 𝑤𝑤𝑝𝑝,𝑗𝑗+𝑟𝑟

𝑛𝑛 𝑤𝑤𝑝𝑝𝑝𝑝𝑛𝑛
𝑁𝑁𝑅𝑅𝑅𝑅

𝑝𝑝=1,≠ℎ
� + 4𝜂𝜂2(𝜎𝜎𝐿𝐿2𝑐𝑐𝐿𝐿(𝑟𝑟))2𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗+𝑟𝑟(𝑁𝑁 − 1)𝜎𝜎𝑎𝑎2 

 
+ 8𝜂𝜂2𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗+𝑟𝑟𝜎𝜎𝑎𝑎2𝑐𝑐𝐿𝐿2(𝑟𝑟)

+ 𝜂𝜂2𝜎𝜎𝑎𝑎4 �4(𝑁𝑁 − 1)(𝜎𝜎𝐿𝐿6𝑐𝑐𝐿𝐿(𝑟𝑟) + 2𝑐𝑐𝐿𝐿3(𝑟𝑟)𝜎𝜎𝐿𝐿2) + �6𝜎𝜎𝐿𝐿4𝑐𝑐𝐿𝐿(𝑟𝑟)(𝑁𝑁 − 1)�
+ 4(𝑁𝑁 − 1)(𝑁𝑁 − 2)𝑐𝑐𝐿𝐿3(𝑟𝑟)𝜎𝜎𝐿𝐿6 + 2(𝑁𝑁 − 1)(𝑁𝑁 − 2)𝑐𝑐𝐿𝐿(𝑟𝑟)𝜎𝜎𝐿𝐿6

+ 3(𝑁𝑁 − 1)(𝜎𝜎𝐿𝐿6𝑐𝑐𝐿𝐿(𝑟𝑟) + 2𝑐𝑐𝐿𝐿3(𝑟𝑟)𝜎𝜎𝐿𝐿2) + 9(2𝜎𝜎𝐿𝐿6𝑐𝑐𝐿𝐿3(𝑟𝑟) + 3𝜎𝜎𝐿𝐿6𝑐𝑐𝐿𝐿(𝑟𝑟))�.  
 
 
This expression shows that all terms of this covariance are, on average, non-negative under 
some assumptions about 𝑚𝑚𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑗𝑗+𝑟𝑟: (1) either 𝐸𝐸�𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗+𝑟𝑟�  ≥ 0 or (2) the values of all 𝑚𝑚𝑗𝑗 are 
the same sign. It is unlikely that 𝐸𝐸�𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗+𝑟𝑟� < 0 for small r, given that our time step between j 
and j+1 is small, 0.5 ms, and, in general, there would be correlations in neighboring portions of 
a motor sequence. Note, that all 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0, so while we do not calculate the explicit values of the 
sums, these terms are always positive. Correlations in LMAN input add to the magnitude of the 
covariance of changes in w.    
 
If 𝐸𝐸�𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗+𝑟𝑟�  ≥ 0 but 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝜉𝜉ℎ,𝑗𝑗, 𝜉𝜉ℎ,𝑗𝑗+𝑟𝑟� = 0, then 〈Δ𝑤𝑤ℎ𝑗𝑗𝑛𝑛 ,Δ𝑤𝑤ℎ,𝑗𝑗+𝑟𝑟

𝑛𝑛 〉 = 0. This shows that 
correlations in LMAN inputs are necessary for driving correlations in the weight changes in this 
simple model.  
 
Lastly, this simple model shows why either temporarily silencing HVC cells or randomly 
changing their timing within the sequence would slow the growth of correlations in the synaptic 
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weights: cells would be exposed to less correlated LMAN activity because there would be 
iterations where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝜉𝜉ℎ,𝑗𝑗, 𝜉𝜉ℎ,𝑗𝑗+𝑟𝑟� = 0. 
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Parameters 

Conductance model Description Parameter name Value 

 Membrane 
capacitance 

Cm  μF /cm1 2  

 Leak equilibrium 
potential 

V​L -60 mV 

 HVC leak 
conductance  

g​L 0.3 mS/cm​2 

 RA leak conductance g​L 0.44 mS/cm​2 

 Action potential 
threshold 

V θ  -50 mV 

 Reset potential V​reset -55 mV 

Connectivity Weight Matrix W   

 Paused Steady State 
Weights 

W initial
   

 Paused Pool Weights W Paused   

 RA Neuron Count NRA  48 

 HVC Active Neuron 
Count 

NHV C  500 

 HVC Paused Neuron 
Count 

NHV C Paused  200 

 LMAN Neuron Count NLMAN  48 

Synaptic parameters Synaptic Time 
Constant 

τ s  5 ms 

Motor Pool Motor Pool Time 
Constant 

τm  5 ms 

 Tonic Activation 1 b1  60 

 Tonic Activation 2 b2  40 

 RA Positive Output 
Weights 1 

Aij  40/N4 RA  
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 RA Negative Output 
Weights 1 

Aij  40/N− 4 RA  

 RA Positive Output 
Weights 2 

Aij  60/N6 RA  

 RA Negative Output 
Weights 2 

Aij  60/N− 6 RA  

Learning Learning Rate η  05 * 1 −5  

 Eligibility Time 
Constant 

τ e  5 ms 

 Iterations in a Epoch N stop  50,000-2,000 

 Number of Epochs NEpoch  1-50 

 LTD Time COnstant τLTD  .001 

 Number of neurons 
place in paused pool 

N change  30 Each 
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