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Abstract 
 
Patients with mild cognitive impairment (MCI) are at risk of progressing to Alzheimer's             

dementia, yet only a fraction of them do. We explore here whether a very high-risk MCI                

subgroup can be identified using cognitive assessments and structural neuroimaging. A           

multimodal signature of Alzheimer's dementia was first extracted using machine learning           

tools in the ADNI1 sample, and was comprised of cognitive deficits across multiple domains              

as well as atrophy in temporal, parietal and occipital regions. We then validated the predictive               

value of this signature on two MCI cohorts. In ADNI1 (N=235), the presence of the signature                

predicted progression to dementia over three years with 80.4% positive predictive value,            

adjusted for a "typical" MCI baseline rate of 33% (95.6% specificity, 55.1% sensitivity).             

These results were replicated in ADNI2 (N=235), with 87.8% adjusted positive predictive            

value (96.7% specificity, 47.3% sensitivity). Our results demonstrate that, even for widely            

used markers, marked improvement in positive predictive value over the literature can be             

achieved by focusing on a subgroup of individuals with similar brain characteristics. The             

signature can be readily applied for the enrichment of clinical trials. 
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Introduction 
Alzheimer’s disease (AD), a leading cause of dementia, is marked by the abnormal             

accumulation of amyloid 𝛽 (A𝛽) and hyperphosphorylated tau proteins in the brain, which             

leads to widespread neurodegeneration. AD has a long prodromal phase, and it has been              

difficult to predict which individuals will decline and experience AD dementia. While mild             

cognitive impairment (MCI) is often considered a prodromal stage of AD, only a fraction (up               

to 36%) of MCI patients will develop dementia within two years  [1] . Identifying MCI              

patients who will progress to AD dementia with enough specificity has been a challenge for               

clinical trials, where the inclusion criteria for MCI subjects have had low to moderate positive               

predictive value (PPV)  [2] . This lack of prognostic power may be due to individual              

variability. Different clinical phenotypes have been described where patients will exhibit           

distinct cognitive deficits  [3] . Previous work has also characterized neuropathological          

subtypes based on the distribution of neurofibrillary tangles  [4] , which correspond well to             

distinct patterns of brain atrophy  [5] . Different subtypes of brain atrophy have also been              

associated with different rates of progression to dementia  [6] . The implications for prognosis             

are profound: only a subgroup of patients will have clinical trajectories that can be reliably               

predicted. We therefore propose to identify a subset of individuals with a homogenous             

signature of brain atrophy and cognitive deficits who will progress to AD dementia with high               

precision. 

There is a large field focused on using machine learning to automatically detect MCI              

patients who will progress to AD dementia based on imaging and cognitive features. For              

models combining structural MRI and cognition, in terms of accuracy, the best has been              

reported at 79% (76% specificity, 83% sensitivity)  [7] . The state-of-the-art, which used A𝛽             

positron emission tomography scans, has so far achieved 82% accuracy (87% specificity,            

71% sensitivity)  [8] . Note that accuracy is defined as the proportion of subjects that were               

correctly identified, either as positives or negatives. PPV, on the other hand, is defined as the                

proportion of true positives out of all subjects that were classified as positive. A model can                

have high accuracy yet moderate PPV if the proportion of true positives is low relative to true                 

negatives. In the case of predicting incipient AD, relatively few MCI subjects progress to              

dementia. Despite promising accuracy, the PPVs of models predicting AD progression remain            

moderate, ranging from 50 to 75% across the literature  [9] . This implies that up to half of                 

subjects who were identified as progressors by published algorithms did not actually progress             
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to dementia. It seems that by focussing our efforts on improving accuracy, we have a reached                

a plateau in generating models with good precision. We therefore aimed to create a predictive               

model that was optimized for high PPV. 

In this work, we developed a multimodal signature that is highly predictive of             

progression to AD dementia in a subgroup of MCI patients, based on cognition and subtypes               

of grey matter atrophy. We also aimed to evaluate the complementarity of features derived              

from cognition and atrophy patterns. Although this has been extensively studied for prognosis             

of dementia in a general MCI population, the complementarity of these measures is not              

documented in the specific context of a high risk signature. We applied a cluster analysis on                

structural magnetic resonance images to identify subtypes of brain atrophy in a sample             

containing both patients with AD dementia and cognitively normal (CN) individuals. We then             

used a two-step machine learning algorithm  [9] to train a model to identify three signatures               

that were highly predictive of AD dementia: 1) an anatomical signature, 2) a cognitive              

signature, 3) a multimodal anatomical and cognitive signature. After identifying MCI patients            

carrying these signatures, we examined cognitive decline, A𝛽 and tau burden, and            

progression to dementia in these individuals to explore whether a highly predictive signature             

represented a prodromal stage of AD. We analysed whether these three signatures identified             

separate subgroups of subjects and how they performed against each other in terms of PPV,               

specificity, and sensitivity at identifying progressors. 

 

Materials and methods 

Data 

Data used in the preparation of this article were obtained from the Alzheimer's             

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was         

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.             

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance               

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical           

and neuropsychological assessment can be combined to measure the progression of mild            

cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information,           

see www.adni-info.org.  
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We took baseline T1-weighted MRI scans from the ADNI1 (228 CN, 397 MCI, 192              

AD) and ADNI2 (218 CN, 354 MCI, 103 AD) studies. For a detailed description of MRI                

acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/. All     

subjects gave informed consent to participate in these studies, which were approved by the              

research ethics committees of the institutions involved in data acquisition. Consent was            

obtained for data sharing and secondary analysis, the latter being approved by the ethics              

committee at the CRIUGM. For the MCI groups, each individual must have had at least 36                

months of follow-up for inclusion in our analysis. We also further stratified the MCI groups               

into stable (sMCI), who never received any change in their diagnosis, and progressors             

(pMCI), who received a diagnosis of AD dementia within 36 months of follow-up. pMCI              

who progressed to AD dementia after 36 months were excluded. After applying these             

inclusion/exclusion criteria, we were left with 280 and 268 eligible MCI subjects in ADNI1              

and ADNI2 respectively. 

 

Structural features from voxel-based morphometry 

Images were processed with the NeuroImaging Analysis Kit (NIAK) version 0.18.1           

(https://hub.docker.com/r/simexp/niak-boss/), the MINC toolkit (http://bic-mni.github.io/)     

version 0.3.18, and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) under      

CentOS with Octave (http://gnu.octave.org) version 4.0.2. Preprocessing of MRI data was           

executed in parallel on the Cedar supercomputer (https://docs.computecanada.ca/wiki/Cedar),        

using the Pipeline System for Octave and Matlab (PSOM)  [10] . Each T1 image was linearly               

co-registered to the Montreal Neurological Institute (MNI) ICBM152 stereotaxic symmetric          

template  [11] , using the CIVET pipeline  [12] , and then re-oriented to the AC-PC line. Each               

image was segmented into grey matter, white matter, and CSF probabilistic maps. The             

DARTEL toolbox  [13] was used to normalize the grey matter segmentations to a predefined              

grey matter template in MNI152 space. Each map was modulated to preserve the total amount               

of signal and smoothed with with a 8 mm isotropic Gaussian blurring kernel. After quality               

control of the normalized grey matter segmentations, we were left with 621 subjects in              

ADNI1 (out of 700, 88.7% success rate) and 515 subjects in ADNI2 (out of 589, 87.4%                

success rate).  

We extracted subtypes to characterize variability of grey matter distribution with the            

CN and AD samples from ADNI1. In order to reduce the impact of factors of no interest that                  
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may have influenced the clustering procedure, we regressed out age, sex, mean grey matter              

volume (GMV), and total intracranial volume (TIV), using a mass univariate linear regression             

model at each voxel. We then derived a spatial Pearson's correlation coefficient between all              

pairs of individual maps after confound regression. This defined a subject x subject (377 x               

377) similarity matrix which was entered into a Ward hierarchical clustering procedure            

(Figure 1a). Based on visual inspection of the similarity matrix, we identified 7 subgroups              

(Figure 1b). Each subtype was defined as the average map of each subgroup. For each               

subject, we computed spatial correlations between their map and each subtype, which we call              

weights (Figure 1a). The weights formed a n subject x n subtypes matrix, which was included                

in the feature space for all predictive models including VBM throughout this work. As in our                

previous works  [9,14] , we chose to use weights, which can be interpreted as continuous              

measures for subtype affinity, over discrete subtype membership because the latter is less             

informative as most individuals express similarity to multiple subtypes  [15] . Note that            

although we chose to present our findings with 7 subtypes, we examined how the number of                

subtypes may impact our subsequent predictions. There was no significant difference in            

model performance when we changed the number of subtypes (see Table S1 in supplementary              

material). 

 

Cognitive features 

We took baseline neuropsychological scores for each subject from several cognitive           

domains: memory from the composite score ADNI-MEM  [16] , executive function from the            

composite score ADNI-EF  [17] , language from the Boston Naming Test (BNT), visuospatial            

from the clock drawing test, and global cognition from the Alzheimer's Disease Assessment             

Scale-Cognitive (ADAS13). We chose measures that span multiple cognitive domains as it            

has been suggested that the use of a combination of neuropsychological measures is likely the               

best approach to predicting incipient dementia  [18] . These scores were included as features             

for the predictive models involving cognition. Thirteen subjects across both ADNI1 and            

ADNI2 (8 AD, 5 MCI) had to be excluded due to missing values in their cognitive                

assessments. See Table 1 for demographic information of subjects who were included in             

analyses. 
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Prediction of easy AD dementia cases in ADNI1 

We trained a linear support vector machine (SVM) model with a linear kernel, as              

implemented by Scikit-learn  [19] version 0.18 to classify AD vs CN from ADNI1 to get a                

baseline prediction accuracy. A tenfold cross-validation loop was used to estimate the            

performance of the trained model. Classes were balanced inversely proportional to class            

frequencies in the input data for the training. A nested cross-validation loop (stratified shuffle              

split with 50 splits and 20% test size) was used for the grid search of the hyperparameter  C                  

(grid was 10 -2 to 10 1 with 15 equal steps). We randomly selected subsamples of the dataset                

(retaining 50% of participants in each subsample) to replicate the SVM training 500 times.              

For each 50% subsample, a separate SVM model was trained to predict AD or CN in ADNI1.                 

Predictions were made on the remaining 50% of the sample that was not used for training.                

For each subject, we calculated a hit probability defined as the frequency of correct              

classification across all SVM replications in which the test set contained that subject. Easy              

AD cases were defined as individuals with 100% hit probabilities with the AD label. Next,               

we trained a logistic regression classifier  [20] , with L1 regularization on the coefficients, to              

predict the easy AD cases. A stratified shuffle split (500 splits, 50% test size) was used to                 

estimate the performance of the model for the grid search of the hyperparameter  C (grid was                

10 -2 to 10 1 with 15 equal steps). See  [9] for more information about this two-step prediction.                

We used the whole CN and AD sample from ADNI1 to obtain three highly predictive               

signatures (HPS), one using VBM subtypes (VBM only), one using cognitive features (COG             

only), and one using the combination of VBM and cognitive features (VCOG). In all three               

signatures, age, sex, mean GMV, and TIV were also included as features. 

 

Prediction of progression to AD dementia from the MCI stage in ADNI1 

The logistic regression trained on AD vs CN was used to identify MCI patients who               

have a HPS of AD dementia in ADNI1. We re-trained our models on AD vs CN after                 

optimizing our hyperparameters (resampling size and resampling ratio) in order to maximize            

specificity and PPV while keeping a minimum of 30% sensitivity for our classification of              

sMCI (n=89) vs pMCI (n=155) in ADNI1. This was done for all three signatures. In brief, we                 
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used the AD and CN sample from ADNI1 as a training set, the MCI subjects from ADNI1 as                  

a validation set, and ADNI2 served as our test set. 

 

Statistical test of differences in model performance 

We used Monte-Carlo simulations to generate confidence intervals on the          

performance (i.e. PPV, specificity and sensitivity) of both base SVM and HPS models for              

their predictions of AD vs CN and pMCI vs sMCI. Taking the observed sensitivity and               

specificity, and using similar sample sizes to our experiment, we replicated the number of              

true and false positive detection 100000 times using independent Bernoulli variables, and            

derived replications of PPV, specificity and sensitivity. By comparing these replications to the             

sensitivity, specificity and PPV observed in both models, we estimated a p-value for             

differences in model performance  [21] . A p-value smaller than 0.05 was interpreted as             

evidence of a significant difference in performance, and 0.001 as strong evidence. We also              

used this approach to compare the performance of the combined features (VCOG) to the              

models containing VBM features or cognitive features only. Note that, based on our             

hypotheses regarding the behaviour of the HPS model, the tests were one-sided for increased              

specificity and PPV, and one-sided for decreased sensitivity.  

 

Statistical tests of association of progression, AD biomarkers, and risk factors in            

HPS+ MCI subjects 

Based on the classifications resulting from the base SVM and HPS models, we             

separated the MCI subjects into three different groups: 1) HPS+, subjects who were selected              

by the HPS model as hits, 2) Non-HPS+, subjects who were selected by the base SVM model                 

as hits but were not selected by the HPS model, and 3) Negative, subjects who were not                 

selected as hits by either algorithm.  

We tested statistically if the HPS+ subgroup was enriched for progression to            

dementia, APOE4 carriers, females, and subjects who were positive for A𝛽 and tau pathology.              

Positivity of AD pathology was determined by CSF measurements of A𝛽 1-42 peptide and              

total tau with cut-off values of less than 192 pg/mL and greater than 93 pg/mL respectively                

[22] . We implemented Monte-Carlo simulations, where we selected 100000 random          

subgroups out of the original MCI sample. By comparing the proportion of progressors,             
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APOE4 carriers, females, A𝛽-positive, and tau-positive subjects in these null replications to            

the actual observed values in the HPS subgroup, we estimated a p-value  [21] (one sided for                

increase). A p-value smaller than 0.05 was interpreted as evidence of a significant             

enrichment, and 0.001 as strong evidence. 

One-way ANOVAs were used to evaluate differences between the HPS groupings           

with respect to age. Post-hoc Tukey's HSD tests were done to assess pairwise differences              

among the three classes (HPS+, Non-HPS+, Negative). These tests were implemented in            

Python with the SciPy library  [23]  version 0.19.1 and StatsModels library  [24]  version 0.8.0. 

To explore the impact of HPS grouping on cognitive trajectories, linear mixed effects             

models were performed to evaluate the main effects of and interactions between the HPS              

groups and time on ADAS13 scores up to 36 months of follow-up. The models were first fit                 

with a random effect of participant and then were fit with random slopes (time | participant) if                 

ANOVAs comparing the likelihood ratio suggested a significant improvement in model fit.            

All tests were performed separately on the ADNI1 and ADNI2 datasets. These tests were              

implemented in R version 3.3.2 with the library nlme version 3.1.128  [25] . 

 

Public code and data availability 

The code used in this experiment is available on a GitHub repository            

( https://github.com/SIMEXP/vcog_hps_ad ) and zenodo   

( https://doi.org/10.5281/zenodo.1444081) .  

We shared a notebook replicating all the machine learning experiments, starting after            

the generation of VBM subtypes. However, in order to protect the privacy of the study               

participants, we could not share individual subtype weights alongside other behavioural data            

and diagnostic information. We thus created parametric (Gaussian) bootstrap simulations,          

based on group statistics alone, that will allow interested readers to replicate results similar to               

those presented in this manuscript, using the exact same code and computational environment             

that were used on real data, but with purely synthetic data instead. The notebook can be                

executed online via the binder platform ( http://mybinder.org ), and runs into a docker            

container 

( https://mybinder.org/v2/gh/HanadS/vcog_hps_ad/master?filepath=%2Fvcog_hpc_prediction

_simulated_data.ipynb) , built from a configuration file that is available on GitHub           
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( https://github.com/SIMEXP/vcog_hps_ad/blob/master/Dockerfile ). The container itself is     

available on Docker Hub ( https://hub.docker.com/r/simexp/vcog_hps_ad/) . The simulated       

data was archived on figshare     

( https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/71

32757 ).  

The simulation included the following 16 variables: age, sex, mean grey matter            

volume, total intracranial volume, 5 cognitive assessment scores and 7 VBM subtype weights             

from both ADNI1 and ADNI2. Subjects that had missing values for these variables were              

discarded from the simulation, leaving N=1115 subjects. We stratified the population into 12             

subgroups: the four clinical labels (AD, pMCI, sMCI, CN), each further subdivided by the              

three prediction subclasses identified in this paper (Negative, Non-HPS+, HPS+). For each            

subgroup, we estimated the average and covariance matrices between the 16 variables of             

interest. We then generated a number of multivariate normal data points that matched the              

number of subjects found in each subgroup, using the empirical mean and covariance matrix              

of each subgroup. Finally, the range of the simulated data was clipped to the range of the                 

original real data, and the simulated sex data points were binarized by nearest neighbour.  

The statistics from the predictive model in the original implementation are similar to             

that of the simulated data. The model predicted the progression of dementia from MCI in               

ADNI1 with a PPV of 93.1% (specificity of 93.2%) on real data. This coincides with a 93.3%                 

PPV (specificity of 94.3% ) that we get when using the simulated data. Similarly, with the                

ADNI2 dataset the model achieved a 81.3% PPV (specificity of 96.7%) from the real data               

and a 75.7% PPV (specificity of 95.0%) from the simulated data.  

 

Results 

Prediction of AD dementia vs cognitively normal individuals 

The SVM model trained using the VCOG features achieved 94.5% PPV (95.6%            

specificity, 93.9% sensitivity) when classifying AD vs CN in ADNI1. Such high performance             

was expected given the marked cognitive deficits associated with clinical dementia. COG            

features only actually reached excellent performance as well (97.6% PPV, 98.0% specificity,            

96.4% sensitivity), while using VBM features only yielded markedly lower performances           

(86.4% PPV, 89.3% specificity, 79.6% sensitivity) (see Figure 2a). Note that the performance             

9 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/SIMEXP/vcog_hps_ad/blob/master/Dockerfile
https://hub.docker.com/r/simexp/vcog_hps_ad/
https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/7132757
https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/7132757


284

286

288

290

292

294

296

298

300

302

304

306

308

310

312

314

metrics in ADNI1 were estimated through cross-validation, and represent an average           

performance for several models trained on different subsets of ADNI1. We then trained a              

model on all of ADNI1, and estimated its performance on an independent dataset, ADNI2.              

Using VCOG predictors, the ADNI1 model reached 92.0% PPV (96.3% specificity, 92.0%            

sensitivity), when applied on ADNI2 AD vs CN data. Again the performance was comparable              

with COG predictors only (92.2% PPV, 96.3% specificity, 94.3% sensitivity), and lower            

performance with VBM features only (57.3% PPV, 79.8% specificity, 56.7% sensitivity) (see            

Figure 2a). Note that PPV is dependent on the proportion of patients and controls for a given                 

sensitivity and specificity. Since the ADNI2 sample had a substantially smaller proportion of             

AD subjects compared to ADNI1, the resulting PPV was reduced. When we adjusted the              

baseline rate of AD subjects in ADNI2 to the same rate in ADNI1, the PPVs were 95.2%,                 

95.3%, and 70.2% for the VCOG, COG, and VBM models respectively.  

 

Identification of easy AD cases for prediction 

The VCOG HPS model achieved 99.2% PPV (99.5% specificity, 77.6% sensitivity) in            

classifying easy AD subjects in ADNI1. These performance scores were estimated by            

cross-validation of the entire two-stage process (training of SVM, estimation of hit            

probability, identification of HPS). However, the hyperparameters of the two-stage model           

were optimized on classifying pMCI vs sMCI in ADNI1, as described below. We next trained               

a single model on all of ADNI1, which we applied on an independent sample (ADNI2). The                

ADNI1 AD VCOG HPS model reached 98.6% PPV (99.5% specificity, 79.5% sensitivity) on             

ADNI2. As was previously observed with the conventional SVM analysis, the VCOG HPS             

model had similar performance to the COG HPS model (ADNI1: 100% PPV, 100%             

specificity, 87.3% sensitivity; ADNI2: 98.7% PPV, 99.5% specificity, 88.6% sensitivity), and           

outperformed the VBM HPS model (ADNI1: 92.3% PPV, 96.1% specificity, 54.6%           

sensitivity; ADNI2: 65.2% PPV, 91.5% specificity, 33.3% sensitivity), see Figure 2a. When            

adjusted to the same baseline rate of AD subjects as ADNI1, the PPVs in ADNI2 were                

99.2%, 99.3%, and 76.7% for the VCOG, COG, and VBM HPS models respectively.  

The HPS models consistently outperformed the base SVM classifiers with respect to            

specificity (p<0.001) in the classifications of AD vs CN and pMCI vs sMCI in both ADNI1                

and ADNI2, regardless of the features that the models contained. The HPS also had greater               

PPV (p<0.05) adjusted for a typical prevalence of 33.6% pMCI in a given sample of MCI                
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subjects  [26] . However, these increases in specificity and PPV for the HPS model came at a                

significant cost of reduced sensitivity compared to the base classifier, across all models in              

both ADNI1 and ADNI2 (p<0.05) (Figure 2). Note that this shift towards lower sensitivity              

and higher specificity and PPV could be achieved by adjusting the threshold of the SVM               

analysis (see ROC analysis, Figure S1 in supplementary material), and is not unique to the               

two-stage procedure we implemented.  

 

High confidence prediction of progression to AD dementia  

When using the full VCOG features, 87 MCI patients were selected as HPS+ in              

ADNI1, out of which 81 (93.1% PPV) were pMCI within 36 months of follow-up. This               

represented a large, significant increase over the baseline rate of progressors in the entire              

ADNI1 MCI sample (37.4%) (p<0.001). This was also a significant increase over the SVM's              

predictions, where 83.9% of subjects that it had labeled as hits were true progressors              

(p<0.001). When adjusted to a 33.6% baseline rate of progressors, more typical of MCI              

populations, the PPV of HPS+ for prognosis of dementia was 80.4% (93.2% specificity,             

55.1% sensitivity).  

We replicated these analyses in the MCI sample from ADNI2 (N=235). Using VCOG             

features, 32 subjects were identified as HPS+, 26 of which progressed to AD dementia within               

36 months follow-up (81.2% PPV, specificity of 96.7%, sensitivity of 47.3%, 87.8% PPV             

adjusted to a 33.6% baseline rate). This represented a significantly higher prevalence than the              

30.6% baseline rate in the entire ADNI2 MCI cohort (p<0.001). This was also a significant               

increase over the SVM's predictions, where 67.8% of subjects it had labeled as hits were true                

progressors (p<0.001). As expected, the HPS+ model had lower sensitivity and higher            

specificity/PPV than the baseline model, both in ADNI1 and ADNI2, and for all three feature               

sets (VBM, COG and VCOG), see Figure 2b. The VCOG features also lead to higher PPV                

than VBM and COG features taken independently, both in ADNI1 and ADNI2. That increase              

was large and significant between VCOG and VBM (up to 17%) and marginal and              

non-significant between VCOG and COG (up to 8%), see Figure 2b. 

 

Characteristics of MCI subjects with a highly predictive VCOG signature of AD 
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HPS+ MCI subjects with the VCOG signature were more likely to be progressors             

(Figure 3a) compared to non-HPS+ subjects and negative subjects (ADNI1: p<0.001;           

ADNI2: p<0.001). HPS+ MCI subjects were also more likely to be APOE4 carriers (Figure              

3b) (ADNI1: p<0.005; ADNI2: p<0.05). There was no difference in sex across the HPS              

groupings in the MCI subjects of either the ADNI1 or ADNI2 cohorts (Figure 3c). This was                

consistent with the whole sample, where there were equal proportions of progressors across             

both sexes in each dataset (ADNI1: χ 2 =0.015, p=0.90; ADNI2: χ 2 =0.0002, p=0.99). The            

HPS+ class was also significantly enriched for A𝛽-positive subjects in ADNI1 (p<0.05).            

However, this result was not replicated in the ADNI2 MCI subjects (Figure 3d). Similarly              

with tau, we found a significant increase in tau-positive subjects in the HPS+ group of               

ADNI1 (p<0.05), but not in ADNI2 (Figure 3e). We found a significant age difference across               

the HPS classes in ADNI2 (F=5.68, p<0.005), where the HPS+ subjects were older than the               

Negative subjects by a mean of 4.4 years. However, age did not differ across the HPS classes                 

in ADNI1 (Figure 3f). Finally, HPS+ subjects had significantly steeper cognitive declines            

compared to the Non-HPS+ and Negative groups (Figure 3g): there were significant            

interactions between the HPS groupings and time in ADNI1: (HPS+ 𝛽=-0.147, t=-7.56,            

p<0.001; Non-HPS+ 𝛽=-0.055, t=-2.46, p<0.05) and ADNI2 (HPS+ 𝛽=-0.194, t=-8.69,          

p<0.001; Non-HPS+ 𝛽=-0.072, t=-3.31, p=0.001). The HPS+ in ADNI1 and ADNI2           

respectively gained 1.8 and 2.3 more points each year on the ADAS13 compared to the               

Non-HPS+ and Negative groups. Note that higher scores on the Alzheimer’s Disease            

Assessment Scale - Cognitive subscale (13 items) (ADAS13) represent worse cognitive           

function. 

 

COG, VBM and VCOG signatures 

The COG signature was mainly driven by scores from the ADAS13, which measures             

overall cognition, ADNI-MEM, a composite score that measures memory  [16] , and           

ADNI-EF, a composite score that measures executive function  [27] (coefficients were 5.49,            

-4.80 and -2.50 respectively). In this model, sex, age, mean GMV, and TIV contributed very               

little, relative to the cognitive features (Figure 4b). Note that these coefficients should be              

interpreted as pseudo z-scores as the features had been normalized to zero mean and unit               

variance. 
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Almost all grey matter subtypes contributed to the VBM signature. Mean GMV,            

subtype 1 and subtype 6 had the highest weights in the model (coefficients were -5.07, 4.87,                

and 3.98 respectively) (Figure 4c). Subtype 1 was characterized by reduced relative GMV in              

the occipital, parietal and posterior temporal lobes. Subtype 6 was characterized by reduced             

relative GMV in the temporal lobes, notably the medial temporal regions. We had anticipated              

the larger contribution of these two subtypes as they have been described in previous AD               

subtyping work  [5,28–30] . Diagnosis (CN, sMCI, pMCI, AD) accounted for a substantial            

amount of variance in these subtype weights (subtype 1: F=8.51, p<0.001; subtype 2:             

F=34.27, p<0.001). Post-hoc t-tests showed AD subjects had significantly higher weights           

compared to CN (Figure 1), making these subtypes associated with a diagnosis of AD              

(subtype 1: t=2.88, p<0.05; subtype 6: t=7.68, p<0.001). 

The ADAS13, memory (ADNI-MEM) and executive function (ADNI-EF) scores         

contributed the most to the VCOG HPS signature (coefficients were 6.27, -7.43 and -3.95              

respectively, Figure 4a). Of the VBM features, subtypes 2, 3 and 7 contributed the most to the                 

signature (coefficients were 1.36, -2.12 and -2.83 respectively). Subtypes 1 and 6, which had              

the highest positive weights in the VBM model, were given marginal weights in the VCOG               

model, which is potentially indicative of redundancy with COG features. Subtype 2, which             

was associated with AD, was characterized by greater relative GMV in medial parts of the               

parietal and occipital lobes and the cingulate cortex, but less GMV everywhere else. Subtype              

3 was characterized by greater relative GMV in the temporal lobes, insula and striatum.              

Subtype 7, which was associated with healthy controls, was characterized by greater relative             

GMV in the parietal, occipital and temporal lobes. Note that the weights for subtypes 3 and 7                 

were negative in the model, which means that predicted AD and pMCI cases had brain               

atrophy patterns that were spatially dissimilar to those subtypes. 

 

Discussion 

We developed a highly precise and specific MRI and cognitive-based model to predict             

AD dementia. Our two-stage predictive model reached 93.2% specificity and 93.1% PPV            

(80.4% when adjusted for 33.6% prevalence of progressors) in ADNI1 when classifying            

progressor vs stable MCI patients (within 3 years follow-up). We replicated these results in              

ADNI2 where the model reached 96.7% specificity and 81.2% PPV (87.8% adjusted PPV).             
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With respect to specificity and PPV, these results are a substantial improvement over previous              

works combining structural MRI and cognition on the same prediction task, that have             

reported up to 76% specificity and 65% PPV (adjusted for 33.6% prevalence of progressors)              

[7] . We also report the highest PPV compared to the current state-of-the-art predictive model              

using A𝛽 PET scans, which reported 74% (adjusted) PPV  [8] . Finally, our results also              

reproduced our past work which developed a model that optimizes specificity and PPV  [9] .              

Our performance is close to the 90% PPV reported by  [9] , which used a combination of                

structural and functional MRI measures and a two-stage predictive model, with the limitation             

of a smaller sample size (N=56 MCI patients) due to limited availability of functional MRI               

data in ADNI.  

An ideal model to predict conversion to AD dementia would have both high             

sensitivity and specificity. However, the pathophysiological heterogeneity of clinical         

diagnosis will prevent highly accurate prediction linking brain features to clinical trajectories.            

We argue that, faced with heterogeneity, it is necessary to sacrifice sensitivity to focus on a                

subgroup of individuals with similar brain abnormalities. The high specificity of our            

two-stage model indeed came at a cost of reduced sensitivity (55.1% in ADNI1 and 47.3% in                

ADNI2 for classifying pMCI vs sMCI), which is much lower than sensitivity values of              

64%-95% reported by other groups  [9] . The two-stage procedure, based on prediction            

stability, did not offer gains compared to a simpler SVM model, if the threshold of the SVM                 

model could be selected  a priori to match the specificity of the two-stage procedure (see               

ROC curves in Figure S1 in supplementary material). The two-stage prediction model offered             

the advantage of a principled approach to train the prediction model in a high-specificity              

regime, based on stability. The choice of a L1 regularized logistic regression also lead to a                

compact and interpretable subset of features for the HPS.  

Favoring specificity over sensitivity is useful in settings where false positives need to             

be minimized and PPV needs to be high, such as expensive clinical trials. Here, with our HPS                 

VCOG model, we report the highest PPVs for progression to AD from the MCI stage (up to                 

87.8%, adjusted for 33.6% prevalence of progressors). Importantly, the proposed HPS+           

model used tools that are already widely used by clinicians. The present work could be used                

as a screening tool for recruitment in clinical trials that target MCI subjects who are likely to                 

progress to dementia within three years. The implementation of an automated selection            

algorithm could also result in groups of MCI subjects with more homogeneous brain             
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pathology. However, we note that HPS+ subjects did not all present with significant amyloid              

burden (92.0% and 68.4% of HPS+ subjects in ADNI1 and ADNI2 respectively, Figure 3),              

which means that not all HPS+ individuals are likely to have prodromal AD, even when               

progressing to dementia. 

When we trained our model with cognitive features only, tests for general cognition,             

memory, and executive function were chosen as the strongest predictors of AD dementia. Our              

COG HPS model thus supports previous research that reported general cognition, memory,            

and executive function as important neuropsychological predictors of dementia  [7,18,31,32] .          

Compared to the state-of-the-art multi-domain cognition-based predictive model, which         

reported 87.1% specificity and 81.8% PPV (77.5% when adjusted to 33.6% pMCI            

prevalence)  [33] , our COG HPS model achieved similar performance reaching between           

87.5%-95% specificity and 72.3%-85.1% (adjusted) PPV. As general cognition was the           

strongest feature in our model to predict progression, this supports previous findings that             

MCI patients with deficits across multiple domains are at the highest risk for dementia              

[32,34] .  

For our VBM model, we extracted a number of gray matter atrophy subtypes that              

recapitulated previously reported subtypes, namely the medial temporal lobe and parietal           

dominant subtypes  [5,28–30] , which were associated strongly with a diagnosis of AD            

dementia. Weights for the parietal dominant and medial temporal lobe subtypes (Subtypes 1             

and 6 from Figure 1b, respectively) contributed substantially to the highly predictive            

signature in the VBM model. The atrophy pattern of subtype 6 is spatially similar to the                

spread of neurofibrillary tangles in Braak stages III and IV  [35] , which may support previous               

findings that tau aggregation mediates neurodegeneration  [36] . The contributions of the           

parietal dominant and medial temporal lobe subtypes in the VBM model are also in line with                

previous works, which have reported that cortical thickness and volumes of the medial             

temporal lobes, inferior parietal cortex, and precuneus are strong predictors of progression to             

dementia  [7,37] .  

When combined with cognitive tests in the VCOG model, the structural subtypes            

were given marginal weights. This suggests some redundancy between atrophy and cognition,            

and that cognitive features have higher predictive power than structural features in the ADNI              

MCI sample. This conclusion is consistent with the observation that the COG model             

significantly outperformed the VBM model, similar to previous work  [7] . Although cognitive            
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markers were stronger features, the VCOG model assigned large negative weights for the             

structural subtypes 3, which showed greater relative GMV in the temporal lobes, and 7,              

which showed greater relative GMV in the parietal, occipital, and temporal lobes. This means              

that these features were predictive of stable MCI in the VCOG model, in line with previous                

work showing that atrophy in these regions is predictive of progression to dementia  [7,37] .              

Furthermore, we demonstrated that combining MRI data with cognitive markers significantly           

improves upon a model based on MRI features alone. This result is again in line with the                 

literature  [7,38] , yet was shown for the first time for a model specifically trained for high                

PPV. Note that in the current study, the predictive model was trained exclusively on images               

acquired on 1.5T scanners from ADNI1. Good generalization to ADNI2 with 3T scanners             

demonstrates robustness of imaging structural subtypes across scanner makes. 

The VCOG highly predictive signature might reflect a late disease stage. We looked at              

the ratio of early to late MCI subjects in the ADNI2 sample (note that ADNI1 did not have                  

early MCI subjects). Of the MCI subjects identified as HPS+ by the VCOG model, 84.4%               

were late MCI subjects, compared to a rate of 34.9% of late MCI subjects in the entire                 

ADNI2 MCI sample (Supplementary Figure S3). This approach may not be optimal for early              

detection of future cognitive decline. Training a model to classify MCI progressors and             

non-progressors to dementia could be done in order to capture future progressors in earlier              

preclinical stages (e.g. early MCI). Finally, we focused on structural MRI and            

neuropsychological batteries as features in our models due to their wide availability and             

established status as clinical tools. However, we believe adding other modalities such as PET              

imaging, CSF markers, functional MRI, genetic factors, or lifestyle factors could result in             

higher predictive power, especially at earlier preclinical stages of AD.  

 

Conclusion 

In summary, we found a subgroup of patients with MCI who share a signature of               

cognitive deficits and brain atrophy, that put them at very high risk to progress from MCI to                 

AD dementia within a time span of three years. We validated the signature in two separate                

cohorts that contained both stable MCI patients and MCI patients who progressed to             

dementia. The model was able to predict progression to dementia in MCI patients with up to                

93.1% PPV and up to 96.7% specificity. The signature was present in about half of all                
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progressors, demonstrating that gains in PPV can be made by focusing on a homogeneous,              

yet relatively common subgroup. Our model could potentially improve subject selection in            

clinical trials and identify individuals at a higher risk of AD dementia for early intervention in                

clinical settings. 
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Figure Captions 
 
Figure 1. Subtyping procedure and resulting subtypes. a) A hierarchical clustering procedure            
identified 7 subtypes, or subgroups, of individuals with similar patterns of grey matter             
topography within the ADNI1 cohort of CN and AD subjects (top). A measure of spatial               
similarity, called subtype weight, between a single individual’s grey matter volume map and             
the average of a given subtype was calculated for all individuals and all subtypes (bottom). b)                
Maps of the 7 subtypes showing the distribution of grey matter across all voxels relative to                
the average. CN* and AD* denote significant associations between the subtype weights and             
diagnoses of cognitively normal (CN) or Alzheimer's dementia (AD) respectively. 
 
Figure 2. Specificity, sensitivity, and positive predictive value (PPV) for the base SVM and              
highly predictive signature (HPS) classifiers in the classifications of a) patients with AD             
dementia (AD) and cognitively normal individuals (CN) and b) patients with mild cognitive             
impairment who progress to AD (pMCI) and stable MCI (sMCI) in ADNI1 and ADNI2.              
VBM represents the model trained with VBM subtypes, COG represents the model trained             
with baseline cognitive scores, and VCOG represents the model trained with both VBM             
subtypes and cognition. Significant differences are denoted by * for p<0.05 and ** for              
p<0.001). Positive predictive value was adjusted (PPV (adj)) for a prevalence of 33.6% pMCI              
in a sample of MCI subjects for both ADNI1 and ADNI2 MCI cohorts. 
 
Figure 3. Characteristics of MCI subjects with the VCOG signature in ADNI1 and ADNI2.              
We show the percentage of MCI subjects who a) progressed to dementia, were b) APOE4               
carriers, c) female, d) positive for A𝛽 measured by a cut-off of 192 pg/mL in the CSF  [22] ,                  
and e) positive for tau measured by a cut-off of 93 pg/mL in the CSF  [22] in each                  
classification (HPS+, Non-HPS+, and Negative). f) Age and g) cognitive trajectories,           
measured by the Alzheimer's Disease Assessment Scale - Cognitive subscale with 13 items             
(ADAS13), across the three classes. Significant differences are denoted by * for family-wise             
error rate-corrected p<0.05. 
 
Figure 4. Coefficients of the high confidence prediction a) VCOG model, b) COG model, and               
c) VBM model. ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive,         
MEM=ADNI-MEM score; EXEC=ADNI-EF score, BNT=Boston Naming Test,       
CLOCK=clock drawing test, VBM 1-7=VBM subtype weights, GMV=mean grey matter          
volume, TIV=total intracranial volume. 
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Tables 

 

Table 1. Demographic information for post-QC subjects in ADNI1 and ADNI2. 

ADNI1 CN sMCI pMCI AD 

N 205 88 147 165 

Age ± SD 76.1 ± 5.0 74.0 ± 7.6 74.3 ± 7.1 75.4 ± 7.5 

Female % 51.7 40.9 40.8 51.5 

APOE4+ % 27.8 37.5 68.7 65.4 

ADAS13 ± SD 9.5 ± 4.3 14.3 ± 5.5 21.3 ± 5.3 28.6 ± 7.1 

MMSE ± SD 29.1 ± 1.0 27.7 ± 1.7 26.7 ± 1.7 23.4 ± 2.0 

ADNI2 CN  sMCI pMCI AD 

N 188 180 55 89 

Age ± SD 72.8 ± 6.1 70.8 ± 7.3 72.1 ± 7.1 74.4 ± 7.8 

Female % 54.0 47.8 49.1 46.1 

APOE4+ % 29.4 35.6 65.4 71.3 

ADAS13 ± SD 9.1 ± 4.2 11.8 ± 5.3 21.4 ± 6.5 31.6 ± 8.7 

MMSE ± SD 29.1 ± 1.1 28.4 ± 1.6 27.3 ± 1.9 23.1 ± 2.3 

ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive subscale (13 items);  

MMSE=Mini Mental State Examination 
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Dear Editors, 
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and brain atrophy for progression to Alzheimer's dementia” for your consideration.  
 
We have updated our manuscript with the requested information regarding containerization 
and a simulated dataset.  
 
The simulated dataset is using group-level statistics derived from the ADNI sample, but does 
not include any participant-level information. As such, it can be freely shared and reused. 
Importantly, these simulations were designed to replicate the group differences that were 
identified in the paper using machine learning tools. We have shared a container including 
all the code and dependencies used in our manuscript, and the reviewers as well as 
interested readers will be able to reproduce the training and testing of machine learning 
models from the simulated data. All the code can be executed online via the binder platform, 
without requiring any local installation or download. 
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