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to standard machine learning tools, yet a marked improvement in positive predictive
value was achieved over the literature by selecting a high specificity operating point.
The multimodal signature can be readily applied for the enrichment of clinical trials.
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Response to Reviewers: Dear Editors,
Please find enclosed our revised manuscript titled “A highly predictive signature of
cognition and brain atrophy for progression to Alzheimer’s dementia” for your
consideration.
We would like to thank the editor and the three reviewers for the constructive and
insightful feedback. We believe that this round of revision has substantially improved
the paper.
Please find our responses to the reviewers’ comments on the following pages.
Best regards,
Angela Tam, on behalf of the co-authors

Editor's comments:
-Overall the reviewers request more clarification in the methods/ techniques used, and
also justification of the two-stage linear model chosen, over a single stage logistic
regression model. They also suggest that you expand the discussion section to include
more comparison of the results with other results of the proposed algorithm (i.e. PPV,
sensitivity, and specificity) with that of other machine learning studies that used sMRI
(or resting-state fMRI) and/or neuropsychological measures as input features.

We have followed the recommendations of the reviewers by clarifying the methods
section and explaining the rationale behind the two-stage linear model. We added a
collection of popular machine learning techniques as benchmark, and revised the
positioning of the paper to emphasize that our contribution is to train a machine
learning model in a regime of high specificity and positive positive value, rather than
proposing a novel algorithm with improved overall accuracy. A more extensive survey
of previously published machine learning studies that use MRI and neuropsychological
measures have also been included in the discussion.

Reviewer #1 comments:
 A multimodal signature of Alzheimer's dementia was first extracted using machine
learning tools in the ADNI1 sample, and was comprised of cognitive deficits across
multiple domains as well as atrophy in temporal, parietal and occipital regions. The
authors then validated the predictive value of this signature on two MCI cohorts.

(1)     How do you select the baseline of T1 scans of ADNI?

All T1-weighted MRI scans for the healthy control (CN) and Alzheimer’s dementia (AD)
patients that were acquired at baseline from ADNI1 and ADNI2 were included in the
study. This was also the case for the patients with mild cognitive impairment (MCI), but
with additional inclusion criteria. For the MCI group, each subject must have had at
least 36 months of follow-up for inclusion in our study.

Please see the “Data” section under “Materials and methods” on page 5.

(2)     What preprocessing techniques did you use? Did you perform any normalization
technique?

Each image was linearly co-registered to MNI space using the CIVET pipeline and then
segmented into grey matter, white matter, and CSF probabilistic maps with SPM12.
The DARTEL toolbox was used to normalize the grey matter segmentations to a
predefined grey matter template in MNI152 space. Each map was modulated to
preserve the total amount of signal and then smoothed with a 8 mm isotropic Gaussian
blurring kernel.

Please see the section “Structural features from voxel-based morphometry” under
“Materials and methods” on page 6.

(3)     Why use GMV and TIV?
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TIV has been shown to have significant effects on regional grey matter volumes and
has been recommended as a variable to take into consideration for VBM analyses
(Barnes, Josephine, Gerard R. Ridgway, Jonathan Bartlett, Susie M. D. Henley, Manja
Lehmann, Nicola Hobbs, Matthew J. Clarkson, David G. MacManus, Sebastien
Ourselin, and Nick C. Fox. 2010. “Head Size, Age and Gender Adjustment in MRI
Studies: A Necessary Nuisance?” NeuroImage 53 (4): 1244–55.)

(4)     Is your method a type of VBM technique?

Yes.

(5)     Line 168, why use a linear support vector machine (SVM)? Did you consider to
use kernel SVMs?

We have included an SVM with a RBF kernel for comparison. Please see Figure 3.

(6)     Some AD detection methods could be discussed, see "Multivariate approach for
Alzheimer's disease detection using stationary wavelet entropy and predator-prey
particle swarm optimization" and "Single Slice based Detection for Alzheimer's disease
via wavelet entropy and multilayer perceptron trained by biogeography-based
optimization"

The suggested papers by reviewer #1 describe detection of patients with AD dementia
from healthy controls. Since the focus of our current paper is to detect progression to
AD dementia in patients with MCI from those who will remain cognitively stable, we do
not think papers about classifying AD vs controls are as relevant as those that focus on
progressors vs non-progressors, which we have discussed at length.

(7)     How do you optimize the hyperparameters of SVM?

The hyperparameters of the SVM were optimized by a cross-validated grid search over
a parameter grid. See “Prediction of high confidence AD dementia cases in ADNI1”
under the “Materials and methods” section, pages 7-8.

(8)     What type of t-test did you use? How did you set the confidence threshold? Did
you use ANOVA?

Yes, ANOVAs were used. Tukey’s HSD tests were done for the pairwise post-hoc t-
tests. See “Statistical tests of association of progression, AD biomarkers, and risk
factors in high confidence MCI subjects” under the “Materials and methods” section,
pages 10-11.

(9)     How do you combine and generate the final signature?

The third signature (VCOG) was generated by including the VBM structural subtype
weights, cognitive assessment scores, mean gray matter volume, total intracranial
volume, age, and sex as features into the linear SVM on ADNI1 subjects to classify AD
vs controls. This process was repeated across many random subsamples, after which
hit probabilities for all individual subjects were calculated. A logistic regression
classifier, with L1 regularization on the coefficients, was then used to classify the
subjects with 100% hit probability from everyone else. Please refer to “Prediction of
high confidence AD dementia cases in ADNI1” under the “Materials and methods”
section, pages 7-8.

Reviewer #2 comments:
-The aim of this manuscript was to explore whether a linear model based classifier of
AD could identify MCI patients with a "highly predictive signature" of AD
and whether this represents a prodromal stage of AD by investigating how the HPS
relates to genetic and phenotypic information. This is an interesting manuscript,
however there are multiple opportunities for improvement, mostly with regard to
justification of the 2-stage linear model, over a single stage logistic regression model.

There are two justifications for using the two-stage linear model. First, by construction,
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it focuses on patients for which the outcome of the stage 1 model is highly stable.
Stability of prediction is valuable when selecting participants, as we would not want the
inclusion criteria of a study to vary substantially based on the specific sample used to
train the model. Second, by achieving stability, the two-stage model also naturally falls
in a regime of high specificity. We could have used a different approach, such as
thresholding the confidence score generated by the SVM, as was done by Korolev et
al. (2016). But it would have required in any case the selection of an arbitrary
threshold. We explain our choice of using the two-stage model in Table 1 under
Objective 2b and on pages 7-8 under “Prediction of high confidence AD dementia
cases in ADNI1” in the Methods section.

-Page 6: Prediction of easy AD dementia cases in ADNI1
This section is difficult for the reader to follow. e.g. what is meant by "20% test size"? 5
fold CV?
Maybe a diagram would help to explain what is meant here.
Also this section would benefit from an explanation of the purpose of the 2-stage linear
model prediction.

We used a random permutation cross-validator to split the data into 50 training and test
sets, where the size of the test set was always 20% of the original sample size. This is
clarified on pages 7-8 under “Prediction of high confidence AD dementia cases in
ADNI1”.
We have added to this section on pages 7-8 an explanation of the two-stage model:
“We then used a two-step method to select an operating point for the linear SVM to
obtain a highly precise and specific classification [20]. This was done by replicating the
SVM prediction via subsampling and identifying the patients with highly robust
prediction outcomes, i.e. who are consistently identified as AD during testing,
regardless of the training subsample and the validity of the prediction. This approach
was found to lead in practice to prediction that achieve high specificity, in addition to
offering a guarantee of robustness; see [20] for more information.”

-Page 6: Prediction of progression to AD dementia from the MCI stage in ADNI1
Line 191: "We re-trained our models on AD vs CN after
optimizing our hyperparameters (resampling size and resampling ratio)"
Its not clear what is meant here and also why resampling size is a hyperparameter of
the model.

We have clarified the text and changed the terms resampling size and resampling ratio
to number of subsamples and subsample size, respectively. We varied the number of
subsamples and the subsample size to perturb the model and identify subjects that
had robust outcomes during the testing phase regardless of the training subsample.
Please refer to page 9 in the Methods section under “Prediction of progression to AD
dementia from the MCI stage in ADNI1”.

-Page 10, Line 311: "The HPS models consistently outperformed the base SVM
classifiers with respect to
specificity (p<0.001)" Its not clear if this is a meaningful comparison (see Fig. 2
comment below)
Figure 2: Is this the most appropriate way of plotting this data? Might it be more
meaningful to assess the model using the AUC of an ROC curve?
From this graph it looks as if the HPS model might be worse than the base classifier.

ROC curves have been added in a new figure (Figure 3) and AUC is reported within
this figure.

-Also - naming the model HPS is confusing given the grouping of subjects into HPS,
non-HPS etc.

We now refer to the HPS+ subjects as high confidence subjects and non-HPS+ as low
confidence subjects.

-Page 14, Line 417 "The high specificity of our two-stage model indeed came at a cost
of reduced sensitivity"
There is always a trade of between sensitivity and specificity that is not acknowledged
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here.

We have included a section that discusses the trade-off between sensitivity and
specificity in the results: “Trade-off between sensitivity and specificity of different
algorithms” on page 16. We also emphasize more this important trade-off in the
abstract, introduction and the summary table of objectives, experiments and results
(Table 1).

-Page 14, Line 423 "The two-stage prediction model offered the advantage of a
principled approach to train the prediction model in a high-specificity regime, based on
stability."
It is unclear what what "high-specificity regime" means and why the 2-stage model
relates to stability.

By “high specificity regime”, we were referring to an operating point along the ROC
curve where specificity is much higher compared to sensitivity. The two-stage model
ensures high specificity (at a cost to sensitivity) as it selects the most robust (or stable)
individuals after subsampling many times and identifying the subjects that are
consistently identified as targets across the training subsamples. Please see
“Prediction of high confidence AD dementia cases in ADNI1” under the Methods
section on pages 7-8.

Reviewer #3 comments:
This study investigated a machine learning approach to identify high-risk MCI patients
using five neuropsychological measures and structural MRI (sMRI). By combining the
neuropsychological and sMRI features, the authors identified pMCI patients with 80.4%
positive predictive value (PPV) in ADNI1 cohort and 87.8% PPV in ADNI2 cohort.
While specificity of the proposed algorithm is high (>%95), sensitivity of the algorithm is
fairly low (47.3% for ADNI2). This study addressed an important topic in Alzheimer
disease which is to identify high-risk MCI patients. In addition, the manuscript was
written well with clear descriptions for the methods and results. However, the novelty of
this study is limited. The following comments need to be addressed.

-       The emphasis of this study was to achieve a large value for PPV (and specificity)
in identification of pMCI patients, but low sensitivity of the proposed algorithm was the
cost of this achievement. The authors mentioned that expensive clinical trials can
benefit from the proposed algorithm since false positives need to be minimized in this
setting. However,  this application of the proposed algorithm is arguable in that only a
subset of pMCI patients (~50% of pMCI referring to ~50% sensitivity) will be identified
by the algorithm and including only these extreme pMCI cases may cause a bias in
results of the clinical trials.

Clinical trial inclusion criteria are typically designed to be restrictive in the aims of
achieving a specific and homogenous subpopulation, therefore implementing an
automatic algorithm that will maximize PPV and specificity to select individuals will help
clinical trials achieve their recruitment goals in a cost and time-efficient manner.

-       This study has a limited novelty which is to develop an algorithm to provide a high
PPV in identification of pMCI patients, in the cost of low sensitivity. There are several
studies investigated classification of pMCI and sMCI using neuroimaging (e.g. sMRI
and resting-state fMRI) and/or neuropsychological measures (e.g. [Suk et al., 2014,
Neuroimage 101, 569-582] and [Hojjati et al., 2018, Comput Biol Med 102, 30-39]. In
fact, the authors compared PPV of their algorithm with that of only three previous
studies [7-9], and two of these studies were performed by themselves. I recommend to
expand this section of discussion by comparing results of the proposed algorithm (i.e.
PPV, sensitivity, and specificity) with that of other machine learning studies that used
sMRI (or resting-state fMRI) and/or neuropsychological measures as input features.

Other machine learning studies that used imaging and neuropsychological measures
as features were indeed missing in our citations. We have expanded the list of cited
works in the revision (see references #7,8,10-16). We thank the reviewer for noticing
this error.

-       Please add a table and summarize results of Figure 2. Please also add accuracy
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and AUC to this table.

We have added ROC curves as a figure (Figure 3) and AUC are now reported there.
Accuracy has now been included in Figure 2 and the results have been summarized on
pages 13-15 under the sections “Prediction of AD dementia vs cognitively normal
individuals”,  “Identification of high confidence cases for prediction”, and “High
confidence prediction of progression to AD dementia”.

Minor points:
-       Line# 132: Please correct "with with" - done
-       Line# 146: I recommend replacing "n subject x n subtype" to "n subject x m
subtype (n=377 and m = 7)" - done
-       Line#147: Please spell out VBM.  - done
-       Line# 185-186:  "three highly predictive signatures (HPS)" in this sentence is
confusing. What does the signature mean? Do you mean three models? If not, please
define signature here.
Yes we meant models and have added that in for clarification.
-       Figures, and in particular Figure 1, have a low quality.
We believe the figures were downsampled during the PDF build, but we changed the
final format of the figures (from TIFF to PDF) for this revision.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information

Yes
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requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 

 

Clinical trials in Alzheimer’s disease need to enroll patients whose cognition will decline over time, if 

left untreated, in order to demonstrate the efficacy of an intervention. Machine learning models used to 

screen for patients at risk of progression to dementia should therefore favor specificity (detecting only 

progressors) over sensitivity (detecting all progressors), especially when the prevalence of progressors 

is low. Here, we explore whether such high-risk patients can be identified using cognitive assessments 

and structural neuroimaging, by training machine learning tools in a high specificity regime. A 

multimodal signature of Alzheimer's dementia was first extracted from ADNI1. We then validated the 

predictive value of this signature on ADNI1 patients with mild cognitive impairment (N=235). The 

signature was optimized to predict progression to dementia over three years with low sensitivity 

(55.1%) but high specificity (95.6%), resulting in only moderate accuracy (69.3%) but high positive 

predictive value (80.4%, adjusted for a "typical" 33% prevalence rate of true progressors). These 

results were replicated in ADNI2 (N=235), with 87.8% adjusted positive predictive value (96.7% 

specificity, 47.3% sensitivity, 85.1% accuracy). We found that cognitive measures alone could identify 

high-risk individuals, with structural measurements providing a slight improvement. The signature had 

comparable receiver operating characteristics to standard machine learning tools, yet a marked 

improvement in positive predictive value was achieved over the literature by selecting a high 

specificity operating point. The multimodal signature can be readily applied for the enrichment of 

clinical trials. 

 

Keywords 

Alzheimer's disease, mild cognitive impairment, machine learning, neuroimaging, cognition 
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Introduction 

 Alzheimer’s disease (AD), a leading cause of dementia, is marked by the abnormal 

accumulation of amyloid β (Aβ) and hyperphosphorylated tau proteins in the brain, which leads to 

widespread neurodegeneration. AD has a long prodromal phase, and it has been difficult to predict 

which individuals will decline and experience AD dementia. While mild cognitive impairment (MCI) 

puts individuals at risk, only a fraction (33.6% on average) of MCI patients will develop dementia 

within a period of three years, as shown in a meta-analysis of 41 studies [1]. Identifying MCI patients 

who will progress to AD dementia with enough specificity has thus been a challenge for clinical trials 

[2]. This lack of prognostic power may be due to individual variability. Different clinical phenotypes 

have been described where patients will exhibit distinct cognitive deficits [3]. Previous work has also 

characterized neuropathological subtypes based on the distribution of neurofibrillary tangles [4], which 

correspond well to distinct patterns of brain atrophy [5]. Different subtypes of brain atrophy have also 

been associated with different rates of progression to dementia [6]. The implications for prognosis are 

profound: only a subgroup of patients will experience a sharp cognitive decline that can be reliably 

predicted. We therefore propose to identify a subset of individuals with a homogenous signature of 

brain atrophy and cognitive deficits who will progress to AD dementia with high precision. 

 There is a large field focused on using machine learning to automatically detect MCI patients 

who will progress to AD dementia based on imaging and cognitive features. For models combining 

structural MRI and cognition, state-of-the-art performance is 79% accuracy (76% specificity, 83% 

sensitivity) [7]. Some groups have achieved higher accuracies ranging from 82-97% when using other 

imaging methods, such as Aβ positron emission tomography [8] or resting-state functional MRI [9]. 

Although this increase in accuracy may suggest that Aβ imaging and resting-state functional MRI are 

better features, these imaging measures are more invasive, costly, and currently lack the large scale of 

validation of tools that are already widely used in clinical settings, such as cognitive assessments and 

structural MRI. Given the need to develop tools that will easily scale up in clinical settings, we propose 

to focus on predictive models that use structural imaging and cognition as features. 
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Models are typically trained to maximize accuracy, defined as the proportion of subjects that 

were correctly identified, either as progressors or non-progressors. For enrichment in clinical trials, a 

more relevant metric is positive predictive value (PPV), which is the proportion of subjects that 

actually progress to dementia when they have been identified as such by the model. The PPV of a 

model is dependent on the baseline rate of progression in the sample, with a typical rate (within three 

years or more) in MCI patients being 33.6% [1]. Assuming a 33.6% baseline rate, it is possible to 

calculate the PPVs of published models in the literature, based on reported sensitivity and specificity 

scores. The adjusted PPV for models using cognitive and structural measures ranged from 50 to 75% 

[7,8,10–16]. In other words, up to half of subjects who were identified as progressors by published 

algorithms would not actually progress to dementia in a typical MCI sample. We therefore aimed to 

adapt the training regimen of predictive models to favor specificity over sensitivity, with the hypothesis 

that in this regime the models will identify progressors with high PPV. We expected that optimizing for 

high specificity will result in a low number of false positives, which is particularly important when the 

prevalence of progressors is low and therefore the susceptibility of the predictive model to identify 

false positive progressors is high. 

 The overall goal of this work was to develop a model to identify individuals who are at high 

risk of progression to AD dementia with high PPV and specificity, using structural MRI and cognitive 

features. We aimed to show that by training standard machine learning tools in a high specificity 

regime, we can identify the most robust progressor MCI patients with high confidence. We further 

wanted to assess whether those high risk individuals had prodromal AD, by examining longitudinal 

cognitive decline, as well as Aβ and tau burden in these individuals. We finally aimed to evaluate the 

complementarity of features derived from cognition and atrophy patterns by examining the overlap of 

high risk individuals who were identified as such by each modality. Although the complementarity of 

cognitive and structural measures has been extensively studied for prognosis of dementia in a general 

MCI population, the main contribution of this work is to examine their complementarity in the specific 

context of a high risk signature which achieves high specificity and PPV, at the cost of low sensitivity 
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when the class of interest is relatively rare. Specific aims, as well as a summary of experiments and the 

main results, are listed in Table 1. 

 

Materials and methods 

Data 

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's 

disease (AD). For up-to-date information, see www.adni-info.org.  

We took baseline T1-weighted MRI scans from the ADNI1 (228 CN, 397 MCI, 192 AD) and 

ADNI2 (218 CN, 354 MCI, 103 AD) studies. For a detailed description of MRI acquisition details, see 

http://adni.loni.usc.edu/methods/documents/mri-protocols/. All subjects gave informed consent to 

participate in these studies, which were approved by the research ethics committees of the institutions 

involved in data acquisition. Consent was obtained for data sharing and secondary analysis, the latter 

being approved by the ethics committee at the CRIUGM. For the MCI groups, each individual must 

have had at least 36 months of follow-up for inclusion in our analysis. We also further stratified the 

MCI groups into stable (sMCI), who never received any change in their diagnosis, and progressors 

(pMCI), who received a diagnosis of AD dementia within 36 months of follow-up. pMCI who 

progressed to AD dementia after 36 months were excluded. After applying these inclusion/exclusion 

criteria, we were left with 280 and 268 eligible MCI subjects in ADNI1 and ADNI2 respectively. 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

 

Structural features from voxel-based morphometry 

Images were processed with the NeuroImaging Analysis Kit (NIAK) version 0.18.1 

(https://hub.docker.com/r/simexp/niak-boss/), the MINC toolkit (http://bic-mni.github.io/) version 

0.3.18, and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) under CentOS with Octave 

(http://gnu.octave.org) version 4.0.2. Preprocessing of MRI data was executed in parallel on the Cedar 

supercomputer (https://docs.computecanada.ca/wiki/Cedar), using the Pipeline System for Octave and 

Matlab (PSOM) [21]. Each T1 image was linearly co-registered to the Montreal Neurological Institute 

(MNI) ICBM152 stereotaxic symmetric template [22], using the CIVET pipeline [23], and then re-

oriented to the AC-PC line. Each image was segmented into grey matter, white matter, and CSF 

probabilistic maps. The DARTEL toolbox [24] was used to normalize the grey matter segmentations to 

a predefined grey matter template in MNI152 space. Each map was modulated to preserve the total 

amount of signal and smoothed with a 8 mm isotropic Gaussian blurring kernel. After quality control of 

the normalized grey matter segmentations, we were left with 621 subjects in ADNI1 (out of 700, 88.7% 

success rate) and 515 subjects in ADNI2 (out of 589, 87.4% success rate).  

We extracted subtypes to characterize variability of grey matter distribution with the CN and 

AD samples from ADNI1. In order to reduce the impact of factors of no interest that may have 

influenced the clustering procedure, we regressed out age, sex, mean grey matter volume (GMV), and 

total intracranial volume (TIV), using a mass univariate linear regression model at each voxel. We then 

derived a spatial Pearson's correlation coefficient between all pairs of individual maps after confound 

regression. This defined a subject x subject (377 x 377) similarity matrix which was entered into a 

Ward hierarchical clustering procedure (Figure 1a). Based on visual inspection of the similarity matrix, 

we identified 7 subgroups (Figure 1b).  Each subtype was defined as the average map of each 

subgroup. For each subject, we computed spatial correlations between their map and each subtype, 

which we call weights (Figure 1a). The weights formed a n subject x m subtypes (n=377, m=7) matrix, 

which was included in the feature space for all predictive models including voxel-based morphometry 
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(VBM) throughout this work. As in our previous works [20,25], we chose to use weights, which can be 

interpreted as continuous measures for subtype affinity, over discrete subtype membership because the 

latter is less informative as most individuals express similarity to multiple subtypes [26]. Note that 

although we chose to present our findings with 7 subtypes, we examined how the number of subtypes 

may impact our subsequent predictions. There was no significant difference in model performance 

when we changed the number of subtypes (see Table S1 in supplementary material). 

 

Cognitive features 

We took baseline neuropsychological scores for each subject from several cognitive domains: 

memory from the composite score ADNI-MEM [27], executive function from the composite score 

ADNI-EF [28], language from the Boston Naming Test (BNT), visuospatial from the clock drawing 

test, and global cognition from the Alzheimer's Disease Assessment Scale-Cognitive (ADAS13). We 

chose measures that span multiple cognitive domains as it has been suggested that the use of a 

combination of neuropsychological measures is likely the best approach to predicting incipient 

dementia [29]. These scores were included as features for the predictive models involving cognition. 

Thirteen subjects across both ADNI1 and ADNI2 (8 AD, 5 MCI) had to be excluded due to missing 

values in their cognitive assessments. See Table 2 for demographic information of subjects who were 

included in analyses. 

 

Prediction of high confidence AD dementia cases in ADNI1 

We trained a linear support vector machine (SVM) model with a linear kernel, as implemented 

by Scikit-learn [30] version 0.18 to classify AD vs CN from ADNI1 to get a baseline prediction 

accuracy. We then used a two-step method to select an operating point for the linear SVM to obtain a 

highly precise and specific classification [20]. This was done by replicating the SVM prediction via 

subsampling and identifying the patients with highly robust prediction outcomes, i.e. who are 

consistently identified as true AD cases (true positives) during testing, regardless of the training 
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subsample. This approach was found, in practice, to lead to a highly specific prediction, in addition to 

offering a guarantee of robustness; see [20] for more information. Specifically here, a tenfold cross-

validation loop was used to estimate the performance of the trained model. Classes were balanced 

inversely proportional to class frequencies in the input data for the training. A nested cross-validation 

loop (stratified shuffle split with 50 splits and 20% test size, i.e. a random permutation cross-validator 

was used to split the data into 50 training and test sets, where the size of the test set was always 20% of 

the original sample size) was used for the grid search of the SVM hyperparameter C (grid was 10-2 to 

101 with 15 equal steps). We randomly selected subsamples of the dataset, retaining a set percentage of 

participants in each subsample. For each subsample, a separate SVM model was trained to predict AD 

or CN in ADNI1. The SVM training was replicated a number of times. Both the subsample size and the 

number of subsamples were selected to maximize the positive predictive value of the prediction of 

sMCI vs pMCI in ADNI1, as described below. Predictions were made on the remaining subjects that 

were not used for training, and, for each subject, we calculated a hit probability defined as the 

frequency of correct classification across all SVM replications in which the test set contained that 

subject. High confidence AD cases were defined as individuals with 100% hit probabilities with the 

AD label. Next, we trained a logistic regression classifier [31], with L1 regularization on the 

coefficients, to predict the high confidence AD cases. A stratified shuffle split (500 splits, 50% test 

size) was used to estimate the performance of the model for the grid search of the hyperparameter C 

(grid was 10-2 to 101 with 15 equal steps) on the overall ADNI1 sample, and the same hyperparameters 

were used for all SVM replications.  

We used the entire CN and AD sample from ADNI1 to obtain three highly predictive signatures 

(HPS) (i.e. models), 1) one using VBM subtype weights as features (VBM only), 2) one using only 

cognitive features (COG only), 3) and one using the combination of VBM subtype weights and 

cognitive features (VCOG). In all three signatures, age, sex, mean GMV, and TIV were also included 

as features. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/lVrWC9/PbVRV
https://paperpile.com/c/lVrWC9/OtHj0


9 

 

Prediction of progression to AD dementia from the MCI stage in ADNI1 

The logistic regression trained on AD vs CN was used to identify MCI patients who have a HPS 

of AD dementia in ADNI1. Our hyperparameters for this logistic regression were optimized based on 

the number of subsamples and subsample size that produced the maximum specificity and PPV for the 

classification of sMCI (n=89) vs pMCI (n=155) in ADNI1, while maintaining a minimum of 30% 

sensitivity. We varied the number of subsamples (100, 500, 1000) and subsample size (10%, 20%, 

30%, 50%) to perturb the model and identify subjects that had robust outcomes during the testing phase 

regardless of the training subsample. We then re-trained our models to classify AD vs CN in ADNI1 

with these optimized hyperparameters. This was done for all three signatures. In brief, we used the AD 

and CN sample from ADNI1 as a training set, and the MCI subjects from ADNI1 as a validation set. 

The ADNI2 sample was then used as an independent replication (test) set, to establish the performance 

of the two-stage model without further changes to the hyperparameters.  

 

Statistical test of differences in model performance 

We used Monte-Carlo simulations to generate confidence intervals on the performance (i.e. 

accuracy, PPV, specificity and sensitivity) of both linear SVM and HPS models for their predictions of 

AD vs CN and pMCI vs sMCI. Taking the observed sensitivity and specificity, and using similar 

sample sizes to our experiment, we replicated the number of true and false positive detection 100000 

times using independent Bernoulli variables, and derived replications of PPV, specificity and 

sensitivity. By comparing these replications to the accuracy, sensitivity, specificity and PPV observed 

in both models, we estimated a p-value for differences in model performance [32]. A p-value smaller 

than 0.05 was interpreted as evidence of a significant difference in performance, and 0.001 as strong 

evidence. We also used this approach to compare the performance of the combined features (VCOG) to 

the models containing VBM features (VBM) or cognitive features (COG) only. Note that, based on our 
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hypotheses regarding the behaviour of the HPS model, the tests were one-sided for increased accuracy, 

specificity and PPV, and one-sided for decreased sensitivity.  

 To assess the performance of the HPS models against standard machine learning algorithms, we 

used four algorithms (SVM with a RBF kernel, K nearest neighbors, random forest, and Gaussian naive 

Bayes) to train models to classify AD vs CN in the ADNI1 dataset. We then tested and validated these 

models on classifying AD vs CN in ADNI2 and finally pMCI vs sMCI in both ADNI1 and ADNI2 

separately. See the supplementary material for details of the implementations of these latter algorithms. 

We then generated ROC curves and calculated the area under the curve (AUC) for each model and 

classification (AD vs CN; pMCI vs sMCI) in both ADNI1 and ADNI2.  

 

Statistical tests of association of progression, AD biomarkers, and risk factors in high 

confidence MCI subjects 

Based on the classifications resulting from the linear SVM and HPS models, we separated the 

MCI subjects into three different groups: 1) High confidence, subjects who were selected by the HPS 

model as hits, 2) Low confidence, subjects who were selected by the linear SVM model as hits but 

were not selected by the HPS model, and 3) Negative, subjects who were not selected as hits by either 

algorithm.  

In order to validate whether the high confidence subjects represented individuals who were in a 

prodromal phase of AD, we tested if this subgroup was enriched for progression to dementia, APOE4 

carriers, females, and subjects who were positive for Aβ and tau pathology. Positivity of AD pathology 

was determined by CSF measurements of Aβ 1-42 peptide and total tau with cut-off values of less than 

192 pg/mL and greater than 93 pg/mL respectively [33]. We implemented Monte-Carlo simulations, 

where we selected 100000 random subgroups out of the original MCI sample. By comparing the 

proportion of progressors, APOE4 carriers, females, Aβ-positive, and tau-positive subjects in these null 

replications to the actual observed values in the HPS subgroup, we estimated a p-value [32] (one sided 
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for increase). A p-value smaller than 0.05 was interpreted as evidence of a significant enrichment, and 

0.001 as strong evidence. 

One-way ANOVAs were used to evaluate differences between the HPS groupings with respect 

to age. Post-hoc Tukey's HSD tests were done to assess pairwise differences among the three classes 

(high confidence, low confidence, negative). These tests were implemented in Python with the SciPy 

library [34] version 0.19.1 and StatsModels library [35] version 0.8.0. 

To explore the impact of HPS grouping on cognitive trajectories, linear mixed effects models 

were performed to evaluate the main effects of and interactions between the HPS groups and time on 

ADAS13 scores up to 36 months of follow-up. The models were first fit with a random effect of 

participant and then were fit with random slopes (time | participant) if ANOVAs comparing the 

likelihood ratio suggested a significant improvement in model fit. All tests were performed separately 

on the ADNI1 and ADNI2 datasets. These tests were implemented in R version 3.3.2 with the library 

nlme version 3.1.128 [36]. 

 

Public code, data availability and reproducibility 

 The code used in this experiment is available on a GitHub repository 

(https://github.com/SIMEXP/vcog_hps_ad) and zenodo (https://doi.org/10.5281/zenodo.1444081).  

We shared a notebook replicating all the machine learning experiments, starting after the 

generation of VBM subtypes. However, in order to protect the privacy of the study participants, we 

could not share individual subtype weights alongside other behavioural data and diagnostic 

information. We thus created parametric (Gaussian) bootstrap simulations, based on group statistics 

alone, that will allow interested readers to replicate results similar to those presented in this manuscript, 

using the exact same code and computational environment that were used on real data, but with purely 

synthetic data instead. The notebook can be executed online via the binder platform 

(http://mybinder.org), and runs into a docker container 

(https://mybinder.org/v2/gh/SIMEXP/vcog_hps_ad/master?filepath=%2Fvcog_hpc_prediction_simulat
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ed_data.ipynb), built from a configuration file that is available on GitHub 

(https://github.com/SIMEXP/vcog_hps_ad/blob/master/Dockerfile). The container itself is available on 

Docker Hub (https://hub.docker.com/r/simexp/vcog_hps_ad/). The simulated data was archived on 

figshare 

(https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/7132757).  

The simulation included the following 16 variables: age, sex, mean grey matter volume, total 

intracranial volume, 5 cognitive assessment scores and 7 VBM subtype weights from both ADNI1 and 

ADNI2. Subjects that had missing values for these variables were discarded from the simulation, 

leaving N=1115 subjects. We stratified the population into 12 subgroups:  the four clinical labels (AD, 

pMCI, sMCI, CN), each further subdivided by the three prediction subclasses identified in this paper 

(negative, low confidence, high confidence). For each subgroup, we estimated the average and 

covariance matrices between the 16 variables of interest. We then generated a number of multivariate 

normal data points that matched the number of subjects found in each subgroup, using the empirical 

mean and covariance matrix of each subgroup. Finally, the range of the simulated data was clipped to 

the range of the original real data, and the simulated sex data points were binarized by nearest 

neighbour.  

The statistics from the predictive model in the original implementation are similar to that of the 

simulated data. The model predicted the progression of dementia from MCI in ADNI1 with a PPV of 

93.1% (specificity of 93.2%) on real data. This coincides with a 93.3% PPV (specificity of 94.3%) that 

we get when using the simulated data. Similarly, with the ADNI2 dataset the model achieved a 81.3% 

PPV (specificity of 96.7%) from the real data and a 75.7% PPV (specificity of 95.0%) from the 

simulated data.  

 

Results 

Subtypes of brain atrophy 
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 Subtype 1 was characterized by reduced relative GMV in the occipital, parietal and posterior 

temporal lobes. Subtype 2 displayed reduced relative GMV across the cortex, except for the medial 

parts of the parietal and occipital lobes and the cingulate. Subtype 3 had increased relative GMV in the 

medial and lateral temporal lobes, insula, and striatum. Subtype 4 had decreased relative GMV in the 

temporal lobes, inferior parietal lobes, posterior cingulate, and the prefrontal cortices. Subtype 5 was 

characterized by greater relative GMV in the temporal lobes, while Subtype 6 had the opposite pattern 

of reduced relative GMV in the temporal lobes. Subtype 7 displayed greater relative GMV in the 

parietal lobes, posterior lateral temporal lobes, medial temporal lobes, and medial occipital lobes. See 

Figure 1b for surface representations of the subtypes. Diagnosis (CN, sMCI, pMCI, AD) accounted for 

a substantial amount of variance in subtype weights for subtypes 1 (F=8.51, p=1.30 ✕ 10-5), 2 

(F=10.32, p=1.00 ✕ 10-6), 4 (F=14.53, p=2.60 ✕ 10-9), 5 (F=13.86, p=6.77 ✕ 10-9), 6 (F=34.27, p=2.57 

✕ 10-21), and 7 (F=37.02, p=5.85 ✕ 10-23). Post-hoc t-tests showed AD subjects had significantly 

higher weights compared to CN (Figure 1b) for subtypes 1 (t=2.88, p=0.02), 2 (t=4.05, p=3.0 ✕ 10-4), 4 

(t=4.83, p<1.0 ✕ 10-4), and 6 (t=7.86, p=<1.0 ✕ 10-4), making these subtypes associated with a 

diagnosis of AD. CN subjects had significantly higher weights compared to AD for subtypes 5 (t=-

4.86, p<1.0 ✕ 10-4) and 7 (t=-6.95, p<1.0 ✕ 10-4), making these subtypes associated with a cognitively 

normal status.  

 

Prediction of AD dementia vs cognitively normal individuals 

The linear SVM model trained using the VCOG features achieved 94.5% PPV (95.6% 

specificity, 93.9% sensitivity, 94.9% accuracy) when classifying AD vs CN in ADNI1. Such high 

performance was expected given the marked cognitive deficits associated with clinical dementia. COG 

features only actually reached excellent performance as well (97.6% PPV, 98.0% specificity, 96.4% 

sensitivity, 97.3% accuracy), while using VBM features only yielded markedly lower performances 

(86.4% PPV, 89.3% specificity, 79.6% sensitivity, 84.8% accuracy) (see Figures 2 and ROC analysis in 

Figure 3). Note that the performance metrics in ADNI1 were estimated through cross-validation, and 
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represent an average performance for several models trained on different subsets of ADNI1. We then 

trained a model on all of ADNI1, and estimated its performance on an independent dataset, ADNI2. 

Using VCOG predictors, the ADNI1 model reached 92.0% PPV (96.3% specificity, 92.0% sensitivity, 

94.5% accuracy), when applied on ADNI2 AD vs CN data. Again the performance was comparable 

with COG predictors only (92.2% PPV, 96.3% specificity, 94.3% sensitivity, 95.6% accuracy), and 

VBM features only achieved lower performance (57.3% PPV, 79.8% specificity, 56.7% sensitivity, 

72.3% accuracy) (see Figures 2 and ROC analysis in Figure 3). Note that PPV is dependent on the 

proportion of patients and controls for a given sensitivity and specificity. Since the ADNI2 sample had 

a substantially smaller proportion of AD subjects compared to ADNI1, the resulting PPV was reduced. 

When we adjusted the baseline rate of AD subjects in ADNI2 to the same rate in ADNI1, the PPVs 

were 95.2%, 95.3%, and 70.2% for the VCOG, COG, and VBM models respectively.  

 

Identification of high confidence AD cases for prediction 

The VCOG HPS model achieved 99.2% PPV (99.5% specificity, 77.6% sensitivity, 89.7% 

accuracy) in classifying high confidence AD subjects in ADNI1. These performance scores were 

estimated by cross-validation of the entire two-stage process (training of SVM, estimation of hit 

probability, identification of HPS). However, the hyperparameters of the two-stage model were 

optimized on classifying pMCI vs sMCI in ADNI1, as described previously. We next trained a single 

model on all of ADNI1, which we applied on an independent sample (ADNI2). The ADNI1 AD VCOG 

HPS model reached 98.6% PPV (99.5% specificity, 79.5% sensitivity, 93.1% accuracy) on ADNI2. As 

was previously observed with the conventional SVM analysis, the VCOG HPS model had similar 

performance to the COG HPS model (ADNI1: 100% PPV, 100% specificity, 87.3% sensitivity, 94.2% 

accuracy; ADNI2: 98.7% PPV, 99.5% specificity, 88.6% sensitivity, 96.0% accuracy), and 

outperformed the VBM HPS model (ADNI1: 92.3% PPV, 96.1% specificity, 54.6% sensitivity, 77.2% 

accuracy; ADNI2: 65.2% PPV, 91.5% specificity, 33.3% sensitivity, 72.7% accuracy); see Figure 2. 
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When adjusted to the same baseline rate of AD subjects as ADNI1, the PPVs in ADNI2 were 99.2%, 

99.3%, and 76.7% for the VCOG, COG, and VBM HPS models respectively.  

 

High confidence prediction of progression to AD dementia  

When using the full VCOG features, 87 MCI patients were selected as high confidence in 

ADNI1, out of which 81 (93.1% PPV) were pMCI within 36 months of follow-up. This represented a 

large, significant increase over the baseline rate of progressors in the entire ADNI1 MCI sample 

(37.4%) (p<0.001). This was also a significant increase over the SVM's predictions, where 83.9% of 

subjects that it had labeled as hits were true progressors (p<0.001). When adjusted to a 33.6% baseline 

rate of progressors, more typical of MCI populations, the PPV of high confidence subjects for 

prognosis of dementia was 80.4% (93.2% specificity, 55.1% sensitivity, 69.3% accuracy).  

We replicated these analyses in the MCI sample from ADNI2 (N=235). Using VCOG features, 

32 subjects were identified as high confidence, 26 of which progressed to AD dementia within 36 

months follow-up (81.2% PPV, specificity of 96.7%, sensitivity of 47.3%, 85.1% accuracy, 87.8% 

PPV adjusted to a 33.6% baseline rate). This represented a significantly higher prevalence than the 

30.6% baseline rate in the entire ADNI2 MCI cohort (p<0.001). This was also a significant increase 

over the SVM's predictions, where 67.8% of subjects it had labeled as hits were true progressors 

(p<0.001).  

As in the classifications of AD vs CN, the VCOG HPS model tended to have higher 

performance compared to the VBM HPS (ADNI1: 89.9% specificity, 42.9% sensitivity, 60.5% 

accuracy, 87.7% PPV, 68.2% adjusted PPV; ADNI2: 90.1% specificity, 47.3% sensitivity, 80.2% 

accuracy, 59.1% PPV, 70.7% adjusted PPV) in classifying pMCI vs sMCI. The VCOG HPS also had 

similar performance compared to the COG HPS  (ADNI1: 87.5% specificity, 64.6% sensitivity, 73.2% 

accuracy, 89.6% PPV, 72.3% adjusted PPV; ADNI2: 95.0% specificity, 56.4% sensitivity, 86.0% 

accuracy, 77.5% PPV, 85.1% adjusted PPV) for distinguishing between pMCI and sMCI. Notably, the 

VCOG features lead to higher PPV than VBM and COG features taken independently, both in ADNI1 
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and ADNI2. That increase was large and significant between VCOG and VBM (up to 17%) and 

marginal and non-significant between VCOG and COG (up to 8%); see Figure 2. 

 

 

Trade-off between sensitivity and specificity of different algorithms 

The HPS models consistently outperformed the linear SVM classifiers with respect to 

specificity (p<0.001) in the classifications of AD vs CN and pMCI vs sMCI in both ADNI1 and 

ADNI2, regardless of the features that the models contained. The HPS also had greater PPV (p<0.05) 

adjusted for a typical prevalence of 33.6% pMCI in a given sample of MCI subjects [1]. However, 

these increases in specificity and PPV for the HPS model came at a significant cost of reduced 

sensitivity compared to the linear SVM classifier, across all models in both ADNI1 and ADNI2 

(p<0.05) (Figure 2). Note that this shift towards lower sensitivity and higher specificity and PPV could 

be achieved by adjusting the threshold of the SVM analysis (see Figure 2 and ROC analysis in Figure 

3), and is not unique to the two-stage procedure we implemented. This trade-off between sensitivity 

and specificity is universal across machine learning algorithms and similar results can be achieved by 

adjusting the prediction threshold of different strategies. As shown by the ROC curves and AUC values 

in Figure 3, other machine learning algorithms (SVM with a radial basis function kernel, K nearest 

neighbors, random forest, and Gaussian naive Bayes) also performed similarly to the HPS. Thus, the 

value of the HPS is in the selection of a threshold point in order to operate in a high specificity regime. 

 

Characteristics of MCI subjects with a highly predictive VCOG signature of AD 

High confidence MCI subjects with the VCOG signature were more likely to be progressors 

(Figure 4a) compared to low confidence subjects and negative subjects (ADNI1: p<0.001; ADNI2: 

p<0.001). High confidence MCI subjects were also more likely to be APOE4 carriers (Figure 4b) 

(ADNI1: p<0.005; ADNI2: p<0.05). There was no difference in sex across the HPS groupings in the 

MCI subjects of either the ADNI1 or ADNI2 cohorts (Figure 4c). This was consistent with the whole 
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sample, where there were equal proportions of progressors across both sexes in each dataset (ADNI1: 

χ2=0.015, p=0.90; ADNI2: χ2=0.0002, p=0.99). The high confidence class was also significantly 

enriched for Aβ-positive subjects in ADNI1 (p<0.05). However, this result was not replicated in the 

ADNI2 MCI subjects (Figure 4d). Similarly with tau, we found a significant increase in tau-positive 

subjects in the high confidence group of ADNI1 (p<0.05), but not in ADNI2 (Figure 4e). We found a 

significant age difference across the HPS classes in ADNI2 (F=5.68, p<0.005), where the high 

confidence subjects were older than the Negative subjects by a mean of 4.4 years. However, age did not 

differ across the HPS classes in ADNI1 (Figure 4f). Finally, high confidence subjects had significantly 

steeper cognitive declines compared to the low confidence and negative groups (Figure 4g): there were 

significant interactions between the HPS groupings and time in ADNI1: (high confidence β=-0.147, t=-

7.56, p<0.001; low confidence β=-0.055, t=-2.46, p<0.05) and ADNI2 (high confidence β=-0.194, t=-

8.69, p<0.001; low confidence β=-0.072, t=-3.31, p=0.001). The high confidence subjects in ADNI1 

and ADNI2 respectively gained 1.8 and 2.3 more points each year on the ADAS13 compared to the 

low confidence and negative groups. Note that higher scores on the Alzheimer’s Disease Assessment 

Scale - Cognitive subscale (13 items) (ADAS13) represent worse cognitive function. 

 

COG, VBM and VCOG highly predictive signatures 

The COG signature was mainly driven by scores from the ADAS13, which measures overall 

cognition, ADNI-MEM, a composite score that measures memory [27], and ADNI-EF, a composite 

score that measures executive function [37] (coefficients were 5.49, -4.80 and -2.50 respectively). In 

this model, sex, age, mean GMV, and TIV contributed very little, relative to the cognitive features 

(Figure 5b). Note that these coefficients should be interpreted as pseudo z-scores as the features had 

been normalized to zero mean and unit variance. 

Almost all grey matter subtypes contributed to the VBM signature. Mean GMV, subtype 1 

(reduced relative GMV in the occipital, parietal and posterior temporal lobes) and subtype 6 (reduced 

relative GMV in the temporal lobes, notably the medial temporal regions) had the highest weights in 
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the model (coefficients were -5.07, 4.87, and 3.98 respectively) (Figure 5c). We had anticipated the 

larger contribution of these two subtypes as they have been described in previous AD subtyping work 

[5,17–19].  

The ADAS13, memory (ADNI-MEM) and executive function (ADNI-EF) scores contributed 

the most to the VCOG signature (coefficients were 6.27, -7.43 and -3.95 respectively, Figure 5a). Of 

the VBM features, subtypes 2, 3 and 7 contributed the most to the signature (coefficients were 1.36, -

2.12 and -2.83 respectively). Subtypes 1 and 6, which had the highest positive weights in the VBM 

HPS model, were given marginal weights in the VCOG HPS model, which is potentially indicative of 

redundancy with COG features. Note that the weights for subtypes 3 and 7 were negative in the model, 

which means that predicted AD and pMCI cases had brain atrophy patterns that were spatially 

dissimilar to those subtypes. 

 

Comparison of COG, VBM and VCOG high confidence subjects 

We found substantial overlap of subjects labeled as high confidence in the MCI cohorts across 

the VBM, COG and VCOG signatures (Figure 6). There were very few subjects that were labeled as 

high confidence exclusively by the VCOG signature. As to be expected, the majority of subjects 

labeled as high confidence by the VCOG signature (ADNI1: 97.7%; ADNI2: 100%) were also labeled 

as high confidence by either the VBM only or COG only signatures or both. Of the subjects that were 

labeled as high confidence by the VBM only signature, 23.6% and 55.2% in ADNI1 and ADNI2 

respectively were identified exclusively by the VBM HPS. There were relatively few subjects (7 and 2 

subjects in ADNI1 and ADNI2 respectively) that were captured by VBM and VCOG but missed by the 

COG HPS. The COG HPS actually identified the majority of all high confidence subjects across the 

three signatures (ADNI1: 106 of 132 total subjects, ADNI2: 40 of 65 total subjects). From Figure 6, we 

can see that the VCOG HPS acts as a refinement of the COG signature, as the VCOG HPS captures a 

subset of subjects that were labeled by the COG HPS. 
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Out of the high confidence subjects labeled by all three signatures, 97.9% and 93.7% from 

ADNI1 and ADNI2 respectively progressed to dementia (Supplementary Table S2). These subjects had 

worse cognition based on the MMSE and higher proportions of APOE4 carriers, Aβ positive and tau 

positive individuals, compared to the baseline rates in all MCI subjects. Of the high confidence subjects 

who were labeled only by the VBM model, 70.6% and 43.4% from ADNI1 and ADNI2 respectively 

were progressors. This group of subjects had less Aβ and tau positive individuals compared to the 

baseline rates. Of the high confidence subjects who were labeled only the COG model, 70.4% and 

57.1% from ADNI1 and ADNI2 respectively progressed to dementia. This group appeared to have a 

greater proportion of Aβ positive individuals compared to the baseline rates in both ADNI1 and ADNI2 

cohorts. The majority of these COG high confidence subjects were also male. Given the distinct 

characteristics among the exclusively COG, exclusively VBM, and VCOG high confidence subjects, 

these groups may represent subgroups with different risks for AD dementia. As it appears that a greater 

proportion of pMCI is captured when cognitive and structural MRI features are combined, these 

findings may support joining multiple modalities together in order to achieve higher positive predictive 

value. However, these results are qualitative and of an exploratory nature due to low sample sizes.  

 

Discussion 

We developed a MRI and cognitive-based model to predict AD dementia with high PPV and 

specificity. Specifically, our two-stage predictive model reached 93.2% specificity and 93.1% PPV 

(80.4% when adjusted for 33.6% prevalence of progressors) in ADNI1 when classifying progressor vs 

stable MCI patients (within 3 years follow-up). We replicated these results in ADNI2 where the model 

reached 96.7% specificity and 81.2% PPV (87.8% adjusted PPV). With respect to specificity and PPV, 

these results are a substantial improvement over previous works combining structural MRI and 

cognition on the same prediction task, that have reported up to 76% specificity and 65% PPV (adjusted 

for 33.6% prevalence of progressors) [7]. Finally, our results also reproduced our past work which 
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developed a model that optimizes specificity and PPV [20]. However, it appears that a combination of 

structural and functional MRI measures may lead to an improved prediction as two studies have 

reported 90-100% PPV with these measures [9,20], with the limitation of smaller sample sizes (56 total 

MCI subjects in [20], 86 total MCI subjects in [9]) due to the limited availability of functional MRI 

data in ADNI. Our proposed signature is based on widely available measures, and can be readily tested 

in many clinical trials. Functional MRI measures, by contrast, are only gaining traction in large clinical 

studies, and will at the minimum require more time to get widely adopted, if the very high PPVs are 

replicated in larger samples. 

An ideal model to predict conversion to AD dementia would have both high sensitivity and 

specificity. However, the pathophysiological heterogeneity of clinical diagnosis will prevent highly 

accurate prediction linking brain features to clinical trajectories. We argue that, faced with 

heterogeneity, it is necessary to sacrifice sensitivity to focus on a subgroup of individuals with similar 

brain abnormalities. Due to the expected trade-off between specificity and sensitivity, the high 

specificity of our two-stage model indeed came at a cost of reduced sensitivity (55.1% in ADNI1 and 

47.3% in ADNI2 for classifying pMCI vs sMCI), which is much lower than sensitivity values of 64%-

95% reported by other groups [7,8,10–16]. The two-stage procedure did not offer gains compared to a 

simpler SVM model, if the threshold of the SVM model could be selected a priori to match the 

specificity of the two-stage procedure (see ROC curves in Figure 3). The two-stage prediction model 

offered the advantage of a principled approach to train the prediction model in order to maximize 

specificity, based on samples that are robust and easily classifiable, without testing a range of 

prediction thresholds. The choice of a L1 regularized logistic regression also led to a compact and 

interpretable subset of features for the HPS.  

Favoring specificity over sensitivity is useful in settings where false positives need to be 

minimized and PPV needs to be high, such as expensive clinical trials. Here, with our VCOG HPS 

model, we report the highest PPVs for progression to AD from the MCI stage (up to 87.8%, adjusted 

for 33.6% prevalence of progressors) for models that included structural MRI and cognitive features, 
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which are, importantly, modalities that are already widely used by clinicians. The present work could 

be used as a screening tool for recruitment in clinical trials that target MCI subjects who are likely to 

progress to dementia within three years. The implementation of an automated selection algorithm could 

also result in groups of MCI subjects with more homogeneous brain pathology. However, we note that 

high confidence subjects did not all present with significant amyloid burden (92.0% and 68.4% of high 

confidence subjects in ADNI1 and ADNI2 respectively, Figure 4), which means that not all high 

confidence individuals are likely to have prodromal AD, even when progressing to dementia. 

When we trained our model with cognitive features only, tests for general cognition, memory, 

and executive function were chosen as the strongest predictors of AD dementia. Our COG HPS model 

thus supports previous research that reported general cognition, memory, and executive function as 

important neuropsychological predictors of dementia [7,29,38,39]. Compared to the state-of-the-art 

multi-domain cognition-based predictive model, which reported 87.1% specificity and 81.8% PPV 

(77.5% when adjusted to 33.6% pMCI prevalence) [40], our COG HPS model achieved similar 

performance reaching between 87.5%-95% specificity and 72.3%-85.1% (adjusted) PPV. As general 

cognition was the strongest feature in our model to predict progression, this supports previous findings 

that MCI patients with deficits across multiple domains are at the highest risk for dementia [39,41].  

For our VBM model, we extracted a number of gray matter atrophy subtypes that recapitulated 

previously reported subtypes, namely the medial temporal lobe and parietal dominant subtypes [5,17–

19], which were associated strongly with a diagnosis of AD dementia. Weights for the parietal 

dominant and medial temporal lobe subtypes (Subtypes 1 and 6 from Figure 1b, respectively) 

contributed substantially to the highly predictive signature in the VBM model. The atrophy pattern of 

subtype 6 is spatially similar to the spread of neurofibrillary tangles in Braak stages III and IV [42], 

which may support previous findings that tau aggregation mediates neurodegeneration [43]. The 

contributions of the parietal dominant and medial temporal lobe subtypes in the VBM HPS model are 

also in line with previous works, which have reported that cortical thickness and volumes of the medial 
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temporal lobes, inferior parietal cortex, and precuneus are strong predictors of progression to dementia 

[7,11].  

When combined with cognitive tests in the VCOG model, the structural subtypes were given 

marginal weights. This suggests some redundancy between atrophy and cognition, and that cognitive 

features have higher predictive power than structural features in the ADNI MCI sample. This 

conclusion is consistent with the observation that the COG model significantly outperformed the VBM 

model, similar to previous work [7]. Although cognitive markers were stronger features, the VCOG 

model assigned large negative weights for the structural subtypes 3, which showed greater relative 

GMV in the temporal lobes, and 7, which showed greater relative GMV in the parietal, occipital, and 

temporal lobes. This means that these features were predictive of stable MCI in the VCOG model, in 

line with previous work showing that atrophy in these regions is predictive of progression to dementia 

[7,11]. Furthermore, we demonstrated that combining MRI data with cognitive markers significantly 

improves upon a model based on MRI features alone. This result is again in line with the literature 

[7,10], yet was shown for the first time for a model specifically trained for high PPV. Note that in the 

current study, the predictive model was trained exclusively on images acquired on 1.5T scanners from 

ADNI1. Good generalization to ADNI2 with 3T scanners demonstrates robustness of imaging 

structural subtypes across scanner makes. 

The VCOG highly predictive signature might reflect a late disease stage. We looked at the ratio 

of early to late MCI subjects in the ADNI2 sample (note that ADNI1 did not have early MCI subjects). 

Of the MCI subjects identified as high confidence by the VCOG model, 84.4% were late MCI subjects, 

compared to a rate of 34.9% of late MCI subjects in the entire ADNI2 MCI sample (Supplementary 

Figure S1). This approach may not be optimal for early detection of future cognitive decline. Training a 

model to classify MCI progressors and non-progressors to dementia could be done in order to capture 

future progressors in earlier preclinical stages (e.g. early MCI). Finally, we focused on structural MRI 

and neuropsychological batteries as features in our models due to their wide availability and established 

status as clinical tools. However, we believe adding other modalities such as PET imaging, CSF 
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markers, functional MRI, genetic factors, or lifestyle factors could result in higher predictive power, 

especially at earlier preclinical stages of AD.  

 

Conclusion 

In summary, we found a subgroup of patients with MCI who share a signature of cognitive 

deficits and brain atrophy, that put them at very high risk to progress from MCI to AD dementia within 

a time span of three years. We validated the signature in two separate cohorts that contained both stable 

MCI patients and MCI patients who progressed to dementia. The model was able to predict progression 

to dementia in MCI patients with up to 93.1% PPV and up to 96.7% specificity. The signature was 

present in about half of all progressors, demonstrating that gains in PPV can be made by focusing on a 

homogeneous, yet relatively common subgroup. Our model could potentially improve subject selection 

in clinical trials and identify individuals at a higher risk of AD dementia for early intervention in 

clinical settings. 
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Figure captions 

 

Figure 1. Subtyping procedure and resulting subtypes. a) A hierarchical clustering procedure identified 

7 subtypes, or subgroups, of individuals with similar patterns of grey matter topography within the 

ADNI1 cohort of CN and AD subjects (top). A measure of spatial similarity, called subtype weight, 

between a single individual’s grey matter volume map and the average of a given subtype was 

calculated for all individuals and all subtypes (bottom). b) Maps of the 7 subtypes showing the 

distribution of grey matter across all voxels relative to the average. CN* and AD* denote significant 
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associations between the subtype weights and diagnoses of cognitively normal (CN) or Alzheimer's 

dementia (AD) respectively. 

 

Figure 2. Accuracy, specificity, sensitivity, and positive predictive value (PPV) for different 

classifiers: linear SVM, highly predictive signature (HPS), and the linear SVM thresholded at 0.95 

(SVM 0.95), for the classifications of patients with AD dementia (AD) and cognitively normal 

individuals (CN) and patients with mild cognitive impairment who progress to AD (pMCI) and stable 

MCI (sMCI) in ADNI1 and ADNI2. VBM represents the model trained with VBM subtypes, COG 

represents the model trained with baseline cognitive scores, and VCOG represents the model trained 

with both VBM subtypes and cognition. Positive predictive value was adjusted (PPV (adj)) for a 

prevalence of 33.6% pMCI in a sample of MCI subjects for both ADNI1 and ADNI2 MCI cohorts. 

Significant differences are denoted by * for p<0.05 and ** for p<0.001). 

 

Figure 3. Receiver operating characteristic (ROC) curves for various machine learning algorithms with 

different features (VBM for VBM subtypes only, COG for cognitive features only, VCOG for a 

combination of VBM subtypes and cognitive features). Algorithms included a support vector machine 

with a radial basis function kernel (RBF SVM), K nearest neighbors (KNN), random forest (RF), 

Gaussian naive Bayes (GNB), a support vector machine with a linear kernel representing the first stage 

(Linear SVM) of the two-stage predictive model, and the two-stage highly predictive signature (HPS). 

TPR refers to true positive rate,  FPR refers to false positive rate, and AUC refers to area under the 

curve. 

 

Figure 4. Characteristics of MCI subjects with the VCOG signature in ADNI1 and ADNI2. We show 

the percentage of MCI subjects who a) progressed to dementia, were b) APOE4 carriers, c) female, d) 

positive for Aβ measured by a cut-off of 192 pg/mL in the CSF [22], and e) positive for tau measured 

by a cut-off of 93 pg/mL in the CSF [22] in each classification (High confidence, Low confidence, and 

Negative). f) Age and g) cognitive trajectories, measured by the Alzheimer's Disease Assessment Scale 

- Cognitive subscale with 13 items (ADAS13), across the three classes. Significant differences are 

denoted by * for family-wise error rate-corrected p<0.05. 

 

Figure 5. Coefficients of the high confidence prediction a) VCOG HPS model, b) COG HPS model, c) 

VBM HPS model. ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive, MEM=ADNI-MEM 
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score; EXEC=ADNI-EF score, BNT=Boston Naming Test, CLOCK=clock drawing test, VBM 1-

7=VBM subtype weights, GMV=mean grey matter volume, TIV=total intracranial volume. 

 

Figure 6. Venn diagram depicting the number of MCI subjects labeled as high confidence by the 

VBM, COG, and VCOG HPS models in ADNI1 and ADNI2. 
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Table 1. Summary of objectives, experiments, and main findings 

Specific objectives Experiments Main findings 

1) Identify subtypes of brain 

atrophy patterns 

We used unsupervised clustering 

on atrophy maps generated from 

structural images in AD and CN 

subjects. 

Seven distinct patterns of atrophy 

were identified, some of which 

were strongly associated with a 

diagnosis of AD (Figure 1b). 

2a) Replicate previous findings 

from works that used cognitive 

and structural features to predict 

progression to AD from MCI 

A linear support vector machine, 

that was optimized for accuracy, 

was trained on the following 

features: 1) structural atrophy 

patterns, 2) multi-domain 

cognitive assessments, and 3) a 

combination of both. 

The support vector machine  based 

on cognitive features had higher 

predictive value than the structural 

MRI signature, similar to previous 

findings [7]. See Figures 2 and 3. 

2b) Train a model in a high 

specificity regime to identify high 

confidence AD subjects with a 

high-risk signature 

We used a two-stage algorithm to 

ensure we were maximizing 

specificity over sensitivity. We 

trained on the following features: 

1) structural atrophy patterns, 2) 

multi-domain cognitive 

assessments, and 3) a combination 

of both. 

The two-stage algorithm resulted 

in a model that achieved high 

specificity and high PPV, with  

reduced sensitivity (Figure 2). 

Three high-risk signatures were 

generated (Figure 5). 

3) Assess if the high-risk signature 

generated by the two-stage 

algorithm can identify progressors 

in MCI subjects within a three 

year period 

We measured PPV, specificity, 

sensitivity, and accuracy of the 

model in predicting progressors in 

two separate MCI cohorts. 

The model achieved high 

specificity and high PPV, again at 

the cost of sensitivity and accuracy 

(Figures 2 and 4). 

4) Test the performance of the 

two-stage algorithm against 

standard algorithms 

We compared the ROC 

performance of the two-stage 

algorithm against standard 

algorithms (e.g. KNN, GNB, SVM 

with a RBF kernel). 

The performance of the two-stage 

algorithm did not differ from 

standard algorithms, in terms of 

area under a ROC curve, but was 

the only one to operate in a high-

specificity, low sensitivity regime 

(Figure 3). 

5) Validate whether this high-risk 

signature represents a prodromal 

phase of AD 

We compared cognitive decline, 

amyloid and tau burden in tagged 

high-risk individuals against those 

who were not. 

Tagged high-risk individuals 

experienced sharper cognitive 

decline and higher levels of 

amyloid and tau than non-tagged 

individuals (Figure 4). 

6) Assess the complementarity of 

cognitive and structural measures 

We examined whether there was 

overlap in the subjects that were 

identified by the three high-risk 

signatures. 

The majority of subjects that were 

identified by the multimodal high-

risk signature had been identified 

as such by the unimodal cognitive 

and unimodal structural 

signatures. The unimodal 

cognitive signature identified the 

majority of all high-risk subjects 

(Figure 6). 
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Table 2. Demographic information for post-QC subjects in ADNI1 and ADNI2 

ADNI1 CN sMCI pMCI AD 

N 205 88 147 165 

Age ± SD 76.1 ± 5.0 74.0 ± 7.6 74.3 ± 7.1 75.4 ± 7.5 

Female % 51.7 40.9 40.8 51.5 

APOE4+ % 27.8 37.5 68.7 65.4 

ADAS13 ± SD 9.5 ± 4.3 14.3 ± 5.5 21.3 ± 5.3 28.6 ± 7.1 

MMSE ± SD 29.1 ± 1.0 27.7 ± 1.7 26.7 ± 1.7 23.4 ± 2.0 

ADNI2 CN  sMCI pMCI AD 

N 188 180 55 89 

Age ± SD 72.8 ± 6.1 70.8 ± 7.3 72.1 ± 7.1 74.4 ± 7.8 

Female % 54.0 47.8 49.1 46.1 

APOE4+ % 29.4 35.6 65.4 71.3 

ADAS13 ± SD 9.1 ± 4.2 11.8 ± 5.3 21.4 ± 6.5 31.6 ± 8.7 

MMSE ± SD 29.1 ± 1.1 28.4 ± 1.6 27.3 ± 1.9 23.1 ± 2.3 

ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive subscale (13 items);  

MMSE=Mini Mental State Examination 
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Editor 
Overall the reviewers request more clarification in the methods/ techniques used, and 
also justification of the two-stage linear model chosen, over a single stage logistic 
regression model. They also suggest that you expand the discussion section to include 
more comparison of the results with other results of the proposed algorithm (i.e. PPV, 
sensitivity, and specificity) with that of other machine learning studies that used sMRI (or 
resting-state fMRI) and/or neuropsychological measures as input features.  
 
We have followed the recommendations of the reviewers by clarifying the methods section and 
explaining the rationale behind the two-stage linear model. We added a collection of popular 
machine learning techniques as benchmark, and revised the positioning of the paper to 
emphasize that our contribution is to train a machine learning model in a regime of high 
specificity and positive positive value, rather than proposing a novel algorithm with improved 
overall accuracy. A more extensive survey of previously published machine learning studies that 
use MRI and neuropsychological measures have also been included in the discussion. 
 

Reviewer #1  
 A multimodal signature of Alzheimer's dementia was first extracted using machine 
learning tools in the ADNI1 sample, and was comprised of cognitive deficits across 
multiple domains as well as atrophy in temporal, parietal and occipital regions. The 
authors then validated the predictive value of this signature on two MCI cohorts. 
 
(1)     How do you select the baseline of T1 scans of ADNI? 
 
All T1-weighted MRI scans for the healthy control (CN) and Alzheimer’s dementia (AD) patients 
that were acquired at baseline from ADNI1 and ADNI2 were included in the study. This was also 
the case for the patients with mild cognitive impairment (MCI), but with additional inclusion 
criteria. For the MCI group, each subject must have had at least 36 months of follow-up for 
inclusion in our study. 
 
Please see the “Data” section under “Materials and methods” on page 5. 
 
(2)     What preprocessing techniques did you use? Did you perform any normalization 
technique? 
 
Each image was linearly co-registered to MNI space using the CIVET pipeline and then 
segmented into grey matter, white matter, and CSF probabilistic maps with SPM12. The 
DARTEL toolbox was used to normalize the grey matter segmentations to a predefined grey 



matter template in MNI152 space. Each map was modulated to preserve the total amount of 
signal and then smoothed with a 8 mm isotropic Gaussian blurring kernel. 
 
Please see the section “Structural features from voxel-based morphometry” under “Materials 
and methods” on page 6. 
 
(3)     Why use GMV and TIV?  
 
TIV has been shown to have significant effects on regional grey matter volumes and has been 
recommended as a variable to take into consideration for VBM analyses (Barnes, Josephine, 
Gerard R. Ridgway, Jonathan Bartlett, Susie M. D. Henley, Manja Lehmann, Nicola Hobbs, 
Matthew J. Clarkson, David G. MacManus, Sebastien Ourselin, and Nick C. Fox. 2010. “Head 
Size, Age and Gender Adjustment in MRI Studies: A Necessary Nuisance?” ​NeuroImage​ 53 (4): 
1244–55.) 
 
(4)     Is your method a type of VBM technique? 
 
Yes. 
 
(5)     Line 168, why use a linear support vector machine (SVM)? Did you consider to use 
kernel SVMs? 
 
We have included an SVM with a RBF kernel for comparison. Please see Figure 3. 
 
(6)     Some AD detection methods could be discussed, see "Multivariate approach for 
Alzheimer's disease detection using stationary wavelet entropy and predator-prey 
particle swarm optimization" and "Single Slice based Detection for Alzheimer's disease 
via wavelet entropy and multilayer perceptron trained by biogeography-based 
optimization" 
 
The suggested papers by reviewer #1 describe detection of patients with AD dementia from 
healthy controls. Since the focus of our current paper is to detect progression to AD dementia in 
patients with MCI from those who will remain cognitively stable, we do not think papers about 
classifying AD vs controls are as relevant as those that focus on progressors vs 
non-progressors, which we have discussed at length. 
 
(7)     How do you optimize the hyperparameters of SVM? 
 
The hyperparameters of the SVM were optimized by a cross-validated grid search over a 
parameter grid. See “Prediction of high confidence AD dementia cases in ADNI1” under the 
“Materials and methods” section, pages 7-8. 
 



(8)     What type of t-test did you use? How did you set the confidence threshold? Did you 
use ANOVA? 
 
Yes, ANOVAs were used. Tukey’s HSD tests were done for the pairwise post-hoc t-tests. See 
“Statistical tests of association of progression, AD biomarkers, and risk factors in high 
confidence MCI subjects” under the “Materials and methods” section, pages 10-11. 
 
(9)     How do you combine and generate the final signature? 
 
The third signature (VCOG) was generated by including the VBM structural subtype weights, 
cognitive assessment scores, mean gray matter volume, total intracranial volume, age, and sex 
as features into the linear SVM on ADNI1 subjects to classify AD vs controls. This process was 
repeated across many random subsamples, after which hit probabilities for all individual 
subjects were calculated. A logistic regression classifier, with L1 regularization on the 
coefficients, was then used to classify the subjects with 100% hit probability from everyone else. 
Please refer to “Prediction of high confidence AD dementia cases in ADNI1” under the 
“Materials and methods” section, pages 7-8.  
 

Reviewer #2  
 
The aim of this manuscript was to explore whether a linear model based classifier of AD 
could identify MCI patients with a "highly predictive signature" of AD 
and whether this represents a prodromal stage of AD by investigating how the HPS 
relates to genetic and phenotypic information. This is an interesting manuscript, however 
there are multiple opportunities for improvement, mostly with regard to​ justification of 
the 2-stage linear model, over a single stage logistic regression model. 
 
There are two justifications for using the two-stage linear model. First, by construction, it focuses 
on patients for which the outcome of the stage 1 model is highly stable. Stability of prediction is 
valuable when selecting participants, as we would not want the inclusion criteria of a study to 
vary substantially based on the specific sample used to train the model. Second, by achieving 
stability, the two-stage model also naturally falls in a regime of high specificity. We could have 
used a different approach, such as thresholding the confidence score generated by the SVM, as 
was done by Korolev et al. (2016). But it would have required in any case the selection of an 
arbitrary threshold. We explain our choice of using the two-stage model in Table 1 under 
Objective 2b and on​ pages 7-8 un​der “Prediction of high confidence AD dementia cases in 
ADNI1” in the Methods section. 
 
Page 6: Prediction of easy AD dementia cases in ADNI1 



This section is difficult for the reader to follow. e.g. what is meant by "20% test size"? 5 
fold CV? 
Maybe a diagram would help to explain what is meant here. 
Also this section would benefit from an explanation of the purpose of the 2-stage linear 
model prediction. 
 
We used a random permutation cross-validator to split the data into 50 training and test sets, 
where the size of the test set was always 20% of the original sample size. This is clarified on 
pages 7-8 under “Prediction of high confidence AD dementia cases in ADNI1”. 
 
We have added to this section on pages 7-8 an explanation of the two-stage model: “We then 
used a two-step method to select an operating point for the linear SVM to obtain a highly 
precise and specific classification ​[20]​. This was done by replicating the SVM prediction via 
subsampling and identifying the patients with highly robust prediction outcomes, i.e. who are 
consistently identified as AD during testing, regardless of the training subsample and the validity 
of the prediction. This approach was found to lead in practice to prediction that achieve high 
specificity, in addition to offering a guarantee of robustness; see ​[20]​ for more information.” 
 
 
Page 6: Prediction of progression to AD dementia from the MCI stage in ADNI1 
Line 191: "We re-trained our models on AD vs CN after 
optimizing our hyperparameters (resampling size and resampling ratio)" 
Its not clear what is meant here and also why resampling size is a hyperparameter of the 
model. 
 
We have clarified the text and changed the terms resampling size and resampling ratio to 
number of subsamples and subsample size, respectively. We varied the number of subsamples 
and the subsample size to perturb the model and identify subjects that had robust outcomes 
during the testing phase regardless of the training subsample. Please refer to page 9 in the 
Methods section under “Prediction of progression to AD dementia from the MCI stage in 
ADNI1”. 
 
Page 10, Line 311: "The HPS models consistently outperformed the base SVM classifiers 
with respect to 
specificity (p<0.001)" Its not clear if this is a meaningful comparison (see Fig. 2 comment 
below) 
Figure 2: Is this the most appropriate way of plotting this data? Might it be more 
meaningful to assess the model using the AUC of an ROC curve? 
From this graph it looks as if the HPS model might be worse than the base classifier. 
 
ROC curves have been added in a new figure (Figure 3) and AUC is reported within this figure. 
 

https://paperpile.com/c/lVrWC9/PbVRV
https://paperpile.com/c/lVrWC9/PbVRV


Also - naming the model HPS is confusing given the grouping of subjects into HPS, 
non-HPS etc. 
 
We now refer to the HPS+ subjects as high confidence subjects and non-HPS+ as low 
confidence subjects. 
 
Page 14, Line 417 "The high specificity of our two-stage model indeed came at a cost of 
reduced sensitivity" 
There is always a trade of between sensitivity and specificity that is not acknowledged 
here. 
 
We have included a section that discusses the trade-off between sensitivity and specificity in the 
results: “Trade-off between sensitivity and specificity of different algorithms” on page 16. We 
also emphasize more this important trade-off in the abstract, introduction and the summary table 
of objectives, experiments and results (Table 1). 
 
Page 14, Line 423 "The two-stage prediction model offered the advantage of a principled 
approach to train the prediction model in a high-specificity regime, based on stability." 
It is unclear what what "high-specificity regime" means and why the 2-stage model 
relates to stability. 
 
By “high specificity regime”, we were referring to an operating point along the ROC curve where 
specificity is much higher compared to sensitivity. The two-stage model ensures high specificity 
(at a cost to sensitivity) as it selects the most robust (or stable) individuals after subsampling 
many times and identifying the subjects that are consistently identified as targets across the 
training subsamples. Please see “Prediction of high confidence AD dementia cases in ADNI1” 
under the Methods section on pages 7-8. 
 

Reviewer #3  
 
This study investigated a machine learning approach to identify high-risk MCI patients 
using five neuropsychological measures and structural MRI (sMRI). By combining the 
neuropsychological and sMRI features, the authors identified pMCI patients with 80.4% 
positive predictive value (PPV) in ADNI1 cohort and 87.8% PPV in ADNI2 cohort. While 
specificity of the proposed algorithm is high (>%95), sensitivity of the algorithm is fairly 
low (47.3% for ADNI2). This study addressed an important topic in Alzheimer disease 
which is to identify high-risk MCI patients. In addition, the manuscript was written well 
with clear descriptions for the methods and results. However, the novelty of this study is 
limited. The following comments need to be addressed.  
 



-       The emphasis of this study was to achieve a large value for PPV (and specificity) in 
identification of pMCI patients, but low sensitivity of the proposed algorithm was the cost 
of this achievement. The authors mentioned that expensive clinical trials can benefit from 
the proposed algorithm since false positives need to be minimized in this setting. 
However,  this application of the proposed algorithm is arguable in that only a subset of 
pMCI patients (~50% of pMCI referring to ~50% sensitivity) will be identified by the 
algorithm and including only these extreme pMCI cases may cause a bias in results of 
the clinical trials. 
 
Clinical trial inclusion criteria are typically designed to be restrictive in the aims of achieving a 
specific and homogenous subpopulation, therefore implementing an automatic algorithm that 
will maximize PPV and specificity to select individuals will help clinical trials achieve their 
recruitment goals in a cost and time-efficient manner. 
 
-       This study has a limited novelty which is to develop an algorithm to provide a high 
PPV in identification of pMCI patients, in the cost of low sensitivity. There are several 
studies investigated classification of pMCI and sMCI using neuroimaging (e.g. sMRI and 
resting-state fMRI) and/or neuropsychological measures (e.g. [Suk et al., 2014, 
Neuroimage 101, 569-582] and [Hojjati et al., 2018, Comput Biol Med 102, 30-39]. In fact, 
the authors compared PPV of their algorithm with that of only three previous studies 
[7-9], and two of these studies were performed by themselves. I recommend to expand 
this section of discussion by comparing results of the proposed algorithm (i.e. PPV, 
sensitivity, and specificity) with that of other machine learning studies that used sMRI (or 
resting-state fMRI) and/or neuropsychological measures as input features.  
 
Other machine learning studies that used imaging and neuropsychological measures as 
features were indeed missing in our citations. We have expanded the list of cited works in the 
revision (see references #7,8,10-16). We thank the reviewer for noticing this error. 
 
-       Please add a table and summarize results of Figure 2. Please also add accuracy and 
AUC to this table. 
 
We have added ROC curves as a figure (Figure 3) and AUC are now reported there. 
Accuracy has now been included in Figure 2 and the results have been summarized on pages 
13-15 under the sections “Prediction of AD dementia vs cognitively normal individuals”, 
“Identification of high confidence cases for prediction”, and “High confidence prediction of 
progression to AD dementia”. 
 
Minor points: 
-       Line# 132: Please correct "with with" ​- done 
-       Line# 146: I recommend replacing "n subject x n subtype" to "n subject x m subtype 
(n=377 and m = 7)"​ - done 
-       Line#147: Please spell out VBM. ​ - done 



-       Line# 185-186:  "three highly predictive signatures (HPS)" in this sentence is 
confusing. What does the signature mean? Do you mean three models? If not, please 
define signature here. 
Yes we meant models and have added that in for clarification.  
-       Figures, and in particular Figure 1, have a low quality.  
We believe the figures were downsampled during the PDF build, but we changed the final 
format of the figures (from TIFF to PDF) for this revision. 


