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Figure 1 (cont'd)
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Supplementary Figure 1

Full scan of all western blots in this paper.




No caption.
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Supplementary Figure 2

\WB analysis of immunoprecipitation and pull down.

\WB images are cropped.

WB analysis of (A) IgG and UTX IP; (B) control and UTX-KO nuclear extract; (C) IgG and 53BP1 IP; (D) control and 53BP1-KO nuclear
extract; (E) glutathione IP of control and GST-tagged human 53BP1-domain 3; and (F) glutathione IP of control and GST-human 53BP1
domains 3i, 3ii, and 3iii with full-length flag-UTX. Experiments were repeated 2 times for a-d and 3 times for e-f to yield similar results.




Pairwise comparison of 53BP1 ChlP-seq datasets
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Supplementary Figure 3

High correlation between the 6 biological replicate datasets of 53BP1 ChIP-seq from 2 antibodies.

Each dataset is ChlP-seq signals at binned genomic regions. Pairwise counts per million of the datasets, with respective R? values are|
Pearson correlation coefficients. Red indicates a higher density of points. Diagonal curve plots show the kernel density of ChlP-seq reads
in each dataset.




Pairwise comparison of UTX ChIP-seq datasets
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Supplementary Figure 4

High correlation between the six biological replicate datasets of UTX ChIP-seq from two antibodies.

Each dataset is ChlP-seq signals at binned genomic regions. Pair-wise counts per million of the datasets with respective R? values are|
Pearson correlation coefficients. Red indicated higher density of points. Diagonal curve plots show the kernel density of ChIP-seq reads
in each dataset.
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Supplementary Figure 5




UTX and 53BP1 bindings are enriched at transcription start sites.

(a) Low correlation between 53BP1 ChIP-seq in control and 53BP1-KO cells. Correlated was analyzed by using linear model of Goodness-
of-Fit package in R. Each dataset contains ChIP-seq signals at binned genomic regions. The graph displays pairwise counts per million
of the datasets, with Red indicating a higher density of points. 1 sample each was used in the analysis. (b) Validation of ChlP-seq targets
of UTX and 53BP1 by ChIP-gPCR. The relative enrichment of H2AX, PTIP, RPL27A, and RPS6 promoters was quantified via IgG, UTX,
and 53BP1 ChIP. The GATA4 promoter was the negative control. N=3 technical gPCR values; 2 biological repeats yielded similar results.
Center values and error bars are mean and standard deviation. * indicates P <0.001 by one-sided Student’s t test. (c¢) Summary data
from 3 independent re-ChIP-gPCR experiments. For each experiment, the relative levels of UTX and IgG ChIP were normalized to 53BP1
re-ChlP. 53BP1 and UTX ChIP are significantly higher than IgG ChlIP, using one-sided paired t test. N=3. Center values and error bars
are mean and standard deviation. (d) Representative 53BP1 and UTX ChlP-seq tracks peak at the transcription start site of the RMDN3
or H2AX locus. The input DNA track is displayed for comparison. Experiments were repeated 6 times to yield similar results. (e) Pie charts
indicate the proportions of UTX or 53BP1 binding site enrichment. ‘Distal’ indicates regions that are 5 kb from transcription start sites.
‘Tes’ denotes transcription termination sites.
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Supplementary Figure 6

Whole-genome sequencing analyses.

(a) Numbers of predicted off-target sites with 0-4 mismatches to each of three CRISPR gRNAs used in the study. (b) Summary flow
chart of sequencing analysis to detect small insertions and deletions (indel). Against the human reference genome (hg19), detected
indels were filtered by the listed criteria, removed while present in more than one sample or sample group, and manually confirmed
excluding sequencing or mapping errors. A 7-bp deletion in KO-3, specific to the 53BP1-KO line, was the only functionally related indel
detected through the workflow. (c) Deletion analysis. The relative coverage analysis among this group of samples, targeting for
deletions larger than 50 bp, was performed to only identify two deletions within the 53BP1 locus of the 53BP1-KO cells. (d) Summary
flow chart of insertion analysis. The soft-clipped reads (>10 bp overhang) were extracted and used to detect larger insertions that were
failed to report in previous indel analysis. Soft-clipping break points were summarized as genomic locations, cross filtering between
samples was to remove non-specific locations, and the potential insertion sites were defined as a pair of bi-direction break points within
a 5-bp window. After removing the low coverage noise, the insertion event in KO-3, specific to the 53BP1-KO lines, was the only
insertion reported through the workflow.
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Supplementary Figure 7

53BP1 does not affect pluripotency, apoptosis, or proliferation of hESCs.

(a) Bright field imaging (Top), SSEA-4 immunofluorescence (IF) (Middle), and OCT4 IF (Bottom) of control cells and 53BP1 KO clones
1-3. (b) Quantification of relative expression of pluripotency markers or germ layer markers in 2 control and 3 53BP1-KO clones. Marker|
IcDNA was quantified by performing RT-qPCR, with circles and bars indicating mean and standard deviation values, respectively.
Control and 53BP1-KO cells did not differ significantly by the Student’s ¢ test. N=3 technical RT samples. Center values and error bars
are mean and standard deviation. No statistical significance by one-sided t test. (c) The proportion of mitotic or BrdU-positive cells in
control and 3 53BP1-KO clones was quantified by performing FACS of phosphorylated-serine 10 in histone H3 and BrdU labeling. (d)
Relative cell numbers of 2 control and 3 53BP1-KO clones proliferating over 4 days. N=2 biological samples for each group. No
significant difference by the chi-squared test. (e) The proportion of apoptotic cells in 2 control and 3 53BP1-KO clones. Apoptosis was
quantified via annexin V and propidium iodide FACS. N=2 biological samples for each group. No significant difference by the chi-
squared test. (f) yH2AX and 53BP1 IF analysis of control cells and 53BP1 KO clones 1-3. For ease of visualization, the high intensity of
the yH2AX IF signal is black. Bars, 10 um. N=487, 250, 387, and 451 cells. Graph at right summarizes foci quantification, with center
values and error bars being mean and standard deviation, and **** P <0.0001 by the ANOVA test.
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Supplementary Figure 8

Profiling of control and 53BP1-KO hESCs.

(a) Comparison of transcript profiles of 3 (biologically independent) 53BP1-KO, and 5 (biologically independent) control hESCs by
counts per million of sequencing reads for each annotated gene. Correlation coefficients are calculated by using linear model of
Goodness-of-Fit package in R. (b) Gene ontology analysis of differentially expressed genes in 4 53BP1-KO clones as compared to 3
control clones. Ontology terms were ranked by P values (by Fisher's exact test), with the number of differentially expressed genes
indicated. (c) Duplicate samples of 2 control and 3 53BP1-KO hESCs were labeled were perspective tandem mass tags and subjected
to quantitative mass spectrometry analysis. (d) Comparison of proteomic profiles of 3 53BP1-KO and 2 control hESCs by mass tag
signals for each quantifiable protein. 2 biological replicates from each group were analyzed by the limma package, which powers
differential expression analyses. (e) Summary table of 17 proteins whose levels significantly differed (using the Limma package [33])
between 53BP1-KO and control hESCs in at least 2 pairwise comparisons.




RNA-seq of hNPC, day 12 of differentiation

Enrichr human gene atlas
Fetal brain P value 5.26E-05
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Gene Ontology Term # Genes P value
nervous system development 75 6.09E-23
axon guidance 51 6.68E-20
anterior/posterior pattern specification 29 5.32E-13
positive regulation of synapse assembly 24 1.59E-11
positive regulation of transcription from RNA polymerase Il 128 3.12E-11
negative regulation of transcription from RNA polymerase I 101 9.60E-11
neuron migration 30 1.55E-10
synapse assembly 21 4.15E-09
central nervous system development 30 4.67E-09
cell fate determination 12 4.99E-09

Supplementary Figure 9

Characterization of hNPCs.

(a) Bright field and IF imaging of cells at stages of the neural differentiation course. OCT4 and SSEA4 are markers for hESCs; OTX2,
NESTIN, and PAX®6, for hNPCs; and CTIP2 and MAP2, for mature cortical neurons. Experimetns were repeated 5 times to yield similar
results. (b) Upregulated genes in hNPCs (Day 12 of neural lineage differentiation) that are enriched in terms related to nervous system
development. (c) Analysis by Enrichr (http://amp.pharm.mssm.edu/Enrichr/) shows that the upregulated genes were enriched for the
signature of human fetal brain. For b and c, the Fisher’s exact test was used to calculate the P values.
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Supplementary Figure 10

53BP1 binding correlates with the activation of neurogenic genes in hNPCs.

(a) Gene ontology analysis of 53BP1 target genes. The ontology terms were ranked by P values (by the Fisher’s exact test), with the
number of bound genes indicated. (b) Pie charts indicate the proportions of UTX and 53BP1 enrichment. ‘Distal’ indicates regions that
are 5 kb from transcription start sites. ‘Tes’ denotes transcription termination sites. (c) Representative 53BP1 and UTX ChIPseq tracks,
with input track as negative control, at the gene locus of SIX3, CDK5R1, DLX2, and SOX4 in hNPCs. Experiments were repeated 2
times to yield similar results. (d) ChIP-qgPCR analysis of UTX and 53BP1 binding to the promoters of neurogenic genes in human and
mouse ESCs. N=3 gPCR results; from 2 biologically independent experiments. Center values and error bars are mean and standard
deviation. * and ** indicate P<0.05 and P<0.001 by one-sided Student’s t-test. (e) Differentially expressed genes in hNPCs vs. hESCs
were correlated to 53BP1 and UTX targets in hNPCs. The comparison of the 735 target genes that are upregulated/increased in
hNPCs to the 169 target genes that are downregulated/decreased in hNPCs yielded P= 9.1x107%8 by the Fisher's exact test.
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Supplementary Figure 11

Gene set enrichment analyses of UTX and 53BP1 targets in hESCs or target genes gained in hNPCs.

(a) Enrichment test of upregulated genes in hNPCs (vs. hESCs) with upregulated genes in hESCs (vs. hNPCs) yielded strong negative
correlation. Enrichment test of all UTX and 53BP1 target genes in hESCs with (b) differentially expressed genes in hNPCs (vs. hESCs)
yielded no significance, (c) differentially expressed genes in 53BP1-KO mutant vs. control yielded significant positive correlation, and
(d) differentially expressed genes in UTX mutant vs. control yielded significant positive correlation. Enrichment test of UTX and 53BP1
target genes gained during hNPC differentiation with (e) differentially expressed genes in hNPCs (vs. hESCs) yielded strong positive
correlation, (f) differentially expressed genes in 53BP1-KO mutant vs. control yielded significant negative correlation, and (g)
differentially expressed genes in UTX mutant vs. control significant negative correlation. For all GSEA, ChIP were 6 biological samples
in hESCs and 2 biological samples in hNPCs, and P values are nominal P values.
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Supplementary Figure 12

Compared to control cells, 53BP1-KO hNPCs failed to commit to neuronal differentiation.

(a) TBR1, MAP2, and OTX2 IF of control and 53BP1-KO hNPCs at day 17 of the neural lineage differentiation. Bar, 100um. Cells were
analyzed before being plated into neuronal maturation media. (b) Percentages of apoptotic cells determined via annexin v and
propidium iodide FACS in control and 4 53BP1-KO cells at day 22 of differentiation. N=2 biological samples. n.s., not significant by one-
sided Student’s t-test. (c) Bright-field imaging of control and 53BP1-KO hNPCs at day 22 of differentiation, after 5 days in neuronal
maturation media. Cells were plated at the same density at day 17. Because control cells have stopped dividing 3 days prior, their
density was much sparser than those of 53BP1-KO cells. Experiments were repeated 3 times to yield similar results.
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Supplementary Figure 13

53BP1 promotes neurogenic gene expression and development of cortical organoids.

(a) Comparison of transcript profiles of 53BP1-KO and control organoids by counts per million of sequencing reads for each annotated
gene by using the modified t test from voom package in R. Two biological samples each from control, 53BP1-KO1, and 53BP1-KO2
were analyzed. Enriched terms of (b) downregulated genes and (c) upregulated genes in 53BP1-KO cortical organoids (vs. control); P
values by the Fisher’s exact test. Immunofluorescence of (d) phosphorylated-VIMENTIN and CTIP2, and (e) ZO-1, of sections from
organoids at day 45 of differentiation. Bar, 50 ym. Experiments were repeated 2 times for d and e to yield similar results.
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Gene expression profiling of control and 53BP1-KO cells during the course of neuronal differentiation.

(a) Principal component analysis of gene expression profiles of control hESCs and hNPCs at day 22 of differentiation. Dotted lines
encircle different experimental groups. Numbers indicate clones; 2 sets of differentiation were performed. Gene ontology analyses of
(b) downregulated and (c) upregulated expressed genes between 2 control and 3 53BP1-KO clones at day 22 of differentiation. The
ontology terms were ranked by P value significance, with the number of bound genes indicated. (d) Transcript profiling of control cells
and 2 53BP1-KO clones at days 0 (hESC state), 11, 17, 19, and 24 of differentiation. N=3 independent RT samples. Mean and
standard deviation are indicated, with *, **, *** respectively indicating P<0.05, 0.01, or 0.001 by one-sided Student’s t-test. (e) Gene
ontology analyses of downregulated genes that are share in both 53BP1-KO monolayer differentiation (vs. control) and 53BP1-KO
cortical organoids (vs. control). The ontology terms were ranked by P value significance, with the number of bound genes indicated. For
b, c, and e, P values were calculated by the Fisher's exact test.




10 not significant R2=0 67."'.
significant in UTX mut vs CTRL T
m osignificant in 53BP-KO vs CTRL

down in both Upregulated genes
5 ® sig change in both wYC
4 UTX-mut 53BP1-KO
% vs. CTRL vs. CTRL

112

LOG2 FC(53BP1-KO/CTRL)

=10 =5 0 5 10
LOG2 FC (UTX mut/CTRL)

77 downregulated neurogenic genes in UTX mutant: ATCAY BAIAP3 CACNA1E CAMK2A CAMK2B CBLN1

CDH13 CDK5R1 COL1A1 COL4A1 CRIM1 CTNNA2 DLX2 DLX5 DLX6 DNM3 DSCAM EDN1 FGF1 FGF5 FRY GABBR2
GAD1 GAD2 GAP43 GPR149 GRM5 GRM7 HBEGF HTR2A INHBA KCNQ3 KIDINS220 KIF5A KIF5C L1CAM LAMC2
LRRC7 LY6H MAPT MPPED2 MYT1L NALCN NDRG4 NEURL1 NKX2-1 NOG NR2E1 NRSN1 NTRK1 NTRK3 OPHN1
OPRL1 PAK3 PCDHB2 PLPPR4 PNOC PTPRO RELN RIMS1 SCN1A SCN2A SCN3B SHTN1 SIX3 SLC12A5 SLC32A1
SLC4A10 SLC6A1 SLC6A17 SLITRK6 SNCAIP SPOCK2 SYT5 TMOD2 TNR UNC13C

205 downregulated neurogenic genes in 53BP1 KO: ADGRA2 ADGRL3 AKAP5 ALDH5A1 AMPH APBA1 APBA2 APBB1
APLP1 ARNT2 ASCL1 ATL1 BCL11A BCL11B BRSK2 BSN BTBD6 CACNA1E CACNB1 CACNB2 CACNB3 CAMK2A
CAMK2B CBLN1 CDK5R1 CHRM5 CHRNB2 CNTN4 CNTN6 CRHBP CRIM1 CRMP1 CSPG5 CTNNA2 CYP46A1 DCC
DCHS1 DCX DLL1 DLX5 DLX6 DNER DNM3 DOK6 DPF1 DPYSL2 DPYSL4 DPYSL5 DSCAM EFNB3 ENC1 EPHA5
EPHB1 EPHB2 EVL FABP7 FGF19 FGF5 FZD1 GABBR2 GABRA1 GABRG2 GAD1 GAD2 GAP43 GFRA1 GLRA2 GLRB
GPC1 GPM6A GPR1 GPR149 GPR88 GRIA1 GRIA2 GRIK1 GRIK2 GRM1 GRM5 GRM7 HAPLN1 HCRTR2 HES5 HPCAL4
HTR2A IL1RAPL2 INHBA JAG1 KALRN KCNA1 KCNK3 KCNMB1 KCNQ3 KIF3A KIF3B KIF5A KIF5C KIRREL3 L1CAM
LRRC55 LY6H MAB21L2 MBNL1 MCHR1 MEF2C MPPED2 MYT1L NCAM1 NCAN NDN NDP NELL1 NES NEURL1 NFASC
NHLH2 NLGN3 NOG NOTCH1 NOVA1 NPAS4 NR2E1 NRCAM NRG1 NRP1 NRSN1 NRXN1 NRXN2 NRXN3 NTN1 OPHN1
OPRL1 PAK3 PAX6 PCDH17 PCDH19 PCDHA10 PCDHA11 PCDHA6 PCDHA7 PCDHA9 PCDHB10 PCDHB11 PCDHB12
PCDHB13 PCDHB14 PCDHB16 PCDHB2 PCDHB3 PCDHB4 PCDHB6 PCDHB7 PCDHB8 PCDHB9 PCDHGB6 PCDHGC4
PCDHGC5 PDE7B PDGFC PLPPR4 PMP22 PNOC POU3F3 PTPRO RBFOX1 RCAN1 RELN RNF103 ROBO2 S100A6
SCRG1 SEMA3C SEMA5A SHC3 SHTN1 SIM1 SLC12A5 SLC1A2 SLC1A4 SLC4A10 SLC6A1 SLIT1 SLIT2 SLITRK1
SLITRK3 SLITRK6 SMPD1 SNAI2 SNAP25 SOX8 SPOCK1 SPOCK2 SPTBN5 SRRM4 ST8SIA2 STMN3 SYT1 SYT5
TAGLN3 TMOD2 TNR TRIM3 TUBB3 UNC13C WNT7A

Supplementary Figure 15

Compared to control cells, UTX-KD and 53BP1-KO hNPCs share downregulated genes that are enriched in terms related to
neurogenesis.

(a) Comparison of gene expression profiles of 3 (biologically independent samples) UTX-KD vs. 2 control and 3 53BP1-KO vs. 2 control
by counts per million of sequencing reads for each annotated gene. The correlation coefficient between the 2 datasets is 0.67,
calculated by using linear model of Goodness-of-Fit package in R. Color-coded points indicate notable genes with functions related to
nervous system development. (b) Lists of 77 and 205 downregulated neurogenic genes in UTX-KD and 53BP1-KO hNPCs,
respectively. (c) Venn diagram showing the overlap of upregulated genes among UTX mutant, 53BP1-KO, and control cells.
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Supplementary Figure 16
Murine 53bp1 does not impact mNPCs. (a) WB analysis of control and 53bp1-KO mNPCs.




(b) IF of Sox2 and Nestin in control and 53bp1-KO mNPCs. Bar, 30um. (c) Gene ontology analysis of differentially expressed genes
between RNA-seq datasets from 4 control and 4 53bp1-KO mNPCs. RT-qPCR profiling of key neurodevelopmental genes, with n=3
biological RT samples and no difference by the ANOVA test. Mean and standard deviation are indicated. (d) IF of Tbr1 and CnPase in
control and 53bp1-KO mNPCs at day 21 of differentiation. Bar, 30um. (e) Transcript profiling by RT-gPCR of control and 53bp1-KO cells|
at day 21 of differentiation. The assayed genes are key neurodevelopmental genes and those perturbed by 53BP1 KO in hNPCs. Mean
and standard deviation are indicated. Control are sibling heterozygous 53bp1 -/+ mNPCs. N=3 biological RT samples. No significant
differences observed between control and 53bp1-KOs by the ANOVA test. Experiments were repeated 3 times for a and b and 2 times|
for d to yield similar results. WB images are cropped.
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Supplementary Figure 17

Disruption to Utx-53bp1 binding does not impact mNPCs.

(a) CRISPR (red) sequences and mutation in the murine 53bp1 gene locus. Amino acids within domain 3iii of the mouse 53bp1. Dots
indicate deletions. (b) WB analysis of IP from 53bp1 mutant and control embryos. (c) IF of Sox2 and Nestin in control and 53bp1 mutant
mMNPCs. Bar, 30um. (d) Transcript profiling of control and 53bp1 mutant mNPCs. The assayed genes are key neurodevelopmental
genes and those perturbed by 53bp1 KO in mNPCs. N=3 biological RT samples and no difference by the ANOVA test. (e) IF of Tbr1
and CnPase in control and 53bp1 mutant cells at day 14 of differentiation. Bar, 30um. (f) Transcript profiling of control and 53bp1-KO
cells at day 21 of differentiation. The assayed genes are key neurodevelopmental genes and those perturbed by 53BP1 KO in hNPCs.
Mean and standard deviation are indicated. N=3 biological RT samples. No significant differences were observed between 53bp1
mutant and control groups by the ANOVA test. 53bp1 mutant 1 came from a genetic cross / mother separate from that of mutants 2 and
3. Experiments were repeated 2 times for b, ¢, and e to yield similar results. WB images are cropped.
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Supplementary Figure 18

53BP1 does not affect H3K79me2 localization in hESCs.

(a) Representative H3K79me2 ChlPseq tracks at neurogenic genes in control and 53BP1-KO hNPCs at day 17 of differentiation.
Experiments were repeated 2 times to yield similar results. (b) High correlation between H3K79me2 ChiP-seq datasets from control
and 53BP1-KO hNPCs at day 17 of differentiation. R? values are Pearson correlation coefficients. 1 control and 2 independent 53BP1-
KO samples were analyzed.
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Supplementary Figure 19

differentiation.

Histone H3K27me3 and H3K27ac ChIP-seq tracks at different loci of control and 53BP1-KO cells at day 22 of neuronal

times to yield similar results.

In contrast to Fig 6, the ChIPseq tracks in control cells are displayed separately from those in 53BP1-KO cells. (a) The NFIB, MAPS,
and EDN1 genes were downregulated in 53BP1-KO hNPCs and associated with significantly higher H3K27me3 but significantly lower
H3K27ac. (b) Genes in the HOXA cluster were silenced and associated with high H3K27me3 level but non-detectable H3K27ac. The
IACTB gene was expressed and associated with non-detectable H3K27me3 level and high H3K27ac. Experiments were repeated 2




Pairwise comparison of 53BP1 ChIP-seq in control and UTX mutant
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Supplementary Figure 20

53BP1 genome-wide bindings change between control and UTX mutant differentiating neurons.

Each dataset is ChlP-seq signals at binned genomic regions. Pairwise counts per million of the datasets, with respective R? values,
which are Pearson correlation coefficients. Red indicates a higher density of points. Diagonal curve plots show the kernel density of
ChlP-seq reads in each dataset. 3 biologically independent 53BP1 ChIP with UTX-depleted and 5 biologically independent 53BP1 ChIP
with control samples were analyzed.
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Supplementary Figure 21

UTX positively and negatively regulates 53BP1 binding to chromatin.

(a) Volcano plot of 53BP1 ChiIP-seq signals in UTX mutant / control differentiating neurons. Analysis was done with modified t test in
the voom package of R. Notable development-relevant genes are noted. Gene set enrichment analysis of (b) genes having decreased
53BP1 binding or (c) genes having increased 53BP1 binding with differentially expressed genes in UTX mutant vs. control
differentiating neurons. For a-c, 3 biologically independent 53BP1 ChIP with UTX-depleted and 5 biologically independent 53BP1 ChIP
with control samples were analyzed.
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Supplementary Figure 22

53BP1 affects UTX binding to select gene targets.

(a) Pairwise comparison of UTX ChIP-seq datasets at binned genomic regions in control and 53BP1-KO at day 17 of differentiation.
Pairwise counts per million of the datasets, with respective R? values, which are Pearson correlation coefficients. Red indicates a higher
density of points. Diagonal curve plots show the kernel density of ChlP-seq reads in each dataset. 2 biological samples were analyzed.
(b) UTX ChiIPseq tracks at neurogenic genes and gene targets with changed UTX binding in control and 53BP1-KO hNPCs at day 17 of]
differentiation. Dotted green boxes indicate sites with lower UTX levels. (c) UTX and 53BP1 ChIPseq tracks at different sites in control
hNPCs at day 15 of differentiation. Experiments were repeated 2 times to yield similar results.




Supplementary Figure 23

Examples of image processing by Imaris to identify double-stranded breaks.

Left image is YH2AX (green) immunofluorescence of control H9 hESCs. Right is a processed image by using the Imaris 8.4 to threshold
IF signals and identify double-stranded breaks (yellow-pseudocolored).




