Table S1. Yeast strains

Strain	Relevant genotype ^a	Comments/reference
SJR3714	MATa lys2::IScel	Derivative of MC42-2d
		Guo <i>et al.</i> 2017
SJR3939	MATa lys2::IScel can1::lys2Δ3'-98%,ISceInc his34::kanMX pGAL_IScol	Guo <i>et al.</i> 2017
S ID/015	MATa wa?"COPE LIK	CORE LIK cassotto insorted into the
0014010		LYS2 locus of SJR3714
SJR4016	MATα can1::lys2Δ3'-98%,lSceInc	Donor only
	•	Spore from HLK1042-2c x SJR3939
SJR4031	MATα can1::lys2Δ3'-98%,lSceInc-URA3-hisG	SJR4016 transformed with URA3-
	(= 98% donor/ <i>hisG</i>)	hisG fragment amplified from
		pNKY51
SJR4194	MATa lys2,6Amut::IScel	CORE-UK of SJR4015 replaced
		with mutated 6A run
SJR4195	MATa hisG-lys2,6Amut::ISceI-URA3-hisG (=	SJR4194 transformed with hisG-
	hisG/recipient)	URA3-hisG fragment (pNKY51) and
		subsequently for URA3 loss
SJR4196	MATa hisG/recipient + 98% donor/hisG	Spore from SJR4195 x SJR4031
SJR4258	MATa hisG/recipient + 98% donor/hisG +	SJR4196 transformed with
	his3∆::hph-pGAL-ISceI (= I-SceI)	his3∆::hph-pGAL-IScel from
		pSR952
SJR4535	MATα hisG/recipient + 98% donor/hisG + I-Scel	SJR4258 transformed with
	mlh1Δ::loxP-TRP1-loxP	<i>mlh1Δ::loxP-TRP1-loxP</i> fragment
SJR4691	MATα hisG/recipient + 98% donor/hisG + I-Scel	SJR4258 transformed with
	msh6Δ::IoxP-kanMX-IoxP	msh6Δ::loxP-kanMX-loxP fragment
SJR4800	MATa hisG/recipient + 98% donor/hisG + I-Scel	SJR4691 transformed with
	msh6Δ::IoxP-kanMX-IoxP rad14Δ::IoxP-TRP1-IoxP	rad14Δ::loxP-TRP1-loxP tragment
SJR4982	MAT α HOM3 recipient + 98% donor + galactose-	SJR4535 transformed with
	Inducible I-Scel $min1\Delta$::IoxP-TRP1-IoxP	msh6Δ::IoxP-KanMX-IoxP fragment
SJR5000	MATa hisG/recipient can1:: $iys2\Delta3'-100\%$, I-Sceinc	SJR4195 transformed with
	(= 100% donor)	pSR1154 tragment to introduce
S ID5002	MATe his Chroniniant 1000/ departhis C	S IDE000 transformed with UDA2
SJK0003		bioC frogmont from pNKV51
S ID5007	MATe his Classiniant 100% departhis C	Spore from S ID5002 x S ID4525
3313007	mh1A··lovP_TRP1_lovP	Spore 110111 SJR 3003 X SJR 4333
S IR5036	MATa his Classiniant + 100% donor/his G + L Scal	Spore from SIR5007 v SIR4691
331/3030		
SJR5037	MATα hisG/recipient + 100% donor/hisG + I-Scel	Spore from SJR5007 x SJR4691
	mlh1Δ::loxP-TRP1-loxP	
SJR5038	MATa hisG/recipient + 100% donor/hisG + I-Scel	Spore from SJR5007 x SJR4691
	msh6Δ::loxP-KanMX-loxP	
SJR5039	MATa hisG/recipient + 100% donor/hisG + I-Scel	Spore from SJR5007 x SJR4691
	<i>mlh1Δ::loxP-TRP1-loxP msh6Δ::loxP-KanMX-loxP</i>	

^a All strains were derived from W303 derivatives MC42-2d (*MATa RAD5 leu2-3,112 his3-11,15 ura3-1 trp1-1 ade2-1*) and HLK1042-1c (*MATa RAD5 leu2-3,112 his3-11,15 ura3-1 trp1-1 ade2-1 hom3-10*). Only the changes introduced by transformation or mating are given. With the exception of HLK1042-1c, all strains are *HOM3*.

	Strain	Observed numbers of events					Corrected numbers of events				
Substrates		NCO	со	CO+ NCO	Ura-	Total	NCO ¹		CO ²		Total
							No.	Prop.	No.	Prop.	TOTAL
100%	WT	228	23	36	0	287	264	0.763	82	0.237	346
	(SJR5036)										
	mlh1∆	230	15	39	0	284	269	0.796	69	0.204	338
	(SJR5037)										
	msh6 Δ	235	14	40	0	289	275	0.802	68	0.198	343
	(SJR5038)										
	msh6 Δ mlh1 Δ	232	18	35	0	285	267	0.790	71	0.210	338
	(SJR5039)										
98%	WT	422	29	14	13	478	436	0.816	98	0.184	534
	(SJR4258)										
	mlh1 Δ	438	18	14	1	471	452	0.897	52	0.103	504
	(SJR4535)										
	msh6 Δ	388	44	41	4	477	429	0.758	137	0.242	566
	(SJR4691)										
	msh6 Δ mlh1 Δ	215	30	41	0	286	256	0.717	101	0.283	357
	(SJR4982)										

Table S2. Observed and corrected numbers of NCO and CO events

¹ Corrected NCO = observed(NCO) + observed(CO+NCO)

² Corrected CO = 2(observed CO + Ura) + observed(CO + NCO)

GAAGGACAAGCCAACCATAA TGGATTTGGGTCCCTACAACA ACCCAAATAAATCATTTGTAGTA AAGAGGTGTACGATTATTATAAGAAGACTGTTGTGGAA AAAAACTTAATGAGGAATGGGATAGGATGT AGAAGGGTAAAGAATTGCAA ATGGTGAGTI TGACAAGGTG CCTTTTT CAAA ATGTGAT AAGAATACAG CAG ATATAT CCA GAAATACCTGCCTA AAGAA ΑΤΑΑCΑΑΑΑΤCΤΤΑΑCΑΤΤCΑΑΤΑΤΤCΑΑCCAACCT AGCTGAATCAATTCAAAG AGC TG TAT GGTG GGCGA TGGZ GCCCAATTGTA GCGG CTA GTTCGCAAAAATG GTTCCAAAGGAGGTTGAAACTGACCCTATAGTTAAGGGCTTAATCGGTTACCATC TATCCAAGGACATCAGGACTTTCTTAAAGAAAAGAT

Figure S1. Homology between *lys2* substrates. The sequence shown is that of the recipient allele. The ATG start codon is red; the inserted I-SceI cut site is highlighted yellow and the region flanked by nicks is underlined. The SNPs that are present in the donor allele are above the sequence and are highlighted gray.

Figure S2. Characterization of CO and NCO events. (**A**) Phenotype screen for CO events on 5-FOA medium. CO events (circles) pap at a high frequency because of *hisG* repeats that flank the *URA3* marker while NCO events produce few paps on 5-FOA. A secondary CO between the *hisG* repeats results in confluent growth (box). Only fully Ura⁻ COs produce a PCR product with the indicated primers (small horizontal arrows). (**B**) Southern analysis of colonies that contain both a CO and NCO chromosome by PCR. Lanes marked with a dot contain both CO and both normal chromosomes; lanes marked with a star contain only chromosomes V:II and II. P, parent; NC, NCO; C, CO; U⁻, Ura⁻ colony.

Figure S3. Chromosome segregation and cell viability following DSB repair. (**A**) Only one sister chromatid is cleaved by I-*Sce*I and repair generates reciprocal CO products. PCR only detects a CO chromosome. (**B**) Both sister chromatids are cleaved; one is repaired as a CO and the other as a NCO. PCR detects both a CO and NCO chromosome and a Southern blot detects either chromosomes II + II:V or all four chromosomes. Gray X, Lys⁻ or inviable; red star, Lys⁺ and viable.

Α

	Strain	Obs	erved nu	mbers of o	events	Uncorrected total events				
Substrates		NCO	со	Ura-	Total	NCO		СО		
						No.	Prop.	No.	Prop.	
100%	WT (SJR5036)	228	23	0	251	228	0.908	23	0.092	
	<i>mlh1∆</i> (SJR5037)	230	15	0	245	230	0.939	15	0.061	
	<i>msh6∆</i> (SJR5038)	235	14	0	249	235	0.944	14	0.056	
	<i>msh6∆ mlh1∆</i> (SJR5039)	232	18	0	250	232	0.928	18	0.072	
98%	WT (SJR4258)	422	29	13	464	422	0.909	42	0.091	
	<i>mlh1∆</i> (SJR4535)	438	18	1	457	438	0.958	19	0.042	
	<i>msh6∆</i> (SJR4691)	388	44	4	436	388	0.890	48	0.110	
	<i>msh6∆ mlh1∆</i> (SJR4982)	215	30	0	245	215	0.878	30	0.122	

Uncorrected numbers and proportions of COs and NCOs produced from a single DSB

Figure S4. Uncorrected numbers, proportions and frequencies of COs and NCOs. (**A**) Only colonies that resulted from repair of a single DSB were considered; the CO+NCO class from Table S1 was omitted. The total COs correspond to the sum of the CO and Ura⁻ classes without the additional correction for loss of COs due to inviability. (**B**) The NCO and CO frequencies for 98%-identical substrates were calculated as in Figure 3B, but the uncorrected proportions in (A) were used. (**C**) Uncorrected version of Figure 5, which was calculated using uncorrected proportions in (A).