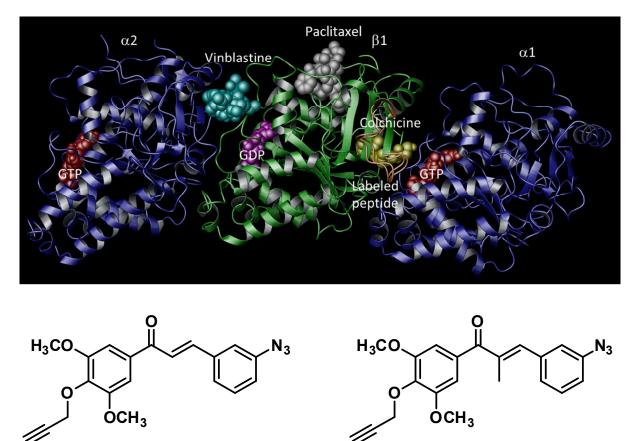
Supporting Information for


An indole-chalcone inhibits multidrug-resistant cancer

cell growth by targeting microtubules

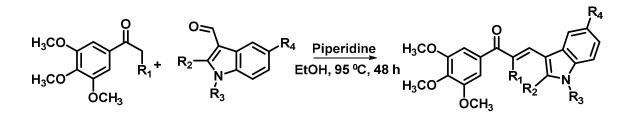
Materials

All purchased reagents and solvents were used without further purification. Silica gel chromatography was performed on Whatman silica gel 60 Å (230–400 mesh). Nuclear magnetic resonance (NMR) spectra (¹H and ¹³C) were recorded on a spectrometer (Bruker Ascend 400) and calibrated using the deuterated solvent residual as an internal reference. High-resolution mass spectrometry (HRMS) was performed using a Q-TOF micro mass spectrometer. Purities of the compounds were analyzed by HPLC (Agilent 1100) using an ODS-A column (YMC Pack; 10×250 mm, 5 µm) with methanol:H₂O (100:0 to 80:20 over 20 min and 80:20 thereafter) as the mobile phase with a flow rate of 2 mL/min. The separation was monitored at wavelengths of 254 and 365 nm. The purities of all final compounds were higher than 95%.

Human A549, A549/T, A549/DDP, HCT-116, HCT-116/L, HL60, HL60/DOX, K562, K562/HHT300, CCRF-CEM, and CCRF-CEM/VLB100 cells were authenticated via DNA analysis by Genetica DNA Laboratories (Cincinnati, OH, USA) or by the University of Arizona Genomics Core. Cells were cultured following our standard protocols and tested monthly for *Mycoplasma* contamination. De-identified mobilized peripheral blood (MPB) was obtained after informed consent according to protocols approved by the University of Minnesota Institutional Review Board.

 Negative Probe (1)
 Positive Probe (2)

 GI₅₀ = 28600 ± 2200 nM
 GI₅₀ = 380 ± 10 nM


Figure S1. Structural assembly of α - and β -tubulin and its known binding sites for paclitaxel (white), vinblastine (cyan), colchicine (yellow), GDP (red) and GTP (purple) and positive chalcone probe labeled peptide (orange). The structures of probes and their cytotoxicity (GI₅₀) towards A549 human non-small lung adenocarcinoma cell line were provided.

Indole-chalcones and the structure-activity relationship

Based on our previous SAR results ¹ that an α -methyl substitution significantly increased chalcone's cytotoxicity and compound **3** was previously reported as a highly cytotoxic agent², FC77 and a few analogs were synthesized with their cytotoxicity determined against A549 human non-small lung adenocarcinoma cancer cell line^{1, 3-6}. A clear SAR was observed (Table S1). The introduction of an α -methyl substituent significantly increased the cytotoxic potency (two probe with a 75-fold difference $^{1, 6}$, 3 and FC77 with a 14-fold difference, and 5 and 6 with a 30-fold difference). The chalcones with an indole moiety (3 - 9) had potent cytotoxicity against A549 cancer cells with the GI₅₀ values in the low nanomolar to low micromolar range. The free 1-amino group of indole is critical to the cytotoxicity as the compounds with 1-amino substitutions showed 40-, 2- and 19fold loss in potency comparing 3 and 5, 3 and 9, and FC77 and 6, respectively. A 5bromo substitution was highly unfavorable to the cytotoxicity (3 and 8 with a 178-fold difference). A 2-methyl substitution also led to significant loss of cytotoxicity (5 and 9 with a 15-fold difference). These chalcones with the addition of 10 and 11 were docked into the colchicine-binding site (10 and 11 were selected in order to cover a wider range of cytotoxicity because they are much less cytotoxic, particularly 11).

Entry	Structure	A549 GI ₅₀ (nM)	Entry	Structure	A549 GI ₅₀ (nM)
3	H ₉ CO H ₉ CO OCH ₃	38±3	8	H ₃ CO H ₃ CO H ₃ CO CH ₃	6630±570
4 (FC77)		2.7± 0.4	9		77±8
5	H ₃ CO H ₃ CO OCH ₃	1510±210	10 ¹	H ₆ CO H ₆ CO OCH	920±180
6	H ₃ CO H ₃ CO OCH ₃	50±5	11 ¹	HECOLO	>60000
7		560±32			

Table S1. The structures and the 48-hour cytotoxicity of the indole chalcones towardsA549 human non-small lung adenocarcinoma cell line.

Scheme S1. Synthesis of indole-chalcones.

(*E*)-3-(1*H*-indol-3-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (**3**) 7

Recrystallization yield: 10%. ¹H NMR (400MHz, CDCl₃): δ 8.71 (1H, br, NH), 8.13 (1H, d, *J* = 15.6 Hz, =CH), 8.00 (1H, m, Ar-H), 7.63 (1H, s, Ar-H), 7.55 (1H, d, *J* = 15.2 Hz, =CH), 7.46 (1H, m, Ar-H), 7.31 (4H, m, Ar-H), 3.96 (9H, s, 3OCH₃). ¹³C NMR (100MHz, CDCl₃): δ 189.86, 153.10, 138.78, 137.23, 134.44, 130.08, 123.57, 120.54, 117.82, 114.52, 111.99, 105.96, 60.97, 56.40. HRMS (ESI⁺) m/z Calculated for C₂₀H₁₉NO₄ 338.1387; Observed 338.1385 (M+H⁺). HPLC Purity: 97.8%, R_t = 35.70 min, UV 254 nm.

Intermediate 1: 1-(prop-2-yn-1-yl)-1*H*-indole-3-carbaldehyde ⁸

Recrystallization yield: 38.2%. ¹H NMR (400MHz, CDCl₃): δ 10.03 (1H, s, CHO), 8.34 (1H, dd, $J_1 = 1.6$ Hz, $J_2 = 8.3$ Hz, Ar-H), 7.90 (1H, s, Ar-H), 7.32-7.44 (3H, m, Ar-H), 4.94 (2H, s, CH₂), 2.55 (1H, s, alkynyl-H). ¹³C NMR (100MHz, CDCl₃): δ 184.58, 137.46, 136.80, 125.54, 124.28, 123.30, 123.30, 122.34, 118.70, 109.81, 75.81, 75.57, 36.65.

(*E*)-3-(1-(prop-2-yn-1-yl)-1*H*-indol-3-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (5)

Recrystallization yield: 28.4%. ¹H NMR (400MHz, CDCl₃): δ 8.09 (1H, d, J = 15.6 Hz, =CH), 8.01 (1H, d, J = 7.8 Hz, Ar-H), 7.67 (1H, s, Ar-H), 7.52 (2H, m, =CH), 7.30-7.39 (4H, m, Ar-H), 4.93 (2H, s, CH₂), 3.97 (6H, s, 2OCH₃), 3.94 (3H, s, OCH₃), 2.51 (1H, s, alkynyl-H). ¹³C NMR (100MHz, CDCl₃): δ 189.66, 153.10, 142.00, 138.22, 137.18, 134.43, 132.38, 123.48, 121.98, 121.68, 120.82, 117.75, 113.77, 110.23, 105.95, 74.85, 60.97, 56.41, 36.30. HRMS (ESI⁺) m/z Calculated for C₂₃H₂₁NO₄ 376.1543; Observed 376.1542 (M+H⁺). HPLC Purity: 97.7%, R_t = 14.33 min, UV 254 nm.

(E)-3-(1H-indol-3-yl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (6)

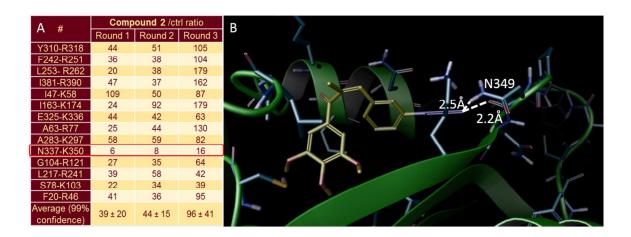
Recrystallization yield: 4.3%. ¹H NMR (400MHz, CDCl₃): δ 7.66 (2H, s, =CH, Ar-H), 7.58 (1H, d, J = 7.3 Hz, Ar-H), 7.45 (1H, d, J = 7.6 Hz, Ar-H), 7.36 (1H, m, Ar-H), 7.16-7.23 (1H, m, Ar-H), 7.03 (2H, s, Ar-H), 4.98 (2H, s, CH₂), 3.95 (6H, s, 2OCH₃), 3.90 (3H, s, OCH₃), 2.51 (1H, s, alkynyl-H), 2.34 (3H, s, CH₃). ¹³C NMR (100MHz, CDCl₃): δ 197.84, 152.78, 140.75, 135.54, 134.51, 134.02, 131.65, 128.77, 128.73, 123.32, 121.25, 118.77, 112.72, 109.80, 106.93, 74.59, 60.98, 56.26, 36.39, 15.46. HRMS (ESI⁺) m/z Calculated for C₂₄H₂₃NO₄ 390.1700; Observed 390.1697 (M+H⁺). HPLC Purity: 95.50%, R_t= 9.35 min, UV 365 nm.

(E)-3-(2-methyl-1H-indol-3-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (7)

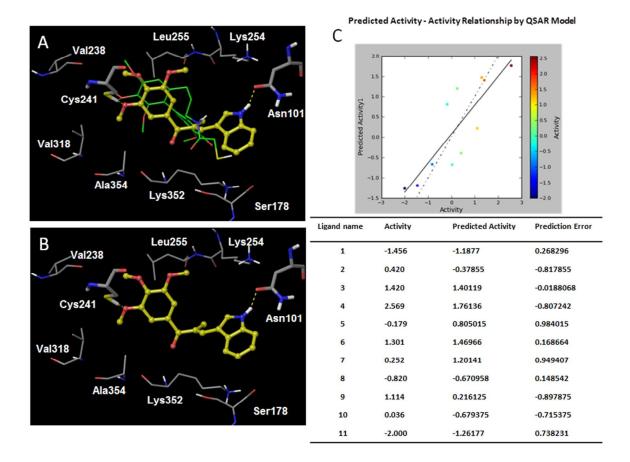
Recrystallization yield: 7.2%. ¹H NMR (400MHz, CDCl₃): δ 8.37 (1H, br, NH), 8.17 (1H, d, J = 15.4 Hz, =CH), 7.95 (d, J = 7.3 Hz, Ar-H), 7.54 (1H, d, J = 15.4 Hz, =CH), 7.37 (1H, m, Ar-H), 7.33 (2H, s, Ar-H), 7.29 (1H, m, Ar-H), 3.97 (6H, s, 20CH₃), 3.95 (3H, s, OCH₃), 2.64 (3H, s, CH₃). ¹³C NMR (100MHz, DMSO-*d*₆): δ 188.31, 153.23, 144.42, 141.56, 138.12, 136.53, 134.76, 126.29, 122.50, 121.64, 120.55, 114.75, 111.92,

109.60, 105.97, 60.59, 56.51, 12.41. HRMS (ESI⁺) m/z Calculated for $C_{21}H_{21}NO_4$ 352.1543; Observed 352.1543 (M+H⁺). HPLC Purity: 98.5%, $R_t = 17.91$ min, UV 254 nm.

(E)-3-(5-bromo-1H-indol-3-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (8)


Recrystallization yield: 15.6%. ¹H NMR (400MHz, CDCl₃): δ 8.69 (1H, br, NH), 8.13 (1H, s, Ar-H), 8.04 (1H, d, J = 15.6 Hz, =CH), 7.62-7.63 (1H, s, Ar-H), 7.51 (1H, d, J = 15.6 Hz, =CH), 7.41 (1H, d, J = 8.6 Hz, Ar-H), 7.33 (3H, m, Ar-H), 3.97 (6H, s, 20CH₃), 3.95 (3H, s, OCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 189.73, 153.32, 142.33, 137.83, 135.93, 134.31, 130.51, 126.64, 123.55, 118.72, 115.30, 114.27, 113.46, 103.10, 61.15, 56.53. HRMS (ESI⁺) m/z Calculated for C₂₀H₁₈BrNO₄ 416.0492; Observed 416.0492 (M+H⁺). HPLC Purity: 96.4%, R_t = 37.92 min, UV 254 nm.

(*E*)-3-(1-methyl-1*H*-indol-3-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (9) 7


Recrystallization yield: 54.1%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (1H, d, J = 15.5 Hz, =CH), 7.96 (1H, d, J = 7.3 Hz, Ar-H), 7.29 – 7.55 (5H, m, =CH, Ar-H), 7.22 (2H, s, Ar-H), 3.93 (6H, s, 20CH₃), 3.91 (3H, s, OCH₃), 3.83 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 189.81, 153.19, 141.99, 138.75, 138.39, 134.72, 134.62, 126.28, 123.32, 121.72, 120.76, 116.95, 113.09, 110.32, 105.99, 77.58, 77.16, 76.74, 61.10, 56.51, 33.44. HRMS (ESI⁺) m/z Calculated for C₂₁H₂₁NO₄ 352.1543; Observed 352.1543 (M+H⁺). HPLC Purity: 95.1%, R_t = 9.23 min, UV 254 nm.

Docking and molecular modeling

The positive probe was docked into the colchicine binding site of tubulin (PDB entry: 1SA0) using Schrodinger Glide package with no constraint (Coordinate, X: 40.9, Y: 52.51, Z: -9.03). As shown in Fig. S1, the azide group of the positive probe is within 2.2Å and 2.5Å to the backbone oxygen and the amide sidechain atoms of N349 of the labeled peptide. Using the same method, eleven chalcone compounds (compounds 1-11) with a wide range of cytotoxicity were docked into the colchicine binding site of tubulin (PDB entry: 1SA0). Their best binding modes were obtained and imported into the atom-based QSAR panel ⁹. The model was generated by Schrodinger Phase package using default parameters. The GI₅₀ and predicted activity values were presented in units of $-\log$ [concentration, μ M]. As shown in Fig. S3, the predicted activity and the GI₅₀ showed a nice correlation with a R² value of 0.70.

Figure S2. (A) Proteomic study suggested the colchicine binding site as the target for the positive chalcone probe ^{1, 6}. (B) Molecular modelling study of this probe showed that the azide group is within 2.2Å and 2.5Å to the backbone oxygen and the amide sidechain atoms of N349 of the labeled peptide.

Figure S3. Docking studies of **FC77** with tubulin: (A) Superposition of the docked conformation of **FC77** and the original ligand of 1SA0 (colchicine); (B) Predicted binding mode of **FC77** and tubulin. **FC77** was presented in yellow carbons, the original ligand of 1SA0 was in green carbons, the tubulin was in gray carbons with representative amino acids labeled. The nitrogen and oxygen were presented in blue and red, respectively. The hydrogen bonds were labeled in yellow dash line. (C) An atom-based QSAR model was generated by Schrodinger Phase package. The GI₅₀ (activity in the table) and predicted activity values were presented in units of –log [concentration, μ M]. The activity value of compound **11** with a GI₅₀>60 μ M was presented as -2.0.

National Cancer Institute Developmental Therapeutics Program Mean Graphs			NSC : D - 785455/1	Units :Molar	SSPL :0XZV	EXP. ID :1511RS0
			Report Date :March 22	2, 2016	Test Date :Nove	Test Date :November 16, 2015
Panel/Cell Line	Log ₁₀ GI50	G150	Log ₁₀ TGI	TGI	Log ₁₀ LC50	LC50
kemia CRF-CEM 4.60(TB) 582 00LT-4 RFMI-8226 R R-55mall Cell Lung Cancer	-8.29 -8.64 -8.46 -8.26 -8.32 -8.32 -8.48	Ē	> -7.00 -8.19 > -7.00 > -7.00 > -7.00 > -7.00	F	> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
549/ATCC XVX OP-82 OP-92 CI-H228 CI-H23 CI-H480 CI-H480	-8.39 -8.28 -8.27 -7.13 -8.21 -8.29 -8.43 -8.55	_	> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 7.00 8.14		> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
n Cancer 2002 0205 20-2098 21-116 21-116 21-15 729 4/12 V-620 Cancer	-8.45 -8.37 -8.44 -8.47 -8.40 -8.40 -8.44 -8.38	Į.	-7.80 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	F	> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
-288 -295 -539 NB-19 NB-75 251 noma	-8.26 -8.53 -8.55 -8.39 -8.49 -8.36	E	> -7.00 -7.00 -7.89 > -7.00 > -7.00 > -7.00 > -7.00	-	> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
elanoms LOX IMM- LOX IMM- M14 MDA-MB-435 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-30 OVCAR-30 OVCAR-30 OVCAR-30 OVCAR-40 OVCAR-45 O	-8.33 -7.00 -8.47 -8.63 -7.91 -7.79 -8.37 > -7.00		> -7.00 > -7.00 7.00 8.20 > -7.00 > -7.00 - 7.69 > -7.00 - 7.69 > -7.00	-	> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
	-8.25 -8.48 -7.60 -7.07 -8.45 -8.49 -8.11 -8.19		> -7.00 -7.97 -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	F	> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
98 HN KG-1 (F 393 -10 D-31 alte Cancer	-8.60 -8.21 -8.38 > -7.00 -8.10		-8.04 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00		> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
)-3 J-145 st Cancer	-8.10 -8.42		> -7.00 > -7.00		> -7.00 > -7.00	
CF7 DA-MB-231/ATCC 8 5781 -549 47D DA-MB-488 DA-MB-488	-8.45 -8.41 -8.22 -8.23 -8.48		> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 -7.08		> -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00 > -7.00	
_MID Delta Range	-8.22 0.42 1.64		-7.14 1.06 1.2		-7.0 0.0	

Figure S4. Original NCI-60 data. The Seed NSC of FC77 is D-785455/1.

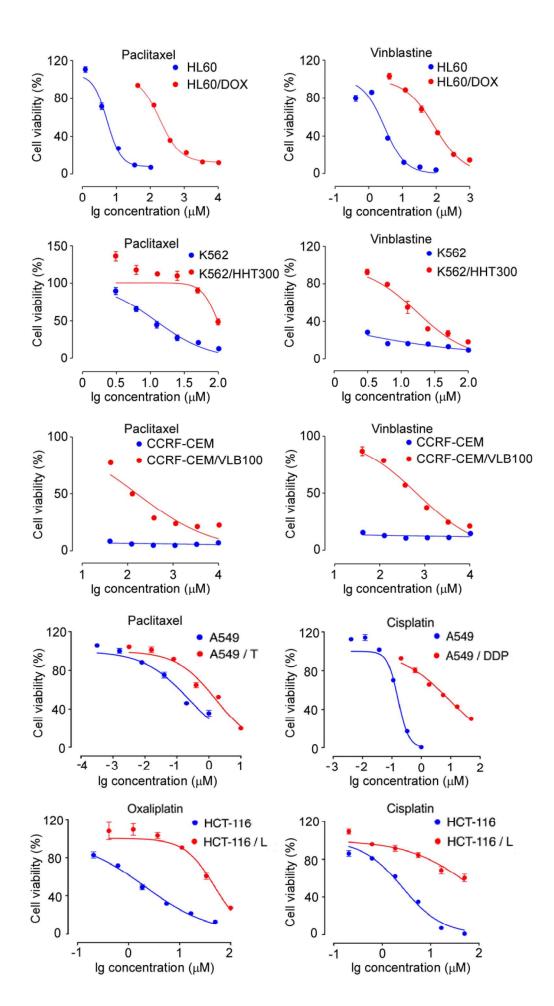


Figure S5. Characterization of the multi-drug resistant phenotype of parental and drug-

resistant cancer cells.

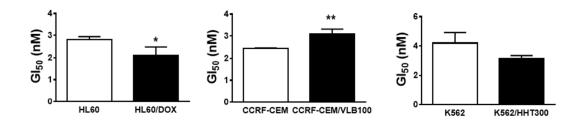
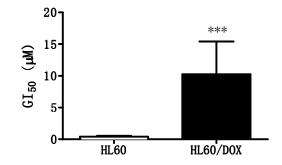
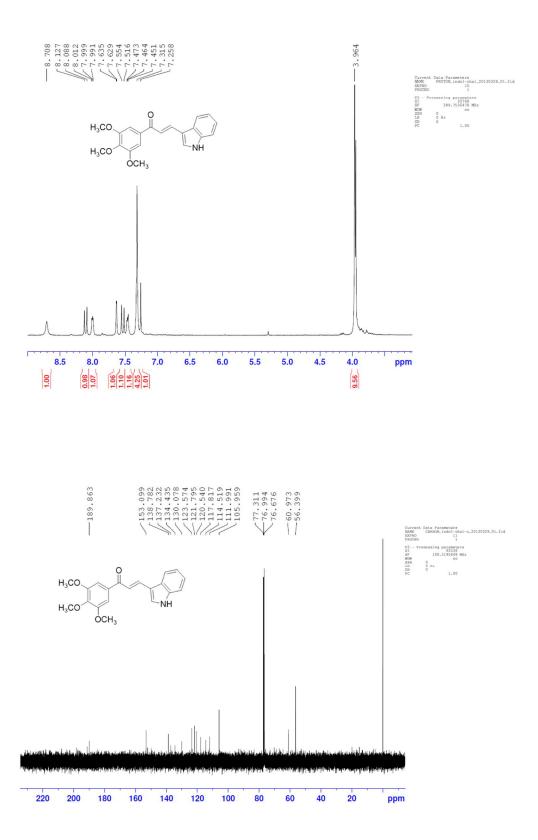
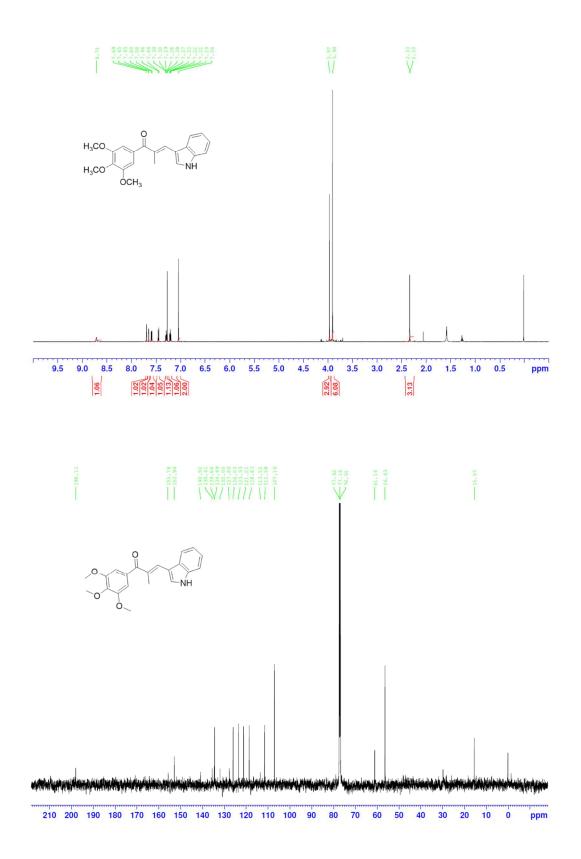
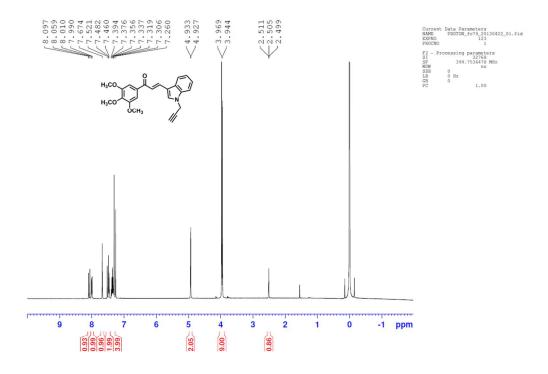
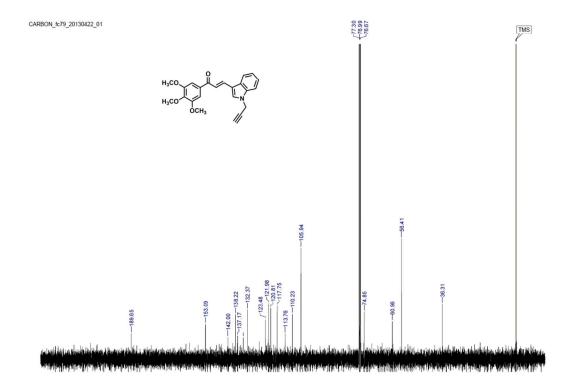
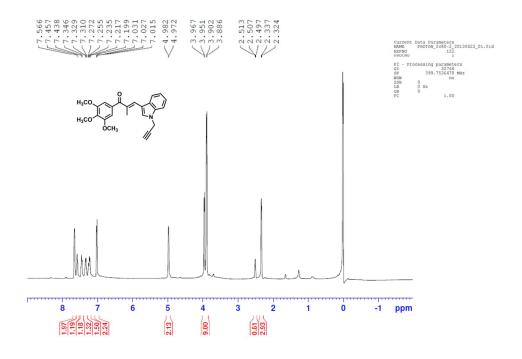
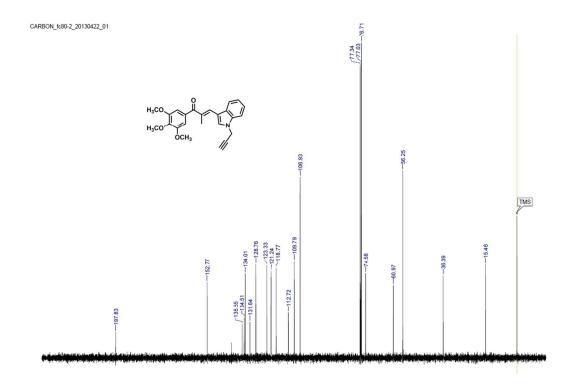
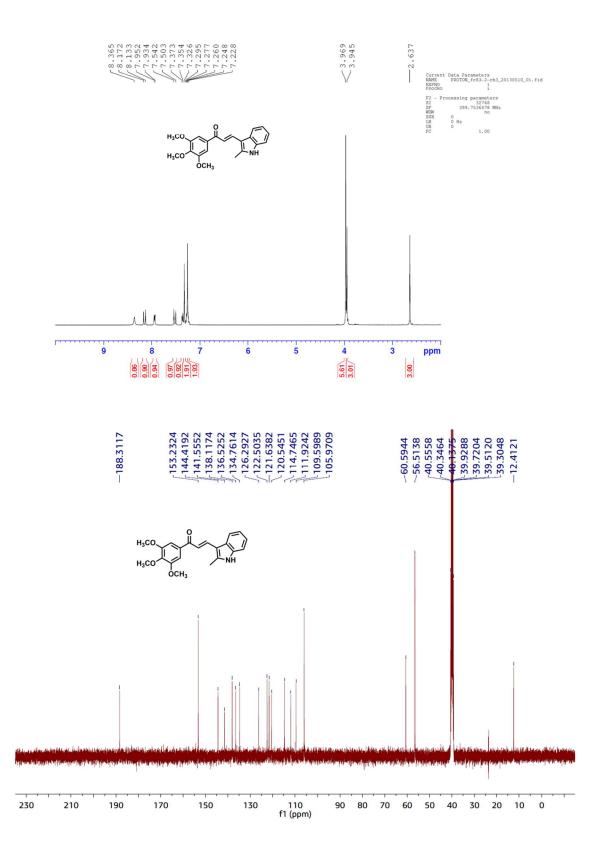


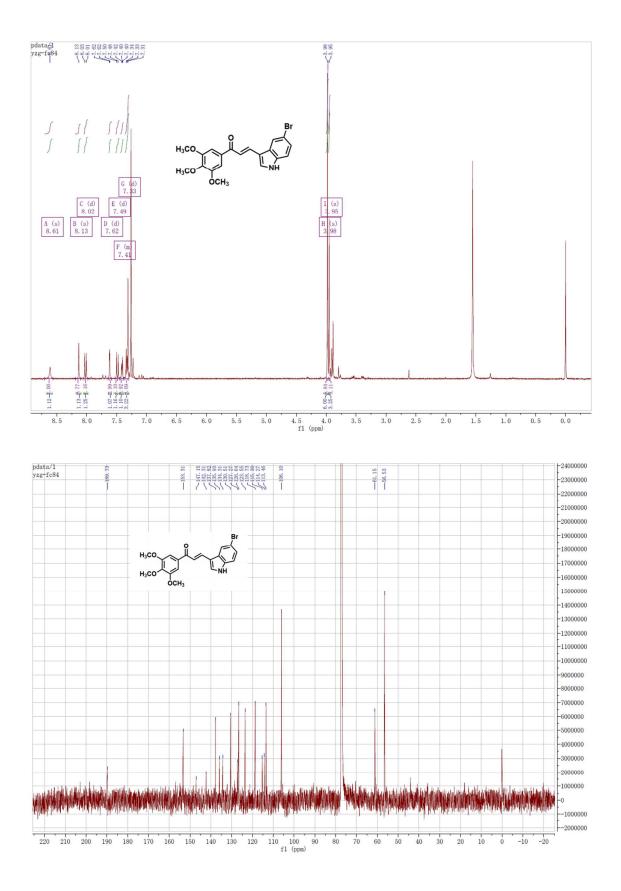
Figure S6. Characterization of the cytotoxicity of combretastatin A-4 towards the three multi-drug resistant leukemia cell lines in comparison to their parental cancer cell lines. *p < 0.05. **p < 0.01.

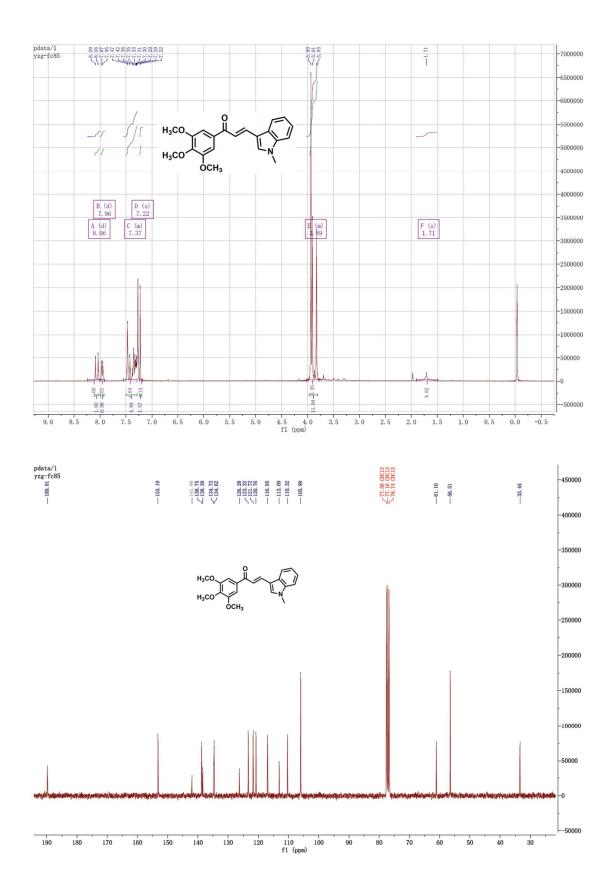







Figure S7. Characterization of the cytotoxicity of colchicine towards the HL60 and HL60/DOX. ***p < 0.001.





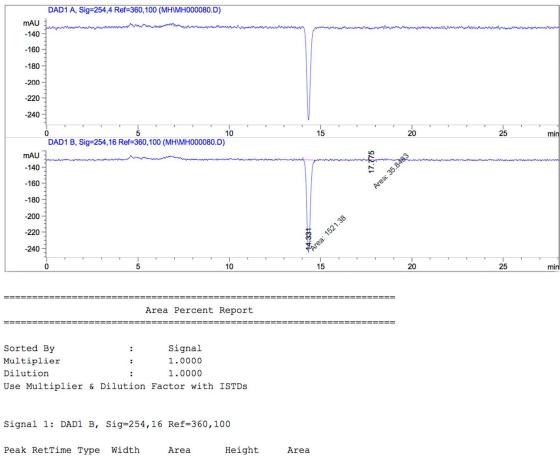




HPLC purity

Compound 3

Data File D:\JACK\YZG\XXG000553.D Sample Name: Fc58

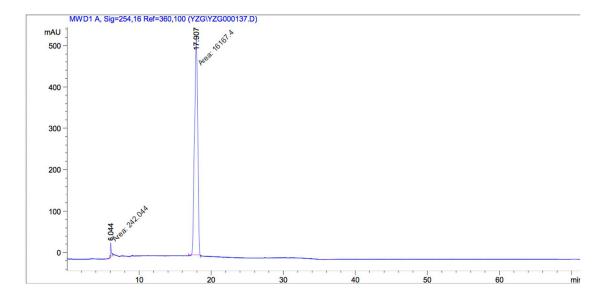

Acq. Operator :	Yzg		Location : Vial	1	
Injection Date :	11-Mar-17, 14:28	3:35	bocación . Viai	.	
	YIZHE SUN.M				
Analysis Method :	D:\JACK\YIZHE SU	JN\YIZHE SUN.M			
Last changed :	3/13/2017 1:26:4	-			
	(modified after				
	4,4 Ref=360,100 (YZG\XXG	000553.D)		-	
mAU _	warmen warmen war		****	Nee. Juli	
-50 -				4	
				P'	
-					
-100 -					
-					
-150 -					
-150 -					
-					
-200 -					
-					
-250 -					
				6	
-			-	321.4	
-300 -			35.697	Weg. 231.12	
-			da	~	
0	10	20	30	40	50
	Area Perc	cent Report		===	
Sorted By	: Signa				
Multiplier Dilution	: 1.000				
Sample Amount			(not used in calc.)	
Use Multiplier &			(not used in care.)	
ose Mulcipilei a	DITUCIÓN PACCOL V	15105			
Signal 1: DAD1 A,	Sig=254,4 Ref=36	50,100			
Peak RetTime Type	Width Area	Height	Area		
# [min]	[min] [mAU*s]		8		
<mark>-</mark>					
	0.3284 5321.452				
2 41.961 MP N	0.2300 122.424	8.87006	2.2488		
Totals :	5443.876	278.95969			
Totals :	5443.876	573 278.95969			
Totals :	5443.876	573 278.95969			

Data File D:\JACK\YZG\XXG000553.D Sample Name: Fc77 _____ Acq. Operator : Yzg Location : Vial 1 Injection Date : 11-Mar-17, 14:28:35 Acq. Method : YIZHE SUN.M Analysis Method : D:\JACK\YIZHE SUN\YIZHE SUN.M Last changed : 3/15/2017 8:27:57 PM by wzl (modified after loading) DAD1 A, Sig=254,4 Ref=360,100 (YZG\XXG000553.D) 145.19 mAU -50 Alea. -100 --150 --200 --250 6333.18 -300 10 20 30 40 50 min Area Percent Report Sorted By . Signal 1.0000 Multiplier : 1.0000 1.00000 [ng/ul] (not used in calc.) Dilution : Sample Amount Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 8 ----|-----|-----|------| 1 35.697 MP N 0.3288 5333.17773 270.36365 97.3500 2 41.964 PM N 0.2561 145.17870 9.44740 2.6500

Totals : 5478.35643 279.81105

Data File D:\JACK\MH\MH000080.D Sample Name: Fc 79

> Acq. Operator : MH Location : Vial 1 Injection Date : 25-May-17, 16:43:42 Method : D:\JACK\YIZHE SUN\YIZHE SUN.M Sample Info : 28ACN



Peak 1	RetTime	Typ	be	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
-			1				1
1	14.331	PP	N	0.2231	1521.38330	113.63955	97.6979
2	17.775	MM	N	0.2116	35.84830	2.82298	2.3021
Total	s :				1557.23161	116.46253	

```
Data File C:\Chem32\1\Data\Yi\031617_charlcone 2017-03-16 12-50-54\80.D
Sample Name: 80
   Acq. Operator : SYSTEM
                                            Seq. Line : 4
   Acq. Instrument : LC_1100
                                             Location : 3
   Injection Date : 3/16/2017 1:37:52 FM
                                                Inj: 1
                                            Inj Volume : 10.000 µl
   Nethod
                : C:\Chem32\1\Data\Y1\031617_charlcone 2017-03-16 12-50-54\031617_chalcone.N
                  (Sequence Method)
   Last changed : 3/16/2017 12:34:01 FM by SYSTEM
   Additional Info : Peak(s) manually integrated
         DAD1 B, Sig=365,4 Ref=550,50 (Y1031617_charlcone 2017-03-16 12-50-54/80.D)
                                               and PEL
      ~~~1
      120-
       100 -
       80-
       60-
       40
       20-
                                                                   15,133
        0
                                                                      16
                        4
                                               10
                                                       12
                                                              14
                                                                              18
                                          -------
                Area Percent Report with Performance
                     _____
                                               _____
   Multiplier
                    : 1.0000
                     : 1.0000
   Dilution
   Use Multiplier & Dilution Factor with ISTDs
   Signal 1: DAD1 B, Sig=363,4 Ref=630,30
   RetTime
           k' Area
                         Height Symm. Width Plates Resol Select
    [min]
                [mAU*s] [mAU] [min] ution ivity
   9.346 - 485.86179 133.84888 0.82 0.0573 147600 -
                                                             -
                9.09710 2.24821 0.65 0.0593 145766 2.71 1.03
24.31011 2.04329 1.47 0.2067 29702 24.38 1.57
           -
    9,615
    15,133
   **********************
                         *** End of Report ***
```

Data File D:\JACK\YZG\YZG000137.D Sample Name: Fc83

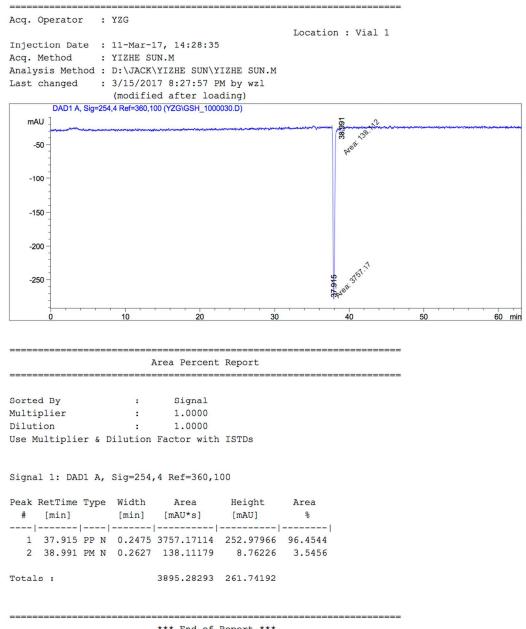
Acq. Operator	:	YZG
Acq. Instrument	t :	LC 1200 Location : Vial 1
Injection Date	:	3/30/2017 10:40:12 AM
Acq. Method	:	D:\JACK\YIZHESUN.M
Last changed	:	3/30/2017 10:39:23 AM by YZG
		(modified after loading)
Analysis Method	: h	D:\JACK\YIZHE SUN\YIZHE SUN.M
Sample Info	:	25%

Fraction Information

```
Fraction collection off
```

No Fractions found.

Area Percent Report


Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: MWD1 A, Sig=254,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.044	MM	0.1161	242.04439	34.73186	1.4750
2	17.907	MM	0.5147	1.61674e4	523.52673	98.5250
Total	s:			1.64094e4	558.25859	

```
*** End of Report ***
```

Data File D:\JACK\YZG\GSH 1000030.D Sample Name: FC84

Data File D:\JACK\YZG\T000726.D Sample Name: FC85-100%

				==	
Acq. Operator : :	YZG				
Acq. Instrument : 1	LC 1200	L	ocation : Vial 1		
Injection Date : !	5/16/2017 7:46:20 A	M			
Acq. Method : 1	D:\JACK\YIZHESUN.M				
Last changed :	5/16/2017 7:35:12 A	M by YZG			
	(modified after loa				
	D:\JACK\YIZHE SUN\Y	IZHE SUN.M			
	5%-85% 100MIN				
	,16 Ref=360,100 (YZG\T000726	D)			
mAU]			20	Wea. 5.302	
0 -			()e		
-20 -				Prec.	
-40 -					
-60 -					
-80 -					
-100 -					
-120 -					
-140 -			Serves. 843		
-160	2 4	6	8 10	12	14 min
					-
	Fraction I	nformation			-
Fraction collection					=
No Fractions found.					
	Area Percent	Report		==	
Sorted By	: Signal				
Multiplier	: 1.0000				
Dilution	: 1.0000				
Use Multiplier & Di Signal 1: MWD1 A, S	llution Factor with Sig=254,16 Ref=360,	ISTDS 100			
Peak RetTime Type	Width Area	Height A	rea		
		[mAU]	%		
	0.1953 1843.70142				
	0.1774 95.39015				
Totals :	1939.09157	166.32829			

*** End of Report ***

References:

1. Zhou, B.; Jiang, P.; Lu, J.; Xing, C. Characterization of the Fluorescence Properties of 4-Dialkylaminochalcones and Investigation of the Cytotoxic Mechanism of Chalcones. *Archiv der Pharmazie* **2016**, *349*, (7), 539-52.

2. Ikeda, S. I.; Kimura, U.; Ashizawa, T.; Gomi, K.; Saito, H.; Kasai, M.; Kanazawa, J.; Sasaki, K.; Nukui, E.; Okabe, M.; Sato, S. Propenone Derivatives. U.S. 5,952,355, 1999.

3. He, W.; Wang, Q.; Srinivasan, B.; Xu, J.; Padilla, M. T.; Li, Z.; Wang, X.; Liu, Y.; Gou, X.; Shen, H. M.; Xing, C.; Lin, Y. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. *Oncogene* **2014**, *33*, (23), 3004-13.

4. Srinivasan, B.; Johnson, T. E.; Lad, R.; Xing, C. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities. *Journal of medicinal chemistry* **2009**, *52*, (22), 7228-35.

5. Zhang, Y.; Srinivasan, B.; Xing, C.; Lu, J. A new chalcone derivative (E)-3-(4-methoxyphenyl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one suppresses prostate cancer involving p53-mediated cell cycle arrests and apoptosis. *Anticancer research* **2012**, *32*, (9), 3689-98.

6. Zhou, B.; Yu, X.; Zhuang, C.; Villalta, P.; Lin, Y.; Lu, J.; Xing, C. Unambiguous Identification of beta-Tubulin as the Direct Cellular Target Responsible for the Cytotoxicity of Chalcone by Photoaffinity Labeling. *ChemMedChem* **2016**, *11*, (13), 1436-45.

7. Kumar, D.; Kumar, N. M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. *Bioorg Med Chem Lett* **2010**, *20*, (13), 3916-9.

8. Haider, N.; Käferböck, J. Intramolecular [4+2] cycloaddition reactions of indolylalkylpyridazines: synthesis of annulated carbazoles. *Tetrahedron* **2004**, *60*, (31), 6495-6507.

9. Gupta, M. K.; Misra, K. Atom-based 3D-QSAR, molecular docking and molecular dynamics simulation assessment of inhibitors for thyroid hormone receptor alpha and beta. *Journal of molecular modeling* **2014**, *20*, (6), 2286.