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Figure S1 (Related to Figure 1): Assessment of hepatocyte-specific MCU knockout mice, mitochondrial 

membrane potential, oxygen consumption rate, and mitochondrial biogenesis-related proteins 

abundance 

(A) MCU and MCUR1 mRNA abundance were quantitated in hepatocytes isolated from MCUfl/fl and MCUhep 

mice. Mean ± SEM; ***p < 0.001; ns= not significant; n = 4 mice. (B) MCU deletion in hepatocytes does not 

affect m. Representative confocal images of primary hepatocytes from MCUfl/fl and MCUhep mice loaded with 

m indicator, TMRM (50nM). Scale bar= 20m. n = 3 mice. (C) Quantification of TMRM fluorescence as an 

indicator of m. Mean ± SEM; ns= not significant; n = 3 mice.  (D) Elimination of MCU results in reduced 

mitochondrial ROS generation. Representative confocal images of primary hepatocytes from MCUfl/fl and 

MCUhep mice loaded with mitochondrial superoxide indicator, MitoSOX™ Red (2 M). Scale bar= 20m. n = 3 

mice. (E) Quantification of MitoSOX™ Red fluorescence from raw images of Figure S1D, as an indicator of 

mitochondrial superoxide generation. Mean ± SEM; ***p < 0.001; n = 3 mice. (F) The mitochondrial Oxygen 

consumption rate (OCR). OCR was measured in MCUfl/fl and MCUhep hepatocytes using the Seahorse XF 

Analyzer. Mean ± SEM. n = 3 mice. (G) After basal OCR was recording, oligomycin, FCCP, and antimycin A + 

rotenone were added and ATP coupled and maximal OCR were calculated from Figure S1F. Mean ± SEM. **p 

< 0.01, and ***p < 0.001. n = 3 mice. (H) MCU-KO does not affect the expression of respiratory chain complex 

proteins. Western blot analysis of MCU-complex (MCU, MCUR1, MICU1) and mitochondrial respiratory chain 

subunits complex I (NDUFB8), complex II (SDHB), complex III (UQCRC2), complex IV (MTCO1) and ATP 

synthase subunit ATP5A in MCUfl/fl and MCUhep hepatocytes. TOM20 was used as a loading control. n = 3 

mice. (I) CPT1 protein expression in MCUhep hepatocytes. Hepatocytes isolated from MCUfl/fl and MCUhep 

mice were lysed in RIPA buffer and probed with indicated antibodies. n= 3 mice. (J) Bar graph represents 

densitometric analysis of CPT1 protein abundance. Data represented as mean ± SEM. ns= non-significant p 

value. n= 3 mice. (K) MCU-KO does not have any effect on mitochondrial biogenesis-regulating transcription 

factors. Hepatocytes isolated from 10-12 week old MCUfl/fl and MCUhep mice were lysed in RIPA buffer and 

probed with indicated antibodies. n= 4. (L) Bar graph represents densitometric analysis of mitochondrial 

biogenesis-regulating transcription factors protein abundance. Mean ± SEM. ns= non-significant. n= 4. 
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Figure S2 (Related to Figure 1):  Assessment of the metabolic profiles of the mice. 

(A-F) MCUfl/fl and MCUhep mice 8-10 weeks old were fed a normal chow diet and studied in a Comprehensive 

Animal Monitoring System (CLAMS, Columbus Instruments, Columbus, OH). (A) Oxygen consumption, (B) 

respiratory exchange ratio, (C) %Fat utilized, (D) Heat generated, (E) locomotor activity, and (F) food intake 

were measured (n = 10-12 mice per group).  
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Figure S3 (Related to Figure 2): Body weight, glucose/glycogen measurements, liver injury assay, liver 

H&E staining, ER distribution and ER stress, liver TAG secretion, and de novo lipogenesis.  

(A) Loss of MCU in hepatic tissue does not alter the gross body weight. Nuclear Magnetic Resonance (NMR) 

and Dual-Energy X-ray absorptiometry (DEXA) are used for the assessment of 8-week-old MCUfl/fl and 

MCUhep mice body composition. Mice were fed a normal chow diet and fasted for 24 hours. Body mass was 

monitored using NMR before and after fasting. Mean ± SEM. ***p < 0.001, ns= non-significant p value; n = 8 

mice per group. (B and C) MCUhep mice demonstrate significantly increased liver/body wt and WAT/body wt 

ratio as compared to the MCUfl/fl mice. The body weight of 8-week old mice was measured, and then liver lobes 

and WAT was excised for quantification of tissue weights, plotted as tissue/total body wt ratio. Mean ± SEM. 

**p < 0.01, and *p < 0.05. n = 5-11 mice. (D) Blood glucose levels were unchanged in MCUhep mice. Tail blood 

was drawn from 8-week-old MCUfl/fl and MCUhep mice that were fed a normal chow diet and allowed to fast for 

24 hours. Blood glucose was measured by an OneTouch Ultra glucometer. Mean ± SEM. ***p < 0.001, ns= 

non-significant p value; n = 8 mice per group. (E) Loss of Mcu does not alter glucose tolerance in mice. The 

glucose tolerance test was performed as described in the methods section. n = 10 mice per group. (F) Hepatic 

deletion of MCU leads to increased glycogen content in the liver during fed state. Liver tissue collected from 

fed and 24 hours fasted mice were used for the estimation of liver glycogen using enzymatic assay. Mean ± 

SEM. *p < 0.05, ns= non-significant p value; n = 5-6 mice per group. (G) Loss of Mcu does not alter hepatocyte 

glucose output. The glucose output assay was performed on primary hepatocytes in response to glucagon, 

and  plotted as fold change compared to the MCUfl/fl hepatocytes. Mean ± SEM; ***p < 0.001, ns= not 

significant. (H) MCU-KO in hepatocytes does not affect hepatic glucose uptake. Glucose uptake was visualized 

by confocal microscope after culturing the hepatocytes from MCUfl/fl and MCUhep mice with 2-NBDG instead of 

glucose. Hoechst stain was used to visualize nuclei. n= 3 mice. (I) Bar graph for the quantification of 2-NBDG 

fluorescence as an indicator of glucose uptake. Mean ± SEM; ns= not significant. n= 3 mice. (J) MCU-KO does 

not affect endoplasmic reticulum distribution. Hepatocytes isolated from MCUfl/fl and MCUhep mice were 

stained with Rhod123 and ER-tracker Blue. Distribution of mitochondria and ER was visualized by confocal 

imaging. n= 3. (K) Loss of MCU in hepatocytes does not show altered ER-stress. Hepatocytes isolated from 

10-12 week old MCUfl/fl and MCUhep mice were lysed in RIPA buffer and probed with indicated antibodies. n= 4 

mice. (L) Bar graph showing plasma ALTase activity as a measure of liver injury. Mean ± SEM; ns= not 



significant; n = 3 mice. (M)  MCU-KO liver section does not show any gross morphological alterations. Liver 

from MCUfl/fl and MCUhep mice were perfused, fixed, and stained with H&E. Representative histological section 

image (4 x magnification). n = 3 mice per group. (N) Loss of MCU in hepatic tissue does not alter the liver 

triglyceride secretion. (O) MCUhep mice have normal hepatic de novo lipogenesis as measured by palmitate 

synthesis. Mean ± SEM. ns= non-significant p value; n = 10 mice per group. (P) MCUhep mice have normal 

white adipose tissue (WAT) de novo lipogenesis as measured by palmitate synthesis. Mean ± SEM. ns= non-

significant p value; n = 10 mice per group. 
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Figure S4 (Related to Figure 3): Assessment of mitochondrial membrane potential (m) in zebrafish 

primary cells.   

(A) MCU deletion did not alter m. Representative confocal images of primary cells from WT, MCU+/- and 

MCU-/- zebrafish stained with m indicator, TMRM (50nM). n = 3. (B) Quantification of TMRM fluorescence. 

Mean ± SEM; ns= not significant; n = 3.  
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Figure S5 (Related to Figure 4):  AMPK mRNA abundance in MCUhep hepatocytes, ERK- 

phosphorylation in MCUhep hepatocytes, BODIPY493/503 staining, Ca2+ and m measurement in 

AMPK1/2hep hepatocytes, and reconstitution of CA-AMPK.  

(A) AMPK mRNA abundance was quantified in hepatocytes isolated from MCUfl/fl and MCUhep mice. Mean ± 

SEM; ns= non- significant p value; n = 4 mice. (B) ERK phosphorylation is not suppressed in MCU-KO 

hepatocytes. Hepatocytes cell lysate prepared from MCUfl/fl, MCUhep, and probed with indicated antibodies. n= 

4 mice. (C) Loss of AMPK1/2 results in the increased lipid droplets in primary hepatocytes. Lipid droplets 

were visualized by confocal microscopy after BODIPY® 493/503 staining in primary hepatocytes isolated from 

indicated genotype. n = 3. (D) Number of lipid droplets were quantified after BODIPY® 493/503 staining. Mean 

± SEM. *p < 0.05; n=20-30 cells. (E) Loss of AMPK1/2 does not alter mCa2+ uptake and mitochondrial 

membrane potential. Representative traces of [Ca2+]out clearance and m in hepatocytes from indicated 

genotypes. n = 3. (F) Hepatic deletion of AMPK1/2 does not affect m. Representative confocal images of 

primary hepatocytes isolated from AMPK1/2fl/fl and AMPK1/2hep mice stained with m indicator, TMRM 

(50nM). n = 3 mice. (G) Primary hepatocytes isolated from MCUfl/fl and MCUhep mice were infected with control 

vector and CA-AMPK expressing adeno-virus. Cell lysate prepared and probed with AMPK antibody.  
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Figure S6 (Related to Figure 6): Generation and validation of MCU-C96A KI mice and assessment of 

m. 

(A) Schematic represents the constitutive activation of MCU channel due to C96A mutation. (B) CRISPR/Cas9 

(Nickase) mediated targeting of MCU- genomic region. (C) Sequencing data from the WT, heterozygous C96A-

KI and homozygous C96A-KI animal shows the replacement of TGC (encode Cys) to GCC (encode Ala). (D) 

The relative body weight of WT and C96A-KI mice. Mean ± SEM. ***p < 0.001, n = 5. (E) MCU C96A KI does 

not affect the m. WT and C96A-KI mice hepatocytes were isolated, permeabilized with digitonin (40 g/mL) 

in intracellular like media containing thapsigargin (2 M). The m indicator JC-1 was added at 20 seconds 

and after reaching steady state m. A bolus of extramitochondrial Ca2+ (10 M) was added at the indicated 

time point before adding the mitochondrial uncoupler FCCP (2 M). Representative traces of JC-1 staining 

showing the m in permeabilized hepatocytes from WT and C96A-KI. n = 3. (F) C96A-KI does not affect 

m. Representative confocal images of primary hepatocytes from WT and C96A-KI mice loaded with m 

indicator, TMRM (50nM). n = 3. 
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Figure S7 (Related to Figure 7): Effect of metformin on mitochondrial Ca2+ uptake and Liver lipidomic 

alterations in MCUhep mice.  

(A) Metformin treatment did not alter mCa2+ uptake in hepatocytes. Hepatocytes isolated from control and 

metformin administered MCUfl/fl and MCUhep mice were isolated, permeabilized with digitonin (40 g/mL) in 

intracellular like media containing thapsigargin (2 M), and bathed in the Ca2+ indicator Fura2FF (1 M). After 

reaching steady state, a bolus of extramitochondrial Ca2+ (10 M) was added at the indicated time point before 

adding the mitochondrial uncoupler FCCP (2 M). Representative traces of [Ca2+]out clearance in permeabilized 

hepatocytes. n=3. (B) Metformin administration does not affect the size of the lipid droplets in MCU-KO 

hepatocytes. Lipid droplets size were quantified after BODIPY® 493/503 staining. Mean ± SEM. ***p < 0.001; 

ns= not significant; n=15-30 cells. (C) A one-way ANOVA was performed on the log transformed extracted 

features obtained from the untargeted analysis of the lipid extract. Those features identified as being 

significantly different are represented in red while those features which are not significant are represented in 

green. n=4 mice per group. (D) LCMS features extracted from the LCMS analysis of the lipids were subjected 

to cluster analysis as described in materials and methods. The data reveal a clear separation in the lipidome 

between control (Alb-Cre-Control), MCUhep (KO-Control) and metformin treated MCUhep mice (KO-Metformin). 

n=4 mice per group.  

 

 


