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S1 Length-independent clustering of 

complementarity-determining region (CDR) structures 
We followed the protocol and nomenclature outlined by Nowak ​et al.​ (2016) to carry out 

length-independent clustering of the CDR structures. 

S1.1 CDR Loop extraction from the PDB 

All X-ray structures available in SAbDab (Dunbar ​et al.​ 2014) as of 10th July 2017, with a resolution of 

≤ 2.8 Å, were considered in this work. For this paper, we adopted the IMGT numbering scheme 

(Lefranc ​et al.​, 2009) and the CDR definition described by North ​et al.​ (2011). CDR loops with no 

missing residues and no B-factors of backbone atoms ≥ 80 were considered. 

S1.2 Cluster formation 

Five residues before and five after the CDR termini were used as the anchors for structural 

alignment. Pairwise backbone root-mean-square deviation (RMSD) between loop structures were 

calculated to form the cost matrix. For loop structures that differ in length, a dynamic time warping 

(DTW) algorithm was used to find the optimal structural alignment between the backbone atoms. 

Density-based spatial clustering of applications with noise (DBSCAN) was used to carry out the 

structural clustering. The clustering thresholds are the same as in Nowak ​et al.​ (2016), except for L2 

where a clustering threshold of 1 Å was used.  

S1.3 Cluster nomenclature 

The cluster nomenclature follows that of Nowak ​et al.​ (2016). A cluster is named as follows: the first 

two letters represent the type of CDR (H1 or H2 ​etc.​), followed by the sequence lengths found in the 

cluster, and completed with an alphabet representing the rank of the cluster in descending sizes. For 

instance, an L3 cluster which contains length-10 and length-11 sequences (10,11), and has the 

second highest number of unique sequences among all clusters which contain both length-10 and 

length-11 sequences (B), is called ‘L3-10,11-B’. 
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S1.4 Summary statistics of the clusters 

We defined a cluster as a set of CDR structures with at least 6 unique sequences.  

 

Table S1.1 Summary statistics of clusters in each CDR type. 

CDR Total number of 
sequences 

Clustering 
Threshold (Å) 

Portion of clustered 
sequences 

Number of 
clusters 

H1 2747 0.80 81.03% 3 

H2 2819 0.63 83.29% 4 

L1 2605 0.82 92.32% 12 

L2 2765 1 98.41% 1 

L3 2713 0.91 83.27% 7 
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Table S1.2 Cluster-specific details of each CDR type. 

CDR Clusters Lengths #Unique #Redundant 

H1 

H1-13-A 13 605 2047 

H1-14-A 14 20 80 

H1-15-A 15 20 99 

#Clustered 2226 #Total 2747 

H2 

H2-9-A 9 170 608 

H2-10-A 10 366 1001 

H2-10-B 10 187 561 

H2-12-A 12 39 178 

#Clustered 2348 #Total 2819 

L1 

L1-10-A 10 26 80 

L1-11-A 11 243 1051 

L1-11-B 11 40 120 

L1-12-A 12 24 54 

L1-12-B 12 11 87 

L1-13-A 13 33 95 

L1-13-B 13 9 47 

L1-13-C 13 7 20 

L1-14-A 14 21 91 

L1-14-B 14 11 100 

L1-15-A 15 40 97 

L1-16,17-A 16,17 144 563 

#Clustered 2405 #Total 2605 

L2 
L2-8-A 8 449 2721 

#Clustered 2721 #Total 2765 

L3 

L3-5-A 5 12 49 

L3-8-A 8 40 141 

L3-9-A 9 29 141 

L3-9,10-A 9,10 470 1729 

L3-10-A 10 20 92 

L3-10-B 10 8 10 

L3-10,11-A 10,11 41 97 

#Clustered 2259 #Total 2713 
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S2 Construction of the position-specific scoring matrix 

and scoring method 
We constructed the position-specific scoring matrix (PSSM) based on the frequency of amino acids 

found in that position within the cluster: 

   ,log ( )M k,j =  2 bk

pk,j  

where  is the element score and  is the probability of observing the amino acid  at theM k,j pk,j k  

ANARCI-numbered position  in the cluster, and is the background probability of amino acid ,j bk k  

which is considered to be the same for all amino acid types (​i.e.​ 0.05) A pseudo-count of 0.001 was 

added to all elements with no observations to prevent computational errors. 

 

To make a cluster prediction, we only considered clusters that contain members of the same 

sequence length as the target sequence. The PSSM score for a target sequence, , for cluster is: sc  c  

s  c =  ∑
J

j=J0

M k,j
 

 

where  is the set of positions in the target sequence. If the maximum total score is above anJ  

assignment threshold (see S3), an assignment is made to the cluster with the maximum total score. 

 

In our dataset, we observed that 99.3% (2721/2741) length-8 L2 loops are clustered in the L2-8-A. 

Henceforth, we decided to alter the assignment method: all L2 loops of the dominant length 

(length-8 according to North ​et al.​, 2011) were assigned to a single cluster; the remaining loops were 

not assigned to any clusters. This resulted in the same precision and recall as the selected threshold 

(-1; see S3). 
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S3 Cross-validation for threshold selection 
We carried out leave-one-out cross-validation on the unique CDR sequences of the SAbDab set. 

Within a cluster, only unique sequences were retained. For non-clustered sequences, only unique 

sequences in the set were retained.  

 

For each loop, if the backbone RMSD between the actual structure and any members of the assigned 

cluster is <1.5 Å, this was labelled a ​true positive (TP)​; otherwise this was labelled a ​false positive 

(FP)​. If the loop was not in any cluster and was not assigned to any cluster, this was labelled a ​true 

negative (TN)​. If the loop was in a cluster but was not assigned to any cluster, this was labelled a 

false negative (FN)​. 
 

We used the following definitions for the calculation of recall, precision and coverage: 

○ Recall = TP
TP+FN  

○ Precision = TP
TP+FP  

○ Coverage = TP+FP
TP+TN+FP+FN  

For each CDR, we calculated the precision and recall for different assignment thresholds. We then 

calculated the F​1​ score for each threshold: 

where (1 ) F β =  + β2 precision · recall
(β ·precision) + recall2 β = 1  

The maximum total scores were between -4 and 4 (Figure S3.1), hence we performed a parameter 

sweep over threshold values using an increment of 0.5. 

 

Figure S3.1 Maximum total score distributions for different CDR loops during cross-validation. 
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We selected the scoring threshold with the highest F​1​ score (Table S3.1). Table S3.2 shows the 

corresponding recall, precision and coverage of the selected threshold for each CDR type. 

 

Table S3.1 F​1​ score from the cross-validation. The highlighted cells indicate the maximum F1-score 

across the different thresholds for each CDR.  

Assignment Thresholds H1 H2 L1 L2 L3 

-2 0.9337 0.9661 0.9765 0.9956 0.9541 

-1.5 0.934 0.9661 0.9765 0.9956 0.9601 

-1 0.9338 0.966 0.9765 0.9956 0.9619 

-0.5 0.9342 0.9664 0.9771 0.9945 0.9615 

0 0.9363 0.9639 0.9755 0.9923 0.961 

0.5 0.9408 0.9526 0.9736 0.9811 0.9571 

1 0.9333 0.9259 0.9663 0.9521 0.9347 

1.5 0.9135 0.8324 0.9537 0.8649 0.8818 

 

Table S3.2 Recall, precision, accuracy and coverage at the selected thresholds.  

CDR (threshold) Recall (%) Precision (%) Accuracy (%) Coverage (%) 

H1 (0.5) 99.45 89.26 89.47 93.75 

H2 (-0.5) 99.89 93.6 93.65 97.54 

L1 (-0.5) 99.84 95.67 95.64 97.38 

L2 (-1) 100 99.13 99.14 98.5 

L3 (-1) 99.26 93.31 93.22 91.69 
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S4 Blind test set for SCALOP prediction performance 
We collected all redundant structures that fulfil the quality requirements of the SCALOP database 

and became available in SAbDab (Dunbar ​et al.​, 2014) between 1st August 2017 and 31st May 2018. 

We used SCALOP to predict the canonical forms of this blind test set of CDR loops using the database 

constructed with structures available before 1st July 2017. The definition of the performance 

indicators (TP, TN, FP and FN) are the same as in S3. The performance is shown in Table S4.1. SCALOP 

maintains high coverage and precision on the new structures. 

 

Table S4.1 Coverage and precision of the leave-one-out cross-validation on SCALOP’s model 

selection. 

 H1 H2 L1 L2 L3 

Coverage 94.17% 95.12% 96.76% 97.38% 89.60% 

Precision 88.79% 87.13% 94.53% 99.22% 91.33% 

A target structure with a root-mean-square deviation of less than 1.5 Å to the predicted structure is 

considered correct. 
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S5 Cross-validation for structure selection 
SCALOP can generate a model structure if the user supplies a structure of the framework. 

 

After SCALOP assigned a canonical form to the input sequence, a structural prediction is selected 

from the members of the assigned cluster. We calculate the Environment Substitution Score (ESS; 

from FREAD, Krawczyk ​et al.​, 2018) of the members and the target sequence. Among the member 

structures with an ESS of >25, we calculated their anchor RMSD with the input structure. Two 

residues before and after the member CDR loop structures were used as the anchor to compute the 

anchor RMSD of their backbone atoms. We then select the member with the highest ESS and lowest 

anchor RMSD as the structural prediction. 

 

We carried out a leave-one-out cross-validation study on the structural prediction. We used the 

unique CDR sequences of the SAbDab set described in the Supplementary Materials, left one 

sequence out each time when constructing the PSSM, and predicted the canonical form of the target 

sequence. From the members of the assigned cluster, the CDR structure with the highest ESS and 

lowest anchor RMSD with the target sequence’s native framework structure is selected, barring all 

sequence-identical structures. If the selected structure has a backbone RMSD of less than 1.5 Å with 

the native structures of any of the sequence-identical loops, the prediction is considered a ​true 

positive (TP)​; otherwise, it is a ​false postive (FP)​. If no structures were assigned and no clustered 

structures fall within 1.5 Å backbone RMSD from the native structures of any of the 

sequence-identical loops, this is considered a ​true negative (TN)​; otherwise it is a ​false negative 

(FN)​.  
 

This results in the prediction performance shown in Table S5.1. Using the same dataset as in the 

paper, the results are similar to those in Table 1 in the main text. H1 and H2 see a drop in precision 

as this simple method does not always select the best CDR structure from the large clusters seen for 

H1 and H2. 

 

Table S5.1 Coverage and precision of the leave-one-out cross-validation on SCALOP’s model 

selection. 

 H1 H2 L1 L2 L3 

Coverage 93.75% 97.03% 97.38% 98.50% 89.26% 

Precision 81.73% 80.23% 92.68% 98.04% 86.53% 

A target structure with a root-mean-square deviation of less than 1.5 Å to the predicted structure is 

considered correct. 

  

8 



S6 Benchmark with FREAD 
We ran FREAD (Deane and Blundell, 2001; Choi and Deane, 2010; Krawczyk ​et al.​, 2018) using only 

structures whose PDB code and chain identifier are found in the SCALOP database. To select a 

prediction, we used length-dependent environment substitution score (ESS) cut-offs: 

○ Lengths < 13: 25 

○ Lengths 13-16: 40 

○ Lengths > 16: 55 

The decoy with the top ESS score above the length-dependent ESS cut-off, and the lowest anchor 

RMSD with the model framework was selected as the FREAD prediction. FREAD does not make a 

prediction if none of the decoys are above the corresponding ESS cut-off, or when the decoy has an 

anchor RMSD of  ≥ 1 Å. No structural models are generated from FREAD. We only took the PDB 

code and chain identifier of the selected decoy structure. 

S6.1 Coverage and precision of FREAD on loops in the SCALOP 

database  

We ran a leave-one-out cross-validation on all structures within the SCALOP database. For each case, 

the frameworks and CDR loops from identical antibody sequences were eliminated. The same 

measures of correctness were used for FREAD as for SCALOP. A ​true positive​ prediction refers to a 

case where the backbone RMSD between the actual and predicted structures was < 1.5 Å; 

otherwise it was a ​false positive​. If the minimal backbone RMSD between the actual structure and 

any loop structures was ≥ 1.5 Å, it was considered a ​true negative​ if FREAD does not make a 

prediction; otherwise the lack of a FREAD prediction was considered a ​false negative​. The calculation 

for the coverage and precision are the same as in S3. Table S6.1 shows the results of the 

cross-validation. 

 

Table S6.1 Precision and prediction coverage of FREAD on loops in the SCALOP database 

 Precision Coverage 

H1 80.19% 96.79% 

H2 88.50% 93.38% 

L1 92.72% 98.76% 

L2 98.27% 98.89% 

L3 91.29% 98.02% 
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S7 Performance of SCALOP and FREAD on next 

generation sequencing (NGS) data 
We ran SCALOP and FREAD on a set of ~8 million light chain and ~5 million heavy chain sequences 

(Krawczyk ​et al.​, 2018; referred to as ‘NGS data’), and compared their predictions to assess overlap 

coverage, consistency and speed. 

 

The “overlap coverage” is the percentage of sequences for which both FREAD and SCALOP made a 

prediction. Within the overlapped predictions, if the FREAD prediction was < 1.5 Å backbone RMSD 

from any member of the cluster assigned by SCALOP, it was considered a consistent prediciton. 

 

 

Figure S7.1 Prediction coverage of SCALOP and FREAD on the NGS data, for H1 loops. FREAD has 

higher coverage than SCALOP, but the overlap coverage is close to 80%. Only 0.34% of sequences 

were not predicted by either FREAD nor SCALOP.  
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Figure S7.2 Prediction coverage of SCALOP and FREAD on the NGS data, for H2 loops. FREAD has 

higher coverage than SCALOP and the overlap coverage is above 80%. Only 0.11% of all sequence 

data is predicted by neither method. 

 

Figure S7.3 Prediction coverage of SCALOP and FREAD on the NGS data, for L1 loops. The coverage of 

SCALOP and FREAD are comparable while the overlapping coverage is close to 97%. 
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Figure S7.4 Prediction coverage of SCALOP and FREAD on the NGS data, for L2 loops. SCALOP and 

FREAD make predictions over almost the same set of loops. 

 

Figure S7.5 Prediction coverage of SCALOP and FREAD on the NGS data, for L3 loops. FREAD has a 

higher coverage than L3, but the overlap coverage is reasonably high for a loop that is marginally 

more variable than the other CDRs with canonical forms. 
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Table S7.1 Overlap coverage and consistent prediction within the overlap in NGS set 

CDR Overlap Coverage (%) 
Consistent prediction 

 (% of overlap coverage) 

H1 78.58 95.15 

H2 83.18 95.24 

L1 96.93 100 

L2 98.02 100 

L3 87.55 100 
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S8 Backdating the SCALOP database: Performance 

evaluation 
 

We used the database of loop structures available as of 1st July, 2018 as the test set. For the 

back-dated set, we selected loops whose deposition dates were before the end of the year of 

interest. We chose the representative years based on the publication dates of previous canonical 

forms definitions (Al-Lazikani ​et al.​, 1997; North ​et al.​, 2011; Nowak ​et al.​, 2016) and the most recent 

year (2017). For each back-dated set, we carried out a leave-one-out cross-validation for all the loops 

in the test set:  

- for loops that existed on or before the given year, we did not include the loop of interest in 

the construction of PSSMs, and 

- for loops that came into existence later, we built the PSSMs based on all loops present in the 

back-dated set. 

The results show that by updating the database, prediction coverage increases while retaining high 

precision.  

 

Figure S8.1 The changes in H1 cluster composition and their prediction coverage and precision. The 

radii of the pie charts are proportional to the log(#Sequences). NC refers to non-clustered 

sequences. The number of H1 sequences increased by 20-fold within 20 years. Length-14 and 

length-15 clusters were absent in 1997, but appear from 2011.  
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Figure S8.2 The changes in H2 cluster composition and their prediction coverage and precision. The 

radii of the pie charts are proportional to the ​log​(#Sequences). NC refers to non-clustered 

sequences. A near 40% increase of prediction coverage is seen over 20 years. The portion of 

non-clustered sequences (16.8%) has dropped to one-third of the portion in 1997 (55.2%).  

 

 

 

Figure S8.3 The changes in L1 cluster composition and their prediction coverage and precision. The 

radii of the pie charts are proportional to the ​log​(#Sequences). NC refers to non-clustered 

sequences. The number of clusters grew from 4 in 1997 to 12 in 2016. Length-17 sequences joined 

the length-16 cluster in 1997 to form the L1-16,17-A cluster. The 2011-L1-11-C cluster combined 

with the L1-11-B cluster and resulted in the 2016-L1-11-B cluster. The portion of non-clustered 

sequences in 2016 (7.7%) dropped to a quarter of the portion in 1997 (47.8%). 

 

Figure S8.4 The changes in L2 cluster composition and their prediction coverage and precision. The 

radii of the pie charts are proportional to the ​log​(#Sequences). NC refers to non-clustered 

sequences. The conformation of L2 loop is largely invariant, hence they only belong to one cluster. 

 

 

15 



 

Figure S8.5 The changes in L3 cluster composition and their prediction coverage and precision. The 

radii of the pie charts are proportional to the ​log​(#Sequences). NC refers to non-clustered 

sequences. In 1997, only one length-9 cluster existed. Between 2011-2016, some length-10 

sequences joined the 2011-L3-9-A cluster, which becomes the 2016-L3-9,10-A cluster. Likewise, 

some length-10 loops joined the 2011-L3-11-A cluster to form 2016-L3-10,11-A. 
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