Supplementary Information

Molecular Basis for Heat Desensitization of TRPV1 Ion Channels

Lei Luo et al.

Supplementary Figure 1. Positive selection of platypus *trpv1* and functional conformation of platypus TRPV1 channel (pV1). **a** Consensus phylogenetic tree of species used in this study. The divergence time is labeled on the nodes. **b** Functional annotation of genes with positive selection in platypus based on PANTHER. **c** Representative current traces from HEK293T cells expressing mouse TRPV1 (mV1) evoked by repeated application of heat and supersaturated capsaicin. **d** Whole-cell pV1 currents elicited by application of Mg²⁺ (130 mM), pH 5, RhTx (10 μ M), 2-APB (3 mM), capsaicin (10 μ M). **e** Normalized heat desensitization (Dh) degree and tau values of mV1 with C-termini peptides of different lengths. **f** The temperature ramps used in electrophysiological recordings from channel mutants, respectively. All statistical data are given as mean \pm s.e.m.

Supplementary Figure 2. *de novo* model of the distal N and C termini based on the cryo-EM structures. Ribbon diagram of mV1 atomic model with each of the four identical subunits color-coded, showing views from side (**a**) and bottom (**b**) focused on N and C termini.

Supplementary Figure 3. Heat-evoked current and emission spectra of ANAPincorporated mouse TRPV1 (mV1_579ANAP) or YFP/GFP. **a** The spectra of YFP_2ANAP were acquired at 20, 38 and 45 °C. **b** The spectra in panel **a** were normalized to the ANAP intensity (n=3, two-sided t-test: *p<0.01). **c** The spectra of GFP_2ANAP were acquired at 20, 38 and 45 °C. **d** The spectra in panel **c** were normalized to the ANAP intensity (n=3, two-sided t-test: *p<0.01). **e** The spectra of ANAP were acquired at different temperatures. **f** The emission peak of ANAP at different temperatures (n=3, two-sided t-test: n.s., not significant). **g** Representative current induced by a temperature ramp recorded from HEK 293T cells expressing mV1_579ANAP. **h** Representative emission spectra at resting (R), activated (A) and desensitized (D) states of ANAP incorporated mV1 (mV1_579ANAP). Data are mean \pm s.e.m.

Supplementary Figure 4. Modeling of the TRPV1 channel in the desensitized state. **a** The models after fifteen rounds of KIC loop modeling exhibited a funnel-shaped distribution of total energy calculated by Rosetta (R.E.U., Rosetta energy unit). **b** and **c** Top five models after the fifteen round of loop modeling were well converged. The model with the lowest energy (blue) was chosen as the desensitized-state model. **d** and **e** ANAP was incorporated at the 630 sites (red) in the open (**d**) and desensitized (**e**) states, respectively. **f** SASA of ANAP at mV1_630 site was significantly decreased in the desensitized state (n=3, two-sided t-test: ***p<0.001). Data are mean \pm s.e.m.

Supplementary Figure 5. p-*trpv1* transgenic mice construction and functional confirmation. **a** Schematic depiction of p-*trpv1* mice targeting strategy. Genomic region of mouse *trpv1* locus is diagrammed. Solid bars represent open reading frames (ORFs); open bars represent UTRs. **b** Northern blot analysis of p-*trpv1* mRNA expression in DRG from p-*trpv1* ^{+/+} mice. The 4.9-kb band identified with the primer pair illustrated in panel a. **c** Transcriptome-wide comparison of mRNA expression between wild-type and p-*trpv1* mice. Several ion channels that have been previously implicated in heat sensing are indicated. **d** Heat map showing the differential expression levels in wild-type and p-*trpv1* mice of a set of about 200 genes implicated in somatosensation. **e** The

percentage of wild-type and p-*trpv1* dorsal root ganglion neurons (DRGs) responding to 10 μ M capsaicin, and percentages of heat-induced activation and desensitization of wild-type and p-*trpv1* DRG neurons responding to continues heat.

Supplementary Figure 6. Detection of apoptosis induced by heat using TUNEL assay. Apoptosis was detected by TUNEL staining (green fluorescence) and the nuclei were stained by DAPI (blue fluorescence) in pV1 over-expressing cells. Scale bar, 50 µm.

Species	EC50_Capsaicin	Threshold of Ah (°C)	Dh	τ value_Dh
	(nM)		transition	(s)
Mouse	$289 \pm 17 \ (n = 3)$	$39.8 \pm 0.6 \ (n=5)$	Yes	$17.3 \pm 0.5 \ (n = 3)$
Platypus	$307 \pm 23 \ (n = 5)$	$34.0 \pm 0.5 \; (n=8)$	No	n. d.
Human	$269 \pm 16 \ (n = 3)$	$40.1 \pm 0.7 \; (n = 4)$	Yes	$17.4 \pm 0.5 \ (n = 3)$
Fruit bat	$354 \pm 25 \ (n = 6)$	$40.2 \pm 0.7 \ (n = 3)$	Yes	$18.2 \pm 0.4 \ (n = 3)$
Tree shrew	$5260 \pm 140 \ (n = 3)$	$36.1 \pm 0.5 \ (n=4)$	Yes	$19.1 \pm 0.5 \ (n = 3)$
Polar bear	$313 \pm 21 \ (n = 3)$	$40.6 \pm 0.4 \ (n = 3)$	Yes	$17.7 \pm 0.6 \ (n = 3)$
Camel	$540 \pm 37 \ (n = 5)$	$41.3 \pm 0.9 \ (n = 6)$	Yes	$20.3 \pm 0.4 \ (n = 4)$

Supplementary Table 1. Functional comparison of seven mammalian TRPV1 channels.

The Latin name of all species was shown in the method. All statistical data are expressed as means \pm s.e.m. n.d. indicates no data. EC₅₀, effector concentration for half-maximum response; Ah, heat-induced activation; Dh, heat-induced desensitization; τ _Dh, tau value of the heat-induced desensitization.

Channel name	EC ₅₀ _Capsaicin	Threshold of Ah	Dh	τ value_Dh
	(nM)	(°C)	transition	(s)
mV1	$299 \pm 10 \ (n = 3)$	$39.8 \pm 0.5 \ (n = 6)$	Yes	$17.3 \pm 0.5 \ (n = 5)$
pV1	$301 \pm 12 \ (n = 5)$	$34.0 \pm 0.4 \ (n=8)$	No	n. d.
pV1_mC	$310 \pm 19 \ (n = 6)$	$34.2 \pm 0.4 \ (n=5)$	No	n. d.
pV1_mN	$313 \pm 16 \ (n = 6)$	$33.7 \pm 0.4 \ (n = 5)$	No	n. d.
pV1_mNC	$306 \pm 13 \ (n = 6)$	$34.0 \pm 0.5 \ (n = 9)$	Yes	$16.9 \pm 0.4 \ (n = 5)$

Supplementary Table 2. Functional comparison of mV1, pV1 and pV1's chimeras.

All statistical data are expressed as means \pm s.e.m. n.d. indicates no data. EC₅₀, effector concentration for half-maximum response; Ah, heat-induced activation; Dh, heat-induced desensitization; τ _Dh, tau value of the heat-induced desensitization.

Channel name	EC ₅₀ _Capsaicin	Threshold of Ah	Dh	τ value_Dh
	(nM)	(°C)	transition	(8)
mV1	$299 \pm 10 \ (n = 3)$	$39.8 \pm 0.5 \ (n = 3)$	Yes	$17.3 \pm 0.5 \ (n = 3)$
CΔ30 (Glu ⁷⁴⁷ -Phe ⁷⁷⁶)	$372 \pm 43 \ (n = 5)$	$37.6 \pm 0.6 \ (n = 6)$	Yes	$18.8 \pm 0.9 \ (n=6)$
CΔ23 (Ser ⁷⁷⁷ -Asp ⁷⁹⁹)	$398 \pm 51 \ (n = 3)$	$37.8 \pm 0.6 \ (n = 6)$	Yes	$20.0 \pm 0.7 \ (n = 6)$
$C\Delta 28$ (Ala ⁸⁰⁰ -Ala ⁸²⁷)	$343 \pm 37 \ (n = 3)$	$38.2 \pm 0.6 \ (n = 6)$	Yes	$20.3 \pm 7 \ (n = 6)$
CΔ10 (Phe ⁸³⁰ -Lys ⁸³⁹)	$354 \pm 39 \ (n = 6)$	$39.0 \pm 0.5 \ (n = 9)$	No	n. d.

Supplementary Table 3. Functional comparison of mV1 and its truncation mutants.

Channel name	EC ₅₀ _Capsaicin	Threshold of Ah	Dh transition	τ value_Dh
	(nM)	(°C)		(s)
mV1	$299 \pm 10 (n = 3)$	$39.8 \pm 0.5 \ (n = 3)$	Yes	$17.3 \pm 0.5 \ (n = 3)$
S116A	$186 \pm 11 \ (n = 3)$	$39.5 \pm 0.6 \ (n = 3)$	Yes	$18.0 \pm 0.6 \ (n = 4)$
T371G	$322 \pm 16 \ (n = 3)$	$39.9 \pm 0.6 \ (n = 4)$	Yes	$34.5 \pm 1.9 \ (n = 6)$
F830A	$338 \pm 27 \ (n = 3)$	$40.4 \pm 0.5 \ (n = 3)$	Yes	$40.0 \pm 0.6 \ (n = 6)$
K831A	$354 \pm 30 \ (n = 3)$	$39.9 \pm 0.4 \ (n = 3)$	Yes	$17.5 \pm 0.6 \ (n = 3)$
D832A	$361 \pm 35 \ (n = 3)$	$39.4 \pm 0.3 \ (n = 3)$	Yes	$17.8 \pm 0.4 \ (n = 3)$
S833A	$344 \pm 26 \ (n = 3)$	$39.4 \pm 0.5 \ (n = 3)$	Yes	$17.1 \pm 0.5 \ (n = 3)$
M834A	$329 \pm 23 \ (n = 3)$	$39.9 \pm 0.4 \ (n = 3)$	Yes	$16.8 \pm 0.6 \ (n = 3)$
P836A	$315 \pm 24 \ (n = 3)$	$40.1 \pm 0.4 \ (n = 3)$	Yes	$39.9 \pm 0.7 \ (n = 6)$
E838A	$565 \pm 54 \ (n = 3)$	$39.1 \pm 0.4 \ (n = 3)$	Yes	$17.4 \pm 0.5 \ (n = 3)$
K839A	$293 \pm 12 \ (n = 3)$	$39.5 \pm 0.6 \ (n = 3)$	Yes	$17.7 \pm 0.4 \ (n = 3)$

Supplementary Table 4. Functional comparison of mV1 and its point mutations.

All statistical data are expressed as means \pm s.e.m. n.d. indicates no data. EC₅₀, effector concentration for half-maximum response; Ah, heat-induced activation; Dh, heat-induced desensitization; τ Dh, tau value of the heat-induced desensitization.

Labeled position	EC ₅₀ _Capsaicin	low pH	2APB	Threshold of Ah	Dh
	(nM)			(°C)	transition
mV1_241	$290 \pm 9 \ (n = 5)$	Yes	Yes	$37.9 \pm 0.4 \ (n=3)$	Yes
pV1_241	$302 \pm 11 \ (n = 6)$	Yes	Yes	$33.9 \pm 0.3 \ (n = 6)$	No
mV1_575	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_579	$293 \pm 8 \ (n = 3)$	Yes	Yes	$37.8 \pm 0.4 \ (n=3)$	Yes
mV1_600	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_603	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_605	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_630	$299 \pm 10 \ (n = 4)$	Yes	Yes	$37.9 \pm 0.3 \; (n=5)$	Yes
pV1_643	$306 \pm 12 \ (n = 6)$	Yes	Yes	$33.8 \pm 0.3 \ (n=7)$	No
mV1_633	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_636	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_640	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_648	$296 \pm 7 \ (n = 6)$	No	Yes	$38.2 \pm 0.3 \ (n=4)$	Yes
mV1_650	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_651	$288 \pm 8 \ (n = 6)$	Yes	Yes	$37.7 \pm 0.4 \ (n=5)$	Yes
mV1_654	$304 \pm 10 \ (n = 6)$	Yes	Yes	$38.1 \pm 0.3 \ (n = 6)$	Yes
mV1_656	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_672	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_673	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_676	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_677	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_680	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_684	n. d.	n. d.	n. d.	n. d.	n. d.
mV1_685	$295 \pm 11 \ (n = 8)$	Yes	Yes	$37.8 \pm 0.4 \ (n = 6)$	Yes

Supplementary Table 5. Functional confirmation of ANAP-incorporated TRPV1 channels.

All statistical data are expressed as means \pm s.e.m. n.d. indicates no data. EC₅₀, effector concentration for half-maximum response; Ah, heat-induced activation; Dh, heat-induced desensitization; low pH, pH5; 2APB, 2-aminoethoxydiphenyl borate.

Supplementary Table 6. Primers used in this study to identify the genotype of transgenic mice.

primer	sequence	
F1	5'-CAGAGTGCTAGAGATGCTTTCAATC-3'	
R1	5'-TGCGTTTAATCCCTTCACTGTTC-3'	

Project	WT (n=3)	p- <i>trpv1</i> (n=3)
PH	5.5 ± 0.0	5.5 ± 0.0
Glu - (mmol/L)	0 ± 0.0	0 ± 0.0
Vc +3 (mmol/L)	5.6 ± 0.13	5.6 ± 0.14
SG	1.030 ± 0.000	1.030 ± 0.007
BLD - (Cell / μ L)	0 ± 0.0	0 ± 0.0
PRO +- (g/L)	0.15 ± 0.01	0.15 ± 0.00
BIL - (μ mol/L)	0 ± 0.0	0 ± 0.0
URO +1 (μ mol/L)	33 ± 0	33 ± 0
KET +1 (mmol/L)	1.5 ± 0.05	1.5 ± 0.05
WBC- (Cell /µL)	0 ± 0.0	0 ± 0.0

Supplementary Table 7. A routine urine test in WT & p-*trpv1* mice.

Data are expressed as mean \pm s.e.m. from 3 mice.

Project	WT (n=3)	p- <i>trpv1</i> (n=3)
WBC (×10 ⁹ /L)	5.0 ± 1.92	12.3 ± 1.40
Lymph# (×10 ⁹ /L)	2.7 ± 1.12	8.1 ± 2.09
Mon# (×10 ⁹ /L)	0.2 ± 0.05	0.5 ± 0.12
Gran# (×10 ⁹ /L)	2.1 ± 0.28	3.7 ± 0.62
Lymph (%)	54.5 ± 2.49	66.2 ± 7.27
Mon (%)	3.1 ± 0.22	3.7 ± 0.49
Gran (%)	42.4 ± 6.06	30.1 ± 3.35
RBC (× 10 ¹² /L)	9.81 ± 1.02	11.13 ± 0.80
HGB (g/L)	148 ± 10.66	165 ± 13.91
HCT (%)	46.5 ± 4.02	54.7 ± 7.30
MCV (fL)	47.5 ± 1.27	49.2 ± 2.19
MCH (pg)	15.0 ± 0.74	14.8 ± 0.37
MCHC (g/L)	318 ± 7.76	301 ± 11.34
RDW (%)	14.5 ± 0.38	14.2 ± 0.45
PLT (×10 ⁹ /L)	464 ± 18.57	435 ± 17.93
MPV (fL)	5.3 ± 0.34	5.7 ± 0.60
PDW	15.9 ± 0.75	16.7 ± 0.54
PCT (%)	0.245 ± 0.004	0.247 ± 0.004

Supplementary Table 8. Routine blood test in WT & p-*trpv1* mice.

Data are expressed as mean \pm s.e.m. from 3 mice.

Project	WT (n=3)	p- <i>trpv1</i> (n=3)
TP (g/L)	48.3 ± 3.7	55.8 ± 4.4
ALB (g/L)	33.7 ± 1.9	37.5 ± 2.8
GLB (g/L)	14.6 ± 2.1	18.3 ± 1.9
ALB/GLB	2.31 ± 0.20	2.05 ± 0.04
ALT (IU/L)	61.10 ± 4.80	80.00 ± 8.50
AST (IU/L)	254.8 ± 17.1	337.5 ± 33.2
AST/ALT	4.20 ± 0.08	4.20 ± 0.05
TB (µmol/L)	0.8 ± 0.1	1.3 ± 0.2
DB (µmol/L)	0.70 ± 0.05	0.8 ± 0.08
IDBIL (µmol/L)	0.2 ± 0.0	0.5 ± 0.1
TBA (µmol/L)	7.6 ± 0.4	6.7 ± 0.8
ALP (IU/L)	261.0 ± 30.8	231.5 ± 22.1
Urea (mmol/L)	9.21 ± 0.76	11.38 ± 0.99
Cre (µmol/L)	10.20 ± 0.80	13.40 ± 0.67
UA (µmol/L)	64.7 ± 9.9	105.3 ± 15.2
GLU (mmol/L)	7.9 ± 0.4	7.6 ± 0.4
TC (mmol/L)	1.88 ± 0.19	2.57 ± 0.40
F-CHOL (mmol/L)	0.38 ± 0.07	0.55 ± 0.07
TG (mmol/L)	1.05 ± 0.06	1.17 ± 0.13
HDL-C (mmol/L)	1.42 ± 0.20	1.87 ± 0.28
LDL-C (mmol/L)	0.41 ± 0.03	0.55 ± 0.05
apoA1 (g/L)	0.03 ± 0.00	0.03 ± 0.00
apoB (g/L)	0.12 ± 0.03	0.20 ± 0.04
Ca (mmol/L)	2.29 ± 0.15	2.56 ± 0.13

Supplementary Table 9. Blood bio-chemistry examination in WT & p-*trpv1* mice.

Data are expressed as mean \pm s.e.m. from 3 mice.

Name	Primer-Forward	Primer-Reverse	
nV1 mNC mV1	ctgatggggggagacagtgaa	gaagttgaagtaaaatatgc	
pv1_mvC_mv1	caagattgcacaagagagc	gcttgacaaatctgtcccac	
nV1 mNC $nV1$	gacagatttgtcaagcgc	ctcttgtgcaatcttgttca	
pv1_mixC_pv1	NC_pV1 gacagatttgtcaagcgc atattttacttcaacttcttc iC_mV1 ctgatgggggggagacagtga acaagattgcacaagagagc nC_pV1 atggccccaggggagaaaa cggtaccgcgggcccgggat oN_mV1 gatctcgagctcaagcttat	ctgtctccccatcagggc	
pV1 mC mV1	ctgatggggggagacagtga	ccgggcccgcggtaccgtt	
pv1_mc_mv1	acaagattgcacaagagagc	ttctcccctggggccatgga	
nV1 mC nV1	atggccccaggggagaaaa	ctcttgtgcaatcttgttca	
pv1_mc_pv1	ctgatggggggagacagtga acaagattgcacaagagagc atggccccaggggagaaaa cggtaccgcgggcccgggat gatctcgagctcaagcttat ggagaaatgggctagctta	ctgtctccccatcagggc	
pV1 mN mV1	gatctcgagctcaagcttat	gaagttgaagtaaaatatgc	
pv1_miv_mv1	ggagaaatgggctagctta	gcttgacaaatctgtccca	
nV1 mN nV1	gacagatttgtcaagcgc	gctagcccatttctccataa	
pv1_1111v_pv1	atattttacttcaacttcttc	gcttgagctcgagatctga	
mC mV1	gctagcgtttaaacttaaaa	ctggatatctgcagaatttt	
	caagattgcacaagagagc	tctcccctggggccatgga	
nC nV1	gctagcgtttaaacttaaaa	ctggatatctgcagaatttt	
pc_pv1	caaggtctcgcaagaaagc	cttctaaaataagtgactc	

Supplementary Table 10. Primers used in this study to generate 1 KP v1 chin	himera	FRPV1	generate T	study to	n this	s used	Primers	e 10.	^r Table	plementary	S
---	--------	--------------	-------------------	----------	--------	--------	----------------	-------	--------------------	------------	---

Supplementary	Table 11	Primers	used in	this study	to generate	mV1 trunc	ation
mutants.							

Name	Primer-Forward	Primer-Reverse
СДЗО (Glu ⁷⁴⁷ -Phe ⁷⁷⁶)	agggtggattccctgcgg	ccgcagggaatccaccct
	tcaggccgagtttcaggg	gaagcaccaccggaagtc
CΔ23 (Ser ⁷⁷⁷ -Asp ⁷⁹⁹)	ctgagcttcgcaagcact	agtgcttgcgaagctcag
	cgagataggcatagcacc	ggtgcgcttgacgccctc
$C\Delta 28 \text{ (Ala}^{800}\text{-Ala}^{827}\text{)}$	ctgagggacgaggtcttc	gaagacetegteeetcag
	aaggattccatggcccca	aaggggaaccagggcaaa
$C\Delta 10 (Phe^{830}-Lys^{839})$	gctgaggtctcagggaag	cttccctgagacctcagc
	ccgaattctgcagtcgac	atcctctggcttaaggga

Name	Primer-Forward	Primer-Reverse
S116A	gatcgcagggcaatcttcgacgctgtggctcagagc	gtcgaagattgccctgcgatcatagagccttggggg
T371G	aggaagttcgcagaatgggcctatgggcccgtgcac	ggcccattctgcgaacttcctggacaggtgccggca
F830A	gctgaggtcgcaaaggattccatggccccaggggag	ggaatcctttgcgacctcagcatcctctggcttaag
K831A	gaggtcttcgcagattccatggccccaggggagaaa	catggaatctgcgaagacctcagcatcctctggctt
D832A	gtcttcaaggcatccatggccccaggggagaaatca	ggccatggatgccttgaagacctcagcatcctctgg
S833A	ttcaaggatgcaatggccccaggggagaaatcaggg	tggggccattgcatccttgaagacctcagcatcctc
M834A	aaggattccgcagccccaggggagaaatcagggaag	ccctggggctgcggaatccttgaagacctcagcatc
P836A	tccatggccgcagggggagaaatcagggaagccgaat	tttctcccctgcggccatggaatccttgaagacctc
E838A	gccccaggggcaaaatcagggaagccgaattctgca	ccctgattttgcccctggggccatggaatccttgaa
K839A	ccaggggaggcatcagggaagccgaattctgcagtc	cttccctgatgcctcccctggggccatggaatcctt

Supplementary Table 12. Primers used in this study to generate mV1 point mutations.

Name	Primer-Forward	Primer-Reverse
mV1_241	aagaaaaacctaggggaggcctggcttctactttggt	aggcctcccctaggttttcttgaagaagtccccgtt
pV1_241	aagaaaacctagggccggccgggcttttattttggt	cggccggccctaggttttcttaaagaagtcaccatg
mV1_575	aagatgatctagagagacctgtgtcggtttatgttc	caggtctctctagatcatcttctcaatcatgacagc
mV1_579	agagacctgtagcggtttatgttcgtctacctcgtg	cataaaccgctacaggtctctgaggatcatcttctc
mV1_600	gtgacactgtaggaggatgggaagaataactcactg	cccatcctcctacagtgtcactacggctgtggaaaa
mV1_603	atcgaggattagaagaataactcactgcctgtggag	gttattettetaateetegateagtgteactaegge
mV1_605	gatgggaagtagaactcactgcctgtggagtcccca	cagtgagttctacttcccatcctcgatcagtgtcac
mV1_630	tcttacaactagctgtattccacatgtctggagctg	ggaatacagctagttgtaagagttacctggcctgca
pV1_643	tcctataactagctgtactctacttgcctggagctc	agagtacagctagttataggaaggggaagaaggctt
mV1_633	agcctgtattagacatgtctggagctgttcaagttc	cagacatgtctaatacaggctgttgtaagagttacc
mV1_636	tccacatgttaggagctgttcaagttcaccatcggc	gaacagctcctaacatgtggaatacaggctgttgta
mV1_640	gagetgttetagtteaceateggeatgggtgacetg	gatggtgaactagaacagctccagacatgtggaata
mV1_648	atgggtgactaggagttcaccgagaactatgacttc	ggtgaactcctagtcacccatgccgatggtgaactt
mV1_650	gacctggagtagaccgagaactatgacttcaaggct	gttctcggtctactccaggtcacccatgccgatggt
mV1_651	ctggagttctaggagaactatgacttcaaggctgtc	atagttctcctagaactccaggtcacccatgccgat
mV1_654	accgagaactaggacttcaaggctgtcttcatcatc	cttgaagtcctagttctcggtgaactccaggtcacc
mV1_656	aactatgactagaaggctgtcttcatcatcctgtta	gacagcettetagteatagtteteggtgaaeteeag
mV1_672	atteteacetagatecteetgeteaacatgeteatt	caggaggatctaggtgagaatcacataggccagtaa
mV1_673	ctcacctactagctcctgctcaacatgctcattgct	gagcaggagctagtaggtgagaatcacataggccag
mV1_676	atcctcctgtagaacatgctcattgctctcatgggc	gagcatgttctacaggaggatgtaggtgagaatcac
mV1_677	ctcctgctctagatgctcattgctctcatgggcgag	aatgagcatctagagcaggaggatgtaggtgagaat
mV1_680	aacatgetetaggeteteatgggegagaetgteaae	catgagagcctagagcatgttgagcaggaggatgta
mV1_684	gctctcatgtaggagactgtcaacaagattgcacaa	gacagteteetacatgagagcaatgagcatgttgag
mV1_685	ctcatgggctagactgtcaacaagattgcacaagag	gttgacagtctagcccatgagagcaatgagcatgtt

Supplementary Table 13. Primers used in this study to generate ANAP-incorporated TRPV1 channels.

Supplementary Methods

Commands in Rosetta to perform loop modeling:

```
/home/fanyang/rosetta/main/source/bin/loopmodel.linuxgccrelease \
-in:path:database /home/fanyang/rosetta2015.25/main/database \
-score:weights membrane highres Menv smooth.wts \
-in:file:fullatom \
-membrane:normal cycles 100 \setminus
-membrane:normal mag 15 \
-membrane:center search \setminus
-ignore unrecognized res \setminus
-symmetry:symmetry_definition
/home/fanyang/projects/input files/3J5Q 2018/4D ABCD r 4D after ccd relaxed r.s
ymm \
-symmetry: initialize rigid body dofs \
-in:file:spanfile /home/fanyang/projects/input files/3J5Q 2018/3J5Q FL.span \
-in:file:s
                                 /share/work/fanyang/work/3J5Q FL KIC5-3J5Q 2018-
/top20 score filtered/ 1D/${SLURM ARRAY TASK ID}.pdb \
-loops:loop file /home/fanyang/projects/input files/3J5Q 2018/3J5Q FL SF.loop \
-loops:remodel perturb kic \setminus
-loops:refine refine kic \setminus
-loops:relax no \setminus
-loops:strict loops \
-loops:build attempts 20 \setminus
-relax:bb_move false \
-max inner cycles 30 \setminus
-nstruct 51 \setminus
-out:prefix msymm-loop-kic- \
-out:file:silent
                                 /share/work/fanyang/work/3J5Q FL KIC6-3J5Q 2018-
/${SLURM ARRAY TASK ID}/msymm-relax- 3J5Q 2018 ${SLURM ARRAY TASK ID}.silent \
-out:file:silent struct type binary \
-mute all
```

Rosetta scripts to perform SASA calculation and filtering:

```
<ROSETTASCRIPTS>
    <RESIDUE_SELECTORS>
    <Not name="630 unselected">
        <Index resnums=272/>
    </Not>
    </RESIDUE SELECTORS>
    <TASKOPERATIONS>
    <OperateOnResidueSubset name="630_only" selector="6300_unselected" >
        <PreventRepackingRLT/>
    </OperateOnResidueSubset>
    </TASKOPERATIONS>
    <SCOREFXNS>
    </SCOREFXNS>
 <FILTERS>
    <TotalSasa
                   name=630_sasa
                                     threshold=10 task_operations=630_only
report_per_residue_sasa=1/>
 </FILTERS>
    <MOVERS>
    </MOVERS>
    <PROTOCOLS>
    <Add filter=630_sasa/>
    </PROTOCOLS>
</ROSETTASCRIPTS>
```

Commands in Rosetta to incorporate ANAP into TRPV1 models

-database /home/fan/rosetta/main/database -in:file:fullatom -ignore_unrecognized_res -s /home/fan/Rosetta/Project_ANAP_Parameterization/3J5Q.pdb -backrub:ntrials 10 -nstruct 1 -mc_kt 0.6 -resfile /home/fan/Rosetta/Project_ANAP_Parameterization/630ANP_3J5Q.resfile -overwrite

630ANP_3J5Q.resfile:

NATRO start 630 A EMPTY NC ANP 630 B EMPTY NC ANP 630 C EMPTY NC ANP 630 D EMPTY NC ANP