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Supplementary Methods 
 
Western blotting 
Female flies derived from the same cross and induced at the same time as the RT-qPCR flies 
were induced on SYA medium containing 200 µM RU486 for 5 days before being flash frozen 
in liquid nitrogen. 7-8 heads per replicate were homogenised in 2x SDS Laemmli sample 
buffer (4% SDS, 20% glycerol, 120 mM Tris-HCl pH6.8, 200 mM DTT with bromophenol blue) 
and boiled at 95ºC for 5 minutes. Samples were separated on pre-cast 4-12% Invitrogen Bis-
Tris gels (NP0322) and blotted onto PVDF membrane in Tris-glycine buffer supplemented 
with 10% Ethanol. Membranes were blocked in 5% milk and in TBS-T (TBS with 0.05% 
Tween-20) for 1 hour at room temperature and then incubated with primary antibodies in 
TBS-T. Primary antibody dilutions used were: anti-GFP 1:1000 (Invitrogen A-11122), anti-
actin 1:10,000 (Abcam ab1801). Secondary antibodies were: HRP conjugated anti-rabbit and 
anti-mouse (Abcam ab6789 and ab6721) at 1:10,000 dilution for 1 hour at RT. Bands were 
visualized with Luminata Forte (Millipore) and imaged with ImageQuant LAS4000 (GE 
Healthcare Life Sciences). Quantification was carried out with ImageQuant software.   
 
Dot Blot  
Female flies were induced on SYA medium containing 200 µM RU486 for 5 days before being 
flash frozen in liquid nitrogen. 7-8 heads per replicate were homogenised in 2x SDS Laemmli 
sample buffer (4% SDS, 20% glycerol, 120 mM Tris-HCl pH6.8, 200 mM DTT with 
bromophenol blue) and boiled at 95ºC for 10 minutes and centrifuged for 10 minutes at 
15,000 rpm. 10 µl of extract was blotted onto nitrocellulose, allowed to dry for 10 minutes, 
blocked in 5% milk in TBS-T (TBS with 0.02% Tween-20) for 1 hour at room temperature. To 
visualise the protein G tag, the blot was incubated with HRP conjugated anti-rabbit antibody 
(Abcam ab6789) in TBS-T for 1 hour. Blots were imaged as described for Western Blot. 
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Suppl. Figure 1 
 

Suppl. Figure 1 a Arginine-containing dipeptide proteins are toxic in the presence of the GSTAP 
tag. Flies were crossed to the GMR-gal4 driver and no overt rough eye was visible in flies carrying 
the driver alone (GMR/+) or flies expressing the GA-GSTAP control construct. Severe toxicity was 
observed in GR-GSTAP and PR-GSTAP expressing flies. Genotypes: w; GMR-gal4/+ (GMR/+), w; 
GMR-gal4/UAS-GA-GSTAP (GA-GSTAP), w; GMR-gal4/UAS-GR-GSTAP (GR-GSTAP), w; GMR-
gal4/+; UAS-PR-GSTAP/+ (PR-GSTAP). b Expression of GSTAP-tagged dipeptide proteins was 
assessed by dot blot, expression of GR-GSTAP and PR-GSTAP was lower that GA-GSTAP. 
Genotypes: w; +; elavGS/+ (elavGS/+), w; UAS-GA-GSTAP/+; elavGS/+ (GA-GSTAP), w; UAS-
GR-GSTAP/+; elavGS/+ (GR-GSTAP), w; + ; UAS-PR-GSTAP/elavGS (PR-GSTAP). 
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Suppl. Figure 2

unc-119

Suppl. Figure 2 Complete data set from all dipeptide proteins. Numbers represent individual 
proteins identified in a minimum of 2/3 replicates. A consistently larger number of interactors were 
identified as binding specifically to PR (82/94), compared to GR, where (5/94) interactors were 
specific to GR, and (7/94) interactors were specific to both data sets. Any proteins that bound to 
GA in ≥2/3 replicates were not considered in the analysis of PR and GR interacting proteins (49 
proteins total). Of note, only two proteins were identified as binding to GA, one of which was unc-
119 which has previously been identified as a GA interacting protein [26].  
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Suppl. Figure 3 

Suppl. Figure 3 Overlap of Drosophila arginine-DPR interactome data with previously published 
data sets. The indicated polyGR and/or polyPR human data sets were converted to Drosophila 
orthologs (yellow) and compared to the 94 identified Drosophila proteins (blue). Cell type and 
purified dipeptide protein are given. Overlaps are given both numerically, or as a % overlap with 
the Drosophila data set. A highly significant overlap was observed with all published data sets (P 
value is the probability of observing the number of overlapping interactions or more by chance, 
assessed using the hypergeometric test, based on a Drosophila genome size of 13,931 protein 
coding genes). 
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Suppl. Figure 4 
 
   

Suppl. Figure 4 Venn diagram representing the overlap of six published mass spectrometric data 
sets compared to the Drosophila dataset (Moens et al.). 7 proteins were common as orthologs 
between all data sets (6/6). Notably, these were all ribosomal proteins from both the large and 
small ribosomal subunits.  
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Suppl. Figure 5	   

Suppl. Figure 5 Lifespans of flies expressing DPR or repeat constructs when coexpressed with 
MetRSL262G-EGFP.  A significant reduction in lifespan was observed in flies expressing GR50-
FLAG and PR50-FLAG compared to controls carrying the driver and MetRSL262G-EGFP alone 
(w1118) (P=3.89E-55 and 4.89E-54 respectively, log rank test). A significant reduction in lifespan 
was observed in flies expressing (GGGGCC)36 (36R) vs. w1118 (P=7.51E-55, log rank test). A 
smaller reduction in lifespan was observed in flies expressing GA50  vs. w1118 (P=1.61E-53). The 
dashed line at day 5 represents the time point that flies were dissected in FUNCAT experiments. 
Median lifespans: w1118=85.0 days, GA50=50.5 days, GR50=9.5 days, PR50=12.5 days, 
36R=15.5 days. Genotypes: w; +; +/ elavGS, MetRSL262G-EGFP (w1118), w; +; UAS-GA50-FLAG/ 
elavGS, MetRSL262G-EGFP (GA50), w; +; UAS-GR50-FLAG/ elavGS, MetRSL262G-EGFP (GR50), 
w; +; UAS-PR50-FLAG/ elavGS, MetRSL262G-EGFP (PR50), w; +/UAS-36R; +/elavGS, 
MetRSL262G-EGFP (36R).  
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Suppl. Figure 6  

Suppl. Figure 6 Immunoblotting confirms reduced abundance of the MetRSL262G-EGFP enzyme in 
flies expressing GR50 compared to controls. a Blot demonstrating reduced abundance of the 
MetRSL262G-EGFP enzyme (detected using an anti-GFP antibody) in flies expressing GR50 
compared to the enzyme alone. Actin loading control is shown. b Quantification of MetRSL262G-
EGFP enzyme levels using western blotting. A significant reduction in MetRSL262G-EGFP protein 
abundance was detected in GR50 expressing flies compared to flies expressing the transgene 
alone (w1118) (*P=0.0286, two-tailed Mann Whitney test). Bars are mean ±SEM, individual data 
points are shown. n=4 samples per genotype. Genotypes: w; +; +/ elavGS, MetRSL262G-EGFP 
(w1118), w; +; UAS-GR50-FLAG/ elavGS, MetRSL262G-EGFP (GR50). 
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Suppl. Figure 7 
  

Suppl. Figure 7 List of translation-associated proteins checked for the effect of their 
overexpression on the lifespan of the UAS-36R expressing flies. Colours indicate the degree of 
change in lifespan relative to the control background strain (see key). Seven strong suppressors 
were found to have a lifespan reduction <30% of control (dark green), and were backcrossed into 
a control (w1118) genetic background for 6 generations prior to being tested again (indicated in 
the re-screen column). Of these 7 lines, only eIF1A extended lifespan after accounting for genetic 
background (see Figure 4). Genotypes: w; UAS-36R/+; UAS-indicated-line /elavGS (indicated 
lines), w; UAS-36R/+; attP-86Fb/ elavGS (control).  
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RpL18A X RpL10
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RpS20 X RpS15Ab 60-90%
RpL35A X RpL4 90-120%
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RpL39 RpL35A
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RpL14 RpS23
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eIF4AIII RpL7-like
RpL21 RpL36
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Suppl. Figure 8 
 
 

Suppl. Figure 8 Overexpression of eIF1A is specifically protective in flies expressing arginine 
DPRs. a Lifespan of flies expressing PR100 alone (PR100) or with the UAS-eIF1A transgene 
(PR100; eIF1A). Lifespan is significantly extended in flies expressing PR100 with overexpression 
of eIF1A compared to PR100 alone (median lifespan PR100=5.5 days, PR100; eIF1A=6.5, 
*P=2.08E-4, log rank test). b Lifespan of flies carrying the UAS-eIF1A construct and elavGS driver. 
Flies were either fed RU486 to induce expression (eIF1A +RU), or control food (eIF1A –RU). 
Lifespan was significantly shorter in flies expressing eIF1A (eIF1A +RU), compared to controls 
(eIF1A –RU) (median lifespan +RU= 61.5 days, -RU= 61.5 days, *P=0.017, log rank test). 
Genotypes: w; UAS-PR100/+; elavGS/+ (PR100), w; UAS-PR100/+; elavGS/UAS-eIF1A (PR100; 
eIF1A), w; + ; elavGS/UAS-eIF1A (eIF1A -RU/+RU).  
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