Supporting Information

Protein Z-dependent protease inhibitor (ZPI) is a physiologically significant inhibitor of prothrombinase function

Xin Huang^{1,*}, Richard Swanson¹, Heather K. Kroh², Paul E. Bock²

From the ¹Department of Periodontics, University of Illinois at Chicago, Chicago, Illinois 60612 and ²Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

*To whom correspondence should be addressed: Xin Huang, PHD

Email: <u>xinhuang@uic.edu</u>

Tel: 312-413-7645

Contents:

Supplementary Figures S1-S3

Supplementary Table S1. Parameters derived from thrombin generation assays in normal human plasma with TF, FXa and FXIIa triggers

Supplementary Figure S1

Supplementary Figure S1.

Immunoblotting analysis of ZPI/PZ inhibition of membrane-associated free or prothrombinase-bound FXa Reactions of 200nM ZPI and 50nM FXa were done +/- 200nM PZ and +/- 100nM FVa as indicated in Tris buffer pH 7.4, 25°C, in the presence of 25 μ M PS/PC, 5 mM CaCl₂. Reactions were initiated with FXa or FXa/FVa complex and quenched after 10 mins with 400 μ M EGR-chloromethylyketone. Samples were denatured in pH 2.0 SDS buffer by heating at 100°C for 5 mins, and then adjusted to neutral pH and 30 μ l samples analyzed by 10% SDS-PAGE. Protein bands were transferred to PVDF membranes, and then detected either with antifactor Xa (Enzyme Research Laboratories) or anti-ZPI (Abnova) antibodies. Multiple bands in lanes 5,6,7 of the upper gel below the main ZPI-FXa complex band reflect complex degradation. The weak signal for the ZPI-FXa complex bands in the lower gel result from the relatively poor reactivity of the anti-ZPI antibody with conformationally altered ZPI in the ZPI-FXa complex.

Supplementary Figure S2

Supplementary Figure S2.

PZAB does not inhibit thrombin generation in PZ-deficient plasma Thrombin generation in PZ-deficient plasma was measured at pH 7.4, 37° C as in Fig. 8 with or without the addition of: i) buffer (Δ), ii) PZAb (160 mg/ml) (\Box), iii) ZPI/PZ (25 nM each) (\blacksquare), or iv) ZPI/PZ plus PZAb (\bullet) as indicated. Data were derived from three independent measurements \pm SD.

Supplementary Figure S3.

Model of ZPI-PZ complex interaction with FXa bound to FVa in prothrombinase: The model was made by aligning the structures of prothrombinase from P. Textalis snake venom (blue; pdb:4BXS) with the human antithrombin (AT)-FXa Michaelis complex (cyan; pdb: 2GD4) and the ZPI-PZ complex (ZPI in magenta and PZ in yellow; pdb: 3F1S). The reactive loop of antithrombin (in red) is bound in the active-site of FXa in a manner that places both antithrombin and the ZPI-PZ complex in an orthogonal orientation relative to FVa and thus minimally interferes with the interaction of FXa with FVa in prothrombinase except for the A2 domain C-terminal peptide interaction of FVa with the heparin binding exosite of FXa. The model was prepared using PyMol software v. 2.2.3.

Supplementary Table S1

Supplementary Table S1. Parameters derived from thrombin generation assays in normal human plasma with TF, FXa and FXIIa triggers

	TF, 5pM			Τ F , 2рМ			TF, 0.6pM		
	+PZAb	-	+ZPI-PZ	+PZAb	-	+ZPI-PZ	+PZAb	-	+ZPI-PZ
LT	1.7±0	1.7±0	1.9±0.2	3.1±0.1*	3.4±0.1	3.7±0.1*	4.9±0.2*	6.6±0.2	7.7±0.1*
TP	249.0±6.0*	172.0±7.0	101.0±9.0*	146.0±4.0*	79.0±0.3	39.0±0.7*	64.6±8.5*	42.4±0.3	18.8±1.2*
TTP	3.7±0.1*	4.1±0.1	4.4±0.1*	6.1±0.1*	6.4±0.1	6.7±0.1*	9.2±0.2*	9.7±0.1	11.1±0.2*
ETP	984.0±14.0*	901.0±41.0	782.0±44.0*	979.0±68.0*	718.0±3.0	435.0±25.0*	701.0±64.0*	502.0±52.0	204.0±6.0*

		FXa, 0.7nM			FXa, 0.23nM			FXa, 0.03nM	
	+PZAb	-	+ZPI-PZ	+PZAb	-	+ZPI-PZ	+PZAb	-	+ZPI-PZ
LT	1.0±0,1	1.0±0.1	1.0±0.1	1.3±0.1	1.3±0.1	1.3±0.1	4.5±0.2	4.6±0.2	4.7±0.3
TP	218.5±0.8*	169.7±1.4	106.6±1.0*	118.5±5.4*	75.3±0.6	45.8±0.3*	31.8±0.6*	24.2±0.6	14.7±0.2*
TTP	3.0±0.0.1	3.0±0.1	3.0±0.1	4.0±0.1	3.7±0.3	3.6±0.2	9.6±0.2	9.5±0.1	9.7±0.2
ETP	849.0±14.4*	796.7±23.6	701.5±47.5*	788.0±7.4*	656.7±23.9	546.5±0.5*	555.7±16.8*	459.0±51.2	173.5±26.5*

	FXIIa, 18nM				FXIIa, 3nM		FXIIa, 0.8nM			
	+PZAb	-	+ZPI-PZ	+PZAb	-	+ZPI-PZ	+PZAb	-	+ZPI-PZ	
LT	8.0±0.2*	9.0±0.2	9.5±0.1*	9.8±0.5*	10.7±0.4	12.2±0.2*	11.3±0.1*	12.6±0.1	13.5±0.1*	
TP	196.0±4.1	198.0±2.2	153.1±6.2*	101.8±5.4	97.8±9.1	65.4±5.4*	88.3±1.0*	77.3±0.5	49.6±2.5*	
TTP	10.3±0.1*	11.3±0.4	12.2±0.1*	13.0±0.1*	14.3±0.2	15.3±0.3*	15.3±0.1*	16.0±0.2	16.6±0.1*	
ETP	928.3±49.6	913.7±15.6	848.0±24.0*	795.0±35.3	770.7±62.6	496.5±39.5*	672.2±17.5*	576.9±38.0	374.9±8.5*	

*P<0.05 vs. no PZAb or ZPI-PZ. LT, lag time, min. TP,thrombin peak,nM. TTP, time to thrombin peak, min. ETP, endogenous thrombin potential, nM thrombin x min.