Supplemental Information

Proteolytic dynamics of human 20S thymoproteasome

Ulrike Kuckelkorn et al.

Table S1	Synthetic substrates investigated by in vitro proteasomal digestions						
Table S2	AQUA peptides used for the relative quantification of $\beta 5$ and $\beta 5t$ subunits in the purified						
	C5.5 20S proteasome						
Figure S1	Suc-LLVY-MCA degradation and the corresponding model fits						
Figure S2	Z-LLE-MCA degradation and the corresponding model fits						
Figure S3	Computational model parameters of the 20S proteasome isoform dynamics for the						
	substrate Z-LLE-MCA						

Polypeptide	sequence	Antigen	Type of MS analysis	
substrate				
gp100 ₄₀₋₅₂	RTKAWNRQLYPEW	gp100 ^{PMEL17}	peptide identification and	
			quantitative kinetics	
gp100 ₃₅₋₅₇	VSRQLRTKAWNRQLYPEWTEA	gp100 ^{PMEL17}	peptide identification and	
	QR		quantitative kinetics	
gp100 ₂₀₁₋₂₃₀	AHSSSAFTITDQVPFSVSVSQL	gp100 ^{PMEL17}	peptide identification and	
	RALDGGNK		quantitative kinetics	
MBP ₁₀₂₋₁₂₉	PSQGKGRGLSLSRFSWGAEG	myelin basic protein	peptide identification and	
	QRPGFGYG	(MBP) isoform 5	quantitative kinetics	
MAG ₅₄₃₋₅₇₆	TESPSFSAGDNPPVLFSSDFRI myelin associa		peptide identification	
	SGAPEKYESERR	glycoprotein (MAG)		
MAG ₄₉₈₋₅₂₈	SLELPFQGAHRLMWAKIGPVG	MAG	peptide identification	
	AVVAFAILIA			
MOG ₉₃₋₁₂₂	EYRGRTELLKDAIGEGKVTLRI	myelin oligodendrocytes	peptide identification	
	RNVRFSDE	glycoprotein (MOG)		
MOG ₁₇₂₋₂₀₂	GLIFLCLQYRLRGKLRAEIENLH	MOG	peptide identification and	
	RTFDPHFL		quantitative kinetics	

Table S1. Synthetic substrates investigated by in vitro proteasomal digestions.

20S proteasome subunit	position	Sequence (upon tryptic digestion)	[M+H]+	AQUA peptide sequence	[M+H]+ (AQUA- Peptide)
PSB5 human (β5)	226-239	DAYSGG <u>A</u> V <u>NLY</u> HVR	1521.7	DAYSGGAVN L +7YHVR	1528.7
PSB11 human (β5t)	216-229	DAYSGG <u>S</u> V <u>D</u> L <u>F</u> HVR	1522.7	DAYSGGSVD L + ⁷ FHVR	1529.7

Table S2. AQUA peptides used for the relative quantification of β 5 and β 5t subunits in the purified C5.5 20S proteasome. Criteria for selection of peptide sequences: high MS intensity and significant MS/MS ion score in protein identification experiment, no modifiable amino acids, different HPLC retention times between the peptides specific for the two subunits.

Figure S1. Suc-LLVY-MCA degradation and the corresponding model fits. The experimental data and the corresponding model fits obtained from the degradation of Suc-LLVY-MCA with purified human 20S s- (**A**), i- (**B**) or t-proteasomes (**C**) are depicted. Shown is the time course of 3-5 independent experiments (grey dashed dotted lines), the mean of those independent experiments (black dots), the mean of the obtained model fits (red lines) and the 5% and 95% confidence intervals of the model fits (pink lines).

Figure S2. Z-LLE-MCA degradation and the corresponding model fits. The experimental data and the corresponding model fits obtained from the degradation of Z-LLE-MCA with 20S s- (**A**), i- (**B**) and t-proteasomes (**C**) are depicted. Shown is the time course of 3-5 independent experiments (grey dashed dotted lines), the mean of those independent experiments (black dots), the mean of the obtained model fits (red lines) and the 5% and 95% confidence intervals of the model fits (pink lines).

Figure S3. Computational model parameters of the 20S proteasome isoform dynamics for the substrate Z-LLE-MCA. It is shown the marginal posterior parameter distribution obtained from calibrating the proteasome kinetics model against experimental data obtained from the degradation of Z-LLE-MCA (n=3-5) with 20S i- and t-proteasome (yellow and brown, respectively). Parameters are grouped into active site relative parameters ($\bf A$) and transport and transport regulation related parameters ($\bf B$). The meaning of the parameters is explained in **Fig. 2A** and **Table 1**.