

Supplementary file

Improvement of L-Leucine Production in *Corynebacterium glutamicum* by Altering the Redox Flux

Ying-Yu Wang ¹, Feng Zhang ¹, Jian-Zhong Xu ^{1,2,*}, Wei-Guo Zhang ^{1,*} and Xiu-Lai Chen ³ and Li-Ming Liu ³

- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan
 University, 1800# Lihu Road, WuXi 214122, China, wangyy0711@163.com (Y.-Y.W.);
 zhang20180606@sina.com (F.Z.)
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of
 Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, China
- State key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
 shirleyl1205@163.com (X.-L.C.), peidongchen13@163.com (L.-M.L.)
- 14 * Correspondence: zhangwg168@163.com (W.-G.Z.); xujianzhong@jiangnan.edu.cn(J.-Z.X.); Tel/Fax:
 +86-510-85329312(W.-G.Z.)

17 **1. sequence**

16

1

18 *leuA* sequence

19	1	ATGCCAGTTA ACCGCTACAT GCCTTTCGAG GTTGAGGTAG AAGATATTTC TCTGCCGGAC
20	61	CGCACTTGGC CAGATAAAAA AATCACCGTT GCACCTCAGT GGTGTGCTGT TGACCTGCGT
21	121	GACGGCAACC AGGCTCTGAT TGATCCGATG TCTCCTGAGC GTAAGCGCCG CATGTTTGAG
22	181	CTGCTGGTTC AGATGGGATT CAAGGAAATC GAGGTCGGTT TCCCTTCAGC TTCCCAGACT
23	241	GATTTTGATT TCGTTCGTGA GATCATCGAA AAGGACATGA TCCCTGACGA TGTCACCATT
24	301	CAGGTTCTGG TTCAGGCTCG TGAGCACCTG ATTCGCCGTA CTTTTGAAGC TTGCGAAGGC
25	361	GCAAAAAACG TTATCGTGCA CTTCTACAAC TCAACCTCCA TCCTGCAGCG CAACGTGGTG
26	421	TTCCGCATGG ACAAGGTGCA GGTGAAGAAG CTGGCTACCG ATGCCGCTGA ACTGATCAAG
27	481	ACCGTCGCTC AGGATTACCC AGACACCAAC TGGCGCTGGC AGTACTCCCC TGAGTCCTTC
28	541	ACCGGCACTG AGGTTGAGTA CGCCAAGGAA GTTGTGGACG CAGTTGTTGA GGTCATGGAT
29	601	CCAACTCCTG AGAACCCAAT GATCATCGAC CTGCCTTCCA CCGTTAAGAT GATCACCCCT
30	661	AACGTTTACG CAGACTCCAT TGAATGGATG CACCGCAATC TAAACCGTCG TGATTCCATT
31	721	ATCCTGTCCC TGCACCCGCA CAATGACCGT GGCACCGGCG TTGGCGCGGC TGAGCTGGGC
32	781	TACATGGCTG GCGCTGACCG CATCGAAGGC TGCCTGTTCG GCAACGGCGA GCGCACCGGC
33	841	AACGTCTGCC TGGTCACCCT GGCACTGAAC ATGCTGACCC AGGGCGTTGA CCCTCAGCTG
34	901	GACTTCACCG ATATACGCCA GATCCGCAGC ACCGTTGAAT ACTGCAACCA GCTGCGCGTT
35	961	CCTGAGCGCC ACCCATACGG CGGCGACCTG GTCTTCACCG CTTTCTCCGG TTCCCACCAG
36	1021	GACGCTGTGA ACAAGGGTCT GGACGCCATG GCTGCCAAGG TTCAGCCAGG TGCTAGCTCC
37	1081	ACTGAAGTTT CTTGGGAGCA GCTGCGCGAC ACCGAATGGG AGGTTCCTTA CCTGCCTATC
38	1141	GATCCAAAGG ATGTCGGTCG CGACTACGAG GCTGTTATCC GCGTGAACTC CCAGTCCGGC
39	1201	AAGGGCGGCG TTGCTTACAT CATGAAGACC GATCACGGTC TGCAGATCCC TCGCTCCATG
40	1261	CAGGTTGAGT TCTCCACCGT TGTCCAGAAC GTCACCGACG CTGAGGGCGG CGAGGTCAAC
41	1321	TCCAAGGCAA TGTGGGATAT CTTCGCCACC GAGTACCTGG AGCGCACCGC ACCAGTTGAG
42	1381	CAGATCGCGC TGCGCGTCGA GAACGCTCAG ACCGAAAACG AGGATGCATC CATCACCGCC

43	1441	GAGCTCATCC ACAACGGCAA GGACGTCACC GTCGATGGCC ACGGCAACGG CCCACTGGCT			
44	1501	GCTTACGCCA ACGCGCTGGA GAAGCTGGGC ATCGACGTTG AGATCCAGGA ATACAACCAG			
45	1561	CACGCCCGCA CCTCGGACGA CGATGCAGAA GCAGCCGCCT ACGTGCTGGC TGAGGTCAAC			
46	1621	GGCCGCAAGG TCTGGGGCGT CGGCATCGCT GGCTCCATCA CCTACGCTTC GCTGAAGGCA			
47	1681	GTGACCTCCG CCGTAAACCG CGCGCTGGAC GTCAACCACG AGGCAGTCCT GGCTGGCGGC			
48	1741	GTTTAA			
49	ilvB se	quence			
50	1	GTGAATGTGG CAGCTTCTCA ACAGCCCACT CCTGCCACGG TTGCAAGCCG TGGTCGATCC			
51	61	GCCGCCCCTG AGCGGATGAC AGGTGCACAG GCAATTGTTC GATCGCTCGA GGAGCTTAAC			
52	121	GCCGACATCG TGTTCGGTAT TCCTGGTGGT GCGGTGCTAC CGGTGTATGA CCCGCTCTAT			
53	181	TCCTCCACAA AGGTGCGCCA CGTCTTAGTG CGCCACGAGC AGGGCGCAGG CCACGCAGCA			
54	241	ACCGGCTACG CGCAGGTTAC TGGACGCGTT GGCGTCTGCA TTGCAACCTC TGGCCCAGGC			
55	301	GCAACCAACT TGGTTACCCC AATCGCTGAT GCAAACTTGG ACTCCGTTCC CATGGTTGCC			
56	361	ATCACCGGCC AGGTCGGAAG TAGCCTGCTG GGTACCGATG CTTTCCAGGA AGCCGATATC			
57	421	CGCGGCATCA CCATGCCAGT GACCAAGCAC AACTTCATGG TCACCAACCC CAACGACATT			
58	481	CCACAGGCAT TGGCTGAGGC ATCCCACCTC GCGATTACTG GTCGCCCTGG TCCTGTTCTA			
59	541	GTGGATATCC CCAAGGATGT TCAGAACGCT GAATTGGATT TCGTCTGGCC ACCAAAGATC			
60	601	GACCTGCCAG GCTACCGCCC AGTTTCAACA CCGCATGCTC GACAGATTGA GCAGGCTGTC			
61	661	AAACTGATCG GTGAGTCTAA GAAGCCTGTC CTTTACGTTG GCAGCGGCGT TATCAAGGCT			
62	721	GATGCCCACG AAGAGCTTCG TGCGTTCGTT GAGCACACCG GCATTCCAGT TGTCACCACA			
63	781	TTGATGGCGC TGGGAACCTT CCCAGAGTCC CACGAGCTGC ACATGGGTAT GCCAGGCATG			
64	841	CATGGCACTG TGTCCGCTGT TGGTGCACTG CAGCGCAGCG			
65	901	TCCCGCTTTG ATGACCGCGT CACCGGTGAC GTTGACACTT TCGCACCTGA TGCCAAGATC			
66	961	ATTCACGCCG ACATTGATCC TGCCGAAATC GGCAAGATCA AGCAGGTTGA GGTTCCAATC			
67	1021	GTGGGCGATG CCCGCGAGGT TCTTGCTCGT CTGCTCGAAA CCACCAAGGC AAGCAAGGCA			
68	1081	GAGTCTGAGG ACACCTCCGA GTGGGTTGAC TACCTCAAGG GCCTCAAGGC ACGTTTCCCA			
69	1141	CGTGGCTACG ACGAGCAGCC AGGCGATCTG CTGGCACCAC AGTTTGTCAT TGAAACCCTG			
70	1201	TCCAAGGAAG TTGGCCCCGA CGCAATTTAC TGCGCCGGCG TTGGCCAGCA CCAGATGTGG			
71	1261	GCAGCTCAGT TCGTTGACTT CGAAAAGCCA CGCACCTGGC TCAACTCCGG TGGACTGGGC			
72	1321	ACCATGGGCT ACGCAGTTCC TGCGGCTCTT GGAGCAAAGG CTGGCGCACC TGACAAGGAA			
73	1381	GTCTGGGCTA TCGACGGCGA CGGCTGTTTC CAGATGACCA ACCAGGAACT CACCACCGCC			
74	1441	GCAGTTGAAG GTTTCCCCAT TAAGATCGCA CTAATCAACA ACGGAAACCT GGGTATGGTT			
75	1501	CGCCAATGGC AGACCCTATT CTATGAAGGA CGGTACTCAA ATACTAAACT TCGTAACCAG			
76	1561	GGCGAGTACA TGCCCGACTT TGTTACCCTT CCTGAGGGAC TTGGCTGTGT TGCCATCCGC			
77	1621	GTCACCAAAG CGGAGGAAGT ACTGCCAGCC ATCCAAAAGG CACGAGAGAT CAACGACCGC			
78	1681	CCAGTAGTCA TCGACTTCAT CGTCGGTGAA GACGCACAGG TATGGCCAAT GGTGTCTGCT			
79	1741	GGATCATCCA ACTCCGATAT CCAGTACGCA CTCGGATTGC GCCCATTCTT TGATGGTGAT			
80	1801	GAATCTGCAG CAGAAGATCC TGCCGACATT CACGAAGCCG TCAGCGACAT TGATGCCGCC			
81	1861	GTTGAATCGA CCGAGGCATA A			
82	ilvN sequence				
83	1	ATGGCTAATT CTGACGTCAC CCGCCACATC CTGTCCGTAC TCGTTCAGGA CGTAGACGGA			
0.4					

84 61 ATCATTTCCC GCGTATCAGG TATGTTCACC CGACGCGCAT TCAACCTCGT GTCCCTCGTG
85 121 TCTGCAAAGA CCGAAACACT CGGCATCAAC CGCATCACGG TTGTTGTCGA CGCCGACGAG

86	181	CTCAACATTG AGCAGATCAC CAAGCAGCTC AACAAGCTGA TCCCCGTGCT CAAAGTCGTG
87	241	CGACTTGATG AAGAAACCAC TATCGCCCGC GCAATCATGC TGGTTAAGGT TTCTGCGGAC
88	301	AGCACCAACC GTCCGCAGAT CGTCGACGCC GCGAACATCT TCCGCGCCCG AGTCGTCGAC
89	361	GTGGCTCCAG ACTCTGTGGT TATTGAATCC ACAGGCACCC CAGGCAAGCT CCGCGCACTG
90	421	CTTGACGTGA TGGAACCATT CGGAATCCGC GAACTGATCC AATCCGGACA GATTGCACTC
91	481	AACCGCGGTC CGAAGACCAT GGCTCCGGCC AAGATCTAA
92	ilvC	sequence
93	1	ATGGCTATTG AACTGCTTTA TGATGCTGAC GCTGACCTCT CCTTGATCCA GGGCCGCAAG
94	61	GTTGCCATCG TTGGCTACGG CTCCCAGGGC CACGCACACT CCCAGAACCT CCGCGATTCT
95	121	GGCGTTGAGG TTGTCATTGG TCTGCGCGAG GGCTCCAAGT CCGCAGAGAA GGCAAAGGAA
96	181	GCAGGCTTCG AGGTCAAGAC CACCGCTGAG GCTGCAGCTT GGGCTGACGT CATCATGCTC
97	241	CTGGCTCCAG ACACCTCCCA GGCAGAAATC TTCACCAACG ACATCGAGCC AAACCTGAAC
98	301	GCAGGCGACG CACTGCTGTT CGGCCACGGC CTGAACATTC ACTTCGACCT GATCAAGCCA
99	361	GCTGACGACA TCATCGTTGG CATGGTTGCG CCAAAGGGCC CAGGCCACTT GGTTCGCCGT
100	421	CAGTTCGTTG ATGGCAAGGG TGTTCCTTGC CTCATCGCAG TCGACCAGGA CCCAACCGGA
101	481	ACCGCACAGG CTCTGACCCT GTCCTACGCA GCAGCAATCG GTGGCGCACG CGCAGGCGTT
102	541	ATCCCAACCA CCTTCGAAGC TGAGACCGTC ACCGACCTCT TCGGCGAGCA GGCTGTCCTC
103	601	TGCGGTGGCA CCGAGGAACT GGTCAAGGTT GGCTTCGAGG TTCTCACCGA AGCTGGCTAC
104	661	GAGCCAGAGA TGGCATACTT CGAGGTTCTT CACGAGCTCA AGCTCATCGT TGACCTCATG
105	721	TTCGAAGGTG GCATCAGCAA CATGAACTAC TCTGTTTCTG ACACCGCTGA GTTCGGTGGC
106	781	TACCTCTCCG GCCCACGCGT CATCGATGCA GACACCAAGT CCCGCATGAA GGACATCCTG
107	841	ACCGATATCC AGGACGGCAC CTTCACCAAG CGCCTCATCG CAAACGTTGA GAACGGCAAC
108	901	GCCGAGCTTG AGGGCCTTCG CGCTTCCTAC AACAACCACC CAATCGAGGA GACCGGCGCT
109	961	AAGCTCCGCG ACCTCATGAG CTGGGTCAAG GTTGACGCTC GCGCAGAAAC CGCTTAA
110	ilvE	sequence
111	1	GTGTATCTGT CAGGTAGCAG GTGTACCTTG AAATCCATGA CGTCATTAGA GTTCACAGTA
112	61	ACCCGTACCG AAAATCCGAC GTCACCCGAT CGTCTGAAGG AAATTCTTGC CGCACCGAAG
113	121	TTCGGTAAGT TCTTCACCGA CCACATGGTG ACCATTGACT GGAACGAGTC GGAAGGCTGG
114	181	CACAACGCCC AATTAGTGCC ATACGCGCCG ATTCCTATGG ATCCTGCCAC CACCGTATTC
115	241	CACTACGGAC AGGCAATTTT TGAGGGAATT AAGGCCTACC GCCATTCGGA CGAAACCATC
116	301	AAGACTTTCC GTCCTGATGA AAACGCCGAG CGTATGCAGC GTTCAGCAGC TCGAATGGCA
117	361	ATGCCACAGT TGCCAACCGA GGACTTTATT AAAGCACTTG AACTGCTGGT AGACGCGGAT
118	421	CAGGATTGGG TTCCTGAGTA CGGCGGGGAA GCGTCCCTCT ACCTGCGCCC ATTCATGATC
119	481	TCCACCGAAA TTGGCTTGGG TGTCAGCCCA GCTGATGCCT ACAAGTTCCT GGTCATCGCA
120	541	TCCCCAGTCG GCGCTTACTT CACCGGTGGA ATTAAGCCTG TTTCCGTCTG GCTGAGCGAA
121	601	GATTACGTCC GCGCTGCACC CGGCGGAACT GGTGACGCCA AATTTGCTGG CAACTACGCG
122	661	GCTTCTTTGC TTGCCCAGTC CCAGGCTGCG GAAAAGGGCT GTGACCAGGT CGTATGGTTG
123	721	GATGCCATCG AGCACAAGTA CATCGAAGAA ATGGGTGGCA TGAACCTTGG GTTCATCTAC
124	781	CGCAACGGCG ACCACGTCAA GCTAGTCACC CCTGAACTTT CCGGCTCACT ACTTCCAGGC
125	841	ATCACCCGCA AGTCACTTCT ACAAGTAGCA CGCGACTTGG GCTACGAAGT AGAAGAGCGA
126	901	AAGATCACCA CCACCGAGTG GGAAGAAGAC GCAAAGTCTG GCGCCATGAC TGAGGCATTT
127	961	GCTTGCGGTA CTGCAGCTGT TATCACCCCT GTTGGCACCG TGAAATCAGC TCACGGCACC
128	1021	TTCGAAGTGA ACAACAATGA AGTCGGAGAA ATCACGATGA AGCTTCGTGA AACCCTCACC

129 1081 GC	GAATTCAGC AAGGAAACGT TGAAGACCAA AACGGATGGC TTTACCCA	ACT GGTTGGCTAA
131	Table S1. The NADPH concentration of <i>C. glutamicum</i> strains	
	Strains NA	DPH (µmol·g ⁻¹)
	XQ-9	2.78±0.16
	△LtbR/ABNCE	3.48±0.21
	\triangle LtbR-AHAIR ^M /ABNC ^M E	3.92±0.33
	\triangle LtbR-AHAIR ^M LeuDH/ABNC ^M LDH	5.34±0.26
	\triangle LtbR-AHAIR ^M LeuDHRocG/ABNC ^M LDH	5.61±0.17
132	The data are averages from triplicate experiments.	
133	Table CO Olicensedentides and in this study	
alizamuelaatidae	Sequence(5' 2')a	Overhung restriction sites
l		
leuA-F		EcoRI
ileuA-K		Kpn1 Smal
ilvBNC-F		Smul
		Xbul
ilvE-R		Xbal
rocC -F		SacI
rocG -R		HindIII
Phone roc G - F		XhaI
Ptace rocG -R		Sall
Pha-leuDH-F		XhaI
P _{tac} -leuDH-R	GCTCTAGACATCATAACGGTTCTGG	XbaI
ilvC-F	CCGGAATTCATGGCTATTGAACTGCT	EcoRI
ilvC-R	CCCAAGCTTTTTAAGCGGTTTCTGCG	HindIII
ilvCM1-F	GGCCACGCACAC <i>GGC</i> CAGAACCTCCGCGATTCTG	
ilvCM1-R	CAGAATCGCGGAGGTTCTG <i>GCC</i> GTGTGCGTGGCC	
ilvCM2-F	GAGGTTGTCATTGGTGAGTTCGAGGGCTCCAAGTCC	
ilvCM2-R	GGACTTGGAGCCCTC <i>GAACTC</i> ACCAATGACAACCTC	
ltbR-U-F	CCCAAGCTTTCACAGTTGTCGCGCAG	HindIII
ltbR-U-R	AAGCTCACCTTGAATTTAGCATTTCACCC	
ltbR-D-F	ATTCAAGGTGAGCTTTTCGACGCAC	
ltbR-D-R	CGC <u>GGATCC</u> GATCGGATTCCTGGCT	BamHI
ilvE-U-F	TCC <u>CCCGGG</u> CAAGCCTAGCCATTCCTC	SmaI
ilvE-U-R	GC <u>TCTAGA</u> CGTCTACCAGCAGTTCAAG	XbaI
ilvE-D-F	GC <u>TCTAGA</u> TGGGATACGAAGTAGAAGAGC	XbaI
ilvE-D-R	ACGC <u>GTCGAC</u> TTTCCAACCGTCAGCTG	SalI
gdh-U-F	TCC <u>CCCGGG</u> ACCAGCCTAAATGCCCG	SmaI
gdh-U-R	GC <u>TCTAGA</u> TGACGTGGACCTGGCC	XbaI
gdh-D-F	ACGC <u>GTCGAC</u> TCGGACCAGGCAAGG	SalI
gdh-D-R	GC <u>CTGCAG</u> TTAGATGCTGACGCCC	PstI

- ¹³⁵ ^a mutation sites in oligonucleotides are bolded, complementary sequences in oligonucleotides are italicized.
- 136 ^b each overhung restriction sites used for cloning procedure is underlined.
- 137

138 2. Plasmid Constructions

According to standard protocols, routine methods of molecular cloning like PCR, DNArestriction, and ligation were carried out [1].

141 Vector pK18*mobsacB*- \triangle *ltbR* was constructed via an overlap-extension PCR—the region 142 upstream (approximately 500 bp) of the *ltbR*, as well as the downstream region (approximately 690 143 bp) of *ltbR*, were amplified via oligonucleotide pairs *ltbR*-U-F/ *ltbR*-U-R and *ltbR*-D-F/ *ltbR*-D-R, 144 respectively, from genomic DNA of *C. glutamicum* XQ-9. The amplified DNA fragments were fused 145 in an overlap-extension PCR, resulting in a 1190 bp PCR product that was amplified with *ltbR*-U-F 146 and *ltbR*-D-R. This fragment was digested with the restriction enzymes *Hin*dIII and *Bam*HI and 147 ligated into the equally digested vector pK18*mobsacB*.

148

149 The plasmid pK18mobsacB- $\Delta ilvE::leuDH$ was constructed as follows-the region upstream 150 (approximately 490 bp) of *ilvE*, as well as the downstream region (approximately 530 bp) of *ilvE*, 151 were amplified via oligonucleotide pairs *ilvE*-U-F/*ilvE*-U-R and *ilvE*-D-F/*ilvE*-D-R, respectively, 152 from genomic DNA of C. glutamicum XQ-9. The upstream fragment was digested with the 153 restriction enzymes SmaI and XbaI and ligated into the equally digested vector pK18mobsacB. Then, 154 the downstream fragment was digested with the restriction enzymes XbaI and SalI and ligated into 155 the equally digested vector pK18*mobsacB*- $\Delta ilvE$ -U. The *leuDH* gene (1095 bp) supplemented with an 156 SD sequence (GAAAGGAGATATACC) before ATG was synthesized by General Biosystems Co. 157 Ltd (Anhui, China) using pUC-57 as vector. Promoter and terminator elements can be used from 158 pDXW-8. Thus, *leuDH* gene was digested with the restriction enzymes *Eco*RI and *Kpn*I and ligated 159 into the vector pDXW-8 that had been digested with the same enzymes. The Ptac-leuDH-rrnBT1T2 160 fragment was amplified via oligonucleotide pairs Ptac-leuDH-F/Ptac-leuDH-R from plasmid 161 pDXW-8-leuDH. The fragment was digested with the restriction enzyme XbaI and ligated into the 162 equally digested vector pK18*mobsacB*- $\triangle ilvE$.

163

164 For construction of pEC-leuAilvBNCE, pEC-leuAilvBNC^ME and pEC-leuAilvBNC^MleuDH, the 165 *leuA*, *ilvBNC*, and *ilvE* genes were amplified via oligonucleotides *leuA*-F/*leuA*-R, *ilvBNC*-F/*ilvBNC*-R, 166 and *ilvE-F/ilvE-R*, respectively, from genomic DNA of *C. glutamicum* XQ-9. The *leuA* fragment was 167 digested with the restriction enzymes *Eco*RI and *Kpn*I and ligated into the vector pECXK99E that 168 had been digested with the same enzymes. The *ilvBNC* fragment was digested with the restriction 169 enzymes SmaI and XbaI and ligated into the equally digested vector pEC-leuA. The ilvE fragment 170 was digested with the restriction enzyme XbaI and ligated into the equally digested vector 171 pEC-leuAilvBNC. Due to the single-restricted ligation, the correct pEC-leuAilvBNCE plasmid was 172 verified by DNA sequencing. Site-directed mutagenesis was performed using the Mut ExpressR II 173 Fast Mutagenesis Kit V2 (Vazyme, Nanjing, China), following the manufacturer's instructions. 174 Using pEC-leuAilvBNCE as a template, PCR products were orderly amplified via oligonucleotides 175 ilvCM1-F/ ilvCM1-R, and ilvCM2-F/ ilvCM2-R. Subsequently, methylated templates of the PCR

176 products were digested with DpnI, and the resultant products were performed by recombinase 177 Exnase II in vitro. The product could be amplified in vivo by transforming E. coli. The correctness of 178 the plasmid resulting from site-directed mutagenesis was verified by DNA sequencing. For 179 construction of pEC-leuAilvBNCMleuDH, Ptac-leuDH-rrnBT1T2 fragment was amplified via the 180 oligonucleotide pair Ptac-leuDH-F/Ptac-leuDH-R from plasmid pDXW-8-leuDH. The fragment was 181 digested with the restriction enzyme XbaI and ligated into the equally digested vector 182 pEC-leuAilvBNC. The correctness of the plasmid resulting from site-directed mutagenesis was 183 verified by DNA sequencing.

184

185 To obtain the vectors pET28a-*ilv*C, pET28a-*ilv*C^M, and pk18mobsacB-ilvC^M, a 1117 bp PCR 186 fragment was generated from the genomic DNA of C. glutamicum wild type. It covered the whole 187 sequence of *ilvC*. The fragment was cut with the restriction enzymes *Eco*RI and *Hin*dIII and ligated 188 into the vectors pET28a and pk18mobsacB that had been digested with the same enzymes, 189 respectively. Site-directed mutagenesis was performed using the Mut ExpressR II Fast Mutagenesis 190 Kit V2 (Vazyme, Nanjing, China), following the manufacturer's instructions. Using pET28a-*ilv*C and 191 pk18*mobsacB*- \triangle *ilvC* as templates, PCR products was orderly amplified via oligonucleotides 192 ilvCM1-F/ ilvCM1-R and ilvCM2-F/ ilvCM2-R. Subsequently, methylated templates of PCR products 193 were digested with *DpnI*, and the resultant products were performed by recombinase Exnase II in 194 vitro. The product could be amplified in vivo by transforming E. coli. The correctness of the plasmid 195 resulting from site-directed mutagenesis was verified by DNA sequencing.

196

197 For construction of vector pK18*mobsacB*- $\triangle gdh$::rocG, the step was similar-amplifying the 198 upstream and downstream region for *gdh* via oligonucleotides *ilvE*-U-F/*ilvE*-U-R and ilvE-D-F/ilvE-D-R, respectively, from the genomic DNA of C. glutamicum XQ-9. The upstream 199 200 fragment was digested with the restriction enzymes SmaI and XbaI and ligated into the equally 201 digested vector pK18mobsacB. Then, the downstream fragment was digested with the restriction 202 enzymes *Sal* I and *Pst*I and ligated into the equally digested vector pK18*mobsacB*- \triangle *gdh*-U. The *rocG* 203 gene was amplified via the oligonucleotide pair rocG-F/rocG-R from genomic DNA of Bacillus 204 subtilis 168. The rocG gene was digested with the restriction enzymes SacI and HindIII and ligated 205 into the vector pDXW-8 that had been digested with the same enzymes. The Ptac-rocG-rrnBT1T2 206 fragment was amplified via oligonucleotide pair Ptac-rocG-F/Ptac-rocG-R from plasmid pDXW-8-rocG. 207 The fragment was digested with the restriction enzymes SalI and XbaI and ligated into the equally 208 digested vector pK18*mobsacB*- \triangle *gdh*.

209 Reference

1.

- 210 211
- 212

Sambrook, J.; David, W. *Molecular Cloning: A Laboratory Manual*, 3nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; ISBN-10 0879695773, ISBN-13 978-0879695774.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).