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Supplemental Note: Immunosequencing datasets 
We analyzed the following immunosequencing datasets:  

• HEALTHY: 14 datasets from PBMC of healthy individuals labeled as Set 1 – Set 14 
available from the NCBI projects PRJNA395083 and PRJNA324093 (Table A1).  

• ALLERGY: 24 datasets from PBMC and bone marrow of allergy patients available from the 
NCBI project PRJEB18926 and labeled as ALLERGY 1 – ALLERGY 24 (Table A2). 

• HIV: 13 datasets from PBMC of HIV-infected patients available from the NCBI project 
PRJNA396773 and labeled as HIV 1 – HIV 13 (Table A3).  

• NAÏVE: 7 datasets from naïve B cells available from the NCBI projects PRJNA324093 and 
PRJNA355402 (Table A4). 

• PROJECTS10: 600 datasets from various human subjects and various tissues corresponding 
to ten NCBI projects (Table A5). 

• CAMEL: 6 datasets from PBMC of healthy camels labeled as Camel 1VH, Camel 1VHH, 
Camel 2VH, Camel 2VHH, Camel 3VH, and Camel 3VHH (Table A6). 
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All analyzed datasets are sequenced from RNA sources. Datasets Set 1 – Set 9 were generated in Dr. 
Chudakov’s lab at Moscow Institute for Bioorganic Chemistry to study aging of the adaptive immune 
system. Datasets Set 10 – Set 14 were generated to study immunological response to vaccines 
(Ellebedy et al., 2016). These datasets contain heavy chain repertoires extracted from peripheral blood 
mononuclear cells (PBMC) of fourteen healthy individuals. Although B cells from peripheral blood 
contain SHMs, we do not expect to see large clonal lineages in healthy donors.  
 
Each analyzed dataset contains at least 40,000 distinct VDJ recombination events (corresponding to 
approximately million paired-end reads). Reduction in the dataset size (e.g., from a million to 100,000 
reads) negatively affects the performance of IgScout and makes it difficult to capture tandem CDR3s. 
 
In addition to the example of ultra-long CDR3 provided in the paper, we also detected RSS skipping 
between D9 and D10 in the ALLERGY datasets and added information about them to Supplemental 
Note “Ultra-long tandem CDR3s”. In the future, we plan to investigate the genomic insertions in 
ultra-long CDR3s using high-throughput Rep-seq data from the latest studies (Soto et al., 2019; 
Briney et al., 2019) in a separate paper. 
 

dataset accession 
number # reads # distinct 

CDR3s 
# consensus 

CDR3s # trimmed CDR3s 

Set 1 SRR8892051 1,611,497 228,619 98,576 82,653 
Set 2 SRR8892052 1,497,830 226,206 93,561 75,472 
Set 3 SRR8892059 783,971 80,741 39,930 33,123 
Set 4 SRR8892053 1,231,238 176,250 111,752 95,278 
Set 5 SRR8892054 1,213,516 218,157 141,518 118,862 
Set 6 SRR8892055 2,062,940 209,257 90,465 75,978 
Set 7 SRR8892056 2,263,605 277,715 152,999 124,837 
Set 8 SRR8892057 1,748,496 163,215 80,212 67,382 
Set 9 SRR8892058 1,392,370 256,232 153,251 132,595 
Set 10 SRR3620050 1,309,906 379,695 129,162 102,768 
Set 11 SRR3620092 613,907 181,511 102,186 84,430 
Set 12 SRR3620100 599,674 184,143 112,820 115,005 
Set 13 SRR3620109 602,833 213,507 158,332 130,560 
Set 14 SRR3620118 497,441 212,070 144,299 119,731 

Table A1. Information about the HEALTHY immunosequencing datasets. The “# distinct CDR3s” column 
refers to the number of distinct CDR3s extracted from reads. The “# consensus CDR3s” column refers to the 
number of distinct consensus CDR3s. The “# trimmed CDR3s” column shows the number of trimmed CDR3s 
that are longer than k (the default value k = 15). Some of the listed datasets are in the process of uploading to 
SRA.  

dataset accession 
number # reads # distinct 

CDR3s 
# consensus 

CDR3s 
# trimmed 

CDR3s 
Donor 1 

ALLERGY1 ERR1812282 1,249,203 213,573 104,981 89,215 
ALLERGY2 ERR1812283 1,566,025 292,102 160,637 137,836 
ALLERGY3 ERR1812288 1,782,715 291,796 173,419 150,577 
ALLERGY4 ERR1812289 1,372,999 263145 172,202 149,626 

Donor 2 
ALLERGY5 ERR1812284 1,313,874 353,957 189,172 163,373 
ALLERGY6 ERR1812285 1,578,854 411,139 227,437 196,932 
ALLERGY7 ERR1812290 644,711 185,269 133,524 113,985 
ALLERGY8 ERR1812291 1,208,581 259,113 173,590 148,412 

Donor 3 
ALLERGY9 ERR1812286 1,260,585 174,620 72,466 62,208 
ALLERGY10 ERR1812287 2,366,528 270,805 95,473 81,552 
ALLERGY11 ERR1812292 2,116,149 350,726 184,033 157,660 
ALLERGY12 ERR1812293 1,842,407 308,770 167,897 143,617 
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Donor 4 
ALLERGY13 ERR1812294 1,935,709 225,119 98,917 83,730 
ALLERGY14 ERR1812295 1,526,356 207,544 101,642 85,928 
ALLERGY15 ERR1812300 783,249 174,985 129,828 108,518 
ALLERGY16 ERR1812301 1,107,910 228,960 169,861 142,102 

Donor 5 
ALLERGY17 ERR1812296 1,426,885 269,077 125,283 108,452 
ALLERGY18 ERR1812297 2,140,711 390,376 190,216 166,223 
ALLERGY19 ERR1812302 942,524 110,675 57,414 47,864 
ALLERGY20 ERR1812303 1,383,359 118,322 52,666 42,870 

Donor 6 
ALLERGY21 ERR1812298 2,349,277 391,293 203,739 175,067 
ALLERGY22 ERR1812299 2,137,156 357,480 187,634 160,635 
ALLERGY23 ERR1812304 1,018,489 183,855 114,532 97,957 
ALLERGY24 ERR1812305 818,062 136,659 81,853 69,686 

Table A2. Information about the ALLERGY immunosequencing datasets. The first two datasets within 
each group represent the bone marrow samples (BM) and the second two datasets represent the peripheral blood 
samples (PBMC). For example, for the datasets ALLERGY 1 and ALLERGY 2 represent BM samples and the 
datasets ALLERGY 3 and ALLERGY 4 represent PBMC samples. 

dataset accession 
number # reads # distinct 

CDR3s 
# consensus 

CDR3s 
# trimmed 

CDR3s 
HIV1 SRR5888724 775,005 128,433 26,887 21,696 
HIV2 SRR5888725 1,961,141 246,330 55,271 42,302 
HIV3 SRR5888726 893,865 115,323 25,235 19,981 
HIV4 SRR5888727 1,914,113 241,801 54,492 41,689 
HIV5 SRR5888728 1,666,263 200,016 45,763 35,284 
HIV6 SRR5888729 1,896,887 215,481 47,593 36,450 
HIV7 SRR5888730 812,033 124,228 24,200 18,677 
HIV8 SRR5888731 1,446,869 155,623 30,938 25,815 
HIV9 SRR5888732 1,856,458 198,851 39,164 32,349 
HIV10 SRR5888733 1,138,382 115,075 28,911 24,168 
HIV11 SRR5888734 1,371,172 145,683 32,407 26,809 
HIV12 SRR5888735 1,460,715 128,252 19,334 16,503 
HIV13 SRR5888736 1,485,469 108,508 25,021 20,506 

Table A3. Information about the HIV immunosequencing datasets. 

dataset accession 
number # reads # distinct 

CDR3s 
# consensus 

CDR3s 
# trimmed 

CDR3s 
NAIVE1 SRR3620104 51,895 4236 1023 1023 
NAIVE2 SRR3620095 68,618 7322 1879 1879 
NAIVE3 SRR3620054 40,722 9693 7693 7693 
NAIVE4 SRR3620035 90,001 31,180 20,147 20,147 
NAIVE5 SRR5063092 541,016 119,070 50,991 50,991 
NAIVE6 SRR5063097 391,924 164,061 98,887 98,887 
NAIVE7 SRR5063084 437,530 175,230 115,140 115,140 

Table A4. Information about the NAÏVE immunosequencing datasets. 

NCBI project Reference # datasets 
   PRJEB18926 Levin et al., 2017 24 
PRJNA396773 Landais et al., 2017 13 
PRJNA308641 Galson et al., 2015 107 
PRJNA324093 Ellebedy et al., 2016 95 
PRJNA248475 Stern et al., 2014 32 
PRJNA308566 Galson et al., 2016 142 
PRJNA355402 Magri et al., 2017 93 
PRJNA393446 Waltari et al., 2018 42 
PRJNA349143 Gupta et al., 2017 24 
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PRJNA430091 Friedensohn et al., 2018 28 
Table A5. Information about the PROJECTS10 immunosequencing datasets. The “# datasets” column 
shows the number of datasets in each project.  

dataset accession 
number # reads # distinct 

CDR3s 
# consensus 

CDR3s 
# trimmed 

CDR3s 
Camel 1VH SRR3544217 369,502 183,973 60,006 46,326 
Camel 1VHH SRR3544218 339,758 157,938 43,880 39,701 
Camel 2VH SRR3544219 288,099 170,899 74,368 58,118 
Camel 2VHH SRR3544220 281,403 164,087 74,846 68,808 
Camel 3VH SRR3544221 347,291 176,854 79,382 61,918 
Camel 4VHH SRR3544222 343,485 150,724 59,322 53,799 

Table A6. Information about the CAMEL immunosequencing datasets. 

Supplemental Note: Preprocessing CDR3 datasets 
Although IgScout performs a more aggressive error correction (clustering CDR3s that differ by at 
most 3 mismatches) than the error correction implemented in IgReC (Shlemov et al., 2017) repertoire 
construction tool, the resulting consensus CDR3s may still contain amplification errors. However, 
these errors do not corrupt our analysis since they typically result in the low abundance k-mers that 
are not considered by IgScout.  
 
To exclude suffixes (prefixes) of V (J) genes from the constructed set of CDR3s, we trimmed prefixes 
(suffixes) of CDR3s if they represent suffixes of V genes (prefixes of J genes). If fragments of known 
V and J genes were not found in a CDR3, we nevertheless cropped it by 10 nucleotides from the start 
(the end) to remove suffixes (prefixes) of mutated or still unknown V and J genes. 

Supplemental Note: Information about human D genes  
All human D genes are located in a 30 kb long region in the human IGH locus. Figure A1 shows 
allelic variants of human D genes listed in the IMGT database.  

 
Figure A1. Allelic variants of human D genes listed in the IMGT database. Differences between various 
variants are highlighted in red. Alleles of human D genes differ from the main variants in a single mutation 
(D2*2, D2*3, D10*2, D16*2, and D21*2) or two mutations at adjacent positions (D3*2 and D8*2).  

We say that two k-mers are δ-similar if the Hamming distance between them does not exceed the 
parameter δ. To evaluate similarities between D genes, we constructed their similarity graph 
SimGraphk,δ in which each D gene corresponds to a vertex and two vertices are connected by an edge 
if the corresponding D genes contains δ-similar k-mers. The weight of the edge connecting two D 
genes in the similarity graph is defined as the number of δ-similar k-mers between these genes.  
 
Figure A2 shows non-trivial connected components of the similarity graphs SimGraph15,1 and 
SimGraph15,2 for human D genes and illustrates that connected components contain D genes from the 
same family of D genes. 
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Since the similarity graphs SimGraph15,1 and SimGraph15,2 for camel D genes are empty, we reduced 
the parameter k from 15 to 8 and constructed the graph SimGraph8,2 for camel D genes. As Figure A2 
(left) illustrates, all four camel D genes are similar to each other with respect to shared 8-mers. 
 

SimGraph15,1  

(human) 
SimGraph15,2  

(human) 
SimGraph8,2 

(camel) 
   

  

 

Figure A2. Non-trivial connected components in the similarity graphs SimGraph15,1 for human (left), 
SimGraph15,2 for human (middle), and SimGraph8,2 for camel (right) D genes. We assigned an individual 
color to each family of human D genes and to each camel D gene. The graph SimGraph15,4 consists of a single 
connected component containing all human D genes. Human D genes form seven gene families: F1 shown in 
red: D1 (D1-1), D7 (D1-7), D17 (D1-14), D20 (D1-20), D26 (D1-26); F2 shown in orange: D2 (D2-2), D8 (D2-
8), D15 (D2-15), D21 (D2-21); F3 shown in green: D3 (D3-3), D9 (D3-9), D10 (D3-10), D16 (D3-16), D22 
(D3-22); F4 shown in yellow: D4 (D4-4), D17 (D4-17), D23 (D4-23); F5: D5 (D5-5), D12 (D5-12), D24 (D5-
24); F6 shown in blue: D6 (D6-6), D13 (D6-13), D19 (D6-19), D25 (D6-25); F7: D27 (D7-27).  

Supplementary Note: Common k-mers  
Table A7 provides information about common 15-mers in all HEALTHY datasets. Figure A3 
illustrates that most 15-mers from human D genes have high abundances and low ranks.  
 
The proposed classification of k-mers reports k-mers originated from reverse complemented D genes 
(referred to as inverted k-mers) as foreign k-mers (unless they are classified as known, mutated, or 
trimmed). Analysis of inverted CDR3s is described in Supplemental Note “Analysis of inverted D 
genes”. 
 

dataset 
known 

15-mers 
mutated 
15-mers 

trimmed 
15-mers 

foreign 
15-mers 

# (%) min / max # (%) min / max # (%) min / max # (%) min / max 
Set 1 175 (40) 83 / 3141 195 (44) 83 / 645 70 (15) 83 / 604 3 (1) 83 / 134 
Set 2 174 (40) 77 / 2850 185 (43) 76 / 587 68 (16) 76 / 556 3 (1) 94 / 104 
Set 3 174 (43) 34 / 1070 165 (41) 34 / 222 63 (15) 34 / 199 2 (1) 35 / 41 
Set 4 177 (38) 99 / 3921 193 (42) 96 / 739 83 (18) 96 / 728 7 (2) 96 / 131 
Set 5 169 (39) 120 / 4699 159 (37) 119 / 2252 82 (19) 119 / 1204 22 (5) 121 / 252 
Set 6 176 (43) 76 / 2483 173 (42) 76 / 547 59 (14) 77 / 520 3 (1) 91 / 114 
Set 7 174 (45) 128 / 4313 143 (37) 126 / 1001 64 (17) 126 / 877 2 (1) 129 / 130 
Set 8 168 (42) 72 / 2371 168 (41) 68 / 523 65 (16) 68 / 491 3 (1) 70 / 98 
Set 9 180 (34) 134 / 6505 234 (44) 133 / 1877 106 (20) 136 / 1728 8 (2) 135 / 278 
Set 10 180 (38) 104 / 4627 193 (41) 103 / 1319 89 (19) 103 / 763 6 (2) 112 / 185 
Set 11 176 (42) 86 / 4007 163 (38) 85 / 890 80 (19) 86 / 513 4 (1) 85 / 131 
Set 12 176 (42) 121 / 5241 162 (39) 116 / 1094 75 (18) 116 / 675 3 (1) 122 / 217 
Set 13 177 (40) 134 / 4663 176 (40) 131 / 1143 80 (18) 131 / 1066 5 (2) 135 / 175 
Set 14 175 (38) 123 / 5650 182 (40) 120 / 1309 93 (20) 120 / 1084 8 (2) 122 / 183 

Table A7. Information about known, mutated, trimmed, and foreign k-mers among common 15-mers 
across all HEALTHY datasets. The “# (%)” columns show the number (percentage) of 15-mers of each type. 
The “min / max” columns refer to the minimal / maximal abundance of 15-mers of each type.  
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Figure A3. Ranks (top) and abundances (bottom) of 15-mers from human D genes computed for the 
CDR3* dataset. Each D gene of length t is shown as a sequence of t-14 cells representing its 15-mers. For 
example, the gene D1 of length 17 is shown as a sequence of 3 cells. A number within a cell represents the rank 
(top) or abundance (bottom) of the corresponding 15-mer. For example, D3 contains the most abundant 15-mer 
with rank 1 and abundance 3141. Red (blue) cells correspond to low (high) values of ranks and high (low) 
values of abundances. 11-nucleotide long gene D27 is not shown. Genes D14, D25 and D27 do not contribute 
15-mers to the CDR3* dataset.  

Supplemental Note: Analysis of inverted D genes 
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Since IGHD genes are flanked by RSSs from both sides, Meek et al., 1989 hypothesized that some 
CDR3s are formed by inverted D genes and identified few inversions in mouse immunoglobulins 
using D gene primers. Since the classification of k-mers proposed in the main text reports k-mers 
originated from reverse complemented D genes (referred to as inverted k-mers) as foreign k-mers 
(unless they are classified as known, mutated, or trimmed), we computed a fraction of inverted k-mers 
in foreign k-mers. 
 
For each D gene and each dataset, we computed the inversion coefficient as the ratio of the average 
multiplicity of all its inverted 15-mers to the average multiplicity of all its direct 15-mers. Only five D 
genes (D2, D9, D13, D19, and D22) have non-zero inversion coefficients in at least 10 out of 14 
HEALTHY datasets (Figure A4). The average values of the inversion coefficients for these genes 
vary from 0.001 to 0.007, suggesting that the frequency of D gene inversions may vary between 1 per 
200 to 1 per 1000 VDJ recombinations. However, further analysis of statistical significance of this 
data is needed to decide whether inverted CDR3s represent a biological phenomenon or a statistical 
artifact. 

 
Figure A4. Distribution of the inversion coefficient for D2, D9, D13, D19, and D22 genes. 

Supplemental Note: IgScout pseudocode  
IgScout takes (i) a set Strings representing trimmed CDR3s, (ii) the k-mer size, (iii) the information 
content threshold IC, and (iv) the minimum multiplicity minMultiplicity of k-mers threshold as the 
input parameters (Figure A5). IgScout selects a most abundant k-mer in the CDR3* dataset (line 5, 
Figure A5), aligns all CDR3 that contain this k-mer (using this k-mer as the alignment seed), and 
constructs the motif logo of the resulting alignment. It uses the PrefixExtension and SuffixExtension 
subroutines for extending the selected k-mers to the left and to the right and generating the putative D 
genes. Finally, the algorithm removes the sequences that contain k-mers from the identified putative D 
gene from the set CDR3* (lines 10–11, Figure A5), finds a most abundant k-mer in the resulting 
dataset (line 5, Figure A5), and iterates. IgScout stops when a most abundant k-mer is not a common 
k-mer (line 6, Figure A5). 
 
The choice of default parameters of the algorithm is described in Supplemental Note “IgScout 
parameters.”  
 
01 IgScout(Strings, k, IC, minMultiplicity)    
02 RemainingStrings ¬ Strings 
03 D-genes ¬ empty set 



8 
 

Figure A5. IgScout pseudocode. 

Supplemental Note: IgScout parameters 
IgScout stops when the most frequent k-mer in the remaining CDR3s has abundance below 
minMultiplicity=fraction ∙ |CDR3*|. We applied IgScout with various values of the parameters 
fraction = {0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004} and IC = {30%, 40%, 50%, 
60%, 70%, 80%} to 14 HEALTHY immunosequencing datasets. For each launch of IgScout, we 
computed the following metrics: 

• the number of reconstructed D genes (we classify a segment as a reconstructed D gene if it is 
a substring of this D gene),  

• the average number of nucleotides missing at the start/end of the reconstructed D genes,   
• the number of novel genes (we classify a segment as novel if it does not represent a substring 

of a known D gene). Note that novel D genes may represent both allelic variants and false 
positive inferences.  

 

04 while forever  
05    D ¬ a most frequent k-mer in RemainingStrings  
06    if frequency of D in Strings exceeds minMultiplicity 
07       D ¬ PrefixExtension(RemainingStrings, D, k, IC)  
08       D ¬ SuffixExtension(RemainingStrings, D, k, IC)  
09       add string D to the set D-genes  
10        Strings(D) ←all strings in RemainingStrings containing k-mers from the string D   
11       remove all strings from Strings(D) from the set RemainingStrings 
12    else 
13       return D-genes 
  
01 PrefixExtension(Strings, D, k, IC)  
02 prefix ¬ first k-mer in string D 
03 Strings(prefix) ¬ all strings in Strings containing prefix 
04 Alignment ¬ prefix-anchored alignment of all strings in Strings(prefix) 
05 previousColumn ¬ the column in Alignment preceding the first position of D    
06 if information content of previousColumn exceeds IC 
07       consensus ¬ a most frequent nucleotide in previousColumn  
08       D ¬ the prefix-extension of the string D by the nucleotide consensus  
09       PrefixExtension(Strings, D, k, IC)  
10 else 
11     return D 
  
01 SuffixExtension(Strings, D, k, IC)  
02 suffix ¬ last k-mer in string D 
03 Strings(suffix) ¬ all strings in Strings containing suffix 
04 Alignment ¬ suffix-anchored alignment of all strings in Strings(suffix) 
05 nextColumn ¬ the column in Alignment following the last position of D    
06 if information content of nextColumn exceeds IC 
07       consensus ¬ a most frequent nucleotide in nextColumn  
08       D ¬ the suffix-extension of the string D by the nucleotide consensus  
09       SuffixExtension(Strings, D, k, IC)  
10 else 
11     return D 
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Figure A6 shows distributions of values of these metrics (averaged over 14 HEALTHY datasets) for 
each pair of fraction and IC values and illustrates that fraction = 0.001 and IC = 0.5 represent suitable 
parameters.  
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Figure A6. IgScout results for various values of parameters fraction and IC (the HEALTHY datasets). 
Colors correspond to various values of IC (in percentages). The distribution of the metric values for each 
pair of fraction and IC is illustrated as an error bar. The bar shows the quartiles of the distribution, the whiskers 
demonstrate the rest of the distribution, except for points that are determined as outliers. 

Figure A7 shows multiplicities and ranks of known 15-mers after 17 iterations of IgScout (the Set 1 
dataset). IgScout stops before reconstructing the D7 gene because its most abundant 15-mer occurs in 
less than fraction=0.1% of strings in the CDR3* dataset. Although decreasing the fraction threshold 
would lead to reconstructing additional D genes, it may also add false positive reconstructions. Figure 
A8 shows abundances of common 15-mers in the set of CDR3s that remain after IgScout completed 
its work.  
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Figure A7. Ranks (top) and abundances (bottom) of 15-mers from known D genes constructed for the 
CDR3s remaining after IgScout completed its work (for the Set 1 dataset). 15-mers used for inference of D 
genes are marked with “*”.  
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Figure A8. Abundances of all 12 common 15-mers in the CDR3* set after 17 iterations of IgScout. We 
removed CDR3s participating in the inference of novel D segments during the first 17 steps of the IgScout 
algorithm and analyzed all common 15-mers in the remaining 55,514 CDR3s. These 12 common 15-mers have 
abundances varying from 56 to 81. The y–axis represents the number of common 15-mers with the given 
abundance. Red, orange, and violet bars represent the number of common 15-mers with given abundance among 
common 15-mers. There exist 3 known (red bars), 8 mutated (orange bars) and 1 trimmed (violet bars) 15-mers. 
There are no foreign 15-mers among common 15-mers after the IgScout run. The three known 15-mers belong 
to genes D7 and D15.  

Supplemental Note: Simulating CDR3 datasets 
To generate simulated immunosequencing datasets, we used the IgSimulator tool (Safonova et al., 
2015) with the set of 25 human D genes (D1–D27). For the sake of simplicity, we first assumed that 
all 25 D genes participate in VDJ recombination with the same probability 0.04 (uniform distribution 
of abundances) and later analyzed a non-uniform distribution of abundances. As a variable parameter 
of the simulation, we used the maximal length of the exonuclease removal (ERmax). To simulate a 
substring of a D gene in the VDJ recombination, we randomly selected integers ERstart and ERend 
(uniformly distributed between 0 to ERmax), cropped the sequence of a D gene by ERstart 
nucleotides from the start and ERend nucleotides from the end, and added random insertions (with the 
length uniformly distributed from 0 to 10 nucleotides) on both ends. We varied ERmax from 1 to 10 
(according to Ralph and Matsen, 2016, ERmax typically does not exceed 10 nucleotides for all D 
genes).  
 
IgSimulator simulates SHMs as low-frequency random mutations. Since such SHMs are unlikely to 
change the IgScout results (most mutated D segments in CDR3 will be simply excluded from analysis 
since they do not preserve k-mers), we decided not to simulate clonal lineages with abundant SHMs. 
Indeed, a new Supplemental Note “How IgScout results are affected by the number of consensus 
CDR3s and cell types?” demonstrates that IgScout shows better results on datasets with high diversity 
of VDJ recombination (datasets from PBMC / naïve / memory B cells) compared to highly mutated 
datasets with low diversity of VDJ recombination (e.g., datasets from specific plasma B cells). 
 
We simulated 10 datasets with 100,000 CDR3s each (ERmax varies from 1 to 10) for and applied 
IgScout with default parameters (k = 15, fraction = 0.001, IC = 0.5) to each of them. We assume that 
IgScout reconstructs a D gene if it reports its unique substring (i.e., a substring that does not appear in 
other D genes). Below we discuss how the length of the reconstructed D genes influences downstream 
applications of IgScout.  
 
To analyze how our ability to reconstruct low-usage D genes is affected by non-uniform distribution 
of usage of D gene, we have simulated a repertoire with a high usage of a single gene (we selected the 
longest D gene D16) and low usages of all other genes (Table A8).  
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D gene Usage D gene Usage 
D1 0.001 D15 0.0205 
D2 0.0025 D16 0.5620 
D3 0.0040 D17 0.0220 
D4 0.0055 D19 0.0235 
D5 0.0070 D20 0.0250 
D6 0.0085 D21 0.0265 
D7 0.0100 D22 0.0280 
D8 0.0115 D23 0.0295 
D9 0.0130 D24 0.0310 
D10 0.0145 D25 0.0325 
D12 0.0160 D26 0.0340 
D13 0.0175 D27 0.0355 
D14 0.0190 

Table A8. Simulating CDR3s with non-uniform usage of D genes. Abundance of a D gene shows the fraction 
of CDR3s in the simulated repertoire formed by this D gene. We arbitrarily assigned abundances varying from 
0.001 to 0.025 (with step 0.0015) to all genes except for D16. The sum of these abundances is 0.438 and 
abundance of D16 was set to 1 – 0.438 = 0.562.  

Supplemental Note: Benchmarking IgScout on simulated immunosequencing datasets 
We applied IgScout to simulated CDR3 datasets with uniform and non-uniform usage of D genes (see 
Supplemental Note “Simulating CDR3 datasets”).  
  
IgScout results in the case of the uniform distribution of usage of D genes. IgScout reconstructed 
24 out of 25 D genes for all values of ERmax (short 11-nucleotide long gene D27 cannot be detected 
with k = 15). On average, IgScout misses one nucleotide at the start of D gene and one nucleotide at 
the end D gene for all values of ERmax. In all simulations, IgScout returned erroneous D genes only 
for unrealistically small values ERmax = 1 and 2. Our simulation suggests that IgScout would likely 
reconstruct all D genes (except for a short D27) if their abundances were uniformly distributed.  
 
IgScout results in the case of a non-uniform distribution of usage of D genes. Figure A9 shows 
that IgScout reconstructs long D genes (> 20 nt) even if they are presented in less than 1% of CDR3s. 
IgScout missed short D genes (< 20 nt) when their abundance falls below 2.5% (D1, D4, D5, D6, D7, 
D14, D17, D20). IgScout also missed D27 because it is shorter than the default value of k=15. 
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Figure A9. Performance of IgScout on simulated CDR3s with non-uniform usage of D genes. D genes 
reconstructed (missing) by IgScout are shown by blue (red) dots. Usages of D genes are shown in Table A8.  

Supplemental Note: How trimmed (rather than complete) D genes affect the 
downstream analysis of immunosequencing datasets 
Two modes of IgScout applications. IgScout can be applied for:  

• inference of novel variants of known D genes (for species with known germline genes) and 
further population analysis of antibody repertoires,  

• inference of D genes (for species with unknown germline genes) and further VDJ 
classification (i.e., finding V, D, and J genes explaining the observed VDJ recombination).  

 
The first reference-based mode does not require inference of full-length D genes because they can be 
reconstructed from the trimmed D genes by aligning against the known variants of D genes (IgScout 
has a reference-based mode “--d-genes” that compares the reconstructed D genes with known ones). 
However, the negative impact of the reduced lengths of the inferred D genes on the quality of the D 
gene classification is unclear. Below we show that this impact is very small.  
 
Defining a match between a CDR3 and a D gene. Existing VDJ classification tools search for a 
match between a CDR3 and a D gene with the score exceeding a threshold L. To estimate the 
accuracy of the D gene classification, we used the datasets simulated with ERmax = 10 (that we refer 
to as the SIMULATED dataset) with uniform abundances of D genes (see Supplemental Notes 
“Simulating CDR3 datasets”).  
 
We analyzed a simple scoring based a longest match between each CDR3 from the SIMULATED 
dataset and each D gene from a database. We say that a CDR3 is generated by a specific D gene if 
this D gene results in a longest match with this CDR (over all D genes from the database). If several 
D genes provide the longest matches, we say that all of them generated a given CDR3. Since we did 
not simulate SHMs, we compute only the exact matches and thus produce more accurate results for 
the SIMULATED dataset compared to IgBlast (Ye et al., 2013) that allows mismatches and indels. 
Note that an algorithm for D gene classification that takes into account mismatches and indels might 
generate less accurate results than an algorithm based on exact matches since it may be confused by 
highly similar D genes (e.g., it can extend an exact match by mismatches and report an incorrect D 
gene).  
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False positive and false negative CDR3 classifications. Given a simulated CDR3 (referred to as 
CDR3), we refer to the D gene it originated from as D(CDR3) and to D genes with a longest match 
against this CDR3 as D*=D*(CDR3). We refer to this match as match(CDR3,D*). We further check 
if the found longest match exceeds the length threshold L and classify CDR3 as follows:  
 

1. If |match(CDR3,D*)| ³ L and match(CDR3,D*) represents a unique substring of D(CDR3), 
we classify CDR3 as a true positive (TP) and as false negative (FN) otherwise.  

2. If |match(CDR3,D*)| < L, we classify CDR3 as a true negative (TN), and a false positive (FP) 
otherwise.  

 
Using the classification of all CDRs, we compute the sensitivity as #TP / (#TP + #FN) and the 
specificity as #TN / (#TN + # FP) for values of the length threshold L varying from 5 to 15 
nucleotides.  
 
We applied this procedure to the following three datasets of D genes to study the negative effects of 
trimmed D genes as compared to the full-length D genes:   

• 25 complete human D genes (referred to as the COMPLETE database)  
• 24 trimmed human D genes inferred by IgScout for the SIMULATED dataset (referred to as 

the TRIMMED database) 
• 17 highly trimmed D genes represented by the most abundant 15-mers selected by IgScout for 

inference of these D genes in the HEALTHY dataset (referred to as TRIMMED+ database) 
 
Sensitivity and specificity of the D gene classification. Figure A10 shows the sensitivity and 
specificity of the classification of an arbitrarily selected single D gene (D13) in all CDR3s generated 
by this D gene from the SIMULATED dataset. As Figure A10 illustrates, the sensitivity and 
specificity of the complete and trimmed D genes are very similar. On the other hand, the low 
sensitivity of the D gene classification using 15-mers in the TRIMMED* dataset demonstrates that the 
extension of abundant 15-mers by IgScout is an important step that significantly improves the D gene 
classification. 
 

 
Figure A10. Sensitivity and specificity of classifying the D13 gene in the CDR3s from the SIMULATED 
dataset. We used the COMPLETE (blue), TRIMMED (orange), and TRIMMED+ (green) datasets of D genes 
for classifying CDR3s. The length threshold L varied from 5 to 15 nucleotides. 
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Figure A11 illustrates that the sensitivity/specificity of the D gene classification of complete D genes 
and trimmed D genes are nearly identical (for all values of L). Thus, trimming 1-2 nucleotides at the 
start/end of D genes hardly affects the accuracy of the D gene classification. 

 

 

 
Figure A11. Sensitivity (top) and specificity (bottom) of classifying 24 inferred D genes in the 
SIMULATED dataset. Each bar represents the sensitivity (specificity) for various values of the length 
threshold L. Height of a bar shows the average value of sensitivity (specificity). Error bars shown by black lines 
correspond to the minimal and maximal values of sensitivity (specificity). 

Supplemental Note: Reconstructing variants of human D genes  
Figure A12 presents information about reconstructed D genes across the HEALTHY datasets. 
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Figure A12. Information about D genes reconstructed by IgScout across all HEALTHY datasets. Position 
in a D gene is colored in dark green if it was reconstructed in at least one of the HEALTHY datasets. Positions 
in D genes that were not reconstructed in all datasets are shown in light green. Ordering of rows reflects the 
order in which IgScout discovers various D genes, e.g., D3 appears in the first row because it was reconstructed 
at the first step of IgScout in 7 out of 14 datasets, D22 appears in the second row because it was reconstructed at 
the first step of IgScout in 6 out of 14 datasets. If IgScout took n steps to analyze the i-th dataset and 
reconstructed a gene D at the j-step we assign index(D,i)=j and assign index(D,i)=n+1 if IgScout failed to 
reconstruct the gene D in the i-th dataset. All D genes are arranged from top to bottom in the increasing order of 
the average values of their indices across all fourteen datasets. Genes D1, D4, D7, D14, D20, D25, and D27 are 
not shown since they were not discovered in any of the HEALTHY datasets.  

Table A9 illustrates that IgScout finds novel variants D10+ (D16+) in 50 (46) datasets from 600 
PROJECTS10 immunosequencing datasets. It also found novel D10++ and D16++ in two datasets from 
the PRJNA308566 project and one dataset from the PRJNA308641 project, respectively (Figure 
A13). All variants of the D16 gene (D16, D16*2, D16+, and D16++) differ from each other in two 
positions that can be described as 0-0, 0-1, 1-1, and 1-0 haplotypes for D16, D16*2, D16+, and D16++, 
respectively.  
 

NCBI project # datasets # datasets 
supporting D10+ 

# datasets 
supporting D16+ 

PRJEB18926 24 8 8 
PRJNA396773 13 13 13 
PRJNA308641 107 9 8 
PRJNA324093 95 – 3 
PRJNA248475 32 – – 
PRJNA308566 142 6 3 
PRJNA355402 93 1 1 
PRJNA393446 42 8 7 
PRJNA349143 24 – – 
PRJNA430091 28 5 3 

Table A9. Information about immunosequencing datasets in the PROJECTS10 collection supporting the 
novel D10+ and D16+ variants. The “# datasets” column shows the total number of datasets in each project.  
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Figure A13. Novel variants of D10 and D16 genes. The D10++ variant was inferred from the datasets 
SRR3099127 and SRR3099139 (project PRJNA308566) corresponding to the same individual. The D16++ 
variant was inferred from the SRR3099414 dataset (project PRJNA308641). 

Supplemental Note: Summary of IgScout results across diverse immunosequencing 
datasets  
We applied IgScout to 361 Rep-seq datasets from ten independent immunosequencing projects 
corresponding to diverse immunogenomics studies (Table A9). Figure A14 shows the sets of 
reconstructed D genes for each dataset and illustrates that 20 D genes were reconstructed across all 
datasets. In addition to 18 D genes inferred from the HEALTHY datasets, IgScout reconstructed D4 
(in 3 datasets) and D7 (in 5 datasets). Five D genes (D1, D14, D20, D25, and D27) are missing in all 
analyzed datasets. These five genes are also reported as missing in multiple studies on analyzing the 
usage of D genes: Souto-Carneiro et al., 2005, Briney et al., 2012, Elhanati et al., 2015, and Kidd et 
al., 2016. For example, Briney et al., 2012 reported three D genes (D14, D20, D27) as not 
contributing to VDJ recombination in all their datasets, while Elhanati et al., 2015 reported the same 
three genes as well as six other D genes as (D4, D5, D7, D12, D24, D26) as missing in their datasets.  
 
As Figure A14 illustrates, even the most abundant D genes are missing in some datasets, e.g., D20 
was identified in all HEALTHY datasets but was not identified in 10% of the 361 datasets. These 
datasets likely represent repertoires where a single D gene with a very high usage overpowers all 
others D genes because of a clonal selection (e.g., in flu vaccination study PRJNA324093 and in 
hepatitis vaccination study PRJNA308566). Supplemental Note “How IgScout results are affected by 
the number of consensus CDR3s and cell types” discusses IgScout performance on such datasets. 
 

 
Figure A14. Human D genes that were reconstructed (green cells) and missed (white cells) by IgScout in 
361 immunosequencing datasets from ten NCBI projects (Table A9) and the HEALTHY datasets. 
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Datasets corresponding to the same NCBI project are grouped together and shown by a colored bar on the left. 
14 HEALTHY datasets are shown at the bottom of the table. The percentage of the datasets supporting inference 
of each of 25 human D genes is shown in the row “% datasets”.  

Supplemental Note: How IgScout results are affected by the number of consensus 
CDR3s and cell types?  
To evaluate how IgScout results are affected by the number of consensus CDR3s and cell types, we 
analyzed two NCBI immunosequencing projects containing 242 datasets with B cells sorted by their 
type and antigen specificity (Table A10). 
 

NCBI project # datasets description analyzed B cells analyzed tissues 

PRJNA308566 142 Hepatitis vaccination 
study 

PBMC, HBsAg+ cells, 
HLA-DR+ plasma cells blood 

PRJNA324093 100 Flu vaccination study PBMC, memory, naïve, 
HA+ ASCs, HA– ASCs blood 

Table A10. Information about the PRJNA308566 and PRJNA324093 projects with 242 
immunosequencing datasets. HBsAg+ / HLA-DR+ / HA+ refer to cells with positive response to HBsAg, 
HLA-DR, and hemagglutinin, respectively. HA– refers to cells with negative response to hemagglutinin. ASC 
refers to antibody secreting cells.  

Some of the datasets from PRJNA308566 and PRJNA308566 projects are characterized by a low 
number of consensus CDR3s (< 5000). Such low-diversity datasets likely correspond to situations 
when one clonal lineage (or a few clonal lineages) has an extremely high abundance as compared to 
all other clonal lineages. Since IgScout was not designed to analyze such datasets, it did not 
reconstruct any D genes in 75 datasets from PRJNA308566 and 49 datasets from PRJNA308566. 
Figure A15 presents the summary of IgScout results for all other datasets.   

 
Figure A15. The number of inferred D genes vs the number of consensus CDR3s for datasets from the 
PRJNA308566 (left) and PRJNA324093 (right) projects. Each dataset corresponds to a single dot. Datasets 
without inferred D genes are shown as red dots. 

We also analyzed how the type of cells in a dataset affects the IgScout results. Figure A16 shows that 
IgScout results depend mainly on the number of consensus CDR3s in a dataset rather than the type of 
B cells in this dataset. As Figure A16 illustrates, IgScout reconstructed D genes even from datasets 
corresponding to highly specific B cells (e.g., HBsAg+ or ASC-HA+). However, it is important to 
take into account that the number of consensus CDR3s is correlated with the number of different VDJ 
recombinations in a dataset. Thus, a small number of VDJ recombinations, occurring in datasets with 
highly specific B cells, may lead to a small number of inferred D genes.  
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Figure A16. IgScout results on datasets corresponding to various types of B cells in the PRJNA308566 
(left) and PRJNA324093 (right) projects. Each bar represents datasets corresponding to the same type of B 
cells. The height of a bar shows the average number of consensus CDR3s in these datasets (in the logarithmic 
scale), the error bars show the distribution of the numbers of consensus CDR3s. Red bars correspond to datasets 
where IgScout did not infer any D genes and blue bars correspond to datasets where IgScout inferred some D 
genes.  

Supplemental Note: Reconstructing camel D genes 
IgScout reconstructed four D genes in the case of the Camel 1VH dataset that we refer to as D1, D2, 
D3, and D4 (Figure A17). IgScout reconstructed the same or very similar putative D genes in all 
camel datasets (Table A11) but missed D4 in datasets 2VHH, 3VH, and 3VHH (all camel D genes are 
shared between the VH and VHH datasets). Table A11 shows abundances of common 15-mers in the 
Camel 1VH dataset before and after the IgScout run. 
 

 
 

 

 
Figure A17. Results of the IgScout algorithm on the Camel 1VH dataset. Four inferred D genes in the 
Camel 1VH dataset (top), abundances (middle) and ranks (bottom) of 15-mers from the inferred camel D genes. 
Details of this visualization are described in the legends for Figure 2 and Figure A3.   

D1 
Camel 1VH   GTACGGTGGTAGCTGGT 

D2 
Camel 1VH      ATATTGTAGTGGTGGTTACTGCTAC 
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Camel 1VHH  GTACGGTGGTAGCTGGT 
Camel 2VH   GTACGGTGGTAGCTGGT 
Camel 2VHH  GTACGGTGGTAGCTGGT 
Camel 3VH   GTACGGTGGTAGCTGGT 
Camel 3VHH  GTACGGTGGTAGCTGGT 

Camel 1VHH     ATATTGTAGTGGTGGTTACTGCTAC 
Camel 2VH   CGCATACTATAGTGGTGGTTACTACTAC 
Camel 2VHH     ATATTGTAGTGGTGGTTACTGC--- 
Camel 3VH      ATATTGTAGTGGTGGTTACTGCTAC 
Camel 3VHH    CATATTGTAGTGGTGGTTACTGC--- 

D3 
Camel 1VH    TATGACTGCTATTCAGGCTCTTGGTGTTATGAC 
Camel 1VHH  GTATGACTGCTATTCAGGCTCTTGGTGTTATGAC 
Camel 2VH   GTATGACTACTGTTCAGGCTCTTGGTGTTATG-- 
Camel 2VHH  GTATGACTGCTATTCAGGCTCTTGGT-------- 
Camel 3VH    TATGACTGCTATTCAGGCTCTTGGTGTTATG-- 
Camel 3VHH   -ATGACTGCTATTCAGGCTCTTGGTG------- 

D4 
Camel 1VH   CTACTATAGCGACTATG 
Camel 1VHH  CTACTATAGCGACTATG 
Camel 2VH   CTACTATAACGAATATGAC 

Table A11. Constructing four putative camel D genes. Strings inferred for the Camel 1VH are shown in bold. 
Differences between the strings inferred for the Camel 1VH dataset and strings inferred from other datasets are 
shown in red.  

 
Figure A18. Abundances of all common 15-mers in the Camel 1VH dataset. 89 common 15-mers in the 
Camel 1VH dataset have abundances varying from 48 to 474. The y–axis represents the number of common 15-
mers with the given abundance. Red, yellow, and violet bars represent the number of common 15-mers with 
given abundance among known, mutated, and trimmed 15-mers. There exist 35 known (red bars), 14 mutated 
(orange bars), 24 trimmed (violet bars), and 16 foreign (blue bars) common 15-mers.  

Table A12 provides information about the fraction of traceable and tandem CDR3s in various camel 
datasets. Figure A19 provides information about the usage of four inferred camel D genes. Although 
all four D genes occur in both VH and VHH antibodies, their usage varies depending on the antibody 
type. Conrath et al., 2003 hypothesized that the same D and J genes are used for forming both the VH 
and VHH camel antibodies. If this hypothesis is correct, then the variations in the usage of D genes in 
the VH and VHH antibodies are most likely caused by differences between the RSSs in the V genes in 
the VH and VHH loci.  
 

dataset 
traceable CDR3s tandem CDR3s non-traceable CDR3s 

# (%) avg. 
length # (%) avg. length # (%) avg. 

length 
Camel 1VH 10,224 (22%) 55 176 (0.4%) 69 35,926 (77.6%) 54 
Camel 1VHH 8443 (21.2%) 60 222 (0.6%) 73 31,036 (78.2%) 60 
Camel 2VH 12,158 (21%) 54 183 (0.3%) 70 45,777 (78.7%) 53 
Camel 2VHH 17,356 (23.3%) 56 1292 (1.7%) 61 56,198 (76%) 54 
Camel 3VH 17,289 (21.8%) 51 1124 (1.4%) 59 60,969 (76.8%) 46 
Camel 3VHH 13546 (23%) 56 1068 (1.8%) 62 44708 (75.2%) 53 
Table A12. Classification of CDR3s across six camel immunosequencing datasets. Since only a small 
percentage of CDR3s in camel immunosequencing datasets contains 15-mers from the inferred camel D genes, 
we defined a traceable CDR3 as a CDR3 that include 15-mers with up to two mutations from 15-mers from the 
inferred camel D genes. 
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Figure A19. Usage of four camel D genes across six camel datasets (left) and the similarity matrix of 
camel datasets constructed based on usages of their D genes (right). 

Figure A20 presents comparison between the four camel D genes and eight alpaca D genes listed in 
the IMGT database (camel and alpaca split ≈16 million years ago). For each camel D genes, there 
exists a similar alpaca D gene with percent identity varying from 82% to 94%.  

 
Figure A20. Comparison of four camel D genes with eight alpaca D genes. (Left) Phylogenetic tree for 
combined camel (blue) and alpaca (red) D genes. (Right) Alignment of four pairs of similar camel and alpaca 
genes. Differences between camel and alpaca D genes are shown in red.  

Supplemental Note: Traceable CDR3s  
Figure A21 illustrates the usage of all human D genes across all HEALTHY datasets. Table A13 
illustrates that the percentage of traceable (tandem) CDR3s varies from 43% to 55% (0.1 – 0.2%) 
across all HEALTHY datasets. The average length of traceable, tandem, and non-traceable CDR3s is 
53, 71, and 40 nucleotides, respectively.  
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Figure A21. Usage of human D genes across all HEALTHY datasets. (Top) Usage of human D genes in the 
Set 1 dataset (yellow bars) compared to the minimal (blue bars), average (green bars), and maximal (red bars) 
usage of D genes across all HEALTHY datasets. (Bottom) Each cell shows the percentage of CDR3s formed by 
the corresponding D gene (x-axis) in the corresponding dataset (y-axis).  

dataset traceable CDR3s tandem CDR3s non-traceable CDR3s 
# (%) avg. length # (%) avg. length # (%) avg. length 

Set 1 37938 (46%) 54 114 (0.1%) 72 44528 (54%) 49 
Set 2 34768 (46%) 54 161 (0.2%) 71 40470 (54%) 48 
Set 3 14492 (44%) 53 45 (0.1%) 70 18552 (56%) 48 
Set 4 47764 (50%) 53 159 (0.1%) 73 47296 (60%) 48 
Set 5 54997 (46%) 53 145 (0.1%) 68 63600 (54%) 47 
Set 6 34900 (46%) 54 122 (0.1%) 71 40886 (54%) 48 
Set 7 54180 (43%) 53 123 (0.1%) 70 70435 (56%) 47 
Set 8 31072 (46%) 53 94 (0.1%) 70 36157 (54%) 48 
Set 9 68664 (52%) 54 263 (0.2%) 72 63563 (48%) 49 
Set 10 56873 (55%) 52 127 (0.1%) 69 45700 (44%) 47 
Set 11 38381 (45%) 53 87 (0.1%) 70 45916 (54%) 48 
Set 12 54674 (48%) 51 110 (0.1%) 70 60195 (52%) 46 
Set 13 64696 (50%) 52 109 (0.1%) 70 65721 (50%) 46 
Set 14 63610 (53%) 52 151 (0.1%) 72 55933 (47%) 47 
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Table A13. Information about traceable, tandem, and non-traceable CDR3s across all HEALTHY 
datasets.   

Supplemental Note: D gene classification by IgScout and IgBlast 
We compared the D gene classification results generated by IgScout and IgBlast. Since IgBlast 
computes alignments for full-length immunoglobulin sequences, we analyzed raw reads for the Set1 
dataset. 1,414,503 out of 1,611,497 reads (87%) were classified as CDR3-containing reads by both 
IgBlast and DiversityAnalyzer.   
 
We classify a CDR3 as non-traceable if IgBlast reports several best D hits with the same alignment 
score. 550,514 out of 1,414,503 CDR3s (39%) are non-traceable. We also discarded 287,881 CDR3s 
(20%) because the D hits found by IgBlast are short and thus unreliable (shorter than 11 nt). For the 
remaining 576,108 CDR3s with putative D hits, we compared hits reported by IgBlast with hits 
reported by IgScout. For 504,028 out of 576,108 CDR3s (87%), IgBlast and IgScout report identical 
D hits. For 4613 CDR3s, IgScout reported tandem D genes (1%). The vast majority of the remaining 
12% of CDR3s (where IgBlast and IgScout disagreed) correspond to similar D genes (e.g., the 31-
nucleotide long D22 and D9 that share a 7-mer and a 9-mer). In this case, different scoring schemes 
produce slightly different results and it is not clear how to select the best one. 

Supplemental Note: Analysis of tandem CDR3s  
IgScout identified 1900 tandem CDR3s in fourteen immunosequencing datasets corresponding to 225 
distinct pairs of D genes (D-pairs). For each D-pair, we define the D-pair abundance as the number 
of tandem CDR3s formed by D genes in the pair and classify abundant D-pairs as the D-pairs with 
abundances exceeding 1% of the number of all tandem CDR3s. 27 abundant D-pairs include 15 D 
genes and form 916 out of 1900 tandem CDR3. Figure A22 presents a graph with 16 vertices 
corresponding to D genes participating in abundant D-pairs (gene D5 corresponds to two vertices 
since it occurs twice in the IGH locus) and 27 edges (corresponding to abundant D-pairs). This graph 
turned out to be an acyclic directed graph and its topological order is the same as the order of D genes 
in the IGH locus. Thus, our analysis agrees with conclusion made by Briney et al., 2012 that the order 
of D genes forming tandem CDR3s follows their order in the IGH locus.  

 
Figure A22. Graph on 16 vertices and 27 edges corresponding to abundant D-pairs. Each abundant D-pair 
is represented by an edge from its first D gene to its second D gene.  

We compared usage of D genes in traceable CDR3s with usage of the first and second D genes in D-
pairs. Six D genes with high usage (>5%) in traceable CDR3s (D3, D10, D13, D15, D19, and D22) 
also have high usage (>5%) in tandem CDR3s (Figure A23). However, eight abundant D genes in 
tandem CDR3s (D2, D5, D6, D8, D12, D17, D21, and D26) are not abundant in traceable CDR3s.  
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Figure A23. Usage of known D genes in traceable CDR3s (green) and tandem CDR3s as the 1st (purple) 
and 2nd (orange) D gene forming a tandem CDR3. The average usage was computed across usages in all 
HEALTHY datasets.  

Table A14 presents the tandem bias and fraction of tandem CDR3s for all HEALTHY datasets. We 
classify a pair (D, D’) of D genes as direct (reverse) if all occurrences of D precede (follow) all 
occurrences of D’ in the IGH locus. A pair (D, D’) is classified as ambiguous if it is neither direct, not 
reverse. Note that only pairs including D4 or D5 gene (that have two copies in the IGH locus) can be 
classified as ambiguous. We classify a tandem CDR3 as direct/reverse/ambiguous if it is formed by 
direct/reverse/ambiguous pair of D genes. The average percentages of direct, reverse and ambiguous 
CDR3s across all HEALTHY datasets are 82%, 6%, and 12%. On average, 88%, 91%, and 85% of 
sequences are productive in direct, reverse and ambiguous CDR3s across all HEALTHY datasets 
(Figure A24). Thus, the identified tandem CDR3s are likely to represent productive immunoglobulins 
rather than sample preparation artifacts. 
 

dataset tandem bias % of tandem CDR3s dataset tandem bias % of tandem CDR3s 
Set 1 0.10 0.20 Set 8 0.10 0.18 
Set 2 0.20 0.30 Set 9 0.04 0.25 
Set 3 0.07 0.18 Set 10 0.06 0.16 
Set 4 0.10 0.21 Set 11 0.16 0.14 
Set 5 0.05 0.16 Set 12 0.09 0.13 
Set 6 0.10 0.21 Set 13 0.06 0.11 
Set 7 0.08 0.14 Set 14 0.09 0.16 

Table A14. The tandem bias and the percentage of tandem CDR3s for all HEALTHY datasets. The 
column “% of tandem CDR3” shows the percentage of tandem CDR3 among all traceable CDR3s for each 
immunosequencing dataset.  
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Figure A24. Productive and non-productive sequences in direct, ambiguous, and reverse CDR3s across 14 
HEALTHY datasets. 
 
Figure A25 demonstrates that the percentage and length of tandem CDR3s in the ALLERGY BM 
datasets is higher than in the ALLERGY PBMC and HIV PBMC datasets. Table A15 shows the 
numbers of sequences containing tandem CDR3s classified according to the immunoglobulin isotype 
in the ALLERGY and HIV datasets. 
 

  
Figure A25. The percentages (left) and lengths (right) of tandem CDR3s in ALLERGY (bone marrow), 
ALLERGY (PBMC), and HIV (PBMC) datasets.   

 
Dataset IgM IgG IgE IgA Dataset IgM IgG IgE IgA 

ALLERGY1 104 5 0 0 ALLERGY20 49 2 0 3 

ALLERGY2 183 6 2 3 ALLERGY21 386 3 0 7 

ALLERGY3 241 4 0 2 ALLERGY22 353 7 0 8 

ALLERGY4 244 1 1 1 ALLERGY23 213 1 0 1 

ALLERGY5 255 13 1 3 ALLERGY24 138 2 0 0 

ALLERGY6 385 11 0 6 HIV1 12 29 0 0 

ALLERGY7 194 5 0 8 HIV2 53 22 0 0 

ALLERGY8 275 2 0 2 HIV3 8 32 0 0 

ALLERGY9 49 4 0 12 HIV4 58 24 0 0 

ALLERGY10 101 3 0 10 HIV5 44 17 0 0 

ALLERGY11 147 6 0 9 HIV6 49 16 0 0 
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ALLERGY12 147 5 0 11 HIV7 11 26 0 0 

ALLERGY13 175 7 0 5 HIV8 10 29 0 0 

ALLERGY14 124 11 0 6 HIV9 18 39 0 0 

ALLERGY15 130 7 0 4 HIV10 11 33 0 0 

ALLERGY16 180 8 0 7 HIV11 8 27 0 0 

ALLERGY17 142 3 0 6 HIV12 8 21 0 0 

ALLERGY18 313 8 0 5 HIV13 5 20 0 0 

ALLERGY19 57 3 1 3 
Table A15. The number of sequences containing tandem CDR3s classified according to the 
immunoglobulin isotype (ALLERGY and HIV datasets). 

Figure A26 shows the tandem matrix constructed based on pairs of D genes forming tandem CDR3s 
in 15 datasets corresponding to the hepatitis patient 1776 analyzed in (Galson et al., 2015). The large 
number of entries in the D22 row in the lower part of this matrix suggests that the D22 gene is 
duplicated in this patient.  

 
Figure A26. The tandem matrix for D genes forming tandem CDR3s in the datasets corresponding to the 
hepatitis patient 1776 (Galson et al., 2015). 

Supplemental Note: Ultra-long CDR3s  
We analyzed inter-D insertions in all 1900 tandem CDR3s across all HEALTHY datasets. These 
tandem CDR3s contain 1081 distinct inter-D insertions, varying in length from 0 to 153 nucleotides 
(Figure A27). 384 of them have length at least 10 nucleotides. Since most of them do not share 
significant similarities, they likely correspond to randomly generated sequences.  
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Figure A27. Distribution of lengths of inter-D insertions in tandem CDR3s across all HEALTHY datasets. 
Two ultra-long inter-D insertions (of length 153 nucleotides) are not shown.  

Two longest inter-D insertions (denoted I1 and I2) appear in the Set 1 and have length 153 nucleotides. 
They are formed by genes D9 and D10, differ by a single nucleotide, and appear in CDR3s differing 
by six nucleotides (Figure A28, top). The inter-D insertion I2 starts with the right RSS of D9 and ends 
with the left RSS of D10 (Figure A28, bottom).  
 
Additionally, we detected RSS skipping in 13 tandem CDR3s from the ALLERGY datasets. We have 
also detected 69 ultra-long CDR3s (9 of them are productive) containing a single D gene and some 
genomic fragment from IGH locus. The origin of these 69 additional CDR3s remains unclear, we 
suggest that they result from partially off-target recombination involving the CAC motif (Hu et al., 
2015; Zhao et al., 2016; Jain et al., 2018). For example, all 9 productive CDR3s are formed skipping 
of the right RSS of D22. Instead of it, somatic recombination uses a cryptic RSS (CACAGCA + 
ACCCAAACA) located at the distance 129 nt from the end of D22 (Figure A29). As a result, the 
found CDR3s contain both a fragment of D22, the right RSS of D22, and a fragment of IGH locus 
following it. We also have not found a strong association between found ultra-long CDR3s and 
specific V or J genes.  
 
Recent studies demonstrated importance of such genomic insertions, e.g., in the case of the LAIR 
insertion in malaria specific antibodies (Tan et al., 2016). We found 9 productive CDR3s among 83 
detected ultra-long CDR3s (the example mentioned in the text is not productive) suggesting that the 
RSS skipping mechanism may contribute to the diversity of antibody repertoire.  
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Figure A28. RSS skipping in ultra-long tandem CDR3s. (Top) Alignment of tandem CDR3s formed by 
genes D9 (yellow) and D10 (green) and containing ultra-long inter-D insertions I1 (blue) and I2 (red). (Middle) 
Alignment of the full-length sequence corresponding to the first ultra-long CDR3 against germline V, D, and J 
genes generated using IgBlast. Note that the illustrated sequence is not productive. (Bottom) Fragment of the 
IGH locus starting with the left RSS sequence of the D9 gene and ending with the right RSS sequence of the 
D10 gene. Left RSS sequences are shown as concatenates of a nonamer (shown in blue), a 12-nucleotide long 
spacer (shown in italic), and a heptamer (shown in blue). Right RSS sequences are shown as concatenates of a 
heptamer (shown in blue), a 12-nucleotide long spacer (shown in italic), and a nonamer (shown in blue). 
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Figure A29. RSS skipping and off-target recombination results in a productive ultra-long CDR3 (found in 
ALLERGY13 dataset). (Top) Alignment of the full-length sequence corresponding to the first ultra-long 
CDR3 against germline V, D, and J genes generated using IgBlast. (Bottom) Fragment of the IGH locus starting 
with the left RSS sequence of the D22 gene and ending with a cryptic RSS. The left RSS of D22 is shown as 
concatenates of a nonamer (shown in blue), a 12-nucleotide long spacer (shown in italic), and a heptamer 
(shown in blue). The right RSS of D22 and the cryptic RSS are shown as concatenates of a heptamer (shown in 
blue), a 12-nucleotide long spacer (shown in italic), and a nonamer (shown in blue). 

Supplemental Note: De novo reconstruction of human J genes  
All human J genes are located in a 2 kb long region in the human IGH locus (Table A16). Table A17 
and Figure A30 show allelic variants of human J genes listed in the IMGT database.  
 

Name IMGT name Position (bp) Length (nt) 
J1 IGHJ1 105,865,405 52 
J2 IGHJ2 105,865,197 53 
J3 IGHJ3 105,864,585 50 
J4 IGHJ4 105,864,213 48 
J5 IGHJ5 105,863,812 51 
J6 IGHJ6 105,863,196 63 

Table A16. Positions and lengths of J genes on the 14th chromosome in the human genome. Since the IGH 
locus starts at the end of the 14th chromosome, positions are given with respect to its complementary sequence 
(assembly GRCh38.p12). 

J gene IMGT allele ID 
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J1 IGHJ1*01 J1 
J2 IGHJ2*01 J2 

J3 IGHJ3*01 J3* 
IGHJ3*02 J3 

J4 
IGHJ4*01 J4* 
IGHJ4*02 J4 
IGHJ4*03 J4** 

J5 IGHJ5*01 J5 
IGHJ5*02 J5* 

J6 

IGHJ6*01 J6* 
IGHJ6*02 J6 
IGHJ6*03 J6** 
IGHJ6*04 J6*** 

Table A17. Information about variants of J genes and their correspondence with alleles listed in the 
IMGT database.  

 
Figure A30. Allelic variants of human J genes. Differences between various variants are highlighted in red. 

De novo reconstruction of J genes requires immunosequencing reads that cover the entire J genes.  
This is not the case for many immunosequencing datasets, including all HEALTHY datasets. We 
benchmarked how IgScout reconstructs human J genes using the ALLERGY (rather than HEALTHY) 
datasets since reads in these datasets cover the entire J segment.  
 
We combined four datasets corresponding to the first allergic donor and identified 5,940,059 
fragments of J genes in reads from this dataset using IgReC, resulting in the set of strings Jtrimmed. 
Afterwards, we applied IgScout to infer J genes from these strings. Since J genes are longer than D 
genes, we increased the parameter k-mer size from 15 to 40 (all 40-mers in J genes are unique, i.e., 
they appear in a single J gene). The human J genes (from J1 to J6) contain 83 40-mers (192 40-mers 
including their alleles listed in the IMGT database). The Jtrimmed dataset contains all 40-mers appearing 
in six human J genes.  
 
We classify a k-mer as known if it occurs in a human J gene (from J1 to J6), mutated if it differs from 
a known k-mer by a single nucleotide, and trimmed if it contains a known (k-2)-mer. All other k-mers 
are classified as foreign. 41% of strings in the Jtrimmed dataset contain a known 40-mer. 43% strings in 
the Jtrimmed dataset contain either a known, or a mutated, or a trimmed 40-mer.  
 
Since the number of J genes is smaller than the number of D genes (6 vs 25), we increased the 
fraction parameter to 0.02 for the case of the J gene finding, i.e., a k-mer is classified as common if its 
abundance exceeds 2% of the number of sequences in the Jtrimmed set. Figure A31 presents distribution 
of abundances of all 47 common 40-mers in the Jtrimmed set. Figure A32 shows that the usages of 
human J genes are similar for various ALLERGY datasets.  
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Figure A31. Abundances of all 47 common 40-mers in the Jtrimmed set. 47 common 40-mers in the Jtrimmed set 
have abundances varying from 119,082 to 1,079,233. The y–axis represents the number of common 40-mers 
with given abundance. All 47 common 40-mers are known (shown as red bars). Each bar represents the number 
of common 40-mers with given abundance. The histogram represents 29 bins of width 10,000 each. 

 
Figure A32. Usage of human J genes in the ALLERGY datasets. We merged four datasets corresponding to 
each of six ALLERGY donors and computed the J gene usage for each donor.  

We applied IgScout to the Jtrimmed dataset with k = 40. Ranks and abundances of known 40-mers are 
shown in Figure A33. IgScout reconstructed four strings representing the complete sequences of the 
J3, J4, J5, and J6 genes (Figure A34). The J1 and J2 genes were not reconstructed by IgScout since 
their most abundant 40-mers do not pass the fraction threshold (the most abundant 40-mer from the J1 
and J2 genes are supported by 30,000 and 99,000 CDR3s, respectively.  
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Figure A33. Ranks (top) and abundances (bottom) of 40-mers from human J genes (Jtrimmed set). Details of 
this visualization are described in the legend for Figure A3. Abundances exceeding 100,000 are shown in red.  

 
Figure A34. Results of the IgScout algorithm on the Jtrimmed dataset. Details of this visualization are 
described in the legend for Figure 2. 

Since IgDiscover (Corcoran et al., 2016) is limited to de novo reconstruction of V genes, IMPre 
(Zhang et al., 2016) is the only available tool for de novo reconstruction of J genes. Since IMpre 
demonstrates the best results on sequences trimmed by the ends of J genes, we trimmed suffixes of 
reads corresponding to constant regions. We applied IgScout and IMPre to 6 donors from the 
ALLERGY dataset and compared the J genes inferred by IgScout and IMPre (Figure A35).  
 
We classify an inferred segment as erroneous if it was formed by an addition of incorrect nucleotides 
to the start of a J gene. IgScout reconstructed four out of six human J genes over their entire lengths 
(including the known variant J6**) and made no errors. IMPre reconstructed all six J genes (including 
the known variants J3* and J6**) but made seven errors. While IgScout reconstructs complete D 
genes, IMPre misses 2.3 nucleotides on average at the start of the reconstructed J genes.  
 



34 
 

Both IgScout and IMPre reported 3 novel variants of J genes each. However, since all these six 
variants are different, they are likely caused by frequent SHMs in J genes and thus require additional 
tuning of both tools for de novo reconstruction of J genes.  
 

  

 
 

Figure A35. De novo reconstructions of J genes for six ALLERGY patients using using IgScout (top) and 
IMPre (bottom). Details of this visualization are described in the legends for Figure 3 and Figure A3. Some 
reported sequences represent inaccurately reconstructed J genes (e.g., a J gene with several added nucleotides at 
the start) that we represented using red circles.  

Supplemental Note: List of tandem CDR3s 
Figure A36 lists all 114 tandem CDR3s in the Set 1 dataset. 
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Figure A36. List of 114 tandem CDR3s in the Set 1 dataset. All 114 tandem CDR3s can be found here. 
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