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 49 

Cellular repair of double-stranded DNA breaks and inDelphi  50 

DNA double-strand breaks are detrimental to genomic stability, and as such the detection 51 

and faithful repair of genomic lesions is crucial to cellular integrity. A large number of 52 

genes have evolved to respond to and repair DNA double-strand breaks, and these genes 53 

can be broadly grouped into a set of DNA repair pathways1, each of which differs in the 54 

biochemical steps it takes to repair DNA double-strand breaks. Accordingly, these 55 

pathways tend to produce characteristically distinguishable non-wildtype genotypic 56 

outcomes. 57 

 58 

The goal of our machine learning algorithm, inDelphi, is to accurately predict the identities 59 

and relative frequencies of non-wildtype genotypic outcomes produced following a 60 

CRISPR/Cas9-mediated DNA double-strand break. To accomplish this goal, we 61 

developed parameters to classify three distinct categories of genotypic outcomes, 62 

microhomology deletions, microhomology-less deletions, and insertions, informed by the 63 

biochemical mechanisms underlying the DNA repair pathways that typically give rise to 64 

them.  65 

   66 

Double strand breaks are thought to be repaired via four major pathways: classical non-67 

homologous end-joining (c-NHEJ), alternative-NHEJ (alt-NHEJ), microhomology-68 

mediated end-joining (MMEJ), and homology-directed repair (HDR)1. To create inDelphi, 69 

we developed three machine learning modules to model genotypic outcomes assuming 70 

characteristic of the c-NHEJ, microhomology mediated alt-NHEJ, and MMEJ pathways. 71 

While template-free CRISPR/Cas9 DNA double-strand break may lead to HDR repair via 72 

endogenous homology templates that exist in trans2, we do not explicitly model HDR-73 

characteristic outcomes using our algorithm.   74 

 75 

Before proceeding, it is important to note that while specific DNA repair pathways are 76 

characteristically associated with distinct genotypic outcomes, the proteins involved in the 77 

various pathways and the resulting repair products may at times overlap. This fact has 78 

several implications. First, we cannot make conclusive statements about the role of 79 

specific proteins or pathways in specific genotypic outcomes without perturbation 80 

experiments (e.g. our comparison of wildtype and Prkdc-/-Lig4-/- mESCs can illuminate the 81 

roles of these proteins, specifically). Second, because assigning genotypic outcomes to 82 

biochemical mechanisms is likely imperfect, we use machine learning methods to identify 83 

trends and patterns in genotype frequencies that refine this crude binning process.   84 

 85 

In the first step of the inDelphi method, we separate genotypic outcomes into three 86 

classes: microhomology deletions (MH deletions), microhomology-less deletions (MH-87 

less deletions), and single-base insertions (1-bp insertions) (Figure 1e). Below we outline 88 

the algorithmic definitions of each genotypic outcome class, the pathways associated with 89 

each class, and the DNA sequence parameters included in inDelphi training of each class. 90 

For more detailed technical algorithmic definitions of the genotypic outcome classes, see 91 

Supplementary Methods. 92 

 93 



 

 

MH deletions are predicted from MH length, MH GC content, and deletion length 94 

The majority of Cas9-mediated double-strand break repair genotypes we observe in our 95 

datasets are what we classify as MH deletions (53-58% in mESC, K562, HCT116, and 96 

HEK293). We hypothesize that these deletions occur through MMEJ-like processes and 97 

use known features of this pathways to inform a machine learning module to predict MH 98 

deletion outcomes. Following 5’-end resection as occurs in MMEJ, alt-NHEJ, and HDR1, 99 

microhomologous basepairing of single-stranded DNA (ssDNA) sequences occurs 100 

across the border of the double strand breakpoint3,4. To restore a contiguous double-101 

strand DNA chain, the 5’-overhangs not participating in the microhomology are removed 102 

up until the paired microhomology region, and the unpaired ssDNA sequences are 103 

extended by DNA polymerase using the opposing strand as a template (Figure 1d, 104 

Extended Data Fig. 2).  105 

 106 

Assuming these same processes, inDelphi calculates the set of all MH deletions available 107 

given a specific sequence context and cleavage site.  108 

 109 

As an example workflow, given the following sequence and its cleavage site: 110 

 111 
ACGTG|CATGA 112 
TGCAC|GTACT 113 

 114 

for every possible deletion length from 1-bp to 60-bp deletions, we overlap the 3’-115 

overhang downstream of the cut site under the upstream 3’-overhang and determine if 116 

there is any microhomologous basepairing. As an example, given the 4-bp deletion 117 

length: 118 

 119 
ACGTG 120 

 | ||  121 
 GTACT 122 

 123 

we see that there are three microhomologous basepairing events.  124 

 125 

We then choose a particular microhomology (here, the highlighted C:G): 126 

 127 
ACGTG 128 
 | ||  129 

 GTACT 130 

 131 

then generate its unique repair genotype by following left-to-right along the top strand and 132 

jumping down to the complement of the bottom strand to simulate DNA polymerase fill-133 

in.  134 

 135 

Here, this yields:  136 

 137 
ACATGA 138 
TGTACT 139 

 140 



 

 

This can also be displayed as an alignment. We note that by “jumping down” after the first 141 

base in the top strand, we can also describe this outcome using the delta-position 1. (See 142 

section on delta-positions). A deletion at delta-position 0 yields the same genotype. 143 

 144 

Deletion a: AC----ATGA 145 

Wt:  ACGTGCATGA 146 

 147 

This same sequence context and cleavage site could produce a distinct 4-bp MH deletion 148 

genotypic outcome through use of the TG:AC microhomology. This single outcome can 149 

be described as using delta-positions 2, 3, or 4. inDelphi uses only the single maximum 150 

delta-position (here, 4) to described a unique MH deletion. 151 

 152 

Deletion b:  ACGTG----A 153 

Wt:  ACGTGCATGA 154 

 155 

Thus, there may be multiple MH deletion outcome genotypes for a given deletion length, 156 

and there is always a 1:1 mapping between the microhomologous basepairing used in 157 

that MH deletion and the resultant genotypic outcome. The set of MH deletions thus 158 

includes all 1-bp to 60-bp deletions that can be derived from the steps above that simulate 159 

the MMEJ mechanism. 160 

 161 

MMEJ efficiency has been reported to depend on the thermodynamic favorability and 162 

stability of a candidate microhomology3,4. To parameterize MH deletions using the 163 

biochemical sequence features that influence this form of DNA repair, inDelphi calculates 164 

the MH length, MH GC content, and resulting deletion length for each possible MH 165 

deletion. These features are input into a machine learning module referred to in the 166 

Supplementary Methods as the microhomology neural network (MH-NN) to learn the 167 

relationship between these features and the frequency of an MH deletion outcome in a 168 

training CRISPR/Cas9 genotypic outcome dataset. While we predict and empirically find 169 

that favored MH deletions have long MH lengths relative to total deletion length and high 170 

MH GC-contents, we do not provide any explicit direction or comparative weighting to 171 

these parameters at the outset. inDelphi then outputs a phi-score for any MH deletion 172 

genotype (whether it was in the training data or not) that represents the favorability of that 173 

outcome as predicted by MH-NN.  174 

 175 

It is important to emphasize that the phi-score of a particular MH deletion does not itself 176 

represent the likelihood of that MH deletion occurring in the context of all MH deletions at 177 

a given site. Some CRISPR/Cas9 target sites may have many possible favorable MH 178 

deletion outcomes while other sites have few, and thus phi-score must be normalized for 179 

a given target site to generate the fractional likelihood of that genotypic outcome at that 180 

site. Total unnormalized MH deletion phi-score is one factor that is further used to predict 181 

the relative frequency of the different repair classes: MH deletions, MH-less deletions, 182 

and insertions.  183 

 184 

  185 



 

 

MH-less deletions are predicted from their length 186 

We define MH-less deletions as all possible deletions that have not been accounted for 187 

by the workflow described above for MH deletions. Mechanistically, our data analysis 188 

suggests that MH deletions are associated with repair genotypes produced by c-NHEJ 189 

and microhomology-mediated alt-NHEJ pathways. 190 

 191 

Following a double-strand break, c-NHEJ-associated proteins rapidly bind the DNA 192 

strands flanking the double-strand DNA breakpoint and recruit ligases, exonucleases, and 193 

polymerases to process and re-anneal the breakpoint in the absence of 5’-end resection 194 

(Extended Data Fig. 2)1,5. Commonly, c-NHEJ repair is error-free; however, in the context 195 

of Cas9-mediated cutting, faithful repair leads to repeated cutting, thereby increasing the 196 

eventual likelihood of mutagenic repair. Erroneous c-NHEJ repair products are mainly 197 

thought to consist of small insertions or deletions or combinations thereof that most 198 

frequently occur in the direct vicinity of the DNA break point5–7. The resulting deletions, 199 

which we refer to as medial end-joining MH-less deletions, have often lost bases both 200 

upstream and downstream of the cleavage site. 201 

 202 

Microhomology-mediated alt-NHEJ is a distinct pathway that produces MH-less deletion 203 

products. In contrast to c-NHEJ, which is microhomology independent, this form of alt-204 

NHEJ repair occurs following 5’-end resection and is mediated by microhomology in the 205 

sequence surrounding the double-strand break-point1. Microhomologous basepairing 206 

stabilizes the 3’-ssDNA overhangs following 5’-end resection, similarly to in MMEJ, 207 

allowing DNA ligases to join the break across one of the strands of this temporarily 208 

configured complex. The opposing un-annealed flap is then removed, and newly 209 

synthesized DNA templated off of the remaining strand is annealed to repair the lesion 210 

(Extended Data Fig. 2).  211 

 212 

While alt-NHEJ uses microhomology, the repair products it produces do not follow the 213 

predictable genotypic patterns induced by MMEJ and are thus grouped into MH-less 214 

deletion genotypes. MH deletions are a direct merger of both annealed strands, in which 215 

the outcome genotype switches from top to bottom strand at the exact end-point of a 216 

microhomology. In contrast, while alt-NHEJ employs microhomology in its repair 217 

mechanism, the deletion outcomes it generates comprise bases exclusively derived from 218 

either the top or bottom strand. Mechanistically, this occurs because ligation of a 3’-219 

overhang to its downstream ligation partner results in removal of the entire opposing 220 

ssDNA overhang up until the point of ligation. This process prevents any deletion from 221 

occurring in the 3’-overhang strand that is first attached to the DNA backbone, while 222 

inducing loss of an indeterminant length of sequence on the opposing strand. The 223 

resulting deletion genotypes, which we refer to as unilateral end-joining MH-less 224 

deletions, do not retain information on the exact microhomology causal to their 225 

occurrence, and are thus also referred to as MH-less.  226 

 227 

Consequently, the various mechanisms that give rise to MH-less deletions are capable of 228 

generating a vast number of genotypic outcomes for any given deletion length. Having 229 

less information on the biochemical mechanisms that impact the relative frequency of 230 



 

 

NHEJ deletion products, inDelphi models these deletions without assuming any particular 231 

mechanism. 232 

 233 

inDelphi detects MH-less deletions from training data as the set of all deletions that are 234 

not MH deletions and parameterizes them solely by the length of the resulting deletion. 235 

This is based on the simple assumption that c-NHEJ and alt-NHEJ processes are most 236 

likely to produce short deletions, supported by our empirical observation. As with MH 237 

deletions, this assumption is not explicitly coded into the inDelphi MH-less deletion 238 

prediction module, instead allowing it to be “learned” by a neural network called MHless-239 

NN.  240 

 241 

MHless-NN optimizes a phi-score for a given MH-less deletion length, grounded in the 242 

frequency of MH-less deletion outcomes of that length observed in the training data. We 243 

observe that MHless-NN learns a near-exponential decaying phi-score for increasing 244 

deletion length, that reflects the sum total frequency of all MH-less deletion genotypes. 245 

The total unnormalized MH-less deletion phi-score for a given target and cut site is also 246 

employed to inform the relative frequency of different repair classes.  247 

 248 

1-bp insertions are predicted from sequence context and deletion phi-scores 249 

Lastly, inDelphi predicts 1-bp insertions from both the broader sequence context and the 250 

immediate vicinity of the cleavage site. We empirically find that 1-bp insertions are far 251 

more common than longer insertions, so we focus on their prediction. It is classically 252 

assumed that short sequence insertions are the result of c-NHEJ6,7, however, little else is 253 

known about their biochemical mechanism as it pertains to local sequence context to help 254 

inform prediction. Nonetheless, we find powerful correlations between the identities of the 255 

bases surrounding the Cas9 cleavage site and the frequency and identity of the inserted 256 

base (see main text). Motivated by these empirical observations, inDelphi is fed with 257 

training data on 1-bp insertion frequencies and identities at each training site 258 

parameterized with the identities of the -3, -4, and -5 bases upstream of the NGG PAM-259 

sequence (when the training set is sufficiently large, and the -4 base alone when training 260 

data is limited) as features. Also added as features are the precision score of the deletion 261 

length distribution and the total deletion phi-score at that site. These features are 262 

combined into a k-nearest neighbor algorithm that predicts the relative frequencies and 263 

identities of 1-bp insertion products at any target site.  264 

 265 

The combination of the MH, MH-less, and insertion model predict genotype 266 

fractions 267 

Altogether, informed by known paradigms of DNA repair, we build 2 neural networks and 268 

a k-nearest neighbor model to predict genotypic outcomes following Cas9 cutting. These 269 

models compete and collaborate in inDelphi to generate predictions of the relative 270 

frequencies of these products. This competition within inDelphi among repair types 271 

reflects empirical evidence from Lib-A and Lib-B that sequence contexts do influence 272 

classes of repair outcomes. Sequence contexts with high phi scores (high 273 

microhomology) have higher efficiencies of MH deletions among all editing outcomes 274 

(Figure 2d, Extended Data Fig. 3), and sequence contexts with low phi scores (low 275 

microhomology) have higher efficiencies of 1-bp insertions among all editing outcomes 276 



 

 

(Figure 2d, Extended Data Fig. 3). While it is tempting to generalize that the competition 277 

and collaboration among outcome classes modeled by inDelphi reflects interactions 278 

among components of distinct DNA repair pathways, the classes of outcomes considered 279 

by inDelphi do not necessarily arise from distinct DNA repair pathways as they are 280 

described above. inDelphi is trained on the repair outcomes only and cannot distinguish 281 

between the nature of genotypes when they may occur through MH-mediated and MH-282 

less mechanisms, and it is imaginable that some repair products result through more than 283 

one repair pathway.  284 

 285 

As an additional note, while NHEJ is generally assumed to dominate double-strand break 286 

repair from environmentally induced damage5, we find in the context of Cas9 cutting that 287 

MH deletion genotypes are more common than MH-less deletions and insertions. It is 288 

possible that error-free c-NHEJ is occurring frequently in response to Cas9 cutting but 289 

that its perfect repair allows for recurring Cas9 cutting that goes undetected by our 290 

workflow, thus skewing the observed relative frequency profile of mutagenic outcomes 291 

toward MMEJ-type repair. 292 

 293 

Rarer CRISPR-Cas9 outcomes 294 

Our library assay and workflow involved data processing of high-throughput sequencing 295 

data using sequence alignments and a designed procedure for categorizing sequence 296 

alignments into categories of CRISPR-related outcomes. Beyond simple deletions and 297 

insertions, we identified other rarer outcomes that were explained as indels caused by 298 

CRISPR, such as combination insertion/deletions involving and/or near the cleavage site 299 

(0.5-2% of all products) and indels near but not immediately at the cleavage site (3-5% of 300 

all products), which occurred more often on the PAM-distal side of the double-strand 301 

break (data not shown). Our library assay is unable to observe events that occur outside 302 

of our high-throughput sequencing window. 303 

 304 

Default sequence alignment procedures can generate sequence alignments involving 305 

simple CRISPR-caused deletions and insertions that do not occur immediately at the 306 

cleavage site, but that can be transformed into an equal-scoring sequence alignment 307 

where the indel does occur immediately at the cleavage site. This straightforward 308 

processing step is not performed by the most common bioinformatic tools for sequence 309 

alignment, since they were not expressly designed for CRISPR. We note here that our 310 

sequence alignment procedure takes this into account (see Supplementary Methods for 311 

more detailed description). This attention to detail enables us to accurately identify simple 312 

indels that occur near but not immediately at the cleavage site. We observe that the 313 

frequency of these indels across target sites correlates significantly with the total on-target 314 

editing efficiency (measured by the frequency of non-wild-type outcomes out of all non-315 

noise outcomes) at these target sites in HEK293 and mES cells. We also observe 316 

significantly higher frequencies in postCas9 treatment conditions than preCas9 control 317 

conditions. Together, these observations suggest that these indels are caused by 318 

CRISPR editing.  319 

 320 

Prkdc–/–Lig4–/– mutants have distinct and predictable DNA repair product 321 

distributions  322 



 

 

While it is generally true that our work cannot establish roles for specific DNA repair 323 

pathways in specific types of Cas9-mediated outcomes, we have performed an 324 

experiment in which we measure Cas9-mediated genotypic outcomes from mESCs that 325 

are lacking Prkdc and Lig4, two proteins known to be key in c-NHEJ5. We find an increase 326 

in relative frequency of MH deletions as compared to MH-less deletions in Prkdc–/–Lig4–327 
/– mESCs as compared to wild-type mESCs (see main text), which is suggestive of an 328 

increase in MMEJ outcomes at the expense of NHEJ outcomes.  329 

 330 

Intriguingly, we also find that Prkdc–/–Lig4–/– mESCs are impaired in unilateral deletions, 331 

where only bases from one side of the cutsite are removed, but not medial MH-less 332 

deletion outcomes that have loss of bases on both sides of the breakpoint. (Extended 333 

Data Fig. 6). As discussed earlier, microhomology-mediated alt-NHEJ, which we 334 

hypothesize may give rise to unilateral MH-less deletions, proceeds through a mechanism 335 

in which DNA repair intermediates that mimic MMEJ-mediated repair are formed initially 336 

(Extended Data Fig. 2), as microhomology base-pairing temporarily stabilizes 3’-337 

overhangs following 5’-end resection. Subsequently, ligation joins one 3’ overhang with 338 

the sequence on the other side of the DNA double-strand break, giving rise to a unilateral 339 

deletion. If the unilateral joining products we observe in our experiments indeed arise 340 

through similar mechanisms as those described by this form of alt-NHEJ, it is conceivable 341 

that the MMEJ pathway may overtake 3’-end ligation at this microhomology-containing 342 

intermediate step when ligation is impaired through loss of Lig4. Thus, cross-talk of 343 

microhomology-mediated repair pathways could account for loss of unilateral end-joining 344 

MH-less outcomes and concomitant increase in MH deletion outcomes. Medial joining 345 

outcomes are not hypothesized to originate from intermediates that overlap with 346 

microhomology-mediated deletion products (Extended Data Fig. 2). Therefore, the repair 347 

genotypes generated via this orthogonal pathway may be afforded more time to be 348 

completed by ligases other than Lig4, thus explaining why these outcomes appear 349 

unaffected by NHEJ impairment. 350 

 351 

While DNA repair products in Prkdc-/-Lig4-/- mESCs differ substantially from those in wild-352 

type cells, we find that these DNA repair products are also highly predictable. In particular, 353 

inDelphi performed well on held-out Prkdc-/-Lig4-/- data when trained on Prkdc-/-Lig4-/- data 354 

(indel genotype prediction median Pearson correlation = 0.84, indel length frequency 355 

prediction Pearson correlation = 0.80), showing that our modeling approach is robustly 356 

capable of learning accurate predictions for Cas9 editing data in not just wild-type 357 

experimental settings but also settings with significant biochemical perturbation. As such, 358 

we suggest here that inDelphi’s modeling approach can be useful on additional tasks 359 

unexplored here provided that inDelphi is supplied with appropriate training data. 360 

 361 

NU7041, DPKi3, and MLN4924 induce a distinct DNA repair product distribution 362 

We further investigated the role of DNA repair pathways by three separate experiments 363 

involving HTS characterization of Lib-B in mESCs treated with three separate small 364 

molecules: NU7041, a DNA dependent protein kinase (DNA-PK) inhibitor; DPKi3, another 365 

DNA-PK inhibitor, and MLN4924, a NEDD8-activating enzyme (NAE) inhibitor. DNA-PK 366 

and NAE are proteins involved in c-NHEJ5,8. 367 

 368 



 

 

MLN4924 is thought to inhibit the release of the Ku70/Ku80 heterodimer following proper 369 

c-NHEJ repair, potentially disrupting downstream processes such as transcription and 370 

replication, which may lead to decreased cell survival and a depletion of Ku70/Ku80-371 

dependent DNA repair genotypes in a population.8 372 

 373 

DNA-PK is commonly recruited to DSBs during c-NHEJ and is known to phosphorylate in 374 

vitro many c-NHEJ-related factors including Ku70/80, XRCC4, DNA Ligase IV, Artemis, 375 

H2AX, p53, and itself. Inhibition of DNA-PK leads to DNA repair defects5. The catalytic 376 

subunit of DNA-PK is encoded by the Prkdc gene, which was knocked out in Prkdc-/-Lig4-377 
/- cells. 378 

 379 

From HTS data, we observed that the frequency of MH deletions among all deletions 380 

clustered into three approximate groups: wild-type (median 77%) and MLN4924, then 381 

DPKi3 and NU7041 (median 81%), and lastly Prkdc-/-Lig4-/- (median 90%) (Extended Data 382 

Fig. 6). These data suggest that impairing DNA-PK (via DPKi3, NU7041 and Prkdc-/-) 383 

yields a moderate 17% reduction in the frequency of MH-less deletions (23% to 19%). 384 

This reduction appears to be non-redundant with knockout of Lig4 evidenced in Prkdc-385 
/-Lig4-/- cells with a 57% reduction (23% to 10%) in MH-less frequency. Lastly, impairing 386 

NAE did not have a significant impact on the frequency of MH-less deletions. 387 

 388 

We observed an overall increased frequency of repair to wild-type at pathogenic 389 

microduplication alleles after treatment with DPKi3, MLN4924, and NU7041 (Extended 390 

Data Fig. 6). Along with Prkdc-/-Lig4-/- cells, the change in repair efficiency was associated 391 

with deletion length (p < 2.2x10-3), with decreased efficiency compared to wild-type at 392 

short deletion lengths and increased efficiency at longer deletion lengths.  393 

 394 

The change in repair efficiency caused by separate treatments of DPKi3, MLN4924, and 395 

NU7041 was highly consistent across different target sites (r = 0.73, 0.77, and 0.81, 396 

Extended Data Fig. 6). This is surprising since MLN4924 inhibits a different target than 397 

DPKi3 and NU7041. We observed a similar but weaker relationship between the three 398 

small molecules and Prkdc-/-Lig4-/-, with Pearson correlations of 0.09, 0.16, and 0.18. 399 

Taken together, these observations suggest a relationship between DNA sequence and 400 

the propensity of DNA repair outcomes through c-NHEJ. 401 

 402 

In DPKi3, MLN4924, and NU7041 treated cells, the decrease in MH-less deletions 403 

primarily occurs medial joining products (Extended Data Fig. 6), suggesting that DNA-PK 404 

is a strong contributor to medial joining products. However, when both DNA-PK and Lig4 405 

are knocked out in Prkdc-/-Lig4-/- cells, the average frequency of medial joining products 406 

is not significantly changed, and instead the primary decrease occurs in unilateral joining 407 

products.  408 

 409 

Interestingly, MLN4924 increases the average frequency of unilateral joining events. 410 

Combined with its effect of decreasing medial joining products, the overall net effect of 411 

MMLN4924 is an absence of significant change to the frequency of MH-less deletions. 412 

 413 



 

 

The frequency distribution of medial joining products in Prkdc-/-Lig4-/- reveals a decrease 414 

in median frequency in combination with an inflation in high frequency outliers (target sites 415 

where >80% of all deletion products are MHless medial products) which skews the 416 

distribution’s average to be above the median. Taken together, these data confirm that 417 

both medial and unilateral products are both generally depleted in Prkdc-/-Lig4-/- cells, and 418 

suggest that knocking out DNA-PK depletes medial MHless products while knocking out 419 

Lig4 depletes unilateral MHless products. 420 

  421 



 

 

Supplementary Methods 422 

 423 

Library cloning protocol 424 

 425 

Synthesized oligo library sequence 426 
GATGGGTGCGACGCGTCAT[55bpTarget]AGATCGGAAGAGCACACGTCTGAATATTGTGGA427 
AAGGACGAAACACCG[19/20-nt PROTOSPACER depending on whether it 428 

naturally starts with a G]GTTTAAGAGCTATGCTGGAAACAGC 429 
 430 

Linker region / Oligo library amplification primer anneal region 431 

Read 2 sequencing primer stub 432 

SspI restriction site 433 

U6-promoter stub 434 

sgRNA-hairpin stub 435 

 436 

 437 

1. Oligo library QPCR to determine number of amplification cycles for Oligo 438 

Library PCR 439 

Notes: Amplification of oligos with relatively low GC-content is less efficient than GC-rich 440 

sequences. We found NEBNext polymerase to be the least biased in amplification of our 441 

library. Increasing the elongation time to 1 min per cycle for all cloning and sequencing 442 

library prep PCRs eliminates GC-skewing of library sequences and reduces the rate of 443 

PCR-recombination. 444 

 445 

- Set up the following reaction: 446 

 447 

0.4 ng  Synthesized Oligo Library 

10 ul  NEBNext 2x Master Mix 

0.5 ul  20uM OligoLib_Fw 

0.5 ul  20uM OligoLib_Rv 

0.2 ul  SybrGreen Dye (100x) 

to 20 ul H2O 

 448 

67°C annealing temperature 449 

 450 

- Check 246bp amplicon size on 2.5% agarose gel. 451 

- Determine the point that signal amplification has plateaued. 452 

  453 

2. Oligo Library PCR amplification 454 

- Set up the following reaction: 455 

 456 

4 ng  Synthesized Oligo Library 

50 ul  NEBNext 2x Master Mix 

2.5 ul  20uM OligoLib_Fw 

2.5 ul  20uM OligoLib_Rv 

to 100 ul H2O 



 

 

 457 

67°C annealing temperature, 1 minute extension time. 458 

Cycle number is half the number of cycles needed to reach signal amplification plateau 459 

in the QPCR in step 1, reduced by 1 cycle to scale for DNA input. 460 

 461 

- PCR purify amplified sequence. 462 

 463 

3. Donor template amplification 464 

- Set up the following reaction: 465 

 466 

5 ng spCas9 sgRNA plasmid (71485) 

50 ul NEBNext 2x Master Mix 

2.5 ul 20uM CircDonor_Fw 

2.5 ul 20uM CircDonor_Rv 

to 100 ul H2O 

 467 

62°C annealing temperature 468 

20 cycles 469 

 470 

- Gel purify 167bp band from 2.5% agarose gel. 471 

 472 

4. Circular assembly and restriction digest linearization 473 

Note: We use a molar ratio of donor template to amplified oligo library of 3:1. An increase 474 

in amplified oligo library compounds cross-over within library members resulting in 475 

mismatch of protospacer and target sequences.   476 

 477 

- Set up the following reaction: 478 

 479 

429 ng Donor template 

239 ng Amplified Oligo Library 

30 ul Gibson Assembly 2x Master Mix 

to 60 ul H2O 

 480 

50°C incubation for 1 hour. 481 

 482 

- Exonuclease treatment 483 

  484 

60 ul Circular assembly reaction 

9 ul ATP (25mM) 

9 ul 10x Plasmid Safe Buffer 

3 ul Plasmid Safe Nuclease 

9 ul H2O 

 485 

37°C incubation for 1 hour. 486 

 487 

- PCR purify and elute in 50 ul. 488 



 

 

- Digest to linearize library 489 

  490 

50 ul Purified assemblies  

10 ul 10x CutSmart Buffer 

3 ul SspI-HF 

37 ul H2O 

 491 

37°C incubation for ≥ 3 hours.  492 

- Gel purify 273bp band from 2.5% agarose gel. 493 

 494 

Note: Band is sometimes fuzzy and poorly visible. If not clearly discernible, proceed with 495 

gel isolation between 200-300bp.  496 

 497 

5. Linearized library QPCR to determine number of amplification cycles for PCR 498 

amplification 499 

- Set up the following reaction: 500 

 501 

0.5 % Purified linearized library 

10 ul  NEBNext 2x Master Mix 

0.5 ul  20uM PlasmidIns_Fw 

0.5 ul  20uM PlasmidIns_Rv 

0.2 ul  SybrGreen Dye (100x) 

to 20 ul H2O 

 502 

65°C annealing temperature 503 

 504 

- Determine the point that signal amplification has plateaued. 505 

  506 

6. Linearized Library PCR amplification 507 

- Set up the following reaction: 508 

 509 

50 %  Purified linearized library 

50 ul  NEBNext 2x Master Mix 

2.5 ul  20uM PlasmidIns_Fw 

2.5 ul  20uM PlasmidIns_Rv 

to 100 ul H2O 

 510 

65°C annealing temperature, 1 minute extension time. 511 

Cycle number is number of cycles needed to reach signal amplification plateau in the 512 

QPCR in step 5, reduced by 4 cycles to scale for increased DNA input. 513 

 514 

- Gel purify 375bp band from 2.5% agarose gel. 515 

 516 

7. Vector backbone digest  517 

- Set up the following reaction: 518 

 519 



 

 

2 ug spCas9 sgRNA plasmid (71485) 

10 ul 10x Buffer 2.1 

3 ul BbsI 

2 ul XbaI 

to 100 ul H2O 

 520 

37°C incubation for ≥ 3 hours.  521 

- Gel purify 5.9 kb band from 1% agarose gel. 522 

 523 

8. Vector assembly and cleanup 524 

Note: Include a ligation with water for insert as a control.   525 

 526 

- Set up the following reaction: 527 

 528 

300 ng
  

Digested vector backbone 

42 ng Amplified Oligo Library 

30 ul  Gibson Assembly 2x Master Mix 

to 60 ul H2O 

 529 

50°C incubation for 1 hour. 530 

 531 

- Isopropanol precipitation 532 

  533 

40 ul Vector assembly reaction 

0.4 ul GlycoBlue Coprecipitant 

0.8 ul 50mM NaCl 

38.8 ul Isopropanol 

 534 

- Vortex and incubate at room temperature for 15 minutes. 535 

- Spin down at ≥15.000g for 15 minutes, and carefully remove supernatant. 536 

- Wash pellet with 300ul 80% EtOH and repeat spin at ≥15.000g for 5 minutes. 537 

- Carefully remove all liquid without disturbing pellet, and let air dry for 1-3 minutes. 538 

- Dissolve dried pellet in 10 ul H2O at 55°C for 10 minutes. 539 

 540 

9. Transformation 541 

Note: Electroporation competent cells give a higher transformation efficiency than 542 

chemically competent cells. We use NEB10beta electro-competent cells, however these 543 

can be substituted for other lines and transformed according to the manufacturer’s 544 

instructions. 545 

 546 

Note: We use DRM as recovery and culture medium to enhance yield. If substituting for 547 

a less rich medium such as LB, we recommend scaling up the culture volume to obtain 548 

similar plasmid DNA quantities.  549 

 550 



 

 

Note: Antibiotic-free recovery time should be limited to 15 minutes to prevent shedding of 551 

transformed plasmids from replicating bacteria. 552 

 553 

Note: Also transform water ligation as control.   554 

 555 

- Pre-warm 3.5mL recovery medium per electroporation reaction, at 37°C for 1 hour. 556 

- Pre-warm LB-agar plates containing appropriate antibiotic. 557 

- Per reaction, add 1 ul purified vector assembly to 25ul competent cells on ice. 558 

Perform 8 replicate reactions. 559 

- Electroporate according to the manufacturer’s instructions. 560 

- Immediately add 100 ul pre-warmed recovery media per cuvette and pool all 561 

replicates into culture flask. 562 

- Add 1 mL recovery media per replicate reaction to culture flask and shake at 563 

200rpm 37°C for 10 – 15 minutes. 564 

- Plate a dilution series from 1:104 – 1:106 on LB-agar plates containing antibiotic 565 

and grow overnight at 37°C 566 

- Add 2 mL media per replicate reaction and admix appropriate antibiotic. 567 

- Grow overnight in shaking incubator at 200rpm 37°C 568 

 569 

- Assess transformation efficiency from serial dilution LB-agar plates. Expect ~106 570 

clones. 571 

 572 

The development of this cloning protocol was guided by work described in Videgal et al. 573 

2015. 574 

575 



 

 

Sequence alignment and data processing 576 

For library data, each sequenced pair of gRNA fragment and target was associated with 577 

a set of designed sequence contexts G by finding the designed sequence contexts for all 578 

gRNAs whose beginning section perfectly matches the gRNA fragment (read 1 in general 579 

does not fully sequence the gRNA), and by using locality sensitive hashing (LSH) with 7-580 

mers on the sequenced target to search for similar designed targets. An LSH score on 7-581 

mers between a reference and a sequenced context reflects the number of shared 7-582 

mers between the two. If the best reference candidate scored, through LSH, greater than 583 

5 higher than the best LSH score of the reference candidates obtained from the gRNA-584 

fragment, the LSH candidate is also added to G. LSH was used due to extensive (~33% 585 

rate) PCR recombination between read1 and read2 which in sequenced data appears as 586 

mismatched read1 and read2 pairs.  The sequenced target was aligned to each candidate 587 

in G and the alignment with the highest number of matches is kept. Sequence alignment 588 

was performed using the Needleman-Wunsch algorithm using the parameters: +1 match, 589 

-1 mismatch, -5 gap open, -0 gap extend. For library data, starting gaps cost 0. For all 590 

other data, starting and ending gaps cost 0. For VO data, sequence alignments were 591 

derived from SAM files from SRA. 592 

 593 

Alignments with low-accuracy or short matching sections flanked by long (10 bp+) 594 

insertions and deletions were filtered out as PCR recombination products (observed 595 

frequency of ~5%). These PCR recombination products are different than that occurring 596 

between read1 and read2; these occur strictly in read2. Alignments with low matching 597 

rates were removed. Deletions and insertions were shifted towards the expected 598 

cleavage site while preserving total alignment score. CRISPR-associated DNA repair 599 

events were defined as any alignment with deletions or insertions occurring within a 4 bp 600 

window centered at the expected cut site and any alignment with both deletions and 601 

insertions (combination indel) occurring with a 10 bp window centered at the expected 602 

cut site. All CRISPR-associated DNA repair events observed in control data had their 603 

frequencies subtracted from treatment data to a minimum of 0. 604 

 605 

We carried out replicate experiments for library data in each cell type. For each cell-type, 606 

each target site not fulfilling the following data quality criteria was filtered: in each 607 

replicate, data at this target site must have a total of at least 1,000 reads for all CRISPR 608 

editing outcomes at that target site (see section on “Calling CRISPR editing outcomes 609 

with high confidence” below for a discussion on the 1,000 reads threshold), and a Pearson 610 

correlation of at least 0.85 in the frequency of microhomology-based deletion events. The 611 

class of microhomology-based deletion events was used for this criterion since it is a 612 

major repair class with the highest average replicability across experiments. 613 

 614 

Details on alignment processing  615 

All alignments with gaps were shifted as much as possible towards the cleavage site while 616 

preserving the overall alignment score. Then, the following criteria were used to 617 

categorize the alignments into noise, not-noise but not CRISPR-associated (for example, 618 

wildtype); as well as primary and secondary CRISPR activity. All data used in modeling 619 

and analysis derive solely from outcomes binned into primary CRISPR activity. 620 

 621 



 

 

The following criteria was used to filter library alignments into “noise” categories. 622 

 623 

Homopolymer: Entire read is homopolymer of a single nucleotide. Not considered a 624 

CRISPR repair product.  625 

Has N: Read contains at least one N. Discarded as noise, not considered a CRISPR 626 

repair product.  627 

PCR Recombination: Contains recombination alignment signature: (1) if a long indel (10 628 

bp+) followed by chance overlap followed by long indel (10 bp+) of the opposite type, e.g., 629 

insertion-randommatch-deletion and deletion-randommatch-insertion. OR, if one of these 630 

two indels is 30 bp+, the other can be arbitrarily short. If either criteria is true, and if the 631 

chance overlap is length 5 or less, or any length with less than 80% match rate, then it 632 

satisfies the recombination signature. In addition, if both indels are 30 bp+, regardless of 633 

the middle match region, it satisfies the recombination signature. Finally, if randommatch 634 

is length 0, then indel is allowed to be any length. Not considered a CRISPR repair 635 

product. 636 

Poor-Matches: 55bp designed sequence context has less than 5 bp representation (could 637 

occur from 50 bp+ deletions or severe recombination) or less than 80% match rate. Not 638 

considered a CRISPR repair product. 639 

Cutsite-Not-Sequenced: The read does not contain the expected cleavage site. 640 

Other: An alignment with multiple indels where at least one non-gap region has lower 641 

than an 80% match rate. Or generally, any alignment not matching any defined category 642 

above or below. In practice, can include near-homopolymers. Not considered a CRISPR 643 

repair product. 644 

 645 

The following criteria was used to filter library alignments into “main” categories. 646 

Wildtype: No indels in all of alignment. Not considered a CRISPR repair product. 647 

 648 

Deletion: An alignment with only a single deletion event. Subdivided into: 649 

Deletion - Not CRISPR: Single deletion occurs outside of 4 bp window centered around 650 

cleavage site. Not considered a CRISPR repair product. 651 

Deletion - Not at cut: Single deletion occurring within 4 bp window centered around 652 

cleavage site, but not immediately at cleavage site. Considered a CRISPR repair product. 653 

Deletion: Single deletion occurring immediately at cleavage site. Considered a CRISPR 654 

repair product. 655 

 656 

Insertion: An alignment with only a single insertion event. Subdivided into: 657 

Insertion - Not CRISPR: Single insertion occurs outside of 10 bp window around cleavage 658 

site. Not considered a CRISPR repair product. 659 

Insertion - Not at cut: Single insertion occurring within 4 bp window centered around 660 

cleavage site, but not immediately at cleavage site. Considered a CRISPR repair product.  661 

Insertion: Single insertion occurring immediately at cleavage site. Considered a CRISPR 662 

repair product. 663 

 664 

Combination indel: An alignment with multiple indels where all non-gap regions have at 665 

least 80% match rate. Subdivided into: 666 



 

 

Combination Indel: All indels are within a 10 bp window around the cleavage site. 667 

Considered a primary CRISPR repair product.  668 

Forgiven Combination Indel: At least two indels, but not all, are within a 10 bp window 669 

around the cleavage site. Considered a rarer secondary CRISPR repair product, ignored.  670 

Forgiven Single Indel: Exactly one indel is within a 10 bp window around the cleavage 671 

site. Considered a rarer secondary CRISPR repair product, ignored.  672 

Combination Indel - Not CRISPR: No indels are within a 10 bp window around the 673 

cleavage site. Not considered a CRISPR repair product.  674 

 675 

We note that deletion and insertion events, even those spanning many bases, are defined 676 

to occur at a single location between bases. As such, events occurring up to 5 bp away 677 

from the cleavage site are defined as events where there are five or fewer 678 

matched/mismatched alignment positions between the event and the cleavage site, 679 

irrespective of the number of gap dashes in the alignment. 680 

 681 

Calling CRISPR editing outcomes with high confidence 682 

Following the processing steps above, we performed the following further analysis and 683 

processing steps to call high-confidence CRISPR editing outcomes. These steps largely 684 

follow heuristics, and we believe that a thorough and unbiased methodological 685 

standardization in counting CRISPR editing outcomes will be valuable future work. 686 

 687 

DNA repair at Cas9-mediated double-strand breaks is known to result in a large diversity 688 

of outcomes, with indels of varying length and positions around the cleavage site. The 689 

frequencies of many of these editing outcomes, though enriched in Cas9-treatment data 690 

over control data, are rare (<0.5% of all edited products) and can be challenging to assign 691 

as a CRISPR editing outcome due to a lack of foundational biological or computational 692 

models on the exact mechanisms of DNA repair. In addition, rare outcomes can 693 

sometimes be attributed to sequencing errors.  694 

 695 

In this work, we focus on CRISPR editing outcomes that are enriched in treatment data 696 

over control data and agree with a relatively conservative and strict model of DNA repair, 697 

in order to ensure a high degree of confidence in the editing outcomes that we call. As a 698 

result, we underestimate the total number of unique CRISPR editing outcomes, though 699 

we believe this underestimation is not by an order of magnitude, though it may be by a 700 

factor of 2x or so. 701 

 702 

We define high-confidence CRISPR editing outcomes as bins of alignments categorized 703 

by the previously described pipeline into CRISPR-associated categories that have no 704 

mismatches. Each unique deletion genotype consistent with microhomology is treated as 705 

a single unique outcome, though we note that microhomology deletions may arise by 706 

noise or chance though we expect this to be a rare event. Each unique insertion genotype 707 

is also treated as a single unique outcome, and as with MH deletions, we note that some 708 

insertions may arise by noise or chance though we anticipate this to be rare. In sum, we 709 

likely overestimate by a slight amount the true number of unique microhomology deletion 710 

and insertion events. 711 

 712 



 

 

All microhomology-less deletion genotypes are binned together for a particular deletion 713 

length, which almost always will bin together multiple unique MH-less deletion genotypes. 714 

However, the class of MH-less deletions, in general, has lower replicate consistency and 715 

higher stochasticity than MH deletions, and the space of all possible MH-less deletions is 716 

orders of magnitude larger than that of MH deletions. The class of MH-less deletions is 717 

also less frequent than MH deletions in all five human and mouse cell types we examined. 718 

In sum, we characterize MH-less deletions as comprising a large number of rare 719 

genotypes that lack high replicate consistency. As such, we conservatively count all 720 

binned MH-less deletions for a particular deletion length as a single unique outcome. In 721 

sum, we likely underestimate by a moderate amount the true number of unique 722 

microhomology-less deletion events. 723 

 724 

As MH-less deletions represents the larger space of possible unique genotypes, in total, 725 

we are likely underestimating the total number of unique outcomes in our procedure that 726 

calls unique outcomes with high confidence. We provide statistics on the total number of 727 

high-confidence unique outcomes in the manuscript and in Extended Data Fig. 1 and 5. 728 

 729 

Based on a computational simulation of subsampling the data, we empirically set 1,000 730 

reads per target site as a minimum quality threshold. The diversity of editing outcomes 731 

requires some minimum read count to consider the data as representative of editing 732 

outcomes at that target site. In Lib-A and Lib-B data in U2OS and mESCs, we empirically 733 

observe that 1,000 reads per target site lies above the “elbow” in the curve plotting the 734 

number of unique high-confidence outcomes and subsampled read count. We 735 

recommend this quality filtering methodology in general for future work studying CRISPR 736 

editing outcomes, and based on our data, empirically suggest that 1,000 reads per target 737 

site may be a useful guideline for future experimental design. 738 

 739 

Controlling for cell-type specific 1-bp insertion frequencies when measuring 740 

replicability of indel frequencies across cell-types 741 

All indels not belonging to “all major repair outcomes” were filtered out. To adjust the 742 

frequencies of all 1-bp insertion genotypes in a target site in two cell-types, the average 743 

of the total 1-bp insertion frequency among all major repair outcomes was calculated 744 

between the two cell-types, then frequencies of each 1-bp insertion genotype was 745 

adjusted proportionally such that the resulting total 1-bp insertion frequency in that is 746 

equal to the aforementioned average, and thereby equal to the adjusted 1-bp insertion 747 

frequency in the data from the other cell-type. 748 

 749 

Selection of variants from disease databases  750 

Disease variants were selected from the NCBI ClinVar database (downloaded September 751 

9, 2017)9 and the Human Gene Mutation Database (publicly available variant data from 752 

before 2014.3)10 for computational screening and subsequent experimental correction.  753 

 754 

A total of 4,935 unique variants were selected from Clinvar submissions where the 755 

functional consequence is described as complete insertions, deletions, or duplications 756 

where the reference or alternate allele is of length less than or equal to 30 nucleotides. 757 

Variants were included where at least one submitting lab designated the clinical 758 



 

 

significance as ‘pathogenic’ or ‘likely pathogenic’ and no submitting lab had designated 759 

the variant as ‘benign’ or ‘likely benign’, including variants will all disease associations. 760 

More complex indels and somatic variants were included. A total of 18,083 unique 761 

insertion variants were selected from HGMD which were between 2 to 30 nucleotides in 762 

length. Variants were included with any disease association with the HGMD classification 763 

of ‘DM’ or disease-causing mutation.  764 

 765 

SpCas9 gRNAs and their cleavage sites were enumerated for each disease allele. Using 766 

a previous version of inDelphi, genotype frequency and indel length distributions were 767 

predicted for each tuple of disease variant and unique cleavage site. Among each unique 768 

disease, the single best gRNA was identified as the gRNA inducing the highest predicted 769 

frequency of repair to wildtype genotype, and if this was impossible (due to, for example, 770 

a disease allele with 2+ bp deletion), then the single best gRNA was identified as the 771 

gRNA inducing the highest predicted frameshift repair rate. 1327 sequence contexts were 772 

designed in this manner for Lib-B. An additional 265 sequence contexts were designed 773 

by taking the 265 sequence contexts in any disease in decreasing order of predicted 774 

wildtype repair rate, starting with Clinvar, stopping at 45% wildtype repair rate, then 775 

continuing with HGMD. This yielded 1592 total sequences derived from Clinvar and 776 

HGMD. 777 

 778 

  779 



 

 

Definition of Delta-Positions 780 

Using the MMEJ mechanism, deletion events can be predicted at single-base resolution. 781 

For computational convenience, we use the tuple (deletion length, delta-position) to 782 

construct a unique identifier for deletion genotypes. A delta-position associated with a 783 

deletion length N is an integer between 0 and N inclusive (Extended Data Fig. 2). In a 784 

sequence alignment, a delta-position describes the starting position of the deletion gap in 785 

the read with respect to the reference sequence relative to the cleavage site. For a 786 

deletion length N and a cleavage site at position C such that seq[:C] and seq[C:] yield the 787 

expected DSB products where the vector slicing operation vector[index1:index2] is 788 

inclusive on the first index and exclusive on the second index (python style), a delta-789 

position of 0 corresponds to a deletion gap at seq[C-N+0 : C+0], and generally with a 790 

delta-position of D, the deletion gap occurs at seq[C-N+D : C+D]. Microhomologies can 791 

be described with multiple delta-positions. To uniquely identify microhomology-based 792 

deletion genotypes, the single maximum delta-position in the redundant set is used. 793 

Microhomology-less deletion genotypes are associated with only a single delta position 794 

and deletion length tuple; we use this as its unique identifier. 795 

 796 

Another way to define delta-positions can be motivated by the example workflow in the 797 

Supplementary Discussion on MH deletions describing how each microhomology is 798 

associated with a deletion genotype. In that workflow, the delta-position is the number of 799 

bases included on the top strand before “jumping down” to the bottom strand. 800 

 801 

MH-less medial end-joining products correspond to all MH-less genotypes with delta-802 

position between 1 and N-1 where N is the deletion length. MH-less unilateral end-joining 803 

products correspond to MH-less genotypes with delta-position 0 or N. We note that a 804 

deletion genotype with delta position N does not immediately imply that it is a 805 

microhomology-less unilateral end-joining product since it may contain microhomology 806 

(it’s possible that delta-positions N-j, N-j+1, .., N all correspond to the same MH deletion.) 807 

 808 

Definition of Precision Score 809 

For a distribution X, where |X| indicates its cardinality (or length when represented as a 810 

vector): 811 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒(𝑋) =  1 −  
− ∑ 𝑃(𝑥𝑖)

𝑛
𝑖=1 log (𝑃(𝑥𝑖))

log (|𝑋|)
 812 

This precision score ranges between zero (minimally precise, or highest entropy) to one 813 

(maximally precise, or lowest entropy). 814 

 815 

inDelphi Deletion Modeling: Neural network input and output 816 

inDelphi receives as input a sequence context and a cleavage site location, and outputs 817 

two objects: a frequency distribution on deletion genotypes, and a frequency distribution 818 

on deletion lengths. 819 

 820 

To model deletions, inDelphi trains two neural networks: MH-NN and MHless-NN. MH-821 

NN receives as input a microhomology that is described by two features: microhomology 822 

length and GC fraction in the microhomology. Using these features, MH-NN outputs a 823 



 

 

number (psi). MHless-NN receives as input the deletion length. Using this feature, 824 

MHless-NN outputs a number (psi). 825 

 826 

A phi score is obtained from a psi score using: phi_i = exp(psi_i – 0.25*deletion_length), 827 

where 0.25 is a “redundant” hyperparameter that serves to increase training speed by 828 

helpful scaling. This relationship between psi and phi is differentiable and encodes the 829 

assumption that the frequency of an event exponentially increases with neural network 830 

output psi (which empirically appears to reflect MH strength) and exponentially decreases 831 

with its minimum necessary resection length (deletion length).  832 

 833 

The architecture of the MH-NN and MHless-NN networks are input-dimension -> 16 -> 16 834 

-> 1 for a total of two hidden layers where all nodes are fully connected. Sigmoidal 835 

activations are used in all layers except the output layer. All neural network parameters 836 

are initialized with Gaussian noise centered around 0. No regularization or dropout was 837 

used. 838 

 839 

inDelphi Deletion Modeling: Making predictions 840 

Given a sequence context and cleavage site, inDelphi enumerates all unique deletion 841 

genotypes as a tuple of its deletion length and its delta-position for deletion lengths from 842 

1 bp to 60 bp. For each microhomology enumerated, an MH-phi score is obtained using 843 

MH-NN. In addition, for each deletion length from 1 bp to 60 bp, an MHindep-phi score is 844 

obtained using MHless-NN. 845 

 846 

inDelphi combines all MH-phi and MHindep-phi scores for a particular sequence context 847 

into two objects – a frequency distribution on deletion genotypes, and a frequency 848 

distribution on deletion lengths – which are both compared to observations for training. 849 

The model is designed to output two separate objects because both are of biological 850 

interest, and separate but intertwined modeling approaches are useful for generating 851 

both. By learning to generate both objects, inDelphi jointly learns about microhomology-852 

based deletion repair and microhomology-less deletion repair. 853 

 854 

To generate a frequency distribution on deletion genotypes, inDelphi assigns a score for 855 

each microhomology. Score assignment considers the concept of “full” microhomology 856 

and treats full and not full MHs differently.  857 

 858 

A microhomology is “full” if the length of the microhomology is equal to its deletion length. 859 

The biological significance of full microhomologies is that there is only a single deletion 860 

genotype possible for the entire deletion length, while in general, a single deletion length 861 

is consistent with multiple genotypes. In addition, this single genotype can be generated 862 

through not just the MH-dependent MMEJ mechanism but also through MH-less end-863 

joining, for example as mediated by Lig4. Therefore, we model full microhomologies as 864 

receiving contributions from both MH-containing and MH-less mechanisms by scoring full 865 

microhomologies as MH-phi[i] + MHindep-phi[j] for deletion length j and microhomology 866 

index i.   867 

 868 

Microhomologies that are not “full” are assigned a score of MH-phi[i] for MH index i.  869 



 

 

 870 

Scores for all deletion genotypes assigned this way are normalized to sum to 1 to produce 871 

a predicted frequency distribution on deletion genotypes. 872 

 873 

To generate a frequency distribution on deletion lengths, inDelphi assigns a score for 874 

each deletion length. Score assignment integrates contributions from both MH-dependent 875 

and MH-independent mechanisms via the following procedure: For each deletion length 876 

j, its score is assigned as MHindep-phi[j] plus the sum of MH-phi for each microhomology 877 

with that deletion length. Scores for all deletion lengths are normalized to sum to 1 to 878 

produce a frequency distribution. 879 

 880 

inDelphi trains its parameters using a single sequence context by producing both a 881 

predicted frequency distribution on deletion genotypes and deletion lengths and 882 

minimizing the negative of the sum of two values: the mean squared Pearson correlation 883 

for the deletion genotype frequency distribution at each target site in the training set plus 884 

the mean squared Pearson correlation for the deletion length frequency distribution at 885 

each target site in the training set. This represents a multitask learning framework. 886 

 887 

In practice, deletion genotype frequency distributions are formed from observations for 888 

deletion lengths 1-60, and deletion length frequency distributions are formed from 889 

observations for deletion lengths 1-28. Both neural networks are trained jointly and 890 

simultaneously on both tasks. inDelphi is trained with stochastic gradient descent with 891 

batched training sets. inDelphi is implemented in Python using the autograd library. We 892 

used a batch size of 200, an initial weight scaling factor of 0.10, an initial step size of 0.10, 893 

and an exponential decaying factor for the step size of 0.999 per step. We observed 894 

performance convergence within about 50 epochs. 895 

 896 

inDelphi Deletion Modeling: Multitask learning improves performance 897 

Over the course of developing our model, at an intermediate stage we considered a 898 

simpler model for predicting the frequencies of MH deletions. This model featurizes all 899 

sequence microhomologies at a target site using MH length and GC content and uses a 900 

2x16x16x1 neural network with sigmoidal activations except at the output layer to output 901 

psi. This psi value is adjusted using exp(psi – 0.25 * deletion length) to obtain phi for a 902 

particular microhomology, which are normalized across all microhomologies to sum to 1 903 

to achieve a predicted distribution of frequencies. Altogether, this model is identical to the 904 

MH module used in inDelphi, with the notable difference of not including contributions of 905 

MH-less phi at “full” microhomologies. 906 

 907 

This simple model, henceforth known as the baseline model, does not recognize the 908 

possibility that a MH genotype may arise from both MH and MH-independent repair 909 

pathways. We compared the performance of the baseline model to inDelphi’s MH module 910 

and observed a statistically significant relative improvement of 10% in model performance 911 

as measured on test set data (p ~ 0.02). These measurements were performed using Lib-912 

A target sites in mESCs. 913 

 914 



 

 

We note that the multitask model used in inDelphi also jointly trains MHless-NN and, in 915 

addition to predicting MH deletion frequencies more accurately than the baseline, also 916 

provides strong performance on deletion length frequency prediction. 917 

 918 

Using random seed A, the baseline model mean Pearson r on held-out data was .905, 919 

while the multitask model mean Pearson r on the same held-out data was 0.913, for a 920 

8.5% relative improvement (p = 0.009, one-sided t-test). Using random seed B, the 921 

baseline model mean Pearson r on held-out data was .924, while the multitask model 922 

mean Pearson r on the same held-out data was 0.928, for a 5.3% relative improvement 923 

(p = 0.02, one-sided t-test). Using random seed C, the baseline model mean Pearson r 924 

on held-out data was .912, while the multitask model mean Pearson r on the same held-925 

out data was 0.917, for a 5.7% relative improvement (p = 0.03, one-sided t-test).  926 

 927 

inDelphi Deletion Modeling: Summary and Revisiting Assumptions 928 

In summary, inDelphi trains MH-NN, which uses as input (microhomology length, 929 

microhomology GC content) to output a psi score which is translated into a phi score 930 

using deletion length. This phi score represents the “strength” of the microhomology 931 

corresponding to a particular MH deletion genotype. It also trains MHless-NN which uses 932 

as input (deletion length) to directly output a phi score representing the “total strength” of 933 

all MH-independent activity for a particular deletion length. 934 

 935 

While the model assumes that microhomology and microhomology-less repair can 936 

overlap in contributions to a single repair genotype, this assumption is made 937 

conservatively by assuming that their contributions overlap only when there is no 938 

alternative. Specifically, in the context of a deletion length with full microhomology, the 939 

model assumes that they must overlap, while in the context of a deletion length without 940 

full microhomology, inDelphi allows MHindep-phi to represent all MH-less repair 941 

genotypes and none of the MH-dependent repair genotypes which are represented solely 942 

using their MH-phi scores. This can be seen by noting that at a deletion length j without 943 

full microhomology, MH genotypes are scored using their MH-phi scores, while the length 944 

j is scored by MHindep-phi[j] plus the sum of MH-phi for each microhomology. Therefore, 945 

the subset of MH-less genotypes at this deletion length have a score MHindep-phi[j]. 946 

 947 

When the subset of MH-less genotypes includes only one MH-less genotype, this single 948 

genotype’s score is equal to MHindep-phi[j]. In general, multiple MH-less genotypes are 949 

possible, in which case the total score of all of the MH-less genotypes is equal to 950 

MHindep-phi[j]. 951 

 952 

The relative frequency of MH deletions and MH-less deletions is learned implicitly by the 953 

balancing between the sum of all MH-phi and MHindep-phi. Since MHindep-phi does not 954 

vary by sequence context while MH-phi does, the model assumes that variation in the 955 

fraction of deletions that use MH can at least partially be explained by varying sequence 956 

microhomology as represented by MH-NN. 957 

 958 

inDelphi Insertion Modeling 959 



 

 

Once inDelphi is trained on both deletion tasks, it predicts insertions from a sequence 960 

context and cleavage site by using the precision score of the predicted deletion length 961 

distribution and total deletion phi (from all MH-phi and MHindep-phi). inDelphi also uses 962 

one-hot-encoded binary vectors encoding nucleotides -4 and -3. In a training set, these 963 

features are collected and normalized to zero mean and unit variance, and the fraction of 964 

1-bp insertions over the sum counts of 1-bp insertions and all deletions are tabulated as 965 

the prediction goal. A k-nearest neighbor model is built using the training data. inDelphi 966 

uses the default parameter k = 5.  967 

 968 

On test data, the above procedure is used to predict the frequency of 1-bp insertions out 969 

of 1-bp insertions and all deletions for a particular sequence context. Once this frequency 970 

is predicted, it is used to make frequency predictions for each of the 4 possible insertion 971 

genotypes, which are predicted by deriving from the training set the average insertion 972 

frequency for each base given its local sequence context. When the training set is small, 973 

only the -4 nucleotide is used. When the training set is relatively large, nucleotides -5, -4, 974 

and -3 are used.  975 

 976 

To produce a frequency distribution on 1-bp insertions and 1-60 bp deletion genotypes, 977 

scores for all deletion genotypes and all 1-bp insertions are normalized to sum to 1. To 978 

produce a frequency distribution on indel lengths (+1 to -60), scores for all deletion lengths 979 

and 1-bp insertions are normalized to sum to 1.  980 

 981 

inDelphi: Repair classes predicted at varying resolution 982 

inDelphi predicts MH-deletions and 1-bp insertions at single base resolution. Measuring 983 

performance on the task of genotype frequency prediction considers this subset of repair 984 

outcomes only (about 60-70% of all outcomes). 985 

 986 

inDelphi predicts MH-less deletions to the resolution of deletion length. That is, inDelphi 987 

predicts a single frequency corresponding to the sum total frequency of all unique MH-988 

less deletion genotypes possible for a particular deletion length. This modeling choice 989 

was made because genotype frequency replicability among MH-less deletions is 990 

substantially lower than among MH deletions. 991 

 992 

Measuring performance on the task of indel length frequency considers MH deletions, 993 

MH-less deletions, and 1-bp insertions (90% of all outcomes). 994 

 995 

In practice, if end-users desire, they can extend inDelphi predictions to frequency 996 

predictions for specific MH-less deletion genotypes by noting that MH-less deletions are 997 

distributed uniformly between 0 delta-position genotypes, medial genotypes, and N delta-998 

position genotypes. 999 

 1000 

Comparison with a linear baseline model 1001 

We compared inDelphi to a baseline model with the same model structure but replacing 1002 

the deep neural networks with linear models. We compared using Lib-A mESC data. 1003 

While inDelphi achieves a mean held-out Pearson correlation of 0.851 on deletion 1004 

genotype frequency prediction and 0.837 on deletion length frequency prediction, the 1005 



 

 

linear baseline model achieves a mean held-out Pearson correlation of 0.816 on deletion 1006 

genotype frequency prediction and 0.796 on deletion length frequency prediction. When 1007 

including the third model component for 1-bp insertion modeling and testing on genotype 1008 

frequency prediction for 1-bp insertions and all deletions, inDelphi achieves a median 1009 

held-out Pearson correlation of 0.937 and 0.910 on the task of indel length frequency 1010 

prediction. The linear baseline model achieves a median held-out Pearson correlation of 1011 

0.919 and 0.900 on the two tasks respectively.  1012 

 1013 

From these results, we can see that much of the model’s power is derived from its 1014 

designed structure which is independent of the choice of linear or non-linear modeling. 1015 

While the baseline does not significantly cripple the model, the use of deep nonlinear 1016 

neural networks offers a substantial performance improvement (10-24%) above linear 1017 

modeling. In addition, the strong performance of the linear baseline model highlights that 1018 

the prediction task, given the model structure, is relatively straightforward. This suggests 1019 

that our model should be able to generalize well to unseen data. 1020 

 1021 

The deep neural network version of MH-NN learns that microhomology length is more 1022 

important than % GC (Extended Data Fig. 2). The linear version learns the same 1023 

concept, with a weight of 1.1585 for MH length and 0.332 for % GC.  1024 

 1025 

Comparison with a baseline model lacking microhomology length as a feature 1026 

Microhomology length is an important feature for MH-NN (Extended Data Fig. 2). We 1027 

trained a model that uses only % GC as input to MH-NN while keeping the rest of the 1028 

model structure identical. On held-out data at Lib-A target sites in mESCs, this baseline 1029 

model at convergence achieves to a mean Pearson correlation of 0.59 on the task of 1030 

predicting deletion genotype frequencies, and a mean Pearson correlation of 0.58 on 1031 

the task of predicting deletion length frequencies. Notably, a model at iteration 0 with 1032 

randomly initialized weights achieves mean Pearson correlations of 0.55 and 0.54 on 1033 

the two respective tasks on held-out data. This basal Pearson correlation is relatively 1034 

high due to the model structure, in particular, the exponential penalty on deletion length. 1035 

In sum, removing MH length as a feature severely impacts model performance, 1036 

restricting it to predictive performance not appreciably better than random chance. 1037 

 1038 

inDelphi training and testing on data from varying cell-types 1039 

For predicting genotype and indel length frequencies in any particular cell-type C where 1040 

data D is available, we first trained inDelphi’s deletion component on a subset of Lib-A 1041 

mESC data. Then, we apply k-fold cross-validation on D where D is iteratively split into 1042 

training and test datasets. For each cross-validation iteration, the training set is used to 1043 

train the insertion frequency model (k-nearest neighbors) and insertion genotype model 1044 

(matrix of observed probabilities of each inserted base given local sequence context, 1045 

which is just the -4 nucleotide when the training dataset is small, and -5, -4 and -3 1046 

nucleotides when the training dataset is large). For each cross-validation iteration, 1047 

predictions are made at each sequence context in the test set which are compared to 1048 

observations for each sequence context to yield a Pearson correlation. For any particular 1049 

sequence context, the median test-time Pearson correlation across all cross-validation 1050 

iterations is used as a single number summary of the overall performance of inDelphi. For 1051 



 

 

all reported results, we used 100-fold cross-validation with 80%/20% training and testing 1052 

splits. Empirically, we observed small variance in test-time Pearson correlation, 1053 

highlighting the stability of inDelphi’s modeling approach. 1054 

 1055 

inDelphi testing on endogenous VO data 1056 

On this task, the deletion component of inDelphi was trained on a subset of the Lib-A 1057 

mESC data. For each cell type in HCT116, K562, and HEK293T, all VO sequence 1058 

contexts (about 100) were randomly split into training and test datasets 100 times. During 1059 

each split, the training set was used for k-nearest neighbor modeling of 1-bp insertion 1060 

frequencies. Feature normalization to zero mean and unit variance was not performed. 1061 

The average frequency of each 1-bp insertion genotype was derived from the training set 1062 

as well. For each of the ~100 sequence contexts, the median test-time Pearson 1063 

correlation was used for plotting in Figure 3. Due to the small size of the training set, only 1064 

the -4 nucleotide was used for modeling both the insertion frequency and insertion 1065 

genotype frequencies. 1066 

 1067 

inDelphi testing on library data 1068 

On this task, the deletion component of inDelphi was trained on a subset of the Lib-A 1069 

mESC data. The remaining test set was used for measuring test-time prediction 1070 

performance on Lib-A. Nucleotides -5, -4, and -3 were used for the insertion genotype 1071 

model. For testing on Lib-B, Lib-B was split into training and test datasets in the same 1072 

manner as with VO data. Nucleotide -4 was used for the insertion genotype model. The 1073 

median test-time Pearson correlation is used as a single number summary of the overall 1074 

performance of inDelphi on any particular sequence context. For reporting predictive 1075 

results in Figure 4, sequence contexts with low replicability (less than 0.85 Pearson 1076 

correlation) in observed editing outcome frequencies were first removed. 1077 

 1078 

inDelphi training and testing on Prkdc-/-Lig4-/- data 1079 

inDelphi was trained on data from 946 Lib-A sequence contexts and tested on 168 held-1080 

out Lib-A sequence contexts. Nucleotide -4 was used for insertion rate modeling, all other 1081 

modeling choices were standard as described above. On held-out data, this version of 1082 

inDelphi achieved a median Pearson correlation of 0.84 on predicting indel genotype 1083 

frequencies, and 0.80 on predicting indel length frequencies. 1084 

 1085 

Training the online public version of inDelphi and its expected properties 1086 

For general-use on arbitrary cell types, we trained a version of inDelphi using additional 1087 

data from diverse types of cells. Deletion modeling was trained using data from 2,464 1088 

sequence contexts from high-replicability Lib-A and Lib-B data (including clinical variants 1089 

and microduplications, fourbp, and longdup) in mES and data from VO sequence contexts 1090 

in HEK293 and K562. Insertion frequency modeling is implemented as above. Insertion 1091 

genotype modeling uses nucleotides -5, -4, and -3. The insertion frequency model and 1092 

insertion genotype model are trained on VO endogenous data in K562 and HEK293T, 1093 

Lib-A data in mESC, and Lib-B data (including clinical variants and microduplications, 1094 

fourbp, and longdup) in mESC and U2OS.  1095 

 1096 



 

 

Though MHless-NN, as trained on library data, never receives information on deletion 1097 

lengths beyond 28, we allow it to generalize its learned function and make predictions on 1098 

deletion lengths up to 60 bp to match the supported range of MH-NN. 1099 

 1100 

inDelphi makes predictions on 1-bp insertions and 1-60-bp deletions, which we 1101 

empirically show to consist of higher than 90% of all Cas9 editing outcomes in data from 1102 

multiple human and mouse cell lines. Nevertheless, there is a subset of repair (about 8% 1103 

on average) that inDelphi does not attempt to predict. We suggest that end-users, 1104 

depending on what predictive quantities are of interest, take this into account when using 1105 

inDelphi. For example, if inDelphi predicts that 60% of 1-bp insertions and 1-60-bp 1106 

deletions at a disease allele correspond to repair to wildtype genotype, a quantity of 1107 

interest may be the rate of wildtype repair in all Cas9 editing outcomes (including the 8% 1108 

not predicted by inDelphi). In such a situation, this quantity can be calculated as 1109 

(92%*60%) = 55.2%. 1110 

 1111 

By the design of 1872 sequence contexts in Lib-A, our training dataset has rich and 1112 

uniform representation across all quintiles of several major axes of variation including GC 1113 

content, precision, and number of bases participating in microhomology as measured 1114 

empirically in the human genome. This design strategy enables inDelphi to generalize 1115 

well to arbitrary sequence contexts from the human genome. 1116 

 1117 

These training data further include data in the outlier range of statistics of interest, 1118 

including extremely high and low precision repair distributions, and extremely weak and 1119 

strong microhomology (minimal microhomology and extensive microduplication 1120 

microhomology sequences). The availability of such sequences in our training data 1121 

enables inDelphi to generalize well to sequence contexts of clinical interest and sequence 1122 

contexts supporting unusually high frequencies of precision repair. In particular, by 1123 

training on more than 1000 examples of repair at clinical microduplications, inDelphi has 1124 

received strong preparation for accurate prediction on other clinical microduplications. 1125 

 1126 

By training on data from many cell-types, we enable inDelphi to make predictions that are 1127 

generally applicable to many human cell-types. We note that the HCT116 human colon 1128 

cancer cell line experiences a markedly higher frequency of single base insertions 1129 

compared to all other cell lines we studied, possibly due to the MLH1 deficiency of this 1130 

cell line leading to impaired DNA mismatch repair. For this reason, we excluded HCT116 1131 

data from our training dataset. For best results, we suggest end-users keep in mind that 1132 

repair class frequencies can be cell type-dependent, and this issue has not been well-1133 

characterized thus far. 1134 

 1135 

We note that inDelphi’s main error tendency is on the side of overestimating rather than 1136 

underestimating the precision of repair (Figure 4). In general, this tendency can be 1137 

explained by noting that inDelphi only considers sequence microhomology as a factor, 1138 

while it’s plausible and likely in biological experimental settings that even sequence 1139 

contexts with very strong sequence microhomology may not yield precise results due to 1140 

noise factors that are not considered by inDelphi. For best results, we recommend end-1141 

users take this tendency into account when using inDelphi predictions for further 1142 



 

 

experiments. In particular, if gRNAs are designed by using a minimum precision 1143 

threshold, end-users should recognize that observed repair outcomes may have empirical 1144 

precision under this threshold. However, conversely, it is unlikely that a gRNA will have 1145 

precision higher than what inDelphi predicts.  1146 

 1147 

Lib-A design 1148 

All designed sequence contexts were 55 bp in length with cutting between the 27th and 1149 

28th base. 1150 

 1151 

1872 sequence contexts were designed by empirically determining the distribution of four 1152 

statistics in sequence contexts from the human genome. These four statistics are GC 1153 

content, total sum of bases participating in microhomology for 3-27-bp deletions, Azimuth 1154 

predicted on-target efficiency score, and the statistical entropy of the predicted 3-27-bp 1155 

deletion length distribution from a previous version of inDelphi. For each of these 1156 

statistics, empirical quintiles were derived by calculating these statistics in a large number 1157 

of sequence contexts from the human genome. For the library, sequence contexts were 1158 

designed by randomly generated DNA that categorized into each combination of quintiles 1159 

across each of the four statistics. For example, a sequence context falling into the 1st 1160 

quintile in GC, 2nd quintile of total MH, 1st quintile of Azimuth score, and 5th quintile of 1161 

entropy, was found by random search. With four statistics and five bins each (due to 1162 

quintiles), there are 54 = 625 possible combinations. For each combination, we attempted 1163 

to design three sequence contexts for a total of 1875; 3 sequences could not be designed 1164 

(for a total of 1872) though each bin was filled. 90 sequence contexts were designed from 1165 

VO sequence contexts. Other sequence contexts were also designed for a total of 2000 1166 

sequence contexts in Lib-A. Lib-A sequence names, gRNAs, and sequence contexts are 1167 

listed in Supplementary Table 2.  1168 

 1169 

Lib-B design 1170 

All designed sequence contexts were 55 bp in length with cutting between the 27th and 1171 

28th base.  1172 

 1173 

1592 sequence contexts were designed from Clinvar and HGMD (see section on 1174 

Selection of variants from disease databases). Some disease sequence contexts were 1175 

designed that such that the corrected wildtype or frameshift allele supports further cutting 1176 

by the original gRNA; data from such sequence contexts were ignored during analysis. 1177 

57 “longdup” sequence contexts were designed by repeating the following procedure 1178 

three times: for N = 7 to 25, an N-mer was randomly generated, then duplicating and 1179 

surrounded by randomly generated sequences, while ensuring that SpCas9 NGG was 1180 

included and appropriately positioned for cutting between positions 27 and 28. 90 1181 

sequence contexts were designed from VO sequence contexts. 228 “fourbp” sequence 1182 

contexts were designed at 3 contexts with random sequences (with total phi score on 1183 

average lower than VO sequence contexts) while varying positions -5 to -2; for each of 1184 

the 3 “low-microhomology” contexts,76 four bases were randomly designed while 1185 

ensuring representation from all possible 2 bp microhomology patterns including no 1186 

microhomology, one base of microhomology at either position, and full two bases of 1187 

microhomology. Other sequence contexts were also designed for a total of 2000 1188 



 

 

sequence contexts in Lib-B. Lib-B sequence names, gRNAs, and sequence contexts are 1189 

listed in Supplementary Table 3. 1190 

 1191 

1bpInsDisLib design 1192 

12 sequence contexts were designed from Clinvar and HGMD. Pathogenic alleles were 1193 

selected for a high predicted frequency of correction to the wild-type genotype via a Cas9-1194 

mediated 1-bp insertion. Sequence names, gRNAs, and sequence contexts are listed in 1195 

Supplementary Table 4. 1196 

 1197 

PHG design 1198 

18 sequence contexts were designed using inDelphi to select SpCas9 gRNAs targeting 1199 

the coding regions of genes including VEGFA, VEGFR2, PDCD1, APOB, CCR5, CD274, 1200 

CXCR4, PCSK9, and APOBEC3B, such that a frameshift would be induced with higher 1201 

frequency than typical SpCas9 gRNAs. Of these 18 frameshift designs, 10 were designed 1202 

to induce a single deletion genotype with high precision, and 8 were designed to induce 1203 

a single 1-bp insertion genotype with high precision. 6 sequence contexts were designed 1204 

using inDelphi from Clinvar and HGMD where pathogenic 1-bp insertion alleles were 1205 

selected based on a high predicted frequency of induction from Cas9 editing of the wild-1206 

type allele. Sequence names, gRNAs, and sequence contexts are listed in 1207 

Supplementary Table 5. 1208 

 1209 

Generating a DNA motif for 1-bp insertion frequencies 1210 

Nucleotides from positions -7 to 0 were one-hot-encoded and used in ridge regression to 1211 

predict the observed frequency of 1-bp insertions out of all Cas9 editing events in 1996 1212 

sequence contexts from Lib-A mESC data. The data were split into training and testing 1213 

sets (80/20 split) 10,000 times to calculate a bootstrapped estimate of linear regression 1214 

weights and test-set predictive Pearson correlation. The median test-set Pearson 1215 

correlation was found to be 0.62. To generate a DNA motif, any features that included 0 1216 

within the bootstrapped weight range were excluded (probability that the weight is zero > 1217 

1e-4). The average bootstrapped weight estimate was used as the “logo height” for all 1218 

remaining features. Each feature is independent; vertical stacking of features follows the 1219 

published tradition of DNA motifs. 1220 

 1221 

Predicting precision repair of genomic SpCas9 gRNAs 1222 

In this work, we determined the distributions of the most frequent deletion and 1223 

insertion outcomes among major editing outcomes at SpCas9 gRNAs targeting human 1224 

exons and introns as predicted by inDelphi trained on data from Lib-A target sites in 1225 

mESCs and U2OS cells separately (Fig. 3f, Extended Data Table 1). A combination of 1226 

computational constraint (the inability to make predictions at ~350 million target sites 1227 

comprising all SpCas9 gRNAs in the human genome), uncertainty in the exact predictions 1228 

of the model and a preference for avoiding overfitting our training data, and lack of 1229 

sufficient held-out data to verify our predictions and identify potential bias, motivated us 1230 

to smooth the exact predictions made by the model. We resampled each predicted value 1231 

from a Gaussian centered at the predicted value with a specified standard deviation. For 1232 

mESCs, we set the standard deviation as the predicted value divided by 4, up to a 1233 

maximum of 3% for insertions, while for deletions we used the predicted value divided by 1234 



 

 

4 with a minimum of 6%. For U2OS cells, we set the standard deviation as the predicted 1235 

value divided by 4 for insertions, and the predicted value divided by 4 with a minimum of 1236 

6% for deletions. The scaling of standard deviation at higher predicted values reflects the 1237 

abundance of data and therefore higher relative confidence at lower predicted values. 1238 

The use of symmetrical noise reflects our prior belief that our predictions are equally likely 1239 

to underestimate and overestimate the true value. 1240 

  1241 



 

 

 1242 

 1243 

Plasmid and insert sequences 1244 

 1245 

P2T-CAG-MCS-P2A-GFP-PuroR complete plasmid sequence 1246 

CCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAAT1247 

CAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGA1248 

ATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAA1249 

AGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCC1250 

ACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCAC1251 

TAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGC1252 

GAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGC1253 

TGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGC1254 

GCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGG1255 

GCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGC1256 

TGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAA1257 

CGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACCG1258 

GCATATGGTTCTTGACAGAGGTGTAAAAAGTACTCAAAAATTTTACTCAAGTGAAAG1259 

TACAAGTACTTAGGGAAAATTTTACTCAATTAAAAGTAAAAGTATCTGGCTAGAATC1260 

TTACTTGAGTAAAAGTAAAAAAGTACTCCATTAAAATTGTACTTGAGTATTAAGGAA1261 

GTAAAAGTAAAAGCAAGAAAGATCGATCTCGAAGGATCTGGAGGCCACCATGGTG1262 

TCGATAACTTCGTATAGCATACATTATACGAAGTTATCGTGCTCGACATTGATTATT1263 

GACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGA1264 

GTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGAC1265 

CCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC1266 

TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTAC1267 

ATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGG1268 

CCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTA1269 

CATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCT1270 

TCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTA1271 

ATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCG1272 

GGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGG1273 

CAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGC1274 

GGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGGGGAGTCGCTGCGAC1275 

GCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGG1276 

CTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTC1277 

CGGGCTGTAATTAGCGCTTGGTTTAATGACGGCTTGTTTCTTTTCTGTGGCTGCGT1278 

GAAAGCCTTGAGGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGAGCGGCTCGGG1279 

GGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCTCCGCGCTGC1280 

CCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTGCGCTCCGCAGT1281 

GTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCCGCGGTGCGGGGGGGGCT1282 



 

 

GCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGG1283 

GGTGTGGGCGCGTCGGTCGGGCTGCAACCCCCCCTGCACCCCCCTCCCCGAGTT1284 

GCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTACGGGGCGTGGCGCGGG1285 

GCTCGCCGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCG1286 

GGGCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCCGGA1287 

GCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTATGGTAAT1288 

CGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGTGCGGAGCCGAAATC1289 

TGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGGCGAAGCGGTGCGGCG1290 

CCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGT1291 

CCCCTTCTCCCTCTCCAGCCTCGGGGCTGTCCGCGGGGGGACGGCTGCCTTCGG1292 

GGGGGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAG1293 

AGCCTCTGCTAACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGT1294 

GCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTCCTCGAGCGGCCGCCAG1295 

TGTGATGGATATCGGATCCGCTAGCGCTACTAACTTCAGCCTGCTGAAGCAGGCT1296 

GGAGACGTGGAGGAGAACCCTGGACCTGGACCGGTCGCCACCATGGTGAGCAAG1297 

GGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGAC1298 

GTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTAC1299 

GGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGG1300 

CCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCG1301 

ACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA1302 

GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGT1303 

GAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTT1304 

CAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCAC1305 

AACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGAT1306 

CCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAA1307 

CACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCAC1308 

CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTG1309 

GAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAA1310 

GCGGCCGCCACCGCGGTGGAGCTCGAATTAATTCATCGATGATGATCCAGACATG1311 

ATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATG1312 

CTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAAT1313 

AAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTG1314 

TGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGAT1315 

CCTCTAGAGTCGGTGGGCCTCGGGGGCGGGTGCGGGGTCGGCGGGGCCGCCCC1316 

GGGTGGCTTCGGTCGGAGCCATGGGGTCGTGCGCTCCTTTCGGTCGGGCGCTGC1317 

GGGTCGTGGGGCGGGCGTCAGGCACCGGGCTTGCGGGTCATGCACCAGGTGCG1318 

CGGTCCTTCGGGCACCTCGACGTCGGCGGTGACGGTGAAGCCGAGCCGCTCGTA1319 

GAAGGGGAGGTTGCGGGGCGCGGAGGTCTCCAGGAAGGCGGGCACCCCGGCGC1320 

GCTCGGCCGCCTCCACTCCGGGGAGCACGACGGCGCTGCCCAGACCCTTGCCCT1321 

GGTGGTCGGGCGAGACGCCGACGGTGGCCAGGAACCACGCGGGCTCCTTGGGC1322 



 

 

CGGTGCGGCGCCAGGAGGCCTTCCATCTGTTGCTGCGCGGCCAGCCGGGAACCG1323 

CTCAACTCGGCCATGCGCGGGCCGATCTCGGCGAACACCGCCCCCGCTTCGACG1324 

CTCTCCGGCGTGGTCCAGACCGCCACCGCGGCGCCGTCGTCCGCGACCCACACC1325 

TTGCCGATGTCGAGCCCGACGCGCGTGAGGAAGAGTTCTTGCAGCTCGGTGACC1326 

CGCTCGATGTGGCGGTCCGGGTCGACGGTGTGGCGCGTGGCGGGGTAGTCGGC1327 

GAACGCGGCGGCGAGGGTGCGTACGGCCCGGGGGACGTCGTCGCGGGTGGCGA1328 

GGCGCACCGTGGGCTTGTACTCGGTCATGGAAGGTCGTCTCCTTGTGAGGGGTCA1329 

GGGGCGTGGGTCAGGGGATGGTGGCGGCACCGGTCGTGGCGGCCGACCTGCAG1330 

GCATGCAAGCTTTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT1331 

GGAATAGCTCAGAGGCCGAGGCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAG1332 

TCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGGCGGGATGG1333 

GCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTGCAT1334 

ACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTG1335 

AGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACC1336 

CTAACTGACACACATTCCACAGAATTCAAGTGATCTCCAAAAAATAAGTACTTTTTG1337 

ACTGTAAATAAAATTGTAAGGAGTAAAAAGTACTTTTTTTTCTAAAAAAATGTAATTA1338 

AGTAAAAGTAAAAGTATTGATTTTTAATTGTACTCAAGTAAAGTAAAAATCCCCAAAA1339 

ATAATACTTAAGTACAGTAATCAAGTAAAATTACTCAAGTACTTTACACCTCTGGTTC1340 

TTGACCCCCTACCTTCAGCAAGCCCAGCAGATCCGAGCTCCAGCTTTTGTTCCCTT1341 

TAGTGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTG1342 

AAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTA1343 

AAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTG1344 

CCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAAC1345 

GCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGA1346 

CTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGC1347 

GGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCA1348 

AAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCC1349 

ATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTG1350 

GCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC1351 

GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCC1352 

CTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT1353 

GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC1354 

CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTT1355 

ATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGC1356 

GGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAG1357 

TATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGC1358 

TCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA1359 

GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGG1360 

GGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTA1361 

TCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCT1362 



 

 

AAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCAC1363 

CTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGT1364 

AGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACC1365 

GCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGA1366 

AGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTA1367 

ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTT1368 

GTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATT1369 

CAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA1370 

AAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGT1371 

GTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGT1372 

AAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTAT1373 

GCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACAT1374 

AGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTC1375 

AAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACT1376 

GATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGG1377 

CAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACT1378 

CTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATAC1379 

ATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGA1380 

AAAGTG 1381 

  1382 

1383 



 

 

LDLRwt 1384 

ATGGGGCCCTGGGGCTGGAAATTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCG1385 

GCGGGGACTGCAGTGGGCGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGAC1386 

GGGAAATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATG1387 

GCTCTGATGAGTCCCAGGAGACGTGCTTGTCTGTCACCTGCAAATCCGGGGACTT1388 

CAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGC1389 

CAAGTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCCCCCCAAGACGTGC1390 

TCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCT1391 

GTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGC1392 

TCACCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATCCCCCAGCT1393 

GTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCA1394 

GCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCCCCTGCTCGGCCTTC1395 

GAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTG1396 

GCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGCGCTGTGGCCACCTGTCG1397 

CCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGTGT1398 

GACCGGGAATATGACTGCAAGGACATGAGCGATGAAGTTGGCTGCGTTAATGTGA1399 

CACTCTGCGAGGGACCCAACAAGTTCAAGTGTCACAGCGGCGAATGCATCACCCT1400 

GGACAAAGTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATC1401 

AAAGAGTGCGGGACCAACGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCT1402 

GCAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGT1403 

GGCCCAGCGAAGATGCGAAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGC1404 

CAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTC1405 

CAGCTGGACCCCCACACGAAGGCCTGCAAGGCTGTGGGCTCCATCGCCTACCTCT1406 

TCTTCACCAACCGGCACGAGGTCAGGAAGATGACGCTGGACCGGAGCGAGTACA1407 

CCAGCCTCATCCCCAACCTGAGGAACGTGGTCGCTCTGGACACGGAGGTGGCCA1408 

GCAATAGAATCTACTGGTCTGACCTGTCCCAGAGAATGATCTGCAGCACCCAGCTT1409 

GACAGAGCCCACGGCGTCTCTTCCTATGACACCGTCATCAGCAGAGACATCCAGG1410 

CCCCCGACGGGCTGGCTGTGGACTGGATCCACAGCAACATCTACTGGACCGACTC1411 

TGTCCTGGGCACTGTCTCTGTTGCGGATACCAAGGGCGTGAAGAGGAAAACGTTA1412 

TTCAGGGAGAACGGCTCCAAGCCAAGGGCCATCGTGGTGGATCCTGTTCATGGCT1413 

TCATGTACTGGACTGACTGGGGAACTCCCGCCAAGATCAAGAAAGGGGGCCTGAA1414 

TGGTGTGGACATCTACTCGCTGGTGACTGAAAACATTCAGTGGCCCAATGGCATCA1415 

CCCTAGATCTCCTCAGTGGCCGCCTCTACTGGGTTGACTCCAAACTTCACTCCATC1416 

TCAAGCATCGATGTCAATGGGGGCAACCGGAAGACCATCTTGGAGGATGAAAAGA1417 

GGCTGGCCCACCCCTTCTCCTTGGCCGTCTTTGAGGACAAAGTATTTTGGACAGAT1418 

ATCATCAACGAAGCCATTTTCAGTGCCAACCGCCTCACAGGTTCCGATGTCAACTT1419 

GTTGGCTGAAAACCTACTGTCCCCAGAGGATATGGTCCTCTTCCACAACCTCACCC1420 

AGCCAAGAGGAGTGAACTGGTGTGAGAGGACCACCCTGAGCAATGGCGGCTGCC1421 

AGTATCTGTGCCTCCCTGCCCCGCAGATCAACCCCCACTCGCCCAAGTTTACCTG1422 

CGCCTGCCCGGACGGCATGCTGCTGGCCAGGGACATGAGGAGCTGCCTCACAGA1423 

GGCTGAGGCTGCAGTGGCCACCCAGGAGACATCCACCGTCAGGCTAAAGGTCAG1424 



 

 

CTCCACAGCCGTAAGGACACAGCACACAACCACCCGGCCTGTTCCCGACACCTCC1425 

CGGCTGCCTGGGGCCACCCCTGGGCTCACCACGGTGGAGATAGTGACAATGTCT1426 

CACCAAGCTCTGGGCGACGTTGCTGGCAGAGGAAATGAGAAGAAGCCCAGTAGC1427 

GTGAGGGCTCTGTCCATTGTCCTCCCCATCGTGCTCCTCGTCTTCCTTTGCCTGGG1428 

GGTCTTCCTTCTATGGAAGAACTGGCGGCTTAAGAACATCAACAGCATCAACTTTG1429 

ACAACCCCGTCTATCAGAAGACCACAGAGGATGAGGTCCACATTTGCCACAACCA1430 

GGACGGCTACAGCTACCCCTCGAGACAGATGGTCAGTCTGGAGGATGACGTGGC1431 

G 1432 

 1433 

LDLRDup252 with surrounding region 1434 

CCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTC1435 

TCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC1436 

CTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACC1437 

TGCATCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG1438 

GAGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG1439 

ACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAGTGCATCCA1440 

CTCCAGCTGGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGA1441 

AAACTGCG 1442 

 1443 

LDLRDup254/255 with surrounding region 1444 

CCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTC1445 

TCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC1446 

CTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACC1447 

TGCATCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG1448 

GATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGC1449 

CCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCT1450 

GGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACAGGACAAATCTGAC1451 

GAGGAAAACTGCGCTGTGGCCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATG1452 

GAAACTGCATCCATG 1453 

 1454 

LDLRDup258 with surrounding region 1455 

CCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTC1456 

TCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC1457 

CTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACC1458 

TGCATCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG1459 

GATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGC1460 

CCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCT1461 

GGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGAGGACAAATCTGACGA1462 

GGAAAACTGCGCTGTGGCCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATGGA1463 

AACTGCATCCATG 1464 



 

 

 1465 

LDLRDup261 with surrounding region 1466 

CCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTC1467 

TCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC1468 

CTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACC1469 

TGCATCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG1470 

GATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGC1471 

CCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCT1472 

GGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGACAAATCTGACGA1473 

GGAAAACTGCGCTGTGGCCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATGGA1474 

AACTGCATCCATG 1475 

 1476 

LDLRDup264 with surrounding region 1477 

CTTCATGTACTGGACTGACTGGGGAACTCCCGCCAAGATCAAGAAAGGGGGCCTG1478 

AATGGTGTGGACATCTACTCGCTGGTGAGCTGGTGACTGAAAACATTCAGTGGCC1479 

CAATGGCATCACCCTAG 1480 

  1481 

  1482 



 

 

GAAwt 1483 

ATGGGAGTGAGGCACCCGCCCTGCTCCCACCGGCTCCTGGCCGTCTGCGCCCTC1484 

GTGTCCTTGGCAACCGCTGCACTCCTGGGGCACATCCTACTCCATGATTTCCTGCT1485 

GGTTCCCCGAGAGCTGAGTGGCTCCTCCCCAGTCCTGGAGGAGACTCACCCAGCT1486 

CACCAGCAGGGAGCCAGCAGACCAGGGCCCCGGGATGCCCAGGCACACCCCGG1487 

CCGTCCCAGAGCAGTGCCCACACAGTGCGACGTCCCCCCCAACAGCCGCTTCGA1488 

TTGCGCCCCTGACAAGGCCATCACCCAGGAACAGTGCGAGGCCCGCGGCTGTTG1489 

CTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCCAGATGGGGCAGCCCTGGTG1490 

CTTCTTCCCACCCAGCTACCCCAGCTACAAGCTGGAGAACCTGAGCTCCTCTGAAA1491 

TGGGCTACACGGCCACCCTGACCCGTACCACCCCCACCTTCTTCCCCAAGGACAT1492 

CCTGACCCTGCGGCTGGACGTGATGATGGAGACTGAGAACCGCCTCCACTTCACG1493 

ATCAAAGATCCAGCTAACAGGCGCTACGAGGTGCCCTTGGAGACCCCGCATGTCC1494 

ACAGCCGGGCACCGTCCCCACTCTACAGCGTGGAGTTCTCCGAGGAGCCCTTCG1495 

GGGTGATCGTGCGCCGGCAGCTGGACGGCCGCGTGCTGCTGAACACGACGGTG1496 

GCGCCCCTGTTCTTTGCGGACCAGTTCCTTCAGCTGTCCACCTCGCTGCCCTCGC1497 

AGTATATCACAGGCCTCGCCGAGCACCTCAGTCCCCTGATGCTCAGCACCAGCTG1498 

GACCAGGATCACCCTGTGGAACCGGGACCTTGCGCCCACGCCCGGTGCGAACCT1499 

CTACGGGTCTCACCCTTTCTACCTGGCGCTGGAGGACGGCGGGTCGGCACACGG1500 

GGTGTTCCTGCTAAACAGCAATGCCATGGATGTGGTCCTGCAGCCGAGCCCTGCC1501 

CTTAGCTGGAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTCCTGGGCCCAG1502 

AGCCCAAGAGCGTGGTGCAGCAGTACCTGGACGTTGTGGGATACCCGTTCATGCC1503 

GCCATACTGGGGCCTGGGCTTCCACCTGTGCCGCTGGGGCTACTCCTCCACCGCT1504 

ATCACCCGCCAGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCCTGGACGTC1505 

CAGTGGAACGACCTGGACTACATGGACTCCCGGAGGGACTTCACGTTCAACAAGG1506 

ATGGCTTCCGGGACTTCCCGGCCATGGTGCAGGAGCTGCACCAGGGCGGCCGGC1507 

GCTACATGATGATCGTGGATCCTGCCATCAGCAGCTCGGGCCCTGCCGGGAGCTA1508 

CAGGCCCTACGACGAGGGTCTGCGGAGGGGGGTTTTCATCACCAACGAGACCGG1509 

CCAGCCGCTGATTGGGAAGGTATGGCCCGGGTCCACTGCCTTCCCCGACTTCACC1510 

AACCCCACAGCCCTGGCCTGGTGGGAGGACATGGTGGCTGAGTTCCATGACCAG1511 

GTGCCCTTCGACGGCATGTGGATTGACATGAACGAGCCTTCCAACTTCATCAGGG1512 

GCTCTGAGGACGGCTGCCCCAACAATGAGCTGGAGAACCCACCCTACGTGCCTG1513 

GGGTGGTTGGGGGGACCCTCCAGGCGGCCACCATCTGTGCCTCCAGCCACCAGT1514 

TTCTCTCCACACACTACAACCTGCACAACCTCTACGGCCTGACCGAAGCCATCGCC1515 

TCCCACAGGGCGCTGGTGAAGGCTCGGGGGACACGCCCATTTGTGATCTCCCGC1516 

TCGACCTTTGCTGGCCACGGCCGATACGCCGGCCACTGGACGGGGGACGTGTGG1517 

AGCTCCTGGGAGCAGCTCGCCTCCTCCGTGCCAGAAATCCTGCAGTTTAACCTGC1518 

TGGGGGTGCCTCTGGTCGGGGCCGACGTCTGCGGCTTCCTGGGCAACACCTCAG1519 

AGGAGCTGTGTGTGCGCTGGACCCAGCTGGGGGCCTTCTACCCCTTCATGCGGAA1520 

CCACAACAGCCTGCTCAGTCTGCCCCAGGAGCCGTACAGCTTCAGCGAGCCGGC1521 

CCAGCAGGCCATGAGGAAGGCCCTCACCCTGCGCTACGCACTCCTCCCCCACCT1522 



 

 

CTACACACTGTTCCACCAGGCCCACGTCGCGGGGGAGACCGTGGCCCGGCCCCT1523 

CTTCCTGGAGTTCCCCAAGGACTCTAGCACCTGGACTGTGGACCACCAGCTCCTG1524 

TGGGGGGAGGCCCTGCTCATCACCCCAGTGCTCCAGGCCGGGAAGGCCGAAGTG1525 

ACTGGCTACTTCCCCTTGGGCACATGGTACGACCTGCAGACGGTGCCAGTAGAGG1526 

CCCTTGGCAGCCTCCCACCCCCACCTGCAGCTCCCCGTGAGCCAGCCATCCACAG1527 

CGAGGGGCAGTGGGTGACGCTGCCGGCCCCCCTGGACACCATCAACGTCCACCT1528 

CCGGGCTGGGTACATCATCCCCCTGCAGGGCCCTGGCCTCACAACCACAGAGTC1529 

CCGCCAGCAGCCCATGGCCCTGGCTGTGGCCCTGACCAAGGGTGGGGAGGCCC1530 

GAGGGGAGCTGTTCTGGGACGATGGAGAGAGCCTGGAAGTGCTGGAGCGAGGG1531 

GCCTACACACAGGTCATCTTCCTGGCCAGGAATAACACGATCGTGAATGAGCTGG1532 

TACGTGTGACCAGTGAGGGAGCTGGCCTGCAGCTGCAGAAGGTGACTGTCCTGG1533 

GCGTGGCCACGGCGCCCCAGCAGGTCCTCTCCAACGGTGTCCCTGTCTCCAACTT1534 

CACCTACAGCCCCGACACCAAGGTCCTGGACATCTGTGTCTCGCTGTTGATGGGA1535 

GAGCAGTTTCTCGTCAGCTGGTGT 1536 

 1537 

GAADup327/328 1538 

ATGGGAGTGAGGCACCCGCCCTGCTCCCACCGGCTCCTGGCCGTCTGCGCCCTC1539 

GTGTCCTTGGCAACCGCTGCACTCCTGGGGCACATCCTACTCCATGATTTCCTGCT1540 

GGTTCCCCGAGAGCTGAGTGGCTCCTCCCCAGTCCTGGAGGAGACTCACCCAGCT1541 

CACCAGCAGGGAGCCAGCAGACCAGGGCCCCGGGATGCCCAGGCACACCCCGG1542 

CCGTCCCAGAGCAGTGCCCACACAGTGCGACGTCCCCCCCAACAGCCGCTTCGA1543 

TTGCGCCCCTGACAAGGCCATCACCCAGGAACAGTGCGAGGCCCGCGGCTGTTG1544 

CTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCCAGATGGGGCAGCCCTGGTG1545 

CTTCTTCCCACCCAGCTACCCCAGCTACAAGCTGGAGAACCTGAGCTCCTCTGAAA1546 

TGGGCTACACGGCCACCCTGACCCGTACCACCCCCACCTTCTTCCCCAAGGACAT1547 

CCTGACCCTGCGGCTGGACGTGATGATGGAGACTGAGAACCGCCTCCACTTCACG1548 

ATCAAAGATCCAGCTAACAGGCGCTACGAGGTGCCCTTGGAGACCCCGCATGTCC1549 

ACAGCCGGGCACCGTCCCCACTCTACAGCGTGGAGTTCTCCGAGGAGCCCTTCG1550 

GGGTGATCGTGCGCCGGCAGCTGGACGGCCGCGTGCTGCTGAACACGACGGTG1551 

GCGCCCCTGTTCTTTGCGGACCAGTTCCTTCAGCTGTCCACCTCGCTGCCCTCGC1552 

AGTATATCACAGGCCTCGCCGAGCACCTCAGTCCCCTGATGCTCAGCACCAGCTG1553 

GACCAGGATCACCCTGTGGAACCGGGACCTTGCGCCCACGCCCGGTGCGAACCT1554 

CTACGGGTCTCACCCTTTCTACCTGGCGCTGGAGGACGGCGGGTCGGCACACGG1555 

GGTGTTCCTGCTAAACAGCAATGCCATGGATGTGGTCCTGCAGCCGAGCCCTGCC1556 

CTTAGCTGGAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTCCTGGGCCCAG1557 

AGCCCAAGAGCGTGGTGCAGCAGTACCTGGACGTTGTGGGATACCCGTTCATGCC1558 

GCCATACTGGGGCCTGGGCTTCCACCTGTGCCGCTGGGGCTACTCCTCCACCGCT1559 

ATCACCCGCCAGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCCTGGACGTC1560 

CAGTGGAACGACCTGGACTACATGGACTCCCGGAGGGACTTCACGTTCAACAAGG1561 

ATGGCTTCCGGGACTTCCCGGCCATGGTGCAGGAGCTGCACCAGGGCGGCCGGC1562 



 

 

GCTACATGATGATCGTGGATCCTGCCATCAGCAGCTCGGGCCCTGCCGGGAGCTA1563 

CAGGCCCTACGACGAGGGTCTGCGGAGGGGGGTTTTCATCACCAACGAGACCGG1564 

CCAGCCGCTGATTGGGAAGGTATGGCCCGGGTCCACTGCCTTCCCCGACTTCACC1565 

AACCCCACAGCCCTGGCCTGGTGGGAGGACATGGTGGCTGAGTTCCATGACCAG1566 

GTGCCCTTCGACGGCATGTGGATTGACATGAACGAGCCTTCCAACTTCATCAGGG1567 

GCTCTGAGGACGGCTGCCCCAACAATGAGCTGGAGAACCCACCCTACGTGCCTG1568 

GGGTGGTTGGGGGGACCCTCCAGGCGGCCACCATCTGTGCCTCCAGCCACCAGT1569 

TTCTCTCCACACACTACAACCTGCACAACCTCTACGGCCTGACCGAAGCCATCGCC1570 

TCCCACAGGGCGCTGGTGAAGGCTCGGGGGACACGCCCATTTGTGATCTCCCGC1571 

TCGACCTTTGCTGGCCACGGCCGATACGCCGGCCACTGGACGGGGGACGTGTGG1572 

AGCTCCTGGGAGCAGCTCGCCTCCTCCGTGCCAGAAATCCTGCAGTTTAACCTGC1573 

TGGGGGTGCCTCTGGTCGGGGCCGACGTCTGCGGCTTCCTGGGCAACACCTCAG1574 

AGGAGCTGTGTGTGCGCTGGACCCAGCTGGGGGCCTTCTACCCCTTCATGCGGAA1575 

CCACAACAGCCTGCTCAGTCTGCCCCAGGAGCCGTACAGCTTCAGCGAGCCGGC1576 

CCAGCAGGCCATGAGGAAGGCCCTCACCCTGCGCTACGCACTCCTCCCCCACCT1577 

CTACACACTGTTCCACCAGGCCCACGTCGCGGGGGAGACCGTGGCCCGGCCCCT1578 

CTTCCTGGAGTTCCCCAAGGACTCTAGCACCTGGACTGTGGACCACCAGCTCCTG1579 

TGGGGGGAGGCCCTGCTCATCACCCCAGTGCTCCAGGCCGGGAAGGCCGAAGTG1580 

ACTGGCTACTTCCCCTTGGGCACATGGTACGACCTGCAGACGGTGCCAGTAGAGG1581 

CCCTTGGCAGCCTCCCACCCCCACCTGCAGCTCCCCGTGAGCCAGCCATCCACAG1582 

CGAGGGGCAGTGGGTGACGCTGCCGGCCCCCCTGGACACCATCAACGTCCACCT1583 

CCGGGCTGGGTACATCATCCCCCTGCAGGGCCCTGGCCTCACAACCACAGAGTC1584 

CCGCCAGCAGCCCATGGCCCTGGCTGTGGCCCTGACCAAGGGTGGGGAGGCCC1585 

GAGGGGAGCTGTTCTGGGACGATGGAGAGAGCCTGGAAGTGCTGGAGCGAGGG1586 

GCCTACACACAGGTCATCTTCCTGGCCAGGAATAACACGATCGTGAATGAGCTGG1587 

TACGTGTGACCAGTGAGGGAGCTGGCCTGCAGCTGCAGAAGGTGACTGCAGAAG1588 

GTGACTGTCCTGGGCGTGGCCACGGCGCCCCAGCAGGTCCTCTCCAACGGTGTC1589 

CCTGTCTCCAACTTCACCTACAGCCCCGACACCAAGGTCCTGGACATCTGTGTCTC1590 

GCTGTTGATGGGAGAGCAGTTTCTCGTCAGCTGGTGT 1591 

 1592 

  1593 

GLB1wt 1594 

ATGCCGGGGTTCCTGGTTCGCATCCTCCCTCTGTTGCTGGTTCTGCTGCTTCTGG1595 

GCCCTACGCGCGGCTTGCGCAATGCCACCCAGAGGATGTTTGAAATTGACTATAG1596 

CCGGGACTCCTTCCTCAAGGATGGCCAGCCATTTCGCTACATCTCAGGAAGCATTC1597 

ACTACTCCCGTGTGCCCCGCTTCTACTGGAAGGACCGGCTGCTGAAGATGAAGAT1598 

GGCTGGGCTGAACGCCATCCAGACGTATGTGCCCTGGAACTTTCATGAGCCCTGG1599 

CCAGGACAGTACCAGTTTTCTGAGGACCATGATGTGGAATATTTTCTTCGGCTGGC1600 

TCATGAGCTGGGACTGCTGGTTATCCTGAGGCCCGGGCCCTACATCTGTGCAGAG1601 

TGGGAAATGGGAGGATTACCTGCTTGGCTGCTAGAGAAAGAGTCTATTCTTCTCCG1602 



 

 

CTCCTCCGACCCAGATTACCTGGCAGCTGTGGACAAGTGGTTGGGAGTCCTTCTG1603 

CCCAAGATGAAGCCTCTCCTCTATCAGAATGGAGGGCCAGTTATAACAGTGCAGG1604 

TTGAAAATGAATATGGCAGCTACTTTGCCTGTGATTTTGACTACCTGCGCTTCCTGC1605 

AGAAGCGCTTTCGCCACCATCTGGGGGATGATGTGGTTCTGTTTACCACTGATGGA1606 

GCACATAAAACATTCCTGAAATGTGGGGCCCTGCAGGGCCTCTACACCACGGTGG1607 

ACTTTGGAACAGGCAGCAACATCACAGATGCTTTCCTAAGCCAGAGGAAGTGTGA1608 

GCCCAAAGGACCCTTGATCAATTCTGAATTCTATACTGGCTGGCTAGATCACTGGG1609 

GCCAACCTCACTCCACAATCAAGACCGAAGCAGTGGCTTCCTCCCTCTATGATATA1610 

CTTGCCCGTGGGGCGAGTGTGAACTTGTACATGTTTATAGGTGGGACCAATTTTGC1611 

CTATTGGAATGGGGCCAACTCACCCTATGCAGCACAGCCCACCAGCTACGACTAT1612 

GATGCCCCACTGAGTGAGGCTGGGGACCTCACTGAGAAGTATTTTGCTCTGCGAA1613 

ACATCATCCAGAAGTTTGAAAAAGTACCAGAAGGTCCTATCCCTCCATCTACACCA1614 

AAGTTTGCATATGGAAAGGTCACTTTGGAAAAGTTAAAGACAGTGGGAGCAGCTCT1615 

GGACATTCTGTGTCCCTCTGGGCCCATCAAAAGCCTTTATCCCTTGACATTTATCCA1616 

GGTGAAACAGCATTATGGGTTTGTGCTGTACCGGACAACACTTCCTCAAGATTGCA1617 

GCAACCCAGCACCTCTCTCTTCACCCCTCAATGGAGTCCACGATCGAGCATATGTT1618 

GCTGTGGATGGGATCCCCCAGGGAGTCCTTGAGCGAAACAATGTGATCACTCTGA1619 

ACATAACAGGGAAAGCTGGAGCCACTCTGGACCTTCTGGTAGAGAACATGGGACG1620 

TGTGAACTATGGTGCATATATCAACGATTTTAAGGGTTTGGTTTCTAACCTGACTCT1621 

CAGTTCCAATATCCTCACGGACTGGACGATCTTTCCACTGGACACTGAGGATGCAG1622 

TGTGCAGCCACCTGGGGGGCTGGGGACACCGTGACAGTGGCCACCATGATGAAG1623 

CCTGGGCCCACAACTCATCCAACTACACGCTCCCGGCCTTTTATATGGGGAACTTC1624 

TCCATTCCCAGTGGGATCCCAGACTTGCCCCAGGACACCTTTATCCAGTTTCCTGG1625 

ATGGACCAAGGGCCAGGTCTGGATTAATGGCTTTAACCTTGGCCGCTATTGGCCA1626 

GCCCGGGGCCCTCAGTTGACCTTGTTTGTGCCCCAGCACATCCTGATGACCTCGG1627 

CCCCAAACACCATCACCGTGCTGGAACTGGAGTGGGCACCCTGCAGCAGTGATGA1628 

TCCAGAACTATGTGCTGTGACGTTCGTGGACAGGCCAGTTATTGGCTCATCTGTGA1629 

CCTACGATCATCCCTCCAAACCTGTTGAAAAAAGACTCATGCCCCCACCCCCGCAA1630 

AAAAACAAAGATTCATGGCTGGACCATGTA 1631 

 1632 

  1633 



 

 

GLB1Dup84 1634 

ATGCCGGGGTTCCTGGTTCGCATCCTCCCTCTGTTGCTGGTTCTGCTGCTTCTGG1635 

GCCCTACGCGCGGCTTGCGCAATGCCACCCAGAGGATGTTTGAAATTGACTATAG1636 

CCGGGACTCCTTCCTCAAGGATGGCCAGCCATTTCGCTACATCTCAGGAAGCATTC1637 

ACTACTCCCGTGTGCCCCGCTTCTACTGGAAGGACCGGCTGCTGAAGATGAAGAT1638 

GGCTGGGCTGAACGCCATCCAGACGTATGTGCCCTGGAACTTTCATGAGCCCTGG1639 

CCAGGACAGTACCAGTTTTCTGAGGACCATGATGTGGAATATTTTCTTCGGCTGGC1640 

TCATGAGCTGGGACTGCTGGTTATCCTGAGGCCCGGGCCCTACATCTGTGCAGAG1641 

TGGGAAATGGGAGGATTACCTGCTTGGCTGCTAGAGAAAGAGTCTATTCTTCTCCG1642 

CTCCTCCGACCCAGATTACCTGGCAGCTGTGGACAAGTGGTTGGGAGTCCTTCTG1643 

CCCAAGATGAAGCCTCTCCTCTATCAGAATGGAGGGCCAGTTATAACAGTGCAGG1644 

TTGAAAATGAATATGGCAGCTACTTTGCCTGTGATTTTGACTACCTGCGCTTCCTGC1645 

AGAAGCGCTTTCGCCACCATCTGGGGGATGATGTGGTTCTGTTTACCACTGATGGA1646 

GCACATAAAACATTCCTGAAATGTGGGGCCCTGCAGGGCCTCTACACCACGGTGG1647 

ACTTTGGAACAGGCAGCAACATCACAGATGCTTTCCTAAGCCAGAGGAAGTGTGA1648 

GCCCAAAGGACCCTTGATCAATTCTGAATTCTATACTGGCTGGCTAGATCACTGGG1649 

GCCAACCTCACTCCACAATCAAGACCGAAGCAGTGGCTTCCTCCCTCTATGATATA1650 

CTTGCCCGTGGGGCGAGTGTGAACTTGTACATGTTTATAGGTGGGACCAATTTTGC1651 

CTATTGGAATGGGGCCAACTCACCCTATGCAGCACAGCCCACCAGCTACGACTAT1652 

GATGCCCCACTGAGTGAGGCTGGGGACCTCACTGAGAAGTATTTTGCTCTGCGAA1653 

ACATCATCCAGAAGTTTGAAAAAGTACCAGAAGGTCCTATCCCTCCATCTACACCA1654 

AAGTTTGCATATGGAAAGGTCACTTTGGAAAAGTTAAAGACAGTGGGAGCAGCTCT1655 

GGACATTCTGTGTCCCTCTGGGCCCATCAAAAGCCTTTATCCCTTGACATTTATCCA1656 

GGTGAAACAGCATTATGGGTTTGTGCTGTACCGGACAACACTTCCTCAAGATTGCA1657 

GCAACCCAGCACCTCTCTCTTCACCCCTCAATGGAGTCCACGATCGAGCATATGTT1658 

GCTGTGGATGGGATCCCCCAGGGAGTCCTTGAGCGAAACAATGTGATCACTCTGA1659 

ACATAACAGGGAAAGCTGGAGCCACTCTGGACCTTCTGGTAGAGAACATGGGACG1660 

TGTGAACTATGGTGCATATATGGTGCATATATCAACGATTTTAAGGGTTTGGTTTCT1661 

AACCTGACTCTCAGTTCCAATATCCTCACGGACTGGACGATCTTTCCACTGGACAC1662 

TGAGGATGCAGTGTGCAGCCACCTGGGGGGCTGGGGACACCGTGACAGTGGCCA1663 

CCATGATGAAGCCTGGGCCCACAACTCATCCAACTACACGCTCCCGGCCTTTTATA1664 

TGGGGAACTTCTCCATTCCCAGTGGGATCCCAGACTTGCCCCAGGACACCTTTATC1665 

CAGTTTCCTGGATGGACCAAGGGCCAGGTCTGGATTAATGGCTTTAACCTTGGCC1666 

GCTATTGGCCAGCCCGGGGCCCTCAGTTGACCTTGTTTGTGCCCCAGCACATCCT1667 

GATGACCTCGGCCCCAAACACCATCACCGTGCTGGAACTGGAGTGGGCACCCTG1668 

CAGCAGTGATGATCCAGAACTATGTGCTGTGACGTTCGTGGACAGGCCAGTTATT1669 

GGCTCATCTGTGACCTACGATCATCCCTCCAAACCTGTTGAAAAAAGACTCATGCC1670 

CCCACCCCCGCAAAAAAACAAAGATTCATGGCTGGACCATGTA 1671 

 1672 

  1673 



 

 

PORCNwt 1674 

ATGGCCACCTTTAGCCGCCAGGAATTTTTCCAGCAGCTACTGCAAGGCTGTCTCCT1675 

GCCTACTGCCCAGCAGGGCCTTGACCAGATCTGGCTGCTCCTTGCCATCTGCCTC1676 

GCCTGCCGCCTCCTCTGGAGGCTCGGGTTGCCATCCTACCTGAAGCATGCAAGCA1677 

CCGTGGCAGGCGGGTTCTTCAGCCTCTACCACTTCTTCCAGCTGCACATGGTTTG1678 

GGTCGTGCTGCTCAGCCTCCTGTGCTACCTCGTGCTGTTCCTCTGCCGACATTCCT1679 

CCCATCGAGGCGTCTTCCTATCCGTCACCATCCTCATCTACCTACTCATGGGTGAG1680 

ATGCACATGGTAGACACCGTGACATGGCACAAGATGCGAGGGGCACAGATGATTG1681 

TGGCCATGAAGGCAGTGTCTCTGGGCTTCGACCTGGACCGGGGCGAGGTGGGTA1682 

CGGTGCCCTCGCCAGTGGAGTTCATGGGCTACCTCTACTTCGTGGGCACCATCGT1683 

CTTCGGGCCCTGGATATCCTTCCACAGCTACCTACAAGCTGTCCAAGGCCGCCCA1684 

CTGAGCTGCCGGTGGCTGCAGAAGGTGGCCCGGAGCCTGGCACTGGCCCTGCTG1685 

TGCCTTGTGCTGTCCACTTGCGTGGGCCCCTACCTCTTCCCGTACTTCATCCCCCT1686 

CAACGGTGACCGCCTCCTTCGCAAGGGCACCATGGTAAGGTGGCTGCGAGCCTA1687 

CGAGAGTGCTGTCTCCTTCCACTTCAGCAACTATTTTGTGGGCTTTCTTTCCGAGG1688 

CCACGGCCACGTTGGCGGGGGCTGGCTTTACCGAGGAGAAGGATCACCTGGAAT1689 

GGGACCTGACGGTGTCCAAGCCACTGAATGTGGAGCTGCCTCGGTCAATGGTGG1690 

AAGTTGTCACAAGCTGGAACCTGCCCATGTCTTATTGGCTAAATAACTATGTTTTCA1691 

AGAATGCTCTCCGCCTGGGGACCTTCTCGGCTGTGCTGGTCACCTATGCAGCCAG1692 

CGCCCTCCTACATGGCTTCAGTTTCCACCTGGCTGCGGTCCTGCTGTCCCTGGCT1693 

TTTATCACTTACGTGGAGCATGTCCTCCGGAAGCGCCTGGCTCGGATCCTCAGTG1694 

CCTGTGTCTTGTCAAAGCGGTGCCCGCCAGACTGTTCGCACCAGCATCGCTTGGG1695 

CCTGGGGGTGCGAGCCTTAAACTTGCTCTTTGGAGCTCTGGCCATCTTCCACCTG1696 

GCCTACCTGGGCTCCCTGTTTGATGTCGATGTGGATGACACCACAGAGGAGCAGG1697 

GCTACGGCATGGCATACACTGTCCACAAGTGGTCAGAGCTCAGCTGGGCCAGTCA1698 

CTGGGTCACTTTTGGATGCTGGATCTTCTACCGTCTCATAGGC 1699 

 1700 

PORCNDup20 1701 

ATGGCCACCTTTAGCCGCCAGGAATTTTTCCAGCAGCTACTGCAAGGCTGTCTCCT1702 

GCCTACTGCCCAGCAGGGCCTTGACCAGATCTGGCTGCTCCTTGCCATCTGCCTC1703 

GCCTGCCGCCTCCTCTGGAGGCTCGGGTTGCCATCCTACCTGAAGCATGCAAGCA1704 

CCGTGGCAGGCGGGTTCTTCAGCCTCTACCACTTCTTCCAGCTGCACATGGTTTG1705 

GGTCGTGCTGCTCAGCCTCCTGTGCTACCTCGTGCTGTTCCTCTGCCGACATTCCT1706 

CCCATCGAGGCGTCTTCCTATCCGTCACCATCCTCATCTACCTACTCATGGGTGAG1707 

ATGCACATGGTAGACACCGTGACATGGCACAAGATGCGAGGGGCACAGATGATTG1708 

TGGCCATGAAGGCAGTGTCTCTGGGCTTCGACCTGGACCGGGGCGAGGTGGGTA1709 

CGGTGCCCTCGCCAGTGGAGTTCATGGGCTACCTCTACTTCGTGGGCACCATCGT1710 

CTTCGGGCCCTGGATATCCTTCCACAGCTACCTACAAGCTGTCCAAGGCCGCCCA1711 

CTGAGCTGCCGGTGGCTGCAGAAGGTGGCCCGGAGCCTGGCACTGGCCCTGCTG1712 

TGCCTTGTGCTGTCCACTTGCGTGGGCCCCTACCTCTTCCCGTACTTCATCCCCCT1713 



 

 

CAACGGTGACCGCCTCCTTCGCAAGGGCACCATGGTAAGGTGGCTGCGAGCCTA1714 

CGAGAGTGCTGTCTCCTTCCACTTCAGCAACTATTTTGTGGGCTTTCTTTCCGAGG1715 

CCACGGCCACGTTGGCGGGGGCTGGCTTTACCGAGGAGAAGGATCACCTGGAAT1716 

GGGACCTGACGGTGTCCAAGCCACTGAATGTGGAGCTGCCTCGGTCAATGGTGG1717 

AAGTTGTCACAAGCTGGAACCTGCCCATGTCTTATTGGCTAAATAACTATGTTTTCA1718 

AGAATGCTCTCCGCCTGGGGACCTTCTCGGCTGTGCTGGTCACCTATGCAGCCAG1719 

CGCCCTCCTACATGGCTTCAGTTTCCACCTGGCTGCGGTCCTGCTGTCCCTGGCT1720 

TTTATCCCTGGCTTTTATCACTTACGTGGAGCATGTCCTCCGGAAGCGCCTGGCTC1721 

GGATCCTCAGTGCCTGTGTCTTGTCAAAGCGGTGCCCGCCAGACTGTTCGCACCA1722 

GCATCGCTTGGGCCTGGGGGTGCGAGCCTTAAACTTGCTCTTTGGAGCTCTGGCC1723 

ATCTTCCACCTGGCCTACCTGGGCTCCCTGTTTGATGTCGATGTGGATGACACCAC1724 

AGAGGAGCAGGGCTACGGCATGGCATACACTGTCCACAAGTGGTCAGAGCTCAG1725 

CTGGGCCAGTCACTGGGTCACTTTTGGATGCTGGATCTTCTACCGTCTCATAGGC 1726 

  1727 
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