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1 N-lim experiment and DFE

1.1 Media used for N-lim condition

The barcoded yeast library from [1], containing ~500,000 barcodes, was evolved by serial batch culture under nitrogen
limitation in 100 ml of 5x Delft media [2] with 0.04% ammonium sulfate and 4% dextrose. Cells were grown in 500 ml Delong
flasks (Bellco) at 30°C and 223 RPM for 48 hours between each bottleneck. Bottlenecks were performed by adding 400 pl of
the evolution to fresh media. Cell counts were performed at each bottleneck to estimate the generation time. Contamination
checks for bacteria or other non-yeast microbes were performed regularly. Barcode sequencing and counting was performed,
as described [1].

1.2 Inferring the DFE in N-lim

Here we outline how we infer the DFE in N-lim and compare its features with those measured previously in C-lim.

To construct the DFE in N-lim we followed the procedure outlined in detail in [1]. Because adaptation is slower in N-lim

we used trajectories for ~200 generations with read depths given in the following table:

Generation‘ 0 8§ 16 48 72 80 96 104 112 120 128 136 144 160 168 176 184 192 200

Depth N1 | 222 36 30 36 30 33 39 39 36 35 32 24 23 23 34 39 20 39 -
(x10%)
Depth N2 | 222 - 30 38 34 50 34 29 — 39 - 37 — 29 — 37 — 25 47
(x10%)

Table 1: Read depths across time points for the two replicate evolutions in nitrogen limitation (N-lim). Only these time

points are used in the analysis.

To identify lineages with beneficial mutations, using the same null model as outlined in [1], each barcode trajectory was
assigned a posterior probability of harboring an established beneficial mutation with fitness effect s and establishment time 7
based on its abundance change between subsequent time points. Lineage trajectories in both N-lim replicates (N1 and N2) are
shown in Figure 1 alongside the original C-lim trajectories (C1 and C2) (previously published in [1]) for comparison. The more
rapid adaptation observed in C-lim relative to N-lim can be quantified by plotting the mean-fitness trajectory (mean fitness
of cells in the population relative to the ancestor), shown in the right-hand panel of Figure 1. These mean fitness trajectories
are inferred using the fitness estimates and interpolated trajectories for each adaptive lineage identified in each environment.

To infer the DFE in N-lim, we first filtered out adaptive lineages that were identified as adaptive in both replicates
(purple points in Figure 2) as these were likely pre-existing mutations that arose prior to the beginning of the experimental
evolutions [1]. Figure 2 shows all beneficial mutations identified as adaptive colored according to whether they are pre-existing
(purple) or not (green) in both N-lim replicates and, for comparison, the previously published C-lim replicates.

Next we used the estimates of s inferred for each adaptive lineage together with the deterministic approximation outlined
in [1] (that relates the mutation rate density p(s) to fitness effects in the range [s, s + ds] to the measured fraction f(ds,t) of
cells in the population expanding at rates between [s, s+ ds] at time t) to estimate the rate of mutation to each fitness interval
via:

flds,t) = I e )

which is independent of the variance in offspring number [1]. The result of this procedure gives one an estimate for the
mutation rate density as a function of fitness effect as shown here in Figure 3 and also in the main text Figure 2. The lower
two panels are inferences for the N-lim replicates while the upper two panels show previously published DFE estimates for the
two C-lim replicates. It should be noted that the y-axes is log-scaled to enable visualizing the shape of the high-fitness nose
of the DFE which is critical in determining the dynamics. In short, if the nose is log convex down a predominant fitness effect

“s” exists which drives the dynamics whereas if it is log convex up, one is dominated by the largest clone to have occurred [3].
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Supplementary Figure 1: (Left) Lineage trajectories from each of the four replicates (C1, C2 performed in C-lim and N1,

N2 performed in N-lim) for which lineage tracking was performed colored by probability of containing an adaptive mutation.

(Right) The mean fitness of cells in each experiment over time relative to the wild-type. Replicates within the same environment

are consistent with one another although do show some variation, particularly at later times, due to the stochastic occurrence

time of mutations [1]. Shaded region indicates approximate error on the mean fitness inference.



0.15
2 ® 010
© S
(3 (]
= =
[} (9}
[ 1]
%] 0
[] (0]
] 5
i ic
0.05
000 1 L L L Il 1 L L 4 L L L
-96 -80 -64 -48 -32 -16 0 16 32 48 64 80 9 112 -96 -80 -64 -48 -32 -16 0 16 32 48 64 80 9% 112
Time (generations) Time (generations)
0.15 - N1 0.15 N2
@ 010 °
© ©
L 2
@ ©
[ 1]
%] 0
[} Q
£ £
ic i
L ] T R S S R —

- P 0.00 !
-128-112 -96 -80 -64 -48 -32 -16 0 16 32 48 64 80 96 112 128 -128-112 -96 -80 -64 -48 -32 -16 0 16 32 48 64 80 96 112 128

Time (generations) Time (generations)

Supplementary Figure 2: Expansion of lineages can be used to estimate the fitness effect s (y-axis) and establishment time,
7, (x-axis) of all detectable single beneficial mutations that enter the population. Each circle is an independently occurring
mutation, the size indicates its abundance in the population at generation 88. Color indicates whether it entered prior to the
separation of the replicates (purple, “pre-existing”) or after the separation (green, “not pre-existing”). The top panel is from

previously published data in [1] and is shown here for comparison.
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Supplementary Figure 3: The distribution of fitness effects of all detected single beneficial mutations arising in each of the
four replicates. Rates to each fitness effect are inferred by counting the number of cells in a given fitness range over time and

using a deterministic approximation to infer u(s) (see [1]).



2 Distribution of single-mutant sizes over time and effective U,

The arguments in this section follow similar arguments presented in the supplemental methods of [1] and [3]. Consider a
mutation at a given site in the genome i with fitness advantage s, which occurs at a constant rate R, = NU; from a pool of
N ancestral feeding cells. The total number of single-mutant cells with this mutation is the convolution of the single mutant
size distribution (see [1]) with the distribution of times at which the mutations enter (uniform). This yields a distribution of

rescaled clone sizes v = n/f = n/((c/s)e™):

1 e v

p(v)dv = mﬁd”

(2)
The rate of mutating a given site is u ~ 3 x 107*° per bp per generation [1] hence R; < 1 and the distribution of sizes of
unique SNPs is approximately NUe™" /v with the largest single-mutants being those that arose immediately reaching sizes
n ~ (c/s)e*t and the smallest being those that arose in the previous generation and that are of size ~ 1.

In general there are a range of possible s with different mutation rates u(s) hence the distribution of single-mutant

abundances is obtained by summing all of these:

oo s efn/ﬁ(s)
O S e ¥

Thus the exact form of the single-mutant distribution will depend on the shape of u(s) and in general will not retain the
characteristic 1/n form even at low frequencies unless u(s) is sharply peaked over a narrow range.

Note on clonal interference. The above expression assumes no competition between lineages. This is a good approximation
at early times, but for times after the single-mutant class has reached a significant fraction of the entire population clonal
interference cannot be ignored. In the simplest model however, clonal interference — which results from the total population
size of cells having to remain &~ N — is captured by considering a genotype’s fitness advantage over the (increasing) mean-
fitness of the population, Z(t). Thus, while the previous expression will still accurately capture relative frequencies of mutants,

the absolute numbers of the different genotypes will be modified by a factor

exp (— /Ot i(u)du) (4)

Consider now an entire class of mutations with a given fitness effect range s, s + ds rather than a specific mutation. The
mutation rates to this range of fitness effects is given by u(s)ds. Provided the population size Nu(s)ds > 1, (true for the
majority of the range we consider, but see below for when this does not hold) single mutants occur in large numbers for a given
fitness range (since Nu(s)ds = R >> 1) and therefore, as a class, behave quasi-deterministically. The fraction of single-mutant
cells in a given fitness range f(s)ds is simply

et —1

S

f(s)ds = p(s)ds ()

Since the timescale over which mutations with fitness effects s will contribute is 1/s and the number establishing per generation
is Nu(s)ds, the number of mutations contributing significantly to the genetic diversity in each fitness class is of order Npu(s)ds.
The small lineage size ensures that the majority of single-mutants will occur inside independent lineages, hence the number
of lineages that expand at a rate between s, s + ds is also Npu(s)ds.

Effective fitness effects and effective mutation rates. For times st > 1, the differences in fitness effects between mutations
enable some lineages to expand more relative to others. The range of fitness effects dominating all adaptive cells are those for

whom f(s)ds = u(s)ds(e®* —1)/s is maximized, which corresponds to fitness classes in the region of §, where

_dlogp
ds |;

—t (6)

the region having a width 65 is given by 1/4/02 log pu evaluated at §. Mutations in the fitness range [5(¢), 5(t) + 05(¢)] dominate
the population at ¢t and hence they can be considered an effective s. Similarly, the rate of mutation to these fitness effects
U, = 1(5(t))d5(t) can be considered an effective mutation rate. Together these can be used to determine the number of

expanding unique single-mutants contributing to the diversity at time ¢:

# single mutants ~ Np(8(t))d5(¢) (7)



Stochastic occurrence of highly fit single mutants. The fitness of the predominant fitness class § typically increases over time
because the size of each fitness class has an exponential weighting e*. Since u(s) in both environments we analyze decreases
with increasing s, this results in a smaller U, at later times. This has important consequences for stochasticity. The single
mutant genetic diversity is determined by an exponential expansion of types, but where the number of types is ever decreasing
(see “top-hat” DFE example). For late enough times, the predominant fitness class §(¢) with associated width §3(¢) has an
associated mutation rate Uy(t) = u(3(t))85(t), which can be small enough that NU,(t) < 1. At this point, the number of
mutations contributing to the adaptive single-mutant population becomes small since the population is dominated by the small
number of high fitness clones. This results in lower genetic diversity and increased stochasticity. At times £ ~ (1/3)In (§ / (~Jb)
single-mutants comprise a significant fraction of all cells. Around this time they begin to interfere with one another, slowing

their exponential expansion.



3 Sequencing of clones, remeasuring fitness and ‘“coloring” the DFE

3.1 C-lim
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Supplementary Figure 4: C-lim sequenced clones. The top 100 clones ranked (left to right) in order of decreasing
re-measured fitness relative to the ancestor in C-lim. Each column is a clone (picked from the population at generation
88). The top panel shows the extrapolated abundance — indicated by disk area — at generation 300, the middle panel the
measured abundance — indicated by disk area — at time of sampling (generation 88) and the bottom panel shows the barcode
ID, and number of mutations identified in each clone (squares) with colors indicating which gene the mutation landed in.
Gray indicates “other” mutations that appear only once, a substantial fraction of which are likely neutral. Multiple mutants
are denoted by bold outlines and sometimes also by a dark blue square. The dark blue square indicates an adaptive mutation

that did not fall into one of the commonly mutated genes listed in the key on the right-hand side.

In total 475 clones were picked from the C-lim evolution (369 clones from C1, blue disks in 4, 106 clones from C2, green
disks in 4). A large proportion of these clones have been described previously in [5] and we refer readers to this reference for
clone picking and sequencing details. Figure 4 shows the top 100 clones ranked by re-measured fitness. Anomalously large
double mutant clones are highlighted by barcode numbering on the plot.

Adaptive mutations. We used the following criteria to determine whether mutations were adaptive "driver" mutations

(those causing the non-neutral fitness) or neutral passenger mutations.

1. If a gene was mutated multiple times in clones with distinct barcodes, mutations in that gene were designated as
adaptive. A conservative estimate of the probability that two independently occurring neutral mutations in a given
gene would be identified as adaptive via such an approach is small (~ 0.005), as the number of genes mutated twice in
independent lineages is 26 and there are ~ 5,000 possible genes. This estimate is conservative because (i) it does not use
functional information and the vast majority of these mutations indicate they are functional (e.g. missense, frameshift,
upstream indel) and (ii) because there is often only one mutation observed in that clone, making it more likely to be

the variant causing the fitness difference.

2. If a mutation in a gene was only observed once, but that clone was clearly non-neutral (mean re-measured fitness>0.01),

and no other mutations were identified in the clone, then that gene was labeled as adaptive adaptive.

Multiple-mutants. A clone that contains two or more mutations that are identified as “adaptive” via the above criteria was
classified as a multiple mutant. In replicate C1 the largest clone (barcode 3730) is a confirmed double-mutant with mutations
Dip+RAS2 . C2 is more difficult to assess as the number of clones sampled was smaller and thus a larger fraction of the high
abundance barcodes at late times were not sampled at generation 88 (see Figure 24). The largest lineage in C2 — 1379 — is
indeed identified as a double-mutant composed of an JRA1 (mutated 47 times across both replicates) and YIL169C (mutated
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Supplementary Figure 5: N-lim sequenced clones.The top 100 clones ranked (left to right) in order of decreasing
re-measured fitness relative to the ancestor in N-lim. Each column is a clone (picked from the population at generation 192).
The top panel shows the extrapolated abundance — indicated by disk area — at generation 300, the middle panel the measured
abundance — indicated by disk area — at time of sampling (generation 192) and the bottom panel shows the barcode ID,
and number of mutations identified in each clone (squares) with colors indicating which gene the mutation landed in. Gray
indicates “other” mutations that appear only once, a substantial fraction of which are likely neutral. Multiple mutants are
denoted by bold outlines and sometimes also by a dark blue square. The dark blue square indicates an adaptive mutation

that did not fall into one of the commonly mutated genes listed in the key on the right-hand side.

6 times across both replicates). However a note of caution is warranted here: 5 of the 6 mutations in YIL169C are at exactly
the same position. While this can occur by chance at the population sizes we use, it is more likely due to a neutral pre-existing
mutation that arose prior to barcoding and was barcoded multiple times. This is especially likely in this case since the same
SNP is sampled into both replicates (C1 and C2) yet is not adaptive in C1. Hence in C2 there is little evidence for early
anomalously fit double-mutants. This lack of early double-mutants is consistent with the diploid trajectory in C2 (Figure 4C
of main text, green data points) where the diploid trajectory is outcompeted for a long time and is rescued late, indicating a

later double-mutant in this replicate.

3.2 N-lim

We isolated clones from generation 192 of N1, and remeasured the fitness of the 310 clones within that pool, whose trajectories
indicated they were adaptive as previously described [5]. We whole genome sequenced all clones from this pool to a mean
coverage of 30x. Variants were called using the same pipeline as outlined in [5]. Details of the top 100 clones ranked by
re-measured fitness is shown in Figure 5.

From the whole genome sequencing data, we identified SNPs, small indels, larger deletions and insertions, Ty transposition
events, and CNVs, including aneuploidy and segmental aneuploidy and annotated the genes within which those mutations
fell. Among these genes, there were 39 that had more mutations than would be expected by chance including: MFEPI,
GAT1, PAR32, FCY2, DAL81 and MIT1. In addition, we saw mutations in MEP2 and MEP3. The MEP genes encode the
ammonium permeases, suggesting that the mutations that we observe are likely to be gain of function, increasing the cell’s
ability to scavenge ammonium, which is the limiting nutrient. We also observe mutations in GAT'1, which has been previously
identified as mutation in nitrogen limited chemostats [6], and encodes a GATA transcription factor that activates the nitrogen
catabolite repression regulon.

Adaptive mutations. Adaptive mutations were identified in the same way as in the C-lim replicates (see above).

Multiple-mutants. In the sequenced N-lim replicate, 28 of the top 100 clones ranked by fitness are double-mutants (defined
as above for C-lim). Of these, two lineages go onto dominate the population (BC #84944, containing a Dip+MEP1 double-



mutant and BC #222232, containing a Dip+GAT1 double-mutant) both indicating Dip+GoF structure since the gene variants

are beneficial as heterozygotes.

3.3 Coloring the DFE by gene / mutation type

Combining the whole genome sequencing of adaptive clones with the lineage tracking data enables one to assign which
mutations in which genes contribute to various regions of the DFE. This is shown for both N-lim and C-lim environments
in Figure 2 of the main text. To “color” the beneficial mutation rate spectrum, by gene like this, we divided up the fitness
range ([0,0.15] in C-lim and [0,0.12] in N-lim) into bins of width dxz = 0.002. For each of the replicates with large numbers
of sequenced clones (C1 and N1) we then assigned each adaptive barcode to a bin if its fitness estimate (from the maximum
likelihood approach using the early time trajectory in Section 1) fell within that fitness bin. For each adaptive barcode in
each fitness bin, we then asked whether a clone from this barcode was whole genome sequenced and if it was sequenced, which
genes were mutated.

The contribution of a given barcode lineage to the bin rate was determined by estimating the rate using the inferred fitness

effect and establishment time via

o~ %exp (—s7) (8)

We scaled the rate of each gene in a given bin up by a factor such that the rate to all genes in a given bin added up to the
total rate inferred for that bin. For example if 2 barcoded lineages each with a different mutated gene contributed to a bin,
but the estimates of the rates to each were in the ratio 2:1, and the total rate to the bin was 107%, then the first gene would
be colored to a height of 0.67 x 10~° and the second to 0.33 x 107°. Bins in which no clones were sampled for sequencing were
marked as unknown. This method will work well for bins in which many unique lineages that were found to be mutated, and
will work less well as the number genes contributing to a bin decreases, since in the latter case there is a good chance we have
under-sampled. This effect however does not affect any subsequent results, only the coloration of the DFEs in Figure 2 of the
main text. Only single-mutants, which were not pre-existing (e.g. were adaptive replicate C1 (N1) and not in C2 (N2)), and
which contained mutations in verified adaptive genes were counted. Verified adaptive genes are defined in section 3.1.

Multiple mutants, i.e. lineages which contain clones that upon sequencing had 2 or more mutations in genes that were
independently verified as adaptive (using the above criteria) were colored differently (dark blue) so that the (small) contribution

of multiple mutant lineages to the DFE could be assessed.

3.4 Loss-of-Function vs. Gain-of-Function mutations

In the simulations described in section 5, we classify high-fitness mutations as either Loss-of-Function (LoF) or Gain-of-Function
(GoF). This classification is inspired by observations that, in both environments, a large fraction of adaptive mutations disrupt
gene function (putative LoF mutations) while a smaller fraction are likely to have modified the gene’s function (putative GoF
mutations). It should be stressed, however, that our classification of mutations as being either LoF or GoF
are not definitive, and none of our conclusions depend on assigning individual clones as harboring LoF or
GoF mutations. However multiple lines of evidence do point to these two broad classes of mutation being

important to the diversity dynamics. Specifically:

e Putative LoF mutations typically occur in negative regulators. We defined clones as harboring LoF mutations
if the adaptive mutation was identified as (i) nonsense, (ii) frameshift or (iii) a large deletion or (iv) missense but in a
gene in which at least one other clone harbored a mutation of type (i)-(iii) and was also identified as adaptive. Examples
in C-lim of genes which are adaptive under a LoF mutation include IRA1, IRA2, GPB2, PDE2 [5], examples in N-lim
include PAR32, GAT1, MIT1, FCY2.

¢ Putative GoF mutations often occur in positive regulators. We defined clones as harboring GoF mutations if
the adaptive mutation was identified as (i) missense and in which no other type of mutation was found to be adaptive
in that gene or, in the case of N-lim, occasionally a Ty transposition if further biology could justify it as GoF (below).
In C-lim, for example, mutations in positive regulators of the RAS pathway are exclusively missense mutations in
genes such as RAS2, CYRI1, TFS1 strongly indicating they are GoF mutations. In N-lim, mutations in MEP1, MEP2,

10



and MEPS8 genes were identified as putative GoF. The MEP genes encode ammonium permeases, suggesting that the
mutations that we observe are likely to be gain of function, increasing the cell’s ability to scavenge ammonium, which is
the limiting nutrient. Mutations in the MEP genes are either very specific missense mutations (sometimes hitting the

same exact nucleotide) or Ty insertions downstream of the gene.

e Putative LoF mutations are more common than GoF mutations. Based on the mutations in Figure 4 of [5]
these classes occur in the ratio of 66:16 or roughly 4:1. Making a quantitative assessment in N-lim is more challenging
as definitely assigning LoF or GoF to a given mutation is harder. Thus we elected to use the same ratio 4:1 for N-lim

simulations too.

e Putative LoF mutations partially or totally recessive. In C-lim, as predicted by our theory, the LoF mutations
are almost never seen in diploids. There were however three clones which were sampled which did have LoF mutation in
diploids. An JRA1 homozygote (barcode ID 10103, re-measured fitness 9.6%), an TRA2 homozygote (barcode ID 5564,
re-measured fitness 10.0%) and an IRA2 heterozygote (barcode ID 3577, re-measured fitness 2.8%). This suggests that
high-fitness effect LoF mutations are recessive since the homozygotes retain their high fitness while the heterozygote

does not.

e Putative GoF mutations at least partially dominant. In contrast to the paucity of LoF mutations in diploids,
GoF mutations are observed in diploids and are exclusively seen in heterozygotes. Missense heterozygote mutations
in ACF2 (barcode ID 2039, re-measured fitness 8.3%), RAS2 (barcode ID 3730, re-measured fitness 13.7%), PSEI
(barcode ID 9689, re-measured fitness 5.7%), VPS8 (barcode ID 15337, re-measured fitness 6.9%) and a Chromosomal
amplification of Chrll (barcode ID 3577, re-measured fitness 8.6%) are all clearly supplying a fitness benefit above and
beyond the fitness effect of being a diploid (4%+1%).

These features become important when we outline the epistasis model. Since self-diploidization is a common mutation
the distinction between LoF and GoF is likely to be important when considering double-mutants. Indeed, the high fitness
double-mutants we observe are typically Dip+GoF mutations and are heterozygote for the GoF mutation since it occurred
second. In the epistasis model outlined below we use this biological insight to reason that the order of acquiring mutations
is important and profoundly changes the dynamics of genetic diversity. If LoF mutations were able to occur at the same
rate on the diploid background as they do on the haploid, for example, the additive model predicts they would dominate the

population of double-mutants.
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4 Staircase model

Consider the staircase model in which beneficial mutations of (additive) fitness effect s enter at rate U into a population of N
cells. In the limit of large numbers of sites, all mutations that enter the population will uniquely label a different clone (infinite
sites limit). The frequencies of these clones through time are what we are interested in. Much of this can be understood by

considering the median time at which new mutations arise on the background of an expanding subpopulation.

Rank-frequency distribution for arbitrary R and «a. Consider a fitness class growing as no exp(ri1t) which feeds muta-

tions at rate U that grow have a (higher) fitness r2. The cumulative number of cell divisions the feeding class has undergone is
C(t) = (no/r1) (™ — 1) and since the probability of a de novo mutation occurring and establishing is ~ Urz, the cumulative

probability of the first mutation occurring by time ¢ is
C(t) =1 —exp(=(noU)(r2/r1) (€™ = 1)) = 1 —exp (=(R/a) (™" — 1)) )

where R = noU and o = r1/r2. For single-mutants no = N while for double-mutants no = NU/s. This generalises to mutant
class ¢ as no = Ns/(s/U)? as long as no > 1. If ng < 1, one has to account for the establishment time of the class. The
above expression can be cast as a cumulative distribution over rescaled size, v = n/((1/r2)e""), of the new mutation rather

than time of occurrence by using the fact that n = (v/r2)e™*. This yields
C(v)=1—exp (f(R/a) (1/70‘ - 1)) (10)

The typical size of the first mutation can then be determined by asking for the characteristic v over which the exponent decays.

Equating the exponent to 1 gives:

7=(1+a/R)" (11)
Extending this to ask when the kth mutation will typically enter simply yields

vk = (1 + ka/R)~"/*" (12)

which is the result quoted in the main text.

Feeding rate and effective initial size. What is R in the context of the staircase model? Provided the feeding class is in

the deterministic regime i.e. for class g, one finds R = (Ns)/(s/U)? i.e. for single-mutants R = NU > 1 while for double-
mutants R = NU?/s < 1. Generally if Ns/(s/U)? > 1 then class ¢ will be well approximated as deterministic and its initial
feeding rate is simply Ns/(s/U)?, while if Ns/(s/U)? < 1 the initial feeding rate would need to account for the establishment
time of the class. Since R > 1 for single mutants the single-mutant class behaves deterministically and the above formula for

the rank-frequency can be approximated as
Uk = (1 + ka/R) ™" ~ exp(—k/R) for small  ka/R (13)
For double-mutants (or any subsequent mutant class) since R < 1, they behave stochastically the median scales as
Uk = (14 ka/R)" Y ~ kY for large ka/R (14)

In addition to the power-law scaling, the double-mutants exhibit large fluctuations (dominated by the fluctuations in when
the first second-mutant occurs).

Number of clones contributing to a class. The above formula enables one to evaluate how many clones contribute sig-

nificantly to the expansion of the class as a whole. In the R > 1 limit the only characterstic scale in the exponent is R and
thus, on the order of R clones contribute equally to the expansion. For R < 1 the distribution is a power-law and the number
contributing depends on the exponent of that power law. Generally v, ~ k'/® meaning the sum of all the relative frequencies
is determined by ((1/a) where ( is the Riemann Zeta function. Table 2 enumerates how many clones contribute 50%, 90% or
99% of the total for that class, for a number of different .

Luria-Delbruck limit. In the limit of R < 1 and o = 1 (double mutants grow at same rate as single-mutants) one recovers

the Luria-Delbruck limit in which vy ~ 1/k. In this case the total number of clones contributing to the class is not bounded,

and in principle continues to grow with time (though in practice is curtailed by the feeding population eventually being
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@ 4 for >50%  # for >90% # for >99%

0 1 1 1
1/4 1 1 3
/2 1 6 61
2/3 2 59 5861
1 R J— J—

Table 2: Number of clones that comprise either 50%, 90% or 99% of the total population for that class as a function of the
ratio of the fitnesses between those classes .

outcompeted and thus shrinking). In the absence of this effect, the late clones contribute just as much to the total as the early
clones since the cumulative of the 1/k distribution gives a In(k) dependence i.e. that the total number in the class scales with

the log of the number of mutations to have occured. Since the total number scales as e™**

there is a linear (i.e. t) term for the
total, meaning each generation contributes equally to the total.

Dynamics of the lead.

4.0

3.5

Bl
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0.0

0 200 400 600 800 1000
Time (generations)

Supplementary Figure 6: The lead, ¢, measuring the difference in fitness (in units of s) between the fittest clone in the
population relative to the mean over time for 100 simulations of the staircase model (grey lines). A typical instance of the

lead trajectory (red) and the mean of all trajectories (black) are highlighted.

Entropy in staircase model. One measure of the genetic diversity in the population is the Shannon entropy

§==> piln(p) (15)

our goal is to quantitatively understand the statistical and dynamical behaviour of the entropy. Considering Figure 3D of the

main text there are a number of key features which can be quantitatively understood:

@ The timing of the maximum diversity. The large peak in diversity is caused by the large number of expanding
single mutants that enter and expand almost contemporaneously. We can quantitatively understand this by realising
that those single-mutants destined to establish enter at a constant rate NU,s and expand exponentially at rate s. Thus,
the density of single-mutant clones at frequency f is p(f) ~ NUss(df/f) exp(—f/f) where f = (1/Ns)e®t. The total
number of single-mutant clones that contribute significantly to the total number of single-mutant cells is ~ NU, > 1.
Once the single-mutants reach a total population size on the order of ~ N the wild-type population declines rapidly
and the fitness advantage of new mutations is diminished, causing both the rate of establishing new mutations and their
fitness advantage to decline and eventually reach zero. This therefore sets the maximum size the first mutants will get

to and thus, the timing and magnitude of the maximum in diversity. Using that the single-mutant class as a whole
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expands as n1 &~ (NUy/s)e®" we find that the maximum in genetic diversity should occur when

NUb st
—e

S ~ N or t=(1/s)In(s/U) (16)
which agrees quantitatively with the simulations (Figure 3D, main text).

@ The timing of the diversity crash. Timing of the diversity crash comes from when the handful of double-mutants

outcompete single-mutants. Setting na(t) &~ ni(t) gives:

2\ 2 2st st
(QNUb> et (NUb) e (17)
s 2s s s
b L (B0 (18)
Ts 2Ns

which is also in quantitative agreement with the simulations.

@ The maximum value of entropy before the crash. The maximum value the entropy can attain can be understood
simply for the fact that there will be ~ NU, single-mutants all of roughly equal size contributing to the expansion of
the single mutant class. Hence their contribution to the entropy once single-mutants constitute the majority of the

population will be
Smaz = In(NUy). (19)

This is also in quantitative agreement with simulations.

@ The average level of diversity (i.e. entropy) in the steady-state

In the steady-state the clone sizes are power-law distributed as p(f) ~ f7 where (2¢ —1)/¢ < v < (2¢+1)/(¢ + 1) and
where q is the lead i.e. the first fitness class for which Ns(U/s)* which in our case is ¢ ~ 2.
If the feeding mutant is growing as n ~ ngexp((¢ — 1)st) and feeds new mutations that grow at rate gs, then one can

calculate the entropy by considering the typical time at which mutations enter. The ith mutant will typically occur when

2
qu/ n(t)dt ~ i (20)
0
and therefore the size it reaches by time t will be
, eds(t—ti)
() ~ ——— 21
()~ (21)

Substituting in for ¢; we find that the size of the ith mutant to occur, relative to the first one to occur should follow
N ~ i/ (a=1) (22)
The entropy S = >, pi In(1/p;) of this distribution is then be calculated as

g ((a/qa—-1)
q—1¢(q/q—1)

where ( is the Riemann zeta function. This expression is plotted in Figure 7. For leads 2 < ¢ < 3 (those applicable to the

S =1In(¢C(q/q—1)) + (23)

steady state for the parameters in our experiment) this produces an entropy level of & 2 — 3 which agrees with the mean levels
observed in Figure 3D of the main text. Double mutants are formed when the lead ¢ = 2, which is consistently smaller than
the lead of mutants formed in the steady state. Because of this, the entropy expected for double mutants, as a class, is lower

than expected for the further multiple-mutants (Figure S6).
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Supplementary Figure 7: Entropy predicted by the size distribution of 'typical’ mutants i.e. without stochastic fluctuations,
as a function of the relative lead ¢/(¢—1). Double mutants (for whom ¢/(¢—1) = 2 have a lower entropy (S ~ 2)than multiple

mutants (S ~ 3) since they are formed when the lead is smaller (Figure S6)
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Supplementary Figure 8: mDFEs. (a) The inferred mDFE in N-lim from all adaptive lineages and (b) the mDFE resulting
from excluding known multiple mutant lineages (from sequencing of clones) and revising the rate to Dip mutations (those

below dashed line). (c¢) and (d) the equivalent plots for the C-lim environment. Note the logarithmic scale on the y-axis.

5 Simulated lineage dynamics with inferred mDFEs under 3 models

Here we perform similar simulations using more realistic mDFFEs: those directly inferred in both N-lim and C-lim. We show
that the insights from simple mDFEs hold for these more realistic mDFFEs: single-mutants drive an expansion in genetic

diversity that subsequently crashes due to the emergence of double-mutants.

To simulate the genotype and lineage dynamics with measured single-mutant mDFEs, we started with the mDFEs inferred

in each environment (outlined in Section 1) and made the following changes:
1. Lineages that contained multiple-mutants verified via sequencing of clones (see Section 3) were removed from the mDFE

2. The de-novo rate of diploidization (fitness classes below the dashed line in Figure 8) used was 3 X 1075 per generation.
In our previous work [5], we discovered that the large class of mutants in the 4% range in C-lim and 3% range in N-lim
were diploids. Based on the high initial fraction (~ 1%) of the population which harbored a diploid mutation, it was also
clear that many of these must have been induced during the transformation of barcodes rather than arising de-novo. To
estimate the rate of de-novo diploidization we therefore asked what de-novo rate was most consistent with the measured
diploid trajectories (section 6.1). We found that a de-novo rate of ~ 107 was consistent with the rescue time for diploid
trajectories. This rate is broadly consistent with the measured the fraction of diploids present in the population in the
same experimental conditions but which did not undergo a barcode transformation. After ~ 120 generations of growth
an estimated fraction of ~ 10% + 3% of cells were diploid (Lucas Herrissant, unpublished data). Using the fact that this

class will behave deterministically, the rate can be estimated using
f(&) = (U/s)e™ (24)

resulting in an estimated rate between 3 x 107% — 3 x 107> per generation. Uncertainties in this number should be
stressed too: the exact number of diploids depends on their growth advantage in the growth conditions prior to the

serial batch transfer, which are not known.
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The results of these two adjustments are shown in Figure 8 (a — b for N-lim and ¢ — d for C-lim). The mutations below
the dashed line are all diploidizations (Dip). In both C-lim and N-lim loss-of-function (LoF) mutations occur at a higher rate
than gain-of-function (GoF) mutations. As such for our caricature mDFEs we assumed for simplicity that each fitness class
above the dashed line has both LoF and GoF mutations which occur with relative rates of 4:1. This is broadly consistent with
the number of LoF to GoF mutations seen in each environment (see Figure 4 of [5]).

Simulation details. Simulations were performed using a custom written python code (available on request) that simulated
the fate of mutations and lineages and plotted the associated diversity measures (entropy) through time. The simulation

closely follows the experimental procedure, briefly:

e A population of N = 5 x 10® “cells” are barcoded with L = 500,000 tags. The initial population of cells that gets
barcoded contains 99% ancestor and 1% Dip. The distribution of initial abundances is Poisson distributed with a mean
of 1000.

e Fach lineage contains a dynamically updated number of genotypes (unique sets of independently occurring mutations),
each of which is initially either the ancestor (WT) or the ancestor + a diploidization (WT+Dip).

e Genotypes give rise to further genotypes via acquiring mutations drawn from the mDFE. The acquisition of new
mutations occurs stochastically and in two steps (i) a mutation is generated (ii) a stochastic variable determines whether

it establishes, and if it does, the new genotype created starts at establishment size (1/fitness advantage over the mean).

e FEach generation genotypes increase in abundance according to their fitness advantage over the “mean fitness” (calculated
each generation). Genetic drift (arising from small number fluctuations) is modelled implicitly in the establishment
process and after this (i.e. at frequencies large enough that drift is irrelevant) lineages are modeled deterministically.
Initially for example a (WT+Dip) genotype would have a fitness advantage of 4% in C-lim or 3% in N-lim since this is

the fitness effect of Dip in each environment.

e The abundance of each lineage is simply the sum of the abundances of all genotypes within that lineage (which can be

multiple). Genotype and lineage abundances are recorded every 8 generations.

5.1 Single-mutant model

In the single-mutant-model simulations, any cell that has acquired a mutation can no longer mutate and thus only single-mutant
genotypes exist and competition between these determines the entire lineage and genotype dynamics. In both environments
(C-lim, Figure 9; N-lim, 10) this model produces lineage and diversity dynamics that are not in agreement with observations.
The single-mutant model predicts too many lineages that remain at intermediate-high frequencies at the later time points (3rd
row, “Muller” plot) as compared with the experimental lineage data. This produces elevated levels of diversity (as measured
via the entropy of all adaptive lineages, 4th row) again above observations (Figure 3 of main text).

As expected most of the adaptation in the single-mutant model is driven by the high-fitness LoF and GoF mutations (light
and dark green lines in 2nd row of both Figure 9 and 10)

There are a number of reasons this model is not accurately capturing the correct lineage and diversity dynamics. First, is
that the whole genome sequencing of clones gives direct evidence that very fit double mutants are the most abundant genotypes
in the population at late times in both C-lim and N-lim. Second, the adaptive lineage dynamics do not match the observed
ones: competition between single mutants alone is not enough to explain the crash in genetic diversity observed across both

environemtns.

5.2 Additive model

In the additive simulations, cells can continue to stochastically acquire multiple adaptive mutations (waves of different colors
in row 2 of Figures 11 and 12 (color key on top of plot). New mutations are drawn from the same unchanging mDFE (i.e. the
mDFE is independent of genotype) and fitness effects of mutations combine additively. This model would be appropriate if
epistasis were rare, and cells were able to acquire many different LoF and GoF mutations that do not interact.

For the C-lim simulations (Figure 11) this model also produces lineage and diversity dynamics that are not in agreement
with observations. First, the lineage dynamics (Figure 11) predicted by such a model are qualitatively different than those

observed, whereby at intermediate-late times lineages are predicted to undergo large-scale fluctuations over long timescales
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(~50 generations) which we never observe in the experimental data (see columns b, d and e in Figure 11 as examples). These
lineage dynamics produce trajectories of the adaptive lineage entropy which are in disagreement with observations: diversity
either does not crash as dramatically and remains high even out to 300 generations as the competition between a few fit
lineages continues, or it crashed too dramatically due to a very early LoF+LoF mutant (columns a and ¢ in Figure 11 show
examples). While these look qualitatively similar to the crashed observed in the data (Figure 1 of main text, and entropy
plots in Figure 3 of main text) they are typically sharper: the entropy falling off more rapidly between 150-200 generations
than is observed in experiment.

Another key difference between the predictions of the additive model and the observations comes from comparing the
types of clones that should dominate the population at intermediate and late times. The additive model predicts that the
dominant double-mutant clones over generations 150 - 300 in the 50 simulations performed are LoF+LoF (18/50), Dip+LoF
(14/50), early triple mutants (11/50) GoF+LoF (4/50) or Dip+GoF (3/50). This is at odds with the sequencing of clones
where we observe Dip+GoF double-mutants to be the most dominant. Furthermore, this additive model predicts that diploid
trajectories (see main text Figure 4 and supplementary section 6.1) will undergo a double-dip whereby the rescue, driven by
Dip+LoF clones will be outcompeted by LoF+LoF clones, which also disagrees with our data.

For N-lim simulations (Figure 12) using the additive model produces lineage dynamics which are qualitatively similar
to those observed. The entropy adaptive lineage trajectories predicted by this model (see 4th row of Figure 12) are also in
reasonable agreement with observed trajectories. However model predictions are in disagreement with observations in two
important ways. First, the dominant intermediate/late time genotype (the one driving the diversity crash) is predicted to
be Dip+LoF, which is not observed in our data. Second, the more modest fitness advantage of the haploid LoF and GoF
mutations in N-lim coupled with the the expansion of Dip+LoF mutants, predict that the diploid trajectories in N-lim (see

Figure 4 main text) should sweep to fixation almost every time with no dip. This is again in disagreement with data.

5.3 Epsitasis model

The whole genome sequencing of hundred of adaptive clones (see Section 3) and the Diploid trajectories (see Section 6.1 and

main text Figure 4) produced a number of somewhat surprising results including:
e In both environments no example of a double-mutant composed of two fit single mutant SNPs was found e.g. (LoF-+LoF)

or (LoF+GoF) or (GoF+LoF) or (GoF + GoF).

e The double mutants observed (and that dominate the population at late times) were either Dip+GoF (and thus het-
erozygote for the GoF mutation since it occurred after diploidization) or (LoF+Dip) (and thus homozygote for the LoF

mutation since it preceded diploidization).
e Diploid abundance in all replicate evolutions undergoes an expansion-contraction-expansion dynamics.
e Cells do not undergo further genome duplications (e.g. to become tetraploid).

e The fitnesses (those from the original lineage tracking data and the fitness re-measurements) of double mutants
(WT+Dip+GoF) and (WT+LoF+Dip) combine approximately additively

Together, these observations suggested a simple model for epistasis in which, while there are 3 classes of single mutants (Dip,
LoF, GoF) there are only three possible double mutants as shown Figure 4A of the main text. The key features of the epistasis

model we use are:

e if first mutation is Dip then second mutations can only be GoF drawn from rates to GoF mutations in the mDFE for

that environment (~ 107® per generation).

e if first mutation is LoF then second mutations can only be Dip which occurs at rate of 1076/gen independent of LoF

mutation

e if first mutation is GoF then second mutations can only be Dip which occurs at rate of 107%/gen independent of GoF

mutation

The predictions for this model from 5 replicate simulations are shown in Figure 13 (C-lim) and 14 N-lim. For C-lim
simulations the epistasis model produces lineage dynamics and diversity trajectories (adaptive lineage entropy trajectories)
in close agreement with observations. While there remains considerable stochasticity, the dominance of a handful of double-

mutant genotypes (red trajectories, 2nd row Figure 13) and corresponding dominance of a handful of lineages (3rd row) is
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consistent with data. Importantly, this model also predicts that overly dominant double-mutants are more likely to be caused
by (Dip+GoF) and that these are most often the cause of the diversity crash.

For N-lim simulations, lineage trajectories alone show less clear evidence that the epistasis model agrees more with
observations compared to the additive model. In fact, the epistasis model produces similar lineage trajectories and slightly
slower entropy expansion than is observed. However the advantage of the epistasis model is that, while it produces similar
lineage dynamics, it predicts that the specific genotypes that dominate the population will be (Dip+GoF) rather than (Dip
+ LoF) predicted by the multiple-mutant model.

The possibility of further LoF and GoF mutations. This epistasis model shown in Figures 9 - 14 does not permit the the
acquisition of more than two mutations. This is clearly unnatural since it is inevitable that further mutations enter at later
times and expand. However this simple model appears sufficient to explain the dynamics we observe in the early stages of
the experimental evolutions we performed. This suggests that single-mutants with highly fit LoF or GoF mutations have (i)
fewer high fitness mutations available to them or (ii) that the fitness effects of new mutations is significantly reduced or (iii)
a combination of these. Studying the emergence of multiple-mutants beyond double-mutants, however, and their impact on
genetic diversity will likely require re-barcoding techniques as discussed and referenced in the main text as well as longer term

whole-population sequencing efforts as in |7, 8].
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Supplementary Figure 9: C-lim Single-mutants. (a—e) 5 randomly sampled simulated replicates of the dynamics in

C-lim under a single-mutant only model. Each column is a replicate and shows the mean fitness of cells relative to the ancestor

over time (1st row), the abundance of every genotype in the population through time on a log-scale (2nd row, genotypes colored

according to color-key on top of figure), the abundance of each adaptive lineage (different colors are here chosen arbitrarily

for visualization purposes) ranked top to bottom by lineage size at generation 300 (third row) and the entropy of all adaptive

lineages through time (4th row) as measured via all genotypes (solid line) and via adaptive lineages (data points).
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Supplementary Figure 10: N-lim Single-mutants. (a—e) 5 randomly sampled simulated replicates of the dynamics in

N-lim under a single-mutant only model. Each column is a replicate and shows the mean fitness of cells relative to the ancestor

over time (1st row), the abundance of every genotype in the population through time on a log-scale (2nd row, genotypes colored

according to color-key on top of figure), the abundance of each adaptive lineage (different colors are here chosen arbitrarily

for visualization purposes) ranked top to bottom by lineage size at generation 300 (third row) and the entropy of all adaptive

lineages through time (4th row) as measured via all genotypes (solid line) and via adaptive lineages (data points).
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Supplementary Figure 11: C-lim Multiple-mutants. (a—e) 5 randomly sampled simulated replicates of the dynamics
in C-lim under the additive model. Each column is a replicate simulation and shows the mean fitness of cells relative to
the ancestor over time (1st row), the abundance of every genotype in the population through time on a log-scale (2nd row,
genotypes colored according to color-key on top of figure), the abundance of each adaptive lineage (different colors are here
chosen arbitrarily for visualization purposes) ranked top to bottom by lineage size at generation 300 (third row) and the

entropy of all adaptive lineages through time (4th row) as measured via all genotypes (solid line) and via adaptive lineages

(data points).
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Supplementary Figure 12: N-lim Multiple-mutants. (a—e) 5 randomly sampled simulated replicates of the dynamics
in N-lim under the multiple-mutant no epistasis model. Each column is a replicate and shows the mean fitness of cells relative
to the ancestor over time (1st row), the abundance of every genotype in the population through time on a log-scale (2nd row,
grey is the ancestor, blue are single mutants), the abundance of each adaptive lineage (different colors) ranked top to bottom
by lineage size at generation 300 (third row) and the entropy of all adaptive lineages through time (4th row) as measured via

all genotypes (solid line) and via adaptive lineages (data points).
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Supplementary Figure 13: C-lim Epistasis model. (a—e) 5 randomly sampled simulated replicates of the dynamics in

C-lim under the epistasis model. Each column is a replicate and shows the mean fitness of cells relative to the ancestor over

time (1st row), the abundance of every genotype in the population through time on a log-scale (2nd row, grey is the ancestor,

blue are single mutants), the abundance of each adaptive lineage (different colors) ranked top to bottom by lineage size at

generation 300 (third row) and the entropy of all adaptive lineages through time (4th row) as measured via all genotypes (solid

line) and via adaptive lineages (data points).
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Supplementary Figure 14: N-lim Epistasis model. (a—e) 5 randomly sampled simulated replicates of the dynamics in

N-lim under the epistasis model. Each column is a replicate and shows the mean fitness of cells relative to the ancestor over

time (1st row), the abundance of every genotype in the population through time on a log-scale (2nd row, grey is the ancestor,

blue are single mutants), the abundance of each adaptive lineage (different colors) ranked top to bottom by lineage size at

generation 300 (third row) and the entropy of all adaptive lineages through time (4th row) as measured via all genotypes (solid

line) and via adaptive lineages (data points).
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Supplementary Figure 15: Benomyl assay for quantifying diploid abundances. Example plates showing the growth
of 96 randomly sampled colonies from the population on a control plate (YPD) (a) and on a plate containing benomyl
(YPD+Benomyl) (b) where the growth of diploids is inhibited.

6 Diploid trajectories

6.1 Measuring diploid abundance through time

We suspended cells (from either the carbon or nitrogen limited evolution) from a frozen stock into 1mL of water. We used a
coulter counter (Beckman Coulter: 6605700) to quantify cell concentration, then used 5-8 glass beads to spread ~ 400 cells
onto Nunc plates (ThermoFisher Cat #: 267060) containing YPD agar (10g yeast extract Fisher: 212750, 20g peptone Fisher:
211677, 20g dextrose Sigma Aldrich: G8270-5KG, 20g agar Fisher: 214010, bring up to 1L with DO water) supplemented
with 2x G418 (8mL of 50mg/mL stock into 1L YPD) and allowed them to grow for two days at 30°C. Then we scanned plates
at 600 dpi resolution and inputted the resulting images into a custom written MATLAB code (available on request), which
infers coordinates for individual colonies based on the scanned image. We then used a ROTOR STINGER robot (Singer
Instruments) to pick colonies into 96 well plates (ThermoFisher: 265301) containing YPD with 2x G418. These plates were
placed in a 30°C incubator and grown overnight. We next used the ROTOR STINGER robot to replicate the 96 well plates
onto a square plate with Benomyl media, and control plate with DMSO (Sigma Aldrich: 472301) media. The Benomyl media
was made from a 10mg/ml stock of Benomyl (Sigma Adrich Cat #: 381586-5G) in DMSO by adding 2 mL of stock Benomyl
drop-wise while stirring to one liter of YPD that had been allowed to cool to about 55°C. The final concentration of the
Benomyl media was 10 ug/ml. The cells replicated onto Benomyl and DMSO plates were grown up for 2 days at 30°C. After
48 hours growth, each plate was scanned. Haploids are able to grow better on Benomyl media while diploids grow more slowly.
For each colony that grew on the control plate, we checked the corresponding positions on Benomyl plate and counted how

many grew poorly (see Figure 15). Diploid frequencies were then calculated as the fraction of those colonies that grew poorly.

6.2 Predicted diploid trajectories under the 3 models

To track diploid trajectories, one does not need lineage information. Thus, diploid trajectory simulations were implemented
independently since they are far more efficient without the large number of lineage labels that are required in the simulations
outlined in Section 5.

The frequency trajectory of diploids in the population though time is then calculated using the following stochastic

simulation:
e The initial abundance of diploids is set at 1%, based on direct measurement from the colony growth assay.

e The initial abundance of fitter LoF and GoF mutations is generated stochastically by realizing that their effective starting
number will be roughly Poisson distributed with mean no = NUrLor or ng = NUgor which then grow deterministically
through time as noe*‘/s. (parameter values in the table below). Drift for the single mutants can be safely ignored since

ng for each of the three classes is a large parameter i.e NUpror > 1 and NUgor > 1.

e These three expanding classes can each acquire further mutations whose mutation rates and fitness effects are outlined

in the tables below. These double mutants change in frequency between time points by generating a Poisson sample the
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new expected number of cells and normalizing by N in order to include the stochasticity of drift: which is crucial for

the double-mutants.

Each model is specified by a number of parameters:

Mutant Measured fitness Measured rate Single s & U Additive s & U  Epistasis s & U
Dip 0.04 10-¢ — — —

LoF 0.10 1077 — — —

GoF 0.10 10-8 — — —

Dip + Dip — — 0.08 & 10~¢ —

Dip + LoF — — 0.14 & 7.5 x 1077 —

Dip + GoF — — 0.14 & 7.5 x 10%  0.14 & 108
LoF + Dip — — 0.14 & 10~ 0.14 & 1076
LoF + LoF — — 0.20 & 7.5 x 1077 —

LoF + GoF — — 0.20 & 7.5 x 1078 —

GoF + Dip — — 0.14 & 10-¢ 0.14 & 106
GoF + LoF — — 0.20 & 7.5 x 1077 —

GoF + GoF — — 020 & 7.5x 1078 —

Table 3: Values used for the simulations of diploid trajectories in C-lim.

Mutant Measured fitness Measured rate Single s & U Additive s & U  Epistasis s & U
Dip 0.03 1076 — — —

LoF 0.06 10-7 — — —

GoF 0.06 2.5x 1078 — — —

Dip + Dip — — 0.06 & 10~° —

Dip+ LoF — — 0.09 & 107 —

Dip + GoF — — 0.09 & 2.5 x 1078 0.09 & 1078
LoF + Dip — — 0.09 & 10-¢ 0.09 & 106
LoF + LoF — — 0.12 & 107 —

LoF + GoF — — 012 & 2.5x 1078  —

GoF + Dip — — 0.09 & 10-¢ 0.09 & 106
GoF + LoF — — 0.12 & 1077 —

GoF + GoF — — 0.12& 25x 1078  —

Table 4: Values used for the simulations of diploid trajectories in N-lim.
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Supplementary Figure 16: C-lim diploid, LoF and GoF trajectories for 3 models of mutation acquisition. (a)

single-mutant model (b) additive model and, (c), epistasis model. The 2nd and 3rd columns show the trajectory of LoF and

GoF mutants as classes. Coloring is consistent across the three plots so that a yellow trajectory in one column is the same

color across all three columns since it comes from the same simulation.
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Supplementary Figure 17: N-lim diploid, LoF and GoF trajectories for 3 models of mutation acquisition. (a)
single-mutant model (b) additive model and, (c), epistasis model. The 2nd and 3rd columns show the trajectory of LoF and
GoF mutants as classes. Coloring is consistent across the three plots so that a yellow trajectory in one column is the same

color across all three columns since it comes from the same simulation.
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7 Maximum likelihood procedure for goodness-of-fit testing

To measure the goodness-of-fit of the different models that could explain the diploid frequency trajectories shown in Figure 4

of the main text we define the log-likelihood function, L

L==3"In (kN) ks In(f) + (N — k) In(1 — f,) (25)

where ¢ runs over all time points in the diploid trajectory, N = 96 is the number of colonies tested at each time point, k; are

the number of diploid colonies measured at time point i and f; is the frequency of diploids predicted by the model at time

point ¢. With this we then perform the following

1.

No mutation model. We determine the best fit values for the fitness effect, spip, and initial frequency, fo of diploids
across all three replicate experiments. The range of values considered for (spip, fo) were spip € 0.015 — 0.055 in steps
of dspip = 0.001 and fo € 0.005 — 0.015 in steps of dfo = 0.001. We restricted analysis to time points ¢ < 104 to
minimize the effect of de-novo mutations (those that occur during the evolution) from influencing best-fits for these
parameters. For each parameter pair (spip, fo) calculated the log-likelihood of the 100 simulated trajectories and
recoded the log-likelihood of the smallest (i.e. the most likely) for each of the three replicates and added these together
to form the total log-likelihood. Under this procedure the maximum likelihood values for (spip, fo) were determined to
be (spip = 0.047, fo = 0.008) with a total log-likelihood of L = 47.95. The fitted trajectories compared to the data for

these best fit parameters are shown in Figure 18 A.

Single-mutant model. With the sp;, and fo values fixed, we determine the best fit values under a single-mutant model
in which there is a rate Uror to a fitness effect spor (representing large fitness effect LoF and GoF mutations). The
range of values considered for (spor, ULor) were s € 0.04—0.14 in steps of dsror = 0.01 and ULor € 11077 —60x 1077
in steps of dUr,r = 1077. We included all time points in this analysis. Performing the same procedure as in (1) we
find the best fit values are (spor = 0.07,ULor = 3.2 x 107°%) with a total log-likelihood of L = 1054.4. The best fit

trajectories for these parameters are show in Figure 18 B.

Additive multiple-mutant model (unconstrained) Here we allow multiple mutants (both additional diploids and
additional LoF and GoF mutations) to occur and for their fitnesses to add. In order to perform a two-parameter search
only, we fix the mutation rate to diploidization to 107°, since this is the measured value. We then performed a two-
parameter maximum likelihood search on the parameter pair (spor, Uror) (in this model there is no difference between
LoF and GoF mutations). The best-fit parameters are found to be (spor = 0.14,Uror = 2.0 X 10710) with a total
log-likelihood value of L = 730.0. The best fit trajectories for these parameters are shown in Figure 18 C.

Additive multiple-mutant model (constrained) The unconstrained additive model best fit parameter for Uror =
2 x 1070 is over three-orders of magnitude smaller than the measured value from our data. Therefore we also explored
a maximum likelihood model in which we constrained 3 x 1077 < Upror < 1076 (within half an order of magnitude of
measured values). We then performed a two-parameter sweep over possible (sror, Uror) values, finding the maximum
likelihood values to be (spor == 0.10, Uror = 3 X 1077) with a maximume-likelihood of L =~ 1669. This model, with more
realistic parameters clearly does much worse than the unconstrained model with unrealistic parameters. We therefore

asked whether a model with minimal epistasis would be able to provide a more parsimonious explanation of the data.

Categorial epistasis model. In this model we constrain Upip = 107°, Uror = 321077, and spip = 0.047, sror = 0.11
as measured. We furthermore, we allow fitness effects to combine additively. We then ask, if Diploids can acquire GoF
mutations of fitness effect sgor at rate Ugor can this model provide a more likely explanation of the data. We find that
the maximum likelihood values (sgor = 0.14,Ugor = 1.2 X 1078) are both in the range we would expect based on GoF

single-mutants, yet this model provides a much more likely explanation of the data since L =~ 360.
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Supplementary Figure 18: Plots showing the three diploid trajectories in C-lim C1(red data points), C2 (blue data points)
and C3 (green data points) compared to the best fit trajectories (black lines) generated by the maximum likelihood models
(A) no mutation (B) single-mutant model (C) additive model with no constraint on parameters, (D) additive model in which
the mutation rate to LoF mutations is constrained to be the measured rate and (E) the categorical epistasis model. Thie

produces the lowest -log-likelihood (best fit) and trajectories that most closely resemble the data.
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Supplementary Figure 19: Diversity dynamics for mDFE modeling growth-inhibiting drug. Here the mDFE is
composed of two delta-functions (at s, = 0.05 with rate U, = 107> and sz = 0.20 with rate Ug = 107'*). Top row, the
genotype trajectories of all unique genotypes that arise in the simulation (single-mutants blue, double-mutants red, triple-
mutants orange, quadruple-mutants purple). Large crashes in diversity (column 2 and 3) are caused by anomalously early
double mutants comprised of two small-effect mutations. Bottom row: the entropy trajectory (see Section 9) of all genotypes
in the population (data points) compared to the theoretical prediction from using Eq. 35 in the text that assumes single

mutants only.

8 Growth-inhibiting drug mDFE and Power-law mDFEs

Here we model how adaptive genetic diversity evolves under a mDFE with a small supply of large-effect mutations, as might
occur in the presence of a growth-inhibiting drug. As an example of what happens in such a scenario, we use a model mDFE
where small-fitness-effect mutations (s, = 0.05) occur at a relatively high rate (U, = 107° per cell division) while large fitness-
effect mutations (ss = 0.20) occur at a lower rate (in the range 107! < Uz < 1077 per cell division). In this context we take
“large” fitness effects to mean that sg > so X (In(Nsa)/In(sa/Us)). That is, large-effect mutations destined to establish will
typically sweep regardless of the fitness of the genotype on which they fall (since the fitness effect is larger than the range of
fitnesses expected in the population at any time). In this limit the the dynamics of adaptive genetic diversity depends most
sensitively on the supply of large-effect mutations Ug.

Large effect mutants enter typically every ~ 1/NUgsg generations. The early time dynamics of the modest-effect mutations
studied here takes place over timescales 75w = (1/54)In(sa/Ua) called the “sweep time” (~ 170 generationsfor the parameters
above and those in Figures 19 - 21). It is the relative magnitudes of these timescales that can be used to assess the impact of
the large-effect mutants on the adaptive genetic diversity.

When the supply of large-effect mutations is low enough, large-effect mutations have little impact on the early adaptive

diversity dynamics (Figure 19, where Uz = 107''). In this case the typical time it takes for a large-effect mutation to

32



lel lel
2
3
o
i AL b .
100 200 300 100 200 300 100 200 300 100 200 100 200 300
1e8 time (generations) 1e8 time (generations) 1e8 time (generations) 1e8 time (generations) 1e8 time (generations)
4 4 4 4 4
25 25 25 2, s
€ € £ € €
3 3 3 3 3
(=4 (= c c <
32 T2 32 T2 32
o o o o o
1 1 1 1 1
0 0 0 0 0+
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Time (generations) Time (generations) Time (generations) Time (generations) Time (generations)
6 6 6 6 6
> > > > >
Q Q Q Q Q
g4 o g4 g4 g4 2 ga
& 92) & & Q & Q &
2 o 2 2 %%% 2 ‘?%n 2
0 0 0 0 0 z
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

Time (generations)

Time (generations)

Time (generations)

Time (generations)

Time (generations)

Supplementary Figure 20: Diversity dynamics for mDFE modeling growth-inhibiting drug. Here the mDFE is
composed of two delta-functions (at s, = 0.05 with rate U, = 107> and sz = 0.20 with rate Ug = 107'°). Top row, the
genotype trajectories of all unique genotypes that arise in the simulation (single-mutants blue, double-mutants red, triple-
mutants orange, quadruple-mutants purple). Here, because the supply of large-effect single-mutants is higher, large crashes in
diversity (e.g. column 1 and 5) can be caused large-effect single-mutants which sweep. Bottom row: the entropy trajectory
(see Section 9) of all genotypes in the population (data points) compared to the theoretical prediction from using Eq. 35 in
the text that assumes single mutants only. In cases where large-effect single-mutants enter early, they drive a diversity crash

before single-mutant diversity has much time to build up.

enter is ~ 10 generations and hence the probability of large-effect mutation entering during the early time dynamics (<170
generations) is small. Thus, when large diversity crash does occur, it is driven by anomalously early double mutants as can

be seen in Figure 19 and as is the case for the empirical mDFEs observed in the experimental evolutions.

As one increases the supply of large-effect mutations (Figure 20, where Us = 107'°) the timing of the first large-effect
mutation and the sweep time become comparable. For parameters used here, this is predicted to occur at Uz ~ 107'°) and
Figure 20 indeed shows that, in a substantial fraction of simulations, a large-effect mutation enters and causes a single-mutant
driven diversity crash. As the supply of large-effect mutants in increased further (Figure 21 where Us = 107°), large-effect
single mutants sweep in almost all simulations and the diversity does not have enough time to build up before a large-effect
mutant sweeps.

The presence of a growth-inhibiting drug could therefore be expected to alter the early adaptive diversity dynamics since
stochastically occurring large-effect single-mutants could drive a crash, which would be quantitatively different from the case
where the diversity crash is driven by a small number of fit multiple-mutants. It should be noted however, that in this case,
the evolutionary dynamics changes more generally: it is driven by successive sweeps of large-effect mutants and is no longer

truly in the clonal-interference multiple-mutation limit studied here.
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Supplementary Figure 21: Diversity dynamics for mDFE modeling growth-inhibiting drug. Here the mDFE is
composed of two delta-functions (at s, = 0.05 with rate U, = 107° and sg = 0.20 with rate Us = 1077). Top row, the
genotype trajectories of all unique genotypes that arise in the simulation (single-mutants blue, double-mutants red, triple-
mutants orange, quadruple-mutants purple). With a larger supply of large-effect single-mutants almost all simulations exhibit
a diversity crash driven by large-effect single-mutants which sweep. Bottom row: the entropy trajectory (see Section 9) of all
genotypes in the population (data points) compared to the theoretical prediction from using Eq. 35 in the text that assumes
single mutants only. In all cases a diversity crash caused by large-effect single-mutants occurs before diversity can build up
substantially. This is followed by large oscillations in diversity occurring over timescales at which large-effect mutations enter

and sweep i.e. every 1/(NUgsg) ~ 100 generations.

8.1 Power-law mDFEs

In this section we explore how the dynamics of adaptive genetic diversity would be expected to evolve when the mDFE has
a supply of beneficial mutations spread over roughly two orders-of-magnitude. We consider mDFEs where pu(s) ~ s~7 with
a lower limit of s = 0.005 (set since this mutations below this effect size would not be able to establish before the end of
the observation period ~ 300 generations) and with an upper limit of s = 0.3 (set to remain biologically plausible, given the
observed fitness effects). The total rate of beneficial mutations is set to be U = 107°.

Figure 22 shows the early time dynamics of beneficial clones for v = 2. In this case, the dynamics effectively enters a
successive sweep regime whereby stochastically occurring large-fitness-effect clones effectively fix before the occurrence of the
n 4+ 1th mutant clone. In this case, diversity has a limited time to build up and is typically purged causing characteristic
humps in the entropy (last row, Figure 22).

Power law mDFEs thus produce qualitatively different adaptive diversity dynamics than we observe in the experimental
data, though we note that a full quantitative analysis of the dynamics expected under a power-law mDFE is beyond the scope

of the present work [3].
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Supplementary Figure 22: Diversity dynamics for a power-law mDFE. In these simulations u(s) ~ s~2 for 0.005 <
s < 0.3. The total beneficial mutation rate is normalized to U = 107%. As in previous simulations the bottleneck population
size is 7 x 107 which grows by a factor of 256 between bottlenecks resulting in an effective population size of ~ 5 x 10%. Top
row, the genotype trajectories of all unique genotypes that arise in the simulation (single-mutants blue, double-mutants red,
triple-mutants orange, quadruple-mutants purple). Middle row: Muller plots of adaptive lineages. Bottom row: the entropy
trajectory of all genotypes in the population (data points) compared to the theoretical prediction from using Eq. 35 in the
text that assumes single mutants only. This is followed by large oscillations in diversity occurring over timescales at which

large-effect mutations enter and sweep i.e. every 1/(NUgsg) ~ 100 generations.

9 Lineage abundances and calculation of adaptive lineage diversity

Here we outline how we produced Figure 1 of the main text as well as trajectories for the genetic diversity (entropy) in Figure
8 of the main text.

Interpolating and extrapolating lineage abundances To plot Figure 1 of the main text we use all of the time points

sequenced to best interpolate and extrapolate the abundance of each lineage in the population. To do this we use the first
104 generations of C-lim and the first 192 generations of N-lim data to estimate the fitness of each lineage using the same
methods as outlined in [1], which produce fitness estimates for each lineage as well as the time evolution of the population
mean fitness. We then “forecast” the abundance for times later than T104 (C-lim) or T192 (N-lim) by:

e Using the inferred fitness x; and the initial mean fitness Z (o) to predict the frequencies at the next time point:

Ji(to + At) = fi(to) exp [(z: — Z(to))AlL] (26)
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e Recalculate the new mean fitness at this later time point:

Z(to + At) =z - f(to + At)

(27)

and iterate each generation until T304. The result of this procedure can be validated against the known abundance of the

lineage measured from sequencing data at the later time points. Comparisons for how well this procedure works is shown in

Figures 23 and 24.
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Supplementary Figure 23: Interpolation and extrapolation of lineage abundance trajectories, C-lim replicate
1. The top 30 barcodes ranked by abundance. Each panel shows a measured barcode trajectory (data points) vs. the predicted
trajectory from the extrapolation procedure (solid line). Colors indicate fitness level. Shaded panels are those lineages from

which a clone was picked and subsequently whole-genome sequenced.

Diversity measured via adaptive lineage entropy To quantify genetic diversity we use the Shannon entropy of adaptive

lineage through time defined here as

S() =3 fiH)n (%(t)) (28)

where f;(t) is the frequency of lineage ¢ at time ¢ and the sum is over all adaptive lineages (excluding diploids) identified using
the same method as in [1] (using lineage deviation from a neutral expectation). The numerical value of S can be interpreted,

very roughly, as there being effectively ~ e adaptive lineages present in the population. Note that we exclude diploids
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Supplementary Figure 24: Interpolation and extrapolation of lineage abundance trajectories, C-lim replicate
1. The top 30 barcodes ranked by abundance. Each panel shows a measured barcode trajectory (data points) vs. the predicted
trajectory from the extrapolation procedure (solid line). Colors indicate fitness level. Shaded panels are those lineages from

which a clone was picked and subsequently whole-genome sequenced.

from our definition because most diploid lineages are genetically identical despite adaptive clones arising in a large number of
lineages. SNPs by contrast are typically genetically unique.

Other possible measures of diversity. The diversity is really a statement about the distribution of adaptive clones sizes and
how this changes through time as shown by the colored lines in the 2nd rows of Figures 9 - 14.

However, if one wants to compare many replicates it becomes difficult unless one chooses a statistic based on the distribution
of clone or lineage abundances. The entropy is one such measure. We do not claim that the entropy is the “correct” measure
of diversity since there are many alternatives, but it does capture the important qualitative distinction between the early
vs. late distribution of clone sizes in the populations. Early, there are many small clones of roughly equal size, whereas late
there is a very skewed distribution with a small number of very large clones, and the entropy measure captures this difference
as discussed in the main text. Crucially, the entropy of adaptive lineages tracks the entropy of adaptive genotypes into the
diversity crash.

One consideration for a diversity measure is how much to weight low frequency lineages. Consider the case where one
adaptive lineage is large, at frequency p while the k > 1 other lineages are at frequency 1 — p/k. In this case the contribution
from the low frequency lineages would be (1 — p)log(k/(1 — p)) which would mean that the low frequency lineages would

contribute more to the entropy than the dominant lineage when p < 1 — 1/log(k). A reasonable alternative measure of
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diversity, would be to weight variants not with log(p;) (as one does in the entropy measure), but with a different functional

form. For example, if we used a diversity measure:
D=3_f (29)
i

where 0 < v < 1, the contribution from the low frequency lineages would be enhanced over simple linear weighting, (and in the
limit of v = 0 it is simply a count of how many are present). Following the same line of argument as above, the contribution
of the low frequency lineages would be larger than the single large lineage if 1 — p < k177,

Other reasonable choices of the diversity measure could be made. One simple example would be a step function counting
how many lineages reach above a threshold size po over time. Because many adaptive lineages reach frequencies above 1075,
but many of them dip below this frequency at late times, for parameter values 107> < pg < 1073, this measure would be

qualitatively similar to the entropy measure, though has the drawback of having to make a somewhat arbitrary choice for po.
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