## CHEMBIOCHEM

## Supporting Information

## Recognition and Conformational Properties of an Alternative Antithrombin Binding Sequence Obtained by Chemoenzymatic Synthesis

Eduardo Stancanelli<sup>+,[a]</sup> Stefano Elli<sup>+,[a]</sup> Po-Hung Hsieh,<sup>[b]</sup> Jian Liu,<sup>[b]</sup> and Marco Guerrini<sup>\*[a]</sup>

cbic\_201800095\_sm\_miscellaneous\_information.pdf

|                             |               | Glycosidic dihedral angles of Hexa-4/AT complex |                       |                    |                |      |  |
|-----------------------------|---------------|-------------------------------------------------|-----------------------|--------------------|----------------|------|--|
| tr-NOE select. Struct. (ns) | GIcNS6S-GIcA  | GIcA-GIcNS3S6S                                  | GIcNS3S6S-IdoA2S      | IdoA2S-GIcNS6S     | GIcNS6S"-GIcA" | Rave |  |
| 209                         | -50/-37       | 47/24                                           | -69/-54               | 53/19              | -24/-18        | 0.13 |  |
| 227                         | -39/-33       | 53/22                                           | -47/-58               | 51/19              | -23/-30        | 0.09 |  |
| 240                         | -59/-38       | 45/27                                           | -51/-56               | 39/21              | -16/-17        | 0.22 |  |
| 257                         | -45/-40       | 50/25                                           | -62/-39               | 48/24              | -14/-28        | 0.17 |  |
| 270                         | -43/-31       | 39/44                                           | -59/-52               | 70/12              | -26/-25        | 0.19 |  |
| AVERAGE                     | -47(3)/-36(2) | 47(2)/28(4)                                     | -58(4)/-52(4)         | 52(5)/19(2)        | -21(2)/-24(4)  | -    |  |
| Hexa-4                      | -41(2)/-27(1) | 53(1)/5(1)                                      | -41(1)/-45(1)         | 45(1)/1(1)         | -42(1)/-20(1)  | -    |  |
|                             |               | Glycosid                                        | ic dihedral angles of | f Hexa-8/AT comple | X              |      |  |
| tr-NOE select. Struct. (ns) | GIcNS6S-GIcA  | GIcA-GIcNS3S6S                                  | GIcNS3S6S-IdoA2S      | IdoA2S-GIcNS6S     | GIcNS6S"-GIcA" | Rave |  |
| 214                         | -41/-33       | 50/8                                            | -44/-40               | 45/11              | -69/-46        | 0.20 |  |
| 235                         | -16/-28       | 44/6                                            | -57/-40               | 45/23              | -63/-37        | 0.18 |  |
| 243                         | -23/-24       | 47/4                                            | -56/-47               | 54/21              | -70/-48        | 0.21 |  |
| 258                         | -37/-1        | 38/8                                            | -62/-50               | 56/9               | -85/-34        | 0.18 |  |
| AVERAGE                     | -29(6)/-22(7) | 45(3)/7(1)                                      | -55(4)/-44(3)         | 50(3)/16(4)        | -72(5)/-41(3)  | -    |  |
| Hexa-8                      | -42(1)/-23(1) | 59(1)/8(1)                                      | -46(1)/-41(1)         | 33(1)/11(2)        | -47(2)/-28(2)  | -    |  |
|                             |               |                                                 | (Hricovini et al      | 2001)              |                |      |  |
| AGA*IA/AT                   | -56/-60       | 40/12                                           | -32/-43               | 45/16              | -              | -    |  |
| AGA*IA                      | -34/-27       | 47/6                                            | -35/-42               | 43/6               | -              | -    |  |

**Table S1** Glycosidic dihedral angles  $(\phi/\psi)$  of Hexa/AT complexes generated by MD simulation and validated by selected Tr-NOEs, corresponding to geometries at instant time: 209, 227, 240, 257, 270 ns for Hexa-4/AT and 214, 235, 243, 258 ns for Hexa-8/AT. The last column (Rave) report the R factor averaged on the selected set of proton-proton inter-glycosidic Tr-NOEs used as constraints. The label "AVERAGE" (light blue background) indicate the average and estimated error calculated on the respective set of glycosidic dihedral angles. Glycosidic dihedral angles of Hexa-4 and Hexa-8 in free state are reported as averages and errors calculated on the MD simulation trajectories after 40ns of relaxation time (Hexa-4 and Hexa-8 labels in orange background). The corresponding dihedral angles  $\phi/\psi$  of the AGA\*IA and AGA\*IA/AT complexes as determined by Hricovini et al. 2001 are reported in the last two rows in orange and light blue background .

|                  | Hexa-4 an                    | d Hexa-4/AT                    | Hexa-8 and Hexa-8/AT         |                              |  |
|------------------|------------------------------|--------------------------------|------------------------------|------------------------------|--|
|                  | H2-H5/H4-H5                  | H2-H5/H4-H5                    | H2-H5/H4-H5                  | H2-H5/H4-H5                  |  |
| Mixing time (ms) | NOE                          | tr-NOE                         | NOE                          | tr-NOE                       |  |
| 200              | 2.2/4.9 <mark>(=0.45)</mark> | 19.9/15.6 <mark>(=1.28)</mark> | 0.9/3.4 <mark>(=0.26)</mark> | 5.1/5.7 <mark>(=0.89)</mark> |  |
| 300              | 2.8/7.8 <mark>(=0.36)</mark> | 29.8/24.2 <b>(=1.23)</b>       | 1.7/5.6 <mark>(=0.30)</mark> | 7.4/9.4 <mark>(=0.79)</mark> |  |
| 500              | 5.2/12.4 (=0.42)             | 51.8/44.4 (=1.17)              | 2.2/10.0 (=0.22)             | 15.5/18.5 (=0.84)            |  |

**Table S2** Selected H2-H5 and H4-H5 intra-residue NOEs and Tr-NOEs for IdoA in Hexa-4 and Hexa-8 in free and in bound state with AT, respectively. The ratios between the two signals are reported in red in brackets.

|                    | Hexa-4 Experimental NOE (Simulated NOE) |                                                             |                                                             |                                                                             |  |  |  |  |  |  |
|--------------------|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|
| Tmix               | GICNS6S-GICA                            | GICNS3S6S-IdoA2S                                            | IdoA2S-GIcNS6S"                                             | GIcNS6S"-GIcA"                                                              |  |  |  |  |  |  |
| (ms)               | H1-H4                                   | H1-H4/H1-H3                                                 | H1-H4/H1-H6                                                 | H1-H4/H1-H3                                                                 |  |  |  |  |  |  |
| 200                | 2.9 (2.8)                               | (4.1) 4.3/4.0 (3.4)                                         | (8.8) 3.2/3.4 (2.5)                                         | (6.1) 2.3/0.7 (0.50)                                                        |  |  |  |  |  |  |
| 300                | 4.5 (5.1)                               | (6.2) 6.2/6.1 (5.2)                                         | (13.2) 4.9/5.2 (4.0)                                        | (9.2) 3.7/1.1 (0.81)                                                        |  |  |  |  |  |  |
| 500                | 7.9 (8.6)                               | (10.3) 10.5/10.2 (8.7)                                      | (22.0) 8.0/7.8 (7.8)                                        | (15.3) 6.0/1.9 (1.42)                                                       |  |  |  |  |  |  |
|                    |                                         | Hexa-8 Experimer                                            | ital NOE (Simulated NOE                                     | Ξ)                                                                          |  |  |  |  |  |  |
| Tmix               | GICNS6S-GICA                            | GIcNS3S6S-IdoA                                              | IdoA-GIcNS6S''                                              |                                                                             |  |  |  |  |  |  |
|                    |                                         |                                                             |                                                             | GIcNS6S"-GIcA"                                                              |  |  |  |  |  |  |
| (ms)               | H1-H4                                   | H1-H4/H1-H3                                                 | H1-H4/H1-H6                                                 | GICNS6S"-GICA"<br>H1-H4/H1-H3                                               |  |  |  |  |  |  |
| (ms)<br>200        | H1-H4<br>2.1 (6.3)                      | H1-H4/H1-H3<br>(3.9) 5.4/6.7 (9.5)                          | H1-H4/H1-H6<br>(11.4) 4.0/1.6 (2.1)                         | GIcNS6S"-GIcA"<br>H1-H4/H1-H3<br>(4.3) 1.4/0.1 (0.9)                        |  |  |  |  |  |  |
| (ms)<br>200<br>300 | H1-H4   2.1 (6.3)   3.5 (9.4)           | H1-H4/H1-H3<br>(3.9) 5.4/6.7 (9.5)<br>(5.9) 8.0/10.2 (14.3) | H1-H4/H1-H6<br>(11.4) 4.0/1.6 (2.1)<br>(17.1) 6.4/2.2 (3.5) | GICNS6S"-GICA"<br>H1-H4/H1-H3<br>(4.3) 1.4/0.1 (0.9)<br>(6.4) 2.2/0.4 (1.3) |  |  |  |  |  |  |

**Table S3.** Experimental NOEs of Hexa-4 and Hexa-8 in solution for selected Inter-glycosidic proton-proton correlation. The corresponding simulated NOEs are reported in brackets (red color), and are generated using NOEPROM, with an isotropic model of motion (Tc = 700 ps). The Hexa-4 and Hexa-8 structure and conformations are obtained from MD simulation, adjusting each  $\phi_i/\psi_i$  glycosidic dihedral angle pair with the average values calculated as reported in materials and methods.



**Figure S1** The black line show the RMSD distance calculated between the two ligands (C1, C2, C3, C4, C5, O5 for each residue) after superposition of the A-helix (C $\alpha$  backbone) in glycan-AT structures, for simulation time 0 to 260 ns. The red line correspond to the RMDS distance between AT of the two complexes calculated on the C $\alpha$  backbone. Plotting the RMSD between Hexa-4 and Hexa-8 at different simulation time, it is possible to draw a time scale in which the ligand relative position in AT RBS change, giving an estimation of the MD relaxation time. All the distances are expressed in Å

|         | H1-H2 I     | Hexa-4/AT time : | = 209ns     | H1-H2 Hexa-4/AT time = 227ns |             |             | H1-H2 Hexa-4/AT time = 240ns |             |             |
|---------|-------------|------------------|-------------|------------------------------|-------------|-------------|------------------------------|-------------|-------------|
| Tmix ms | GIcNS6S     | GIcNS3S6S        | GIcNS6S"    | GIcNS6S                      | GIcNS3S6S   | GIcNS6S"    | GIcNS6S                      | GICNS3S6S   | GIcNS6S"    |
| 200     | 15.4 (11.5) | 12.3 (17.7)      | 9.4 (14.6)  | 15.4 (10.9)                  | 12.3 (10.6) | 9.4 (10.0)  | 15.4 (6.1)                   | 12.3 (10.1) | 9.4 (5.7)   |
| 300     | 22.4 (17.3) | 17.2 (25.8)      | 21.3 (14.1) | 22.4 (16.1)                  | 17.2 (15.6) | 21.3 (14.5) | 22.4 (8.7)                   | 17.2 (14.5) | 21.3 (8.1)  |
| 500     | 38.0 (30.3) | 34.9 (42.1)      | 33.1 (24.3) | 38.0 (27.1)                  | 34.9 (26.5) | 33.1 (23.4) | 38.0 (14.1)                  | 34.9 (23.4) | 33.1 (12.8) |
| R       | 0.05        | 0.09             | 0.09        | 0.08                         | 0.05        | 0.09        | 0.39                         | 0.09        | 0.38        |

|         | H1-H2 I     | Hexa-4/AT time = | = 257ns     | H1-H2 Hexa-4/AT time = 270ns |             |             |  |
|---------|-------------|------------------|-------------|------------------------------|-------------|-------------|--|
| Tmix ms | GIcNS6S     | GICNS3S6S        | GIcNS6S"    | GIcNS6S                      | GIcNS3S6S   | GIcNS6S"    |  |
| 200     | 15.4 (11.6) | 12.3 (9.8)       | 9.4 (6.7)   | 15.4 (13.2)                  | 12.3 (10.3) | 9.4 (6.3)   |  |
| 300     | 22.4 (16.1) | 17.2 (14.3)      | 21.3 (9.6)  | 22.4 (19.1)                  | 17.2 (15.1) | 21.3 (9.4)  |  |
| 500     | 38.0 (25.1) | 34.9 (23.8)      | 33.1 (15.9) | 38.0 (31.2)                  | 34.9 (25.2) | 33.1 (16.0) |  |
| R       | 0.10        | 0.08             | 0.28        | 0.03                         | 0.06        | 0.28        |  |

|         | H1-H2 I     | Hexa-8/AT time = | = 214ns     | H1-H2 Hexa-4/AT time = 235ns |             |             | H1-H2 Hexa-4/AT time = 243ns |             |             |
|---------|-------------|------------------|-------------|------------------------------|-------------|-------------|------------------------------|-------------|-------------|
| Tmix ms | GIcNS6S     | GICNS3S6S        | GIcNS6S"    | GIcNS6S                      | GIcNS3S6S   | GIcNS6S"    | GIcNS6S                      | GICNS3S6S   | GIcNS6S"    |
| 200     | 9.2 (10.0)  | 8.2 (9.0)        | 8.5 (9.3)   | 9.2 (5.7)                    | 8.2 (6.8)   | 8.5 (6.1)   | 9.2 (7.2)                    | 8.2 (8.1)   | 8.5 (8.1)   |
| 300     | 15.7 (13.2) | 12.0 (12.6)      | 13.1 (12.7) | 15.7 (7.9)                   | 12.0 (9.6)  | 13.1 (8.8)  | 15.7 (9.9)                   | 12.0 (11.5) | 13.1 (11.5) |
| 500     | 31.5 (18.6) | 22.8 (19.8)      | 25.0 (18.6) | 31.5 (12.5)                  | 22.8 (15.4) | 25.0 (14.1) | 31.5 (15.0)                  | 22.8 (18.4) | 25.0 (17.9) |
| R       | 0.13        | 0.01             | 0.05        | 0.33                         | 0.09        | 0.16        | 0.23                         | 0.03        | 0.06        |

|         | H1-H2 Hexa-8/AT time = 258ns |             |             |  |  |  |  |  |
|---------|------------------------------|-------------|-------------|--|--|--|--|--|
| Tmix ms | GIcNS6S                      | GIcNS3S6S   | GlcNS6S"    |  |  |  |  |  |
| 200     | 9.2 (11.7)                   | 8.2 (6.6)   | 8.5 (6.8)   |  |  |  |  |  |
| 300     | 15.7 (17.0)                  | 12.0 (9.5)  | 13.1 (10.1) |  |  |  |  |  |
| 500     | 31.5 (28.5)                  | 22.8 (15.9) | 25.0 (17.6) |  |  |  |  |  |
| R       | 0.13                         | 0.01        | 0.05        |  |  |  |  |  |

**Table S4** Experimental H1-H2 intra-residue Tr-NOEs of the glucosamines: GlcNS6S, GlcNS3S6S, and GlcNS6S belonging to Hexa-4 and Hexa-8 in bound state with AT. The corresponding simulated tr-NOEs using the selected structures of Hexa-4/AT (209, 227, 240, 257, 270 ns) and Hexa-8/AT (214, 235, 243, 258 ns) are reported in brackets (see material and methods). The agreement between each experimental and simulated proton-proton Tr-NOE pairs is expressed by the R factor calculated considering three different mixing times.

|      |              | Hexa-4/A    | AT time = 209ns (sin | nulated tr-NOEs are | in brackets), Rave = | Hexa-4/AT time = 209ns (simulated tr-NOEs are in brackets), Rave = 0.14 |             |  |  |  |  |  |
|------|--------------|-------------|----------------------|---------------------|----------------------|-------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Tmix | GICNS6S-GICA | GIcNS3S65   | S-IdoA(2S)           | IdoA(2S)            | -GIcNS6S"            | GIcNS6                                                                  | S"-GIcA"    |  |  |  |  |  |
| (ms) | H1-H4        | H1-H4       | H1-H3                | H1-H4               | H1-H6                | H1-H4                                                                   | H1-H3       |  |  |  |  |  |
| 200  | 14.9 (6.5)   | 15 (4.5)    | 13.9 (13.0)          | 9.8 (7.5)           | 10.4 (10.6)          | 16.2 (23.5)                                                             | 5.7 (3.7)   |  |  |  |  |  |
| 300  | 22 (10.4)    | 25.5 (7.3)  | 23.4 (19.2)          | 13.3 (11.5)         | 15.1 (15.8)          | 25.1 (34.2)                                                             | 10.1 (6.4)  |  |  |  |  |  |
| 500  | 41.5 (20.3)  | 34.9 (15.0) | 32.3 (32.3)          | 24.1 (20.5)         | 29.8 (26.8)          | 43.3 (56.0)                                                             | 24.4 (13.9) |  |  |  |  |  |
| R    | 0.27         | 0.40        | 0.01                 | 0.03                | 0.01                 | 0.11                                                                    | 0.18        |  |  |  |  |  |
|      |              | -           | Hexa-4/AT            | time = 227ns, Rave  | e = 0.10             | -                                                                       | -           |  |  |  |  |  |
| 200  | 14.9 (10.5)  | 15 (5.3)    | 13.9 (17.3)          | 9.8 (10.0)          | 10.4 (9.2)           | 16.2 (20.3)                                                             | 5.7 (5.1)   |  |  |  |  |  |
| 300  | 22 (15.5)    | 25.5 (8.6)  | 23.4 (25.1)          | 13.3 (14.5)         | 15.1 (13.5)          | 25.1 (28.8)                                                             | 10.1 (8.2)  |  |  |  |  |  |
| 500  | 41.5 (26.2)  | 34.9 (16.9) | 32.3 (41.0)          | 24.1 (23.6)         | 29.8 (22.0)          | 43.3 (44.7)                                                             | 24.4 (16.0) |  |  |  |  |  |
| R    | 0.12         | 0.34        | 0.05                 | 0.00                | 0.05                 | 0.01                                                                    | 0.10        |  |  |  |  |  |
|      |              | •           | Hexa-4/AT            | time = 240ns, Rave  | e = 0.22             | •                                                                       | •           |  |  |  |  |  |
| 200  | 14.9 (7.2)   | 15 (5.4)    | 13.9 (7.5)           | 9.8 (12.7)          | 10.4 (7.5)           | 16.2 (13.5)                                                             | 5.7 (3.5)   |  |  |  |  |  |
| 300  | 22 (10.5)    | 25.5 (8.1)  | 23.4 (11.0)          | 13.3 (16.6)         | 15.1 (10.3)          | 25.1 (18.6)                                                             | 10.1 (5.6)  |  |  |  |  |  |
| 500  | 41.5 (17.5)  | 34.9 (14.3) | 32.3 (18.8)          | 24.1 (22.7)         | 29.8 (15.2)          | 43.3 (28.3)                                                             | 24.4 (10.9) |  |  |  |  |  |
| R    | 0.32         | 0.39        | 0.21                 | 0.03                | 0.20                 | 0.10                                                                    | 0.28        |  |  |  |  |  |
|      |              | -           | Hexa-4/AT            | time = 257ns, Rave  | e = 0.18             |                                                                         |             |  |  |  |  |  |
| 200  | 14.9 (8.6)   | 15 (7.1)    | 13.9 (13.3)          | 9.8 (6.8)           | 10.4 (10.1)          | 16.2 (12.2)                                                             | 5.7 (2.5)   |  |  |  |  |  |
| 300  | 22 (12.7)    | 25.5 (10.4) | 23.4 (11.4)          | 13.3 (9.6)          | 15.1 (14.1)          | 25.1 (17.9)                                                             | 10.1 (4.2)  |  |  |  |  |  |
| 500  | 41.5 (21.9)  | 34.9 (18.9) | 32.3 (20.4)          | 24.1 (15.4)         | 29.8 (21.7)          | 43.3 (29.8)                                                             | 24.4 (9.1)  |  |  |  |  |  |
| R    | 0.21         | 0.26        | 0.16                 | 0.11                | 0.05                 | 0.09                                                                    | 0.38        |  |  |  |  |  |
|      |              |             | Hexa-4/AT            | time = 270ns, Rave  | e = 0.18             |                                                                         |             |  |  |  |  |  |
| 200  | 14.9 (6.1)   | 15 (6.6)    | 13.9 (15.9)          | 9.8 (5.3)           | 10.4 (11.5)          | 16.2 (13.3)                                                             | 5.7 (2.9)   |  |  |  |  |  |
| 300  | 22 (9.2)     | 25.5 (10.2) | 23.4 (22.6)          | 13.3 (7.9)          | 15.1 (16.3)          | 25.1 (19.4)                                                             | 10.1 (5.0)  |  |  |  |  |  |
| 500  | 41.5 (16.0)  | 34.9 (18.7) | 32.3 (36.1)          | 24.1 (13.6)         | 29.8 (25.3)          | 43.3 (32.3)                                                             | 24.4 (10.6) |  |  |  |  |  |
| R    | 0.37         | 0.27        | 0.01                 | 0.19                | 0.02                 | 0.06                                                                    | 0.31        |  |  |  |  |  |

|      | Hexa-8/AT time = 214ns (simulated tr-NOEs are in brackets), Rave = 0.24 |             |             |                     |                   |             |           |  |
|------|-------------------------------------------------------------------------|-------------|-------------|---------------------|-------------------|-------------|-----------|--|
| Tmix | GICNS6S-GICA                                                            | GlcNS3S6    | S-IdoA(2S)  | IdoA(2S)            | IdoA(2S)-GIcNS6S" |             | S"-GIcA"  |  |
| (ms) | H1-H4                                                                   | H1-H4       | H1-H3       | H1-H4               | H1-H6             | H1-H4       | H1-H3     |  |
| 200  | 5.9 (5.9)                                                               | 8.6 (6.4)   | 7.7 (4.4)   | 9.8 (6.2)           | 4.8 (7.0)         | 6.1 (2.9)   | 1.3 (3.0) |  |
| 300  | 9.8 (8.1)                                                               | 17.3 (7.4)  | 14.1 (10.5) | 15.3 (8.1)          | 6.6 (8.7)         | 11.0 (4.4)  | 2.1 (4.4) |  |
| 500  | 21.1 (12.5)                                                             | 35.7 (12.1) | 28.9 (17.0) | 32 (11.1)           | 13.5 (10.9)       | 24.7 (7.8)  | 7.7 (7.6) |  |
| R    | 0.13                                                                    | 0.40        | 0.15        | 0.37                | 0.07              | 0.44        | 0.12      |  |
|      |                                                                         |             | Hexa-8/A1   | Г time = 235ns, Rav | e = 0.24          | •           |           |  |
| 200  | 5.9 (7.0)                                                               | 8.6 (6.4)   | 7.7 (10.4)  | 9.8 (7.8)           | 4.8 (9.7)         | 6.1 (4.3)   | 1.3 (3.1) |  |
| 300  | 9.8 (9.8)                                                               | 17.3 (9.3)  | 14.1 (14.7) | 15.3 (10.4)         | 6.6 (12.6)        | 11.0 (6.4)  | 2.1 (4.7) |  |
| 500  | 21.1 (15.2)                                                             | 35.7 (15.7) | 28.9 (23.6) | 32 (14.9)           | 13.5 (17.1)       | 24.7 (11.2) | 7.7 (8.6) |  |
| R    | 0.13                                                                    | 0.40        | 0.15        | 0.37                | 0.07              | 0.44        | 0.12      |  |
|      |                                                                         |             | Hexa-8/A1   | Γ time = 243ns, Rav | e = 0.27          | •           |           |  |
| 200  | 5.9 (13.0)                                                              | 8.6 (4.7)   | 7.7 (11.0)  | 9.8 (6.5)           | 4.8 (10.8)        | 6.1 (2.7)   | 1.3 (3.0) |  |
| 300  | 9.8 (17.1)                                                              | 17.3 (7.0)  | 14.1 (15.6) | 15.3 (8.8)          | 6.6 (13.3)        | 11.0 (4.2)  | 2.1 (4.5) |  |
| 500  | 21.1 (23.4)                                                             | 35.7 (12.3) | 28.9 (25.0) | 32 (12.7)           | 13.5 (16.7)       | 24.7 (7.9)  | 7.7 (8.0) |  |
| R    | 0.19                                                                    | 0.41        | 0.03        | 0.31                | 0.36              | 0.44        | 0.13      |  |
|      |                                                                         | •           | Hexa-8/A1   | Г time = 258ns, Rav | e = 0.22          | •           | •         |  |
| 200  | 5.9 (11.3)                                                              | 8.6 (5.3)   | 7.7 (15.9)  | 9.8 (7.3)           | 4.8 (8.1)         | 6.1 (2.9)   | 1.3 (2.7) |  |
| 300  | 9.8 (16.0)                                                              | 17.3 (8.1)  | 14.1 (22.4) | 15.3 (10.5)         | 6.6 (11.4)        | 11.0 (4.6)  | 2.1 (4.3) |  |
| 500  | 21.1 (25.5)                                                             | 35.7 (14.9) | 28.9 (35.1) | 32 (17.1)           | 13.5 (18.1)       | 24.7 (9.2)  | 7.7 (8.5) |  |
| R    | 0.15                                                                    | 0.32        | 0.16        | 0.19                | 0.22              | 0.38        | 0.11      |  |

Table S5 (b)

**Table S5 (a) and (b)** Experimental selected inter-glycosdic Tr-NOEs signals measured for Hexa-4 and Hexa-8 in their interaction with AT. The corresponding simulated Tr-NOEs using the selected structures of Hexa-4/AT (209, 227, 240, 257, 270 ns) and Hexa-8/AT (214, 235, 243, 258 ns) are reported in brackets (see material and methods). The agreement between each experimental and simulated proton-proton Tr-NOE pairs is expressed by the R factor calculated at three different mixing times.

|                        |                 | Residues |      |           |             |          |  |
|------------------------|-----------------|----------|------|-----------|-------------|----------|--|
|                        | A-helix type CA | GIcNS6S  | GlcA | GIcNS3S6S | IdoA2S/IdoA | GlcNS6S" |  |
| 1AZX                   | 0               | 0        | 0    | 0         | 0           | 0        |  |
| Hexa-4/AT, 209ns       | 0.53            | 1.63     | 1.92 | 1.62      | 0.99        | 0.44     |  |
| Hexa-4/AT, 227ns       | 0.48            | 1.85     | 2.2  | 2.13      | 1.3         | 0.47     |  |
| Hexa-4/AT, 240ns       | 0.41            | 1.67     | 2.13 | 1.88      | 1.18        | 0.73     |  |
| Hexa-4/AT, 257ns       | 0.39            | 1.77     | 1.92 | 1.79      | 1.08        | 0.48     |  |
| Hexa-4/AT, 270ns       | 0.47            | 2.28     | 2.58 | 2.46      | 1.61        | 1.18     |  |
| RMSD ave (Hexa-4,1AZX) | 0.46            | 1.84     | 2.15 | 1.98      | 1.23        | 0.66     |  |
| Hexa-8/AT, 214ns       | 0.49            | 1.6      | 1.23 | 1.23      | 1.32        | 0.98     |  |
| Hexa-8/AT, 235ns       | 0.74            | 1.75     | 1.44 | 0.8       | 1.12        | 1.03     |  |
| Hexa-8/AT, 243ns       | 0.72            | 1.75     | 1.47 | 1.21      | 1.74        | 1.77     |  |
| Hexa-8/AT, 258ns       | 0.71            | 2.13     | 1.07 | 1.07      | 1.42        | 1.69     |  |
| RMSD ave (Hexa-8,1AZX) | 0.67            | 1.81     | 1.30 | 1.08      | 1.40        | 1.37     |  |

**Table S6.** RMSD (Root Mean Square Distances) calculated between the common sequence of the active pentasaccharide co-crystallized with AT in PDB ID 1AZX, and the tested hexasaccharides in bound state with AT, which structures were validated by the tr-NOEs, and correspond to geometries at instant time: 209, 227, 240, 257, 270 ns for Hexa-4/AT and 214, 235, 243, 258 ns for Hexa-8/AT. In red average RMSD values are calculated for each glycan residue of Hexa-4/AT, and Hexa-8/AT complex respectively.

| Interacting groups                                                                  |           | Dista            | nces (Å)  |                  |                  |                  |
|-------------------------------------------------------------------------------------|-----------|------------------|-----------|------------------|------------------|------------------|
|                                                                                     | Hexa-4/AT | AGA*IA/AT<br>[1] | Hexa-8/AT | AGA*IA/AT<br>[2] | AGA*IA/AT<br>[3] | AGA*IA/AT<br>[4] |
| GlcNS6S( <b>6S</b> )R129(H <sub>2</sub> N- <b>C</b> -NH <sub>2</sub> <sup>+</sup> ) | 6.4       | 4.3              | 8.3       | 4.9              | 5.2              | 5.0              |
| GlcNS6S( <b>6S</b> )K125(H <sub>3</sub> N⁺)                                         | 4.2       | 3.8              | 5.7       | 4.4              | 4.8              | 6.2              |
| GlcA( <b>C</b> OO)K125                                                              | 7.2       | 3.5              | 4.4       | 4.1              | 4.1              | 3.7              |
| GlcNS3S6S( <b>NS</b> )K114                                                          | 4.3       | -                | 4.6       | 4.3              | 4.1              | 4.5              |
| GlcNS3S6S( <b>3S</b> )K114                                                          | 4.4       | -                | 4.2       | 4.1              | 4.1              | 4.4              |
| GlcNS3S6S( <b>NS</b> )R13                                                           | 4.7       | -                | 6.7       | 5.4              | 5.6              | 8.2              |
| IdoA2S( <b>C</b> OO)R47                                                             | 4.4       | 4.5              | 4.1       | 5.6              | 4.5              | 5.1              |
| IdoA2S( <b>C</b> OO)R46                                                             | 4.2       | -                | 4.0       | 5.7              | -                | 8.1              |
| IdoA2S( <b>C</b> OO)K114                                                            | 3.5       | 3.0              | 3.6       | 3.6              | 3.7              | 3.4              |
| IdoA2S( <b>S</b> O3 <sup>-</sup> )R13                                               | 4.4       |                  | 1         | 8.7              | 4.1              | 8.6              |
| GlcNS6S"( <b>NS</b> )R47                                                            | 4.0       | 3.9              | 4.1       | 4.2              | 4.7              | 4.9              |
| GlcNS6S"( <b>NS</b> )R46                                                            | 5.1       | 4.2              | 5.5       | 5.9              | -                | 5.9              |
| GlcNS6S"( <b>6S</b> )K114                                                           | 7.8       | 4.7              | 7.6       | 5.2              | 5.2              | 4.9              |
| GlcNS6S"( <b>6S</b> )R13                                                            | 4.7       | -                | 4.6       | 8.4              | 5.3              | 5.4              |

**Tab. S7** Selected distances between interacting groups in Hexa-4/AT and Hexa-8/AT complexes at time 227 and 258 ns validated by tr-NOEs signals (see tr-NOEs/NOEs paragraph) are reported in 2<sup>nd</sup> and 4<sup>th</sup> column. The atoms used for distance definitions are underlined in bold face in the 1<sup>st</sup> column. For comparison the corresponding distances measured in AGA\*IA/AT complex in solution by NMR techniques (Hricovini et al. 2001) [1], by x-ray diffraction '1AZX' [2] (chain I Jin et al. 1997), '3kcg' [3] (Johnson, D.J. et al. 2010), and '2gd4' (Johnson, D.J. et al. 2006) are reported in 3<sup>td</sup>, 5<sup>th</sup>, 6<sup>th</sup> and 7<sup>th</sup> column respectively. Distances greater than 6 Å and smaller than 4 Å are underlined in blue and red respectively. The symbol '-' indicate distances not reported. In 3kcg structure R46 residue were not accurately resolved.