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Supplementary Table 1. The fitted results of the EIS plots in Figure 1b. 

Potential (V) RΩ (ohm/cm2) Rct (ohm/cm2) Cd  

1.2 10.8 277.4 2.44*10-6 

1.45 16.7 239.2 3.08*10-6 

1.6 17.5 168.6 3.44*10-6 
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Supplementary Figure 4.  (a) FTIR  spectrum of the reference Ni(OH)2-

r, w-Ni(OH)2-e and w-Ni(OH)2 samples; (b)  Raman spectra. 

 

As is typical, the first peak at 484 cm-1 could be attributed to the stretching 

vibrational mode of the M-OH [50-51]; the 1631 cm-1 peak belonged to the free H2O 

trapped by Ni(OH)2 and the 3440 cm-1 peak was relative to the free H2O. For the w-

Ni(OH)2 samples, the signal intensities of the three OH-based groups showed slightly 

stronger peak distinctions compared with the bare Ni(OH)2 sample, suggesting that 

the exposed W sites were useful in aiding their adsorption. 
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Supplementary Figure 6. UV-Vis absorption spectrum of the reference 

samples: WO3, 1% 2% and 3% WO3/Ni(OH)2. Please note that, the red-

shift of WO3/Ni(OH)2 samples compared with bare WO3 can be assigned 

to the carrier migration across the interface between WO3 and Ni(OH)2 

(Appl. Catal. B, 2014, 152, 280-288). 
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Supplementary Figure 9. TEM images of (a) the reference Ni(OH)2-r 

sample, (b) w-Ni(OH)2-e, (c) HRTEM image of w-Ni(OH)2-e, the inset 

shows the corresponding EDS. (d) This result comes from Figure 3e. 
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Supplementary Table 3. Comparison of catalytic performance of w-Ni(OH)2 with 

reported Ni- based catalyst in 1.0 M KOH. 

Materials Support 
Loading 

(mg cm-2) 

η@10 mA cm-2 

(mV) 

η@I mA cm-2 

(mV) 
Tafel slope 

(mv/dec) 

TOF@η/V 

 (s-1) 

ECSA@V 

(mF cm−2) 
Ref. 

CS-NiFeCu Ni foam 10.2 180 250@248 33 - 54.24 S1 

a-NiFe-OH/NiFeP Ni foam ~1.8 199 258@300 39 0.036@0.25 6.3@0.95 S2 

Au/NiFe LDH Ti mesh 2 237 280@198 36 0.11@0.28 0.49@1.11 S3 

NiFeV LDHs Ni foam 2.8 192 195@20 42 0.04@0.25 6.483@1.07 S4 

Ni0.75V0.25-LDH GC electrode 0.143 - 350@27 50 - 0.27@1.25 S5 

NiCo LDH Carbon paper ~0.17 367 300@683 40 - - S6 

NiFeCr LDH Carbon paper 0.2 - 225@25 69 - 1.176@0.25 S7 

NiFe 

LDH@NiCoP/N

F 

Ni foam 2 220 - 48.6 - 18.07 S8 

NiFe LDH/r-GO Ni foam 0.25 206 - 39 0.987@0.3 - S9 

NiFe LDH/r-GO GC electrode 0.25 230  42 - - S10 

Holey Ni(OH)2 GC electrode - 335 - 65 1.52 × 10−2
@0.35 - S11 

NiFeRu-LDH Ni foam - 225 - - - - S12 

NiFe−OOH Ni foam - - 270@240 40 0.146@0.4 - S13 

Ni3Fe0.5V0.5-OH 
carbon fiber 

paper 
- 200 264@100 39 0.574@0.3 - S14 

w-Ni(OH)2 GC electrode 0.2 237 267@80 33 0.74@0.25 5@1.45 
This 

work 

 

 

 

 

 

 

 

 



 

Supplementary Figure 12. (a) Polarization curve of RuO2 and (b) the 

corresponding Tafel slope. 
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Supplementary Table 4. The fitted results of the EIS plots in Figure 4d. 

Sample RΩ (ohm) Rct (ohm) 

Ni(OH)2-r 5.72 446.7 

w-Ni(OH)2-e 5.46 291.5 

w-Ni(OH)2 5.29 160 
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SupplementaryFigure 20. In situ Raman spectra collected on (a) 

Ni(OH)2 and (b) w-Ni(OH)2 electrodes under three potentials (1.42, 1.45 

and 1.48 V vs. RHE) in 1 M KOH. 
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Supplementary Figure 25. Typical cyclic voltammetry curves of w-

Ni(OH)2 electrode with different scan rates in three pH solution 

conditions: (a) pH=10, (b) pH=11 and (c) pH=13.6. (d)  ∆j at potential of 

1.45 V (vs RHE) of w-Ni(OH)2 plotted against scan rates. 
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Supplementary Figure 26. EIS plots of w-Ni(OH)2 electrode under the 
chosen three pH solution conditions, 13.6, 11 and 10. 
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Supplementary Figure 27. Cyclic voltammetry curves of (a) Ni(OH)2-r 

and (b) w-Ni(OH)2-e electrodes with different scan rates in pH=13.6 

solution conditions, (c) the corresponding ∆j at potential of 0.45 V (vs 

Ag/AgCl) of  Ni(OH)2-r and w-Ni(OH)2-e electrodes plotted against scan 

rates. 
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Supplementary Figure 29. Model of alpha-Ni(OH)2 catalyst for DFT 

calculations. Two layers intercalated with Cl- and H2O are shown.  

 

 

 

Supplementary Table 6. The spin population of the edge Ni and W 

atoms at different states (1~6). 

mag(��) Ni W 

State 1 1.443 0.012 

State 2 1.450 0.033 

State 3 1.438 0.036 

State 4 1.437 -0.004 

State 5 1.434 0.005 

State 6 1.436 0.005 
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Supplementary Figure 31. K-point test of w-Ni(OH)2 systems in DFT 

calculations. 

 

We conducted the K-point test as given in Figure S28 and found that 

1×1×5 K-point mesh was better to converge, thus we chose the 1×1×5 K-

point mesh for all the DFT studies. 
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Supplementary Figure 32. The dynamic energy barriers of the transition 

state for w-Ni(OH)2 and Ni(OH)2 at the potential determining step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 7. The optimized atomic Cartesian positions of 

pristine Ni(OH)2 and w-doped Ni(OH)2. 

Pristine Ni(OH)2 
1.0 
       16.3799991608         0.0000000000         0.0000000000 
        0.0000000000        30.0000000000         0.0000000000 
        0.0000000000         0.0000000000         9.3599996567 
   Cl    H   Ni    O 
    6   72   27   66 
Cartesian 
     2.730054372        16.992899179         8.687296210 
     8.189999580        16.992899179         8.687296210 
     2.730054372        16.992899179         5.567234026 
     8.189999580        16.992899179         5.567234026 
     2.730054372        16.992899179         2.447265569 
     8.189999580        16.992899179         2.447265569 
     4.541682191        11.127299666         8.959579039 
     0.918262773        22.858500481         8.959579039 
     5.439470229        15.077700019         7.394118748 
     0.020474998        18.908100128         7.394118748 
     1.746599269        11.102999747         7.397394734 
     3.429009383        22.846493125         7.411963720 
     2.712036556        15.005400181         8.942637306 
     2.748072432        18.980399966         8.942637306 
     0.793283351        16.989900470         0.230630387 
    10.001791423        11.127299666         8.959579039 
     6.252577779        22.871729136         8.947071491 
    10.899578973        15.077700019         7.394118748 
     5.394218587        18.868957758         7.385272137 
     7.206544478        11.102999747         7.397394734 
     8.171981520        15.005400181         8.942637306 
     7.858602009        18.946396708         8.966594625 
     4.666825453        16.995899677         0.230630387 
     6.253228499        16.989900470         0.230630387 
    15.461736143        11.127299666         8.959579039 
    16.359523693        15.077700019         7.394118748 
    12.666489199        11.102999747         7.397394734 
    13.631926241        15.005400181         8.942637306 
     4.541682191        11.127299666         5.839516855 
     0.918262773        22.858500481         5.839516855 
     5.439470229        15.077700019         4.274150291 



     0.020474998        18.908100128         4.274150291 
     1.746599269        11.102999747         4.277426277 
     3.641021808        22.855551839         4.274590195 
     2.712036556        15.005400181         5.822575122 
     2.748072432        18.980399966         5.822575122 
     0.793283351        16.989900470         6.470661255 
    10.001791423        11.127299666         5.839516855 
     6.281245582        22.845422029         5.891052817 
    10.899578973        15.077700019         4.274150291 
     5.460124364        18.849502802         4.281836193 
     7.206544478        11.102999747         4.277426277 
     8.171981520        15.005400181         5.822575122 
     8.145609544        19.035932422         5.954585291 
     4.666825453        16.995899677         6.470661255 
     6.253228499        16.989900470         6.470661255 
    15.461736143        11.127299666         5.839516855 
    16.359523693        15.077700019         4.274150291 
    12.666489199        11.102999747         4.277426277 
    13.631926241        15.005400181         5.822575122 
     4.541682191        11.127299666         2.719547840 
     0.918262773        22.858500481         2.719547840 
     5.439470229        15.077700019         1.154181555 
     0.020474998        18.908100128         1.154181555 
     1.746599269        11.102999747         1.157363953 
     3.502551235        22.827438712         1.171034024 
     2.712036556        15.005400181         2.702606386 
     2.748072432        18.980399966         2.702606386 
     0.793283351        16.989900470         3.350599071 
    10.001791423        11.127299666         2.719547840 
     6.438652447        22.765132785         2.668953612 
    10.899578973        15.077700019         1.154181555 
     5.503994508        18.869529963         1.116896646 
     7.206544478        11.102999747         1.157363953 
     8.171981520        15.005400181         2.702606386 
     8.266183121        18.833511472         2.720647180 
     4.666825453        16.995899677         3.350599071 
     6.253228499        16.989900470         3.350599071 
    15.461736143        11.127299666         2.719547840 
    16.359523693        15.077700019         1.154181555 
    12.666489199        11.102999747         1.157363953 
    13.631926241        15.005400181         2.702606386 
     8.708570184        22.712236047         1.632053401 
     9.114302138        20.198165774         2.458807393 



     8.842317790        22.421908379         5.606770686 
     9.689078741        21.701937318         4.553379247 
     8.899834015        22.215600014         8.767298434 
     9.577642092        21.435747743         7.586156667 
     0.880424970        13.120199740         8.973151059 
     4.516407603        20.856601596         8.963874307 
     3.613591496        13.102200329         7.414804544 
     1.846353469        20.883600712         7.414804544 
     6.340370300        13.120199740         8.973151059 
     9.073536705        13.102200329         7.414804544 
     7.176045092        20.849812031         7.441701993 
    11.800479044        13.120199740         8.973151059 
    14.533645448        13.102200329         7.414804544 
     0.880424970        13.120199740         5.853182044 
     4.541044164        20.844338536         5.838616405 
     3.613591496        13.102200329         4.294835808 
     1.846353469        20.883600712         4.294835808 
     6.340370300        13.120199740         5.853182044 
     9.073536705        13.102200329         4.294835808 
     7.248870566        20.835347772         4.371216707 
    11.800479044        13.120199740         5.853182044 
    14.533645448        13.102200329         4.294835808 
     0.880424970        13.120199740         2.733213587 
     4.561863297        20.826750398         2.742136352 
     3.613591496        13.102200329         1.174773624 
     1.846353469        20.883600712         1.174773624 
     6.340370300        13.120199740         2.733213587 
     9.073536705        13.102200329         1.174773624 
     7.182929641        20.870139599         1.112992187 
    11.800479044        13.120199740         2.733213587 
    14.533645448        13.102200329         1.174773624 
     5.438978650        14.081399739         7.416583128 
     0.020966398        19.904399514         7.416583128 
     4.529725151        12.100800276         8.966599088 
     0.930220180        21.884999871         8.966599088 
     2.704993110        14.005500376         8.976520214 
     2.755115877        19.980300665         8.976520214 
     1.771660653        12.076199949         7.406005912 
     3.532242713        21.877795458         7.402253480 
     0.000000000        16.992899179         0.825083989 
    10.899087882        14.081399739         7.416583128 
     5.371272531        19.867714047         7.409234476 
     9.989670360        12.100800276         8.966599088 



     6.207301728        21.900978684         8.928424260 
     8.164938319        14.005500376         8.976520214 
     7.909304469        19.946052432         8.974544692 
     7.231605740        12.076199949         7.406005912 
     5.459945209        16.992899179         0.825083989 
    16.359032602        14.081399739         7.416583128 
    15.449779103        12.100800276         8.966599088 
    13.624883039        14.005500376         8.976520214 
    12.691551437        12.076199949         7.406005912 
     5.438978650        14.081399739         4.296614113 
     0.020966398        19.904399514         4.296614113 
     4.529725151        12.100800276         5.846630073 
     0.930220180        21.884999871         5.846630073 
     2.704993110        14.005500376         5.856458030 
     2.755115877        19.980300665         5.856458030 
     1.771660653        12.076199949         4.286037455 
     3.669248312        21.883850098         4.278371079 
     0.000000000        16.992899179         7.065114840 
    10.899087882        14.081399739         4.296614113 
     5.461363319        19.848235846         4.294247782 
     9.989670360        12.100800276         5.846630073 
     6.297922172        21.873114109         5.898384174 
     8.164938319        14.005500376         5.856458030 
     8.124478963        20.030313134         5.955392571 
     7.231605740        12.076199949         4.286037455 
     5.459945209        16.992899179         7.065114840 
    16.359032602        14.081399739         4.296614113 
    15.449779103        12.100800276         5.846630073 
    13.624883039        14.005500376         5.856458030 
    12.691551437        12.076199949         4.286037455 
     5.438978650        14.081399739         1.176645516 
     0.020966398        19.904399514         1.176645516 
     4.529725151        12.100800276         2.726567888 
     0.930220180        21.884999871         2.726567888 
     2.704993110        14.005500376         2.736489572 
     2.755115877        19.980300665         2.736489572 
     1.771660653        12.076199949         1.166068788 
     3.579401605        21.857569814         1.166921538 
     0.000000000        16.992899179         3.945146383 
    10.899087882        14.081399739         1.176645516 
     5.484984015        19.870110154         1.166813863 
     9.989670360        12.100800276         2.726567888 
     6.405997337        21.792578101         2.690286571 



     8.164938319        14.005500376         2.736489572 
     8.245530939        19.862984419         2.765687519 
     7.231605740        12.076199949         1.166068788 
     5.459945209        16.992899179         3.945146383 
    16.359032602        14.081399739         1.176645516 
    15.449779103        12.100800276         2.726567888 
    13.624883039        14.005500376         2.736489572 
    12.691551437        12.076199949         1.166068788 
     8.750201617        21.972704530         0.998539393 
     8.920391494        22.300111055         4.630525305 
     8.933690980        22.157185078         7.734735334 
W-doped Ni(OH)2 
1.0 
       16.3799991608         0.0000000000         0.0000000000 
        0.0000000000        30.0000000000         0.0000000000 
        0.0000000000         0.0000000000         9.3599996567 
   Cl    H   Ni    O    W 
    6   71   26   66    1 
Cartesian 
     2.730054372        16.992899179         8.687296210 
     8.189999580        16.992899179         8.687296210 
     2.730054372        16.992899179         5.567234026 
     8.189999580        16.992899179         5.567234026 
     2.730054372        16.992899179         2.447265569 
     8.189999580        16.992899179         2.447265569 
     4.541682191        11.127299666         8.959579039 
     0.918262773        22.858500481         8.959579039 
     5.439470229        15.077700019         7.394118748 
     0.020474998        18.908100128         7.394118748 
     1.746599269        11.102999747         7.397394734 
     3.446908332        22.834081650         7.411578212 
     2.712036556        15.005400181         8.942637306 
     2.748072432        18.980399966         8.942637306 
     0.793283351        16.989900470         0.230630387 
    10.001791423        11.127299666         8.959579039 
     6.458834041        22.799248695         9.047979881 
    10.899578973        15.077700019         7.394118748 
     5.424795591        18.832592368         7.420100126 
     7.206544478        11.102999747         7.397394734 
     8.171981520        15.005400181         8.942637306 
     8.352278303        18.974844217         8.936138336 
     4.666825453        16.995899677         0.230630387 
     6.253228499        16.989900470         0.230630387 



    15.461736143        11.127299666         8.959579039 
    16.359523693        15.077700019         7.394118748 
    12.666489199        11.102999747         7.397394734 
    13.631926241        15.005400181         8.942637306 
     4.541682191        11.127299666         5.839516855 
     0.918262773        22.858500481         5.839516855 
     5.439470229        15.077700019         4.274150291 
     0.020474998        18.908100128         4.274150291 
     1.746599269        11.102999747         4.277426277 
     3.753155064        22.837661505         4.285872038 
     2.712036556        15.005400181         5.822575122 
     2.748072432        18.980399966         5.822575122 
     0.793283351        16.989900470         6.470661255 
    10.001791423        11.127299666         5.839516855 
     6.321910942        22.774466872         5.607728042 
    10.899578973        15.077700019         4.274150291 
     5.530390405        18.632238507         4.276312988 
     7.206544478        11.102999747         4.277426277 
     8.171981520        15.005400181         5.822575122 
     4.666825453        16.995899677         6.470661255 
     6.253228499        16.989900470         6.470661255 
    15.461736143        11.127299666         5.839516855 
    16.359523693        15.077700019         4.274150291 
    12.666489199        11.102999747         4.277426277 
    13.631926241        15.005400181         5.822575122 
     4.541682191        11.127299666         2.719547840 
     0.918262773        22.858500481         2.719547840 
     5.439470229        15.077700019         1.154181555 
     0.020474998        18.908100128         1.154181555 
     1.746599269        11.102999747         1.157363953 
     3.719764782        22.886738777         1.235151734 
     2.712036556        15.005400181         2.702606386 
     2.748072432        18.980399966         2.702606386 
     0.793283351        16.989900470         3.350599071 
    10.001791423        11.127299666         2.719547840 
     6.622750059        22.770325541         2.953293485 
    10.899578973        15.077700019         1.154181555 
     5.470104349        18.839875460         1.191822752 
     7.206544478        11.102999747         1.157363953 
     8.171981520        15.005400181         2.702606386 
     8.316591707        18.753851652         2.686121294 
     4.666825453        16.995899677         3.350599071 
     6.253228499        16.989900470         3.350599071 



    15.461736143        11.127299666         2.719547840 
    16.359523693        15.077700019         1.154181555 
    12.666489199        11.102999747         1.157363953 
    13.631926241        15.005400181         2.702606386 
     9.772521250        21.725395918         1.703357833 
     9.246083427        21.065801382         0.358163988 
     9.524514443        21.944906116         5.429140521 
    10.038189759        21.206556559         4.133027950 
     9.868490974        22.447822094         7.914592076 
     9.666158558        20.971793532         7.470674269 
     0.880424970        13.120199740         8.973151059 
     4.557161809        20.845402479         9.033708813 
     3.613591496        13.102200329         7.414804544 
     1.846353469        20.883600712         7.414804544 
     6.340370300        13.120199740         8.973151059 
     9.073536705        13.102200329         7.414804544 
     7.173285024        20.742684603         7.548151440 
    11.800479044        13.120199740         8.973151059 
    14.533645448        13.102200329         7.414804544 
     0.880424970        13.120199740         5.853182044 
     4.527555271        20.835562348         5.909312866 
     3.613591496        13.102200329         4.294835808 
     1.846353469        20.883600712         4.294835808 
     6.340370300        13.120199740         5.853182044 
     9.073536705        13.102200329         4.294835808 
    11.800479044        13.120199740         5.853182044 
    14.533645448        13.102200329         4.294835808 
     0.880424970        13.120199740         2.733213587 
     4.562518411        20.832771063         2.742943632 
     3.613591496        13.102200329         1.174773624 
     1.846353469        20.883600712         1.174773624 
     6.340370300        13.120199740         2.733213587 
     9.073536705        13.102200329         1.174773624 
     7.287536903        20.754160881         1.204901868 
    11.800479044        13.120199740         2.733213587 
    14.533645448        13.102200329         1.174773624 
     5.438978650        14.081399739         7.416583128 
     0.020966398        19.904399514         7.416583128 
     4.529725151        12.100800276         8.966599088 
     0.930220180        21.884999871         8.966599088 
     2.704993110        14.005500376         8.976520214 
     2.755115877        19.980300665         8.976520214 
     1.771660653        12.076199949         7.406005912 



     3.564752595        21.868141294         7.435753669 
     0.000000000        16.992899179         0.825083989 
    10.899087882        14.081399739         7.416583128 
     5.403476091        19.834715724         7.460884250 
     9.989670360        12.100800276         8.966599088 
     6.391135733        21.830611825         9.051898009 
     8.164938319        14.005500376         8.976520214 
     8.277329812        19.975633621         8.975605817 
     7.231605740        12.076199949         7.406005912 
     5.459945209        16.992899179         0.825083989 
    16.359032602        14.081399739         7.416583128 
    15.449779103        12.100800276         8.966599088 
    13.624883039        14.005500376         8.976520214 
    12.691551437        12.076199949         7.406005912 
     5.438978650        14.081399739         4.296614113 
     0.020966398        19.904399514         4.296614113 
     4.529725151        12.100800276         5.846630073 
     0.930220180        21.884999871         5.846630073 
     2.704993110        14.005500376         5.856458030 
     2.755115877        19.980300665         5.856458030 
     1.771660653        12.076199949         4.286037455 
     3.784116251        21.866875291         4.304841177 
     0.000000000        16.992899179         7.065114840 
    10.899087882        14.081399739         4.296614113 
     5.619335477        19.656284451         4.349590850 
     9.989670360        12.100800276         5.846630073 
     6.366114989        21.824313998         5.802535931 
     8.164938319        14.005500376         5.856458030 
     8.051609554        19.898843765         5.941006576 
     7.231605740        12.076199949         4.286037455 
     5.459945209        16.992899179         7.065114840 
    16.359032602        14.081399739         4.296614113 
    15.449779103        12.100800276         5.846630073 
    13.624883039        14.005500376         5.856458030 
    12.691551437        12.076199949         4.286037455 
     5.438978650        14.081399739         1.176645516 
     0.020966398        19.904399514         1.176645516 
     4.529725151        12.100800276         2.726567888 
     0.930220180        21.884999871         2.726567888 
     2.704993110        14.005500376         2.736489572 
     2.755115877        19.980300665         2.736489572 
     1.771660653        12.076199949         1.166068788 
     3.743132121        21.916115284         1.219655380 



     0.000000000        16.992899179         3.945146383 
    10.899087882        14.081399739         1.176645516 
     5.487078718        19.838631749         1.239116586 
     9.989670360        12.100800276         2.726567888 
     6.585287042        21.801338196         2.947078206 
     8.164938319        14.005500376         2.736489572 
     8.266985659        19.787104726         2.849795325 
     7.231605740        12.076199949         1.166068788 
     5.459945209        16.992899179         3.945146383 
    16.359032602        14.081399739         1.176645516 
    15.449779103        12.100800276         2.726567888 
    13.624883039        14.005500376         2.736489572 
    12.691551437        12.076199949         1.166068788 
     9.236192288        21.917104125         0.912816189 
     9.311894501        21.778619885         4.458591014 
     9.628535911        21.897681355         7.145481372 
     7.405589123        20.513037443         4.430063104 
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