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A. Wavelet analyses 

Wavelet analysis is becoming a common tool for analyzing localized intermittent oscillations in 
a time series. By decomposing a time series into time-frequency space, the cross wavelet transform 
and wavelet coherence are able to analyze whether regions in time frequency space with large 
common power exist a consistent phase relationship, and consequently are suggestive of causality 
between the time series. 

A.1. Wavelet Power Spectrum 

The wavelet power spectrum is assumed as a function of wavelet transform, which is the 
convolution of a discrete sequence (xn ) and Morlet wavelet (ψ ). We can obtain the following 
transform at time iδt on a scale s of a discrete time series xj of length N with a sampling interval 
by translating the wavelet in time and computing the convolution [1-3]: 

WTiሺsሻ= ∑ xjψ*[(j-i) δt s⁄ ]j=N
j=1                               (A1) 

where the (*) indicates the complex conjugate. In addition, the WTiሺsሻ can divided into the real part 
(R{WTi(s)}) and imaginary part (I{WTi(s)}), or phase (tan-1[ I{WTi(s)} R{WTi(s)}⁄ ]) and amplitude 
(|WTi(s)|2). We can construct a picture showing both the amplitude of any features versus the scale 
by varying the wavelet scale 𝑠 and translating along the localized time index i, and further showing 
how this amplitude varies with time [1-4]. Wavelet power spectrum can be defined by the squared 
wavelet transform: 

WPTiሺsሻ=|WTi(s)|2                                 (A2) 

A.2. Wavelet coherence and phase 

For the two wavelet transforms WTi
X(s)  and WTi

Y(s)  of time series X  and Y , the cross-
wavelet spectrum is defined as WCOiሺsሻ=WTi

X(s)WTi
Y*(s) with the cross-wavelet power |WCSi(s)| 

(where WTi
Y*(s) is the complex conjugate of WTi

Y(s). Then the wavelet coherence is defined as the 
square of the cross-spectrum normalized by the individual power spectra: 

WCOiሺsሻ= |WCSi(s)|

(WPTi
X(s)WPTi

Y*(s))
1 2⁄                              (A3) 

Thus, the WCOiሺsሻ as a function of frequency measures the cross-correlation between two time 
series and varies between 0 and 1. In particular, the value of 1 means a linear relationship between 
X and Y around time iδt on a scale s and 0 indicates uncorrelated [1,3]. Similar to the definition 
of wavelet transform phase, the coherence phase is defined as tan-1[ I{WCSi(s)} R{WCSi(s)}⁄ ]. 
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A.3. Wavelet Power Spectrum 

The confidence interval is defined as the probability that the true wavelet power at a certain time 
and scale lies within a certain interval about the estimated wavelet power. The estimated wavelet 
power is deemed statistically different from zero if the CI does not straddle zero. We replace the 

theoretical cross-wavelet power σXσYටPk
XPk

Y with the true cross-wavelet power TWn
2(s), then the 

confidence interval of TWn
2(s) is [1,3,5] 

ν|WCSi(s)|
χν2(p 2⁄ )

≤TWn
2(s)≤ ν|WCSi(s)|

χν2(1-p 2⁄ )
                             (A4) 

where p is the given significance (p=0.05 for the 95% CI) and χν
2( p 2⁄ ) representing the value of 

χ2 at quantile p 2⁄  and degree of freedom ν. 
Using equation (A4), we can obtain the CIs for the peaks in a cross-wavelet power spectrum to 

compare against either the mean background or against other peaks. 
Wavelet coherence is the square of the cross-spectrum normalized by the individual power 

spectra and measures the cross-correlation between two time series as a function of frequency. 
Therefore, we can obtain the CIs and then the significance test for wavelet coherence based on the 
equation (A4). 

A.4. Graphical description 

As shown in Figure 4, the black contour lines indicate the regions of power significant at the 5% 
level based on 1000 Monte Carlo simulations [1,5]. The curved line at the bottom is called the cone of 
influence (CoI) (the black curve) and below which, the wavelet can be subject to edge effects due to 
the use of a finite length series [1]. Therefore, to avoid spurious features caused by the wavelet 
method, only the information above the CoI is considered. A colour scale indicates if the periodicities 
have strong (red) or weak (blue) power for certain period and time, as shown in the right panel of 
Figure 4. The arrows show the phase difference between the weekly hospital notifications of A(H7N9) 
and meteorological factors: → in phase; ← in anti-phase; ↓:X leading Y by 90°; ↑: Y leading X 
by 90° [1,3–5]. 

B. Figures 

 
Figure S1. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature and (D) 
Weekly total precipitation for Guangdong province. 
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Figure S2. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature and (D) 
Weekly total precipitation for Jiangsu province. 

 
Figure S3. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature and (D) 
Weekly total precipitation for Fujian province. 
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Figure S4. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature and (D) 
Weekly total precipitation for Anhui province. 

 
Figure S5. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature and (D) 
Weekly total precipitation for Jiangxi province. 
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Figure S6. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature, (D) 
Weekly maximum relative humidity; (E) Weekly average relative humidity and (F) Weekly minimum 
relative humidity for Hunan province. 
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Figure S7. The wavelet coherence between weekly reported human cases of A(H7N9). (A) Weekly 
maximum temperature; (B) Weekly average temperature; (C) Weekly minimum temperature; (D) 
weekly maximum relative humidity; (E) Weekly average relative humidity and (F) Weekly minimum 
relative humidity for Shanghai province. 
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Figure S8. The plot of maximum, average, minimum temperature and total precipitation from the 
year 2013 to 2017. The temperature and total precipitation are taken out from Figure 3(B-E) in the time 
period of the five peaks corresponding to the maximum number of A(H7N9) cases in Figure 3(A). (A) 
Maximum temperature; (B) Average temperature; (C) Minimum temperature; (D) Total precipitation. 
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