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A. Exposure to a single agent versus multivariate expo-
sure

In this section we illustrate that we cannot always identify the confounders of the effect of
a multivariate exposure (the effect of a change in Z on outcome Y') by taking the union of
the confounders of the effect of exposure to each single agent (e.g. X; and X5) on Y.

A covariate C; can be a confounder of the effect of Z on Y but not a confounder of the
effect of any single agent (e.g. X; or X3) on Y, if C} is correlated with a function of agents
(e.g. the interaction X;X5) but C is not correlated with X; nor with X,. More generally,
this can occur when the covariate is balanced across levels of each individual agent but not
balanced across levels of combinations of agents.

Confounder adjustment methods that rely on exposure modeling with a linear exposure
model (e.g. Crainiceanu et al., 2008; Wang et al., 2012; Wilson and Reich, 2014; Wang
et al., 2015) do not address this situation. These methods identify potential confounders
by specifying an exposure model for each agent (one for X; and one for Xs), where the
single agent is the dependent variable and all the potential confounders are the independent
variables. Hence, potential confounders associated with the interaction terms only, but not
with the main effect, will not be identified as confounders in these single agent exposure
models.

To demonstrate this phenomenon, we construct a simple hypothetical example where
we can calculate the closed-form confounding bias. We assume there are two agents X =
(X1, X3), a multivariate exposure that includes an interaction Z = (X, X5, X;X5), and a
single covariate C7. We assume that C; and X; are both distributed independent N(0, 1).
As is common in environmental epidemiology X; and C; might affect the level of the other
exposure Xo. We assume X, is N(X (4, 1). Finally, the outcome Y is distributed N(X; +
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Xo+ X1 X5+ C4,1). In this case C] is linearly associated with X; X, (covariance 1) and with
Y, but not with X; or X5 (because C and X; are independent and centered on 0). We also
assume that we are interested in estimating A, here defined as the effect of a change from
no exposure to one unit of both agents (X; and Xs).

Because (] is not linearly associated with X; or X5, any approach that relies on exposure
modeling with a linear association between ' and X; and X, with two separate exposures
models (e.g. Wang et al., 2012; Wilson and Reich, 2014; Wang et al., 2015) will not identify
(' as a confounder and, therefore, will fail to identify the necessary confounders of the effect
of Z on Y. Further, the covariate C; is balanced across levels of X; and X, but not across
levels of the interaction X;Xs as shown in Web Appendix Figure 1. Under model (4), the
truth is A = 3. However, the model without C} has F[A|X] = 3.25 and is biased whereas
the E[A|X,C}] = 3 and is unbiased. Hence, the union of confounders identified by the
collection of single agent exposure models does not include the full set of confounders for the
association between the multivariate exposure (Z) and the outcome (Y'). In summary, new
methods are needed for confounder adjustment in the multiple exposure setting that adapt
to the multivariate exposure effect being estimated.
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Figure 1: Plots showing balance of the covariate (y-axis) across levels X, Xo, and X;X,
(xz-axis shown on panels from left to right). The data is for one simulated dataset of sample
size 1000.

B. Additional details for model specification section

B.1 Alternative choices for prior odds

Any non-negative function that captures the linear association between C' and Z can be used

asw;(Z,C). For example, w;(Z,C) = >, _, cor(C}, Zy,)* or Z,w;(Z,C) = C] P,C;/C] C;.
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Both of these give w;(Z,C) = 0 if C} is linearly independent of Z (not a confounder) and
positive if they are linearly dependent (potential confounders). However, these options tend
to be identify potential confounders with less specificity at smaller sample sizes. As a result
they assign increased prior inclusion probabilities to covariates that are not true confounders.
Web Appendix Figure 2 compares these priors for the alternative formulations using the sim-
ulated data.
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Figure 2: Comparison of ACPME prior to alternative priors discussed in Web Appendix
B.1. The y-axis displayed the prior inclusion probability for the 1000 simulated datasets in
scenario one. The top panel is for sample size n = 200 and the bottom for n = 500. The
prior inclusion probability under ACPME is lower for the covariates that are not associated
with the exposure which results in lower posterior false inclusion rates.



B.2 Details for bias calculation in (6)

This section contains additional details on the calculation in (6) of Section 3.2 of the main
text. The estimated exposure effect of interest can be biased if important confounders are
omitted from the model. With flat priors on 3 and 1 and inverse-gamma priors on o2 the
posterior mean of (37, n7)T is the ordinary least squares solution E{(8%,nT)T|Y,Z,C} =
{(Zz,C)'(Z,C)}(Z,C)Y, where (Z, C) is the full design matrix. The unadjusted model
that include only the exposures but no covariates has multivariate-t posterior with mean
E(B|Y,Z)=(Z"Z)'Z"Y. The difference between the posterior means for the unadjusted
and the fully adjusted model is

E(d"BlY,Z)-E(d"B|Y,Z,0C)
=d'(X'2)"'2"Y - (d",0"){(2.C)"(2.C)} (2,0)'Y
~d'(2"'2)'2"Y - d"|(2'2)"' 2"Y - (2"2)" 2"C (C"P;C) ' C"P}Y|
=d" (z72)"' Z"C (C"P;C) ' CTP}Y, (1)

where Py is the perpendicular projection onto the column space of Z and Py = I — Py.
This difference is the confounding bias in the exposure effect estimate caused by excluding
all covariates.

B.3 Details for calculation of (7)

This section contains additional details on the calculation in (7). We assume d = Za
for some vector a. It follows that there is no confounding bias if the inner product of

|E(Z"B)Y.Z) — E(Z"B|Y,Z,C) ||} = 0. Using (1) in the Web Appendix this quantity

can be rewritten as
|E(Z78lY.X) - E(278lY,Z.C)|,
- |z(z"2)" z"c (c"Pic)” c,*TPZﬂ/H2
2
—Y"P;C (CTP;C) ' CTP,C (C"P;C)  C"P}Y

k
=Y GYTP;C (CTP4C) " qqf (CTP4C) CTP;Y

=1
=Y GYTP;C (CTPAC) " qqf (CTP4C)  CTP;Y

=1

~ .1 -1 2
=Y ¢ ad" (cTPiO) T CTRY | 4 (2)
=1

where CTP,C = Zle Gaig! is the spectral decomposition. Assuming Z is rank r < k
then CT P,C is rank r and the equality between the fourth and fifth lines of (2) is valid.



B.4 Selection of prior distributions for other parameters and com-
putation

We complete the Bayesian specification for the normal linear model following that of Raftery
et al. (1997). The prior for the regression coefficients is (3, 1) ~ N(pg, 0?¢*%g) while the
prior precision is 072 ~ Gamma(v/2, kv/2). The hyper-parameters pg, ¢, Xg, v, and k are
as described in Raftery et al. (1997). The posterior is approximated with the MC? method
of Madigan et al. (1995). Assuming the outcome, exposures, and covariates are standardized
;LO:OandEO:I.

C. Additional Material for the Simulation Study

C.1 Additional results for simulation scenario one

Web Appendix Figure 3 shows the correlation structure in the data.

Web Appendix Table 1 shows additional results for simulation scenario one under the
null and reduced correlation between the covariates and the outcome. In this case, 3 = 0.
The effect of the covariates {;}32, are simulated from a uniform(0.1,0.2) distribution. The
relationship between C and Z remains the same as in scenario 1 from the main text.

C.2 Additional results for simulation scenario two

For simulation scenario two we simulate the data as

Cji ~N(0,1) forj=1,...,100
h; ~ DiscreteUniform(1,...,my) for j=1,...,10
h; ~ DiscreteUniform(1,...,m) for j =11,...,25
¢; ~ DiscreteUniform(m; +1,...,my) for j=1,...,15

10 25
X; ~N (Z Ciil{h; = k}X,i + Y Cil{h; =k}, 1)

j=1 j=11

30
Y; ~ N (Z,B +Y n;Cyi. 1) , (3)

j=1

where m; = m/2 rounded down to the nearest integer, ms = m —my, and, Xj; is Xj,; scaled
to have variance 1. Finally, {#;};_, and {7;}32,, are independent Uniform(0.2,0.5). Web
Appendix Figure 4 shows the correlation structure in the data.

Web Appendix Table 2 and Web Appendix Table 3 shows results for simulation scenario
2 for n = 200 and n = 500 respectively. These results are also presented in Figure 2 of the

mailn text.
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Figure 3: Visualization of the structure for simulated data under scenario 1. Panel 3a shows
the average correlation structure across 1000 datasets for the outcome Y, the multivariate
exposures Z = (X1, Xo, X1X5), and the first 35 covariates. The remaining 65 covariates are
iid N(0,1). Panels 3b — 3d show the covariance structure for the first three simulated data
sets of sample size 500.

D. Additional Material for Data Analysis

D.1 Data preparation detail

The process of limiting the data is as follows. First, for a given exposure group we limit
the data to all subjects that have complete data for all agents in the exposure group and
the covariates. Second, we identify other exposure groups that are complete for at least 1/3
of the sample identified in the first step. If this sample is at least 150 persons we use this
sample. If the sample was less than 150 persons, we identify other exposure groups that are
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Table 1: Simulation results for the alternative simulation scenario 1. This is the same
as scenario one in the text but the true effect of Z on Y is null and there is reduced
correlation between C and Y. The first four columns show the mean bias, mean RMSE,
mean posterior SD or SE, and 95% interval coverage rate. The right most columns show
statistics for covariate inclusion—the true inclusion rate defined as the mean probability that
the true confounders and predictors of the outcome (covariates 1 to 30) are included into the
regression model and the false selection rate defined as the mean probability that covariates
independent of the outcome are included in the model (covariates 31 to 100). Covariates are
considered included if they have posterior inclusion probability exceeding 0.5.

Mean 95% Int. True Inc. False Sel.

Method Bias RMSE SD / SE Coverage Rate Rate
n = 200

ACPME 0.16  0.39 0.33 0.90 0.62 0.12
BayesPen  0.28  0.45 0.19 0.49 0.62 0.14
BMA 0.63  0.65 0.14 0.01 0.21 0.07
Unadjusted 0.71  0.72 0.13 0.00 0.00 0.00
Full 0.03 0.45 0.43 0.94 1.00 1.00
True 0.01  0.30 0.29 0.94 1.00 0.00
n = 500

ACPME 0.06 0.22 0.20 0.93 0.79 0.08
BayesPen  0.05 0.24 0.16 0.78 0.91 0.13
BMA 0.57  0.58 0.09 0.00 0.38 0.04
Unadjusted 0.70  0.71 0.08 0.00 0.00 0.00
Full 0.00 0.22 0.21 0.94 1.00 1.00
True 0.00 0.18 0.17 0.95 1.00 0.00

complete for at least 1/2 of the sample identified in 1 (a smaller group of covariates). We
use this group if it has a sample of at least 150. Otherwise we do not include any exposure
groups as covariates. Web Appendix Figure 5 illustrates covariate inclusion for the data
analysis.

Our approach to limiting the data could result in selection bias. To address this we
regressed the outcomes on each multivariate exposure without including any potential co-
variates in both the full dataset and the data used for analysis. Web Appendix Figure 6
shows the z-scores of the posterior means for the full sample using the posterior mean and
standard deviation for the subsample used for analysis. Using z-scores to screen for selection
bias we identified 8 exposure-outcome combinations that may be effected by selection bias.
In these cases the z-scores exceeded the threshold of a 0.05 a-level two-sided test after Bon-
ferroni corrections. These estimates are presented as faded or omitted in the analysis figures
and are not discussed in the results. Web Appendix Figure 6 looks at potential selection
bias caused by selecting a subsample with multiple exposures for analysis.
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Figure 4: Visualization of the structure for simulated data under scenario 2. Panel 4a shows
the average correlation structure across 1000 datasets for the outcome Y, m = 10 agents,
all pairwise interactions between the agents, and the first 30 covariates. The remaining 70
covariates are iid N(0,1). Panels 4b — 4d show the covariance structure for the first three
simulated data sets of sample size 500.

D.2 Potential confounders

The potential confounders include: agents in the other groups that are measured in that
subsample; nine body measurements (weight; standing height; body mass index; upper
leg length; maximal calf circumference; waist circumference; thigh circumference; triceps
skinfold; and subscapular skinfold) and 13 demographic and socioeconomic status variables
(age; age squared; poverty to income ratio; indicator for any heard disease; indicator of
at least one chronic disease; indicators for race/ethnicity: black, Mexican-American, other
hispanic, other race/ethnicity; indicator for female; indicators for SES tertile; indicators for



Table 2: Simulation results for simulation scenario 2 and n = 200. The first two columns
show the number of agents (m) and the dimension of the multivariate exposure r. The
next four columns show the mean bias, mean RMSE, mean posterior SD or SE, and 95%
interval coverage rate. The right most columns show statistics for covariate inclusion—the
true inclusion rate defined as the mean probability that the true confounders and predictors
of the outcome are included into the regression model and the false selection rate defined as
the mean probability that covariates independent of the outcome are included in the model.

Mean  95% Int. True Inc. False Sel.
Method m r Bias RMSE SD /SE Coverage Rate Rate

n = 200

Full 2 3 -001 0.34 0.33 0.95 1.00 1.00
Full 5 15 -0.03 0.55 0.55 0.95 1.00 1.00
Full 10 55 0.12  1.36 1.38 0.95 1.00 1.00
Full 13 91 -0.22 4.12 4.52 0.95 1.00 1.00
True 2 3 -0.01 0.26 0.25 0.95 1.00 0.00
True 5 15 -0.01 0.41 0.40 0.94 1.00 0.00
True 10 55 0.056 0.85 0.85 0.94 1.00 0.00
True 13 91 0.00 1.29 1.35 0.96 1.00 0.00
BMA 2 3 087 0.92 0.18 0.06 0.58 0.03
BMA 5 15 145 1.58 0.45 0.18 0.53 0.03
BMA 10 55 1.34 1.81 0.94 0.66 0.58 0.07
BMA 13 91 042 2.64 1.10 0.62 0.68 0.34
Unadjusted 2 3 1.18 1.24 0.25 0.04 0.00 0.00
Unadjusted 5 15 283  2.89 0.54 0.00 0.00 0.00
Unadjusted 10 55 3.81  4.03 1.31 0.17 0.00 0.00
Unadjusted 13 91 4.12  4.59 2.06 0.48 0.00 0.00
ACPME 2 3 002 029 0.28 0.95 0.87 0.05
ACPME 5 15 0.08 045 0.43 0.94 0.91 0.09
ACPME 10 55 0.16  1.06 0.88 0.90 0.92 0.28
ACPME 13 91 -0.13  3.57 1.42 0.58 0.88 0.70
BayesPen 2 3 006 034 0.23 0.82 0.95 0.17
BayesPen 5 15 014  0.51 0.39 0.86 0.94 0.19
BayesPen 10 55 0.35 1.13 0.80 0.84 0.92 0.30
BayesPen 13 91 0.18 257 1.32 0.71 0.92 0.59

education: less than high school, high school, or more than high school).

D.3 Additional figures

Web Appendix Figure 7 presents the posterior probability that each exposure group results
in a change (either positive or negative) in lipid level on negative log scale. We define the
posterior probability of a change as the highest probability symmetric credible interval that
does not contain zero. The horizontal lines indicate 0.05 and 0.01 significance levels after
Bonferroni adjustment for multiple comparisons.
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Figure 5: Covariate inclusion for each exposure group. The y-axis show the exposure group
while the z-axis shows groups included as potential confounders in the analysis. Shaded cells
indicate that a covariate group is included for the analysis of an exposure group.

D.4 Model diagnostics

When using a parametric model, unbalanced covariates across levels of the exposure can
exacerbate sensitivity to model misspecification. We performed a series of diagnostics to
assess as whether these model assumptions are reasonable. We found no evidence of model
misspecification.

For each unique multivariate exposure group and outcome we refit the model using ordi-
nary least squares (OLS) and included as covariates all C; that has posterior model inclusion
probability of at least 0.5.

Web Appendix Figures 8 and 9 show QQ-plots for the data analysis to assess the normal-
ity assumption on the residuals. There were no significant deviations from the theoretical
normal quantiles.
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Web Appendix Figures 10 and 11 show plots of the standardized residuals verse fitted
values to assess misspecification of the regression model. While there are a small number of
outliers there are no trends in the plots that indicate heteroskedasticity or misspecification
of the linear predictors.

Finally, Web Appendix Figures 12 and 13 show smoothed plots of the standardized
residuals verse the covariates C;. This includes all continuous covariates regardless of the
posterior model inclusions probability. This will detect if any covariates should have been
included as a nonlienar term (e.g. quadratic). For simplicity of presentation and to better
assess any trends we show only the smoothed trend of the residuals as a function of observed
covariates. To ease comparisons, the y-axis scale is the same as in Web Appendix Figures 10
and 11. There are no notable trends in the figures to suggest misspecification.
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Table 3: Simulation results for simulation scenario 2 and n = 500. The first two columns
show the number of agents (m) and the dimension of the multivariate exposure r. The
next four columns show the mean bias, mean RMSE, mean posterior SD or SE, and 95%
interval coverage rate. The right most columns show statistics for covariate inclusion—the
true inclusion rate defined as the mean probability that the true confounders and predictors
of the outcome are included into the regression model and the false selection rate defined as
the mean probability that covariates independent of the outcome are included in the model.

Mean  95% Int. True Inc. False Sel.
Method m r Bias RMSE SD /SE Coverage Rate Rate

n = 200

Full 2 3 -0.01 0.16 0.16 0.95 1.00 1.00
Full 5 15 -0.01 0.24 0.25 0.96 1.00 1.00
Full 10 55 -0.02 045 0.45 0.95 1.00 1.00
Full 15 120 0.01  0.75 0.73 0.94 1.00 1.00
Full 20 210 0.02  1.22 1.20 0.94 1.00 1.00
Full 25 325 0.03 236 2.44 0.96 1.00 1.00
True 2 3 -0.01 0.15 0.15 0.95 1.00 0.00
True 5 15 -0.01 0.22 0.23 0.97 1.00 0.00
True 6 21 -0.01 0.26 0.26 0.95 1.00 0.00
True 10 55 -0.02 042 0.41 0.95 1.00 0.00
True 15 120 0.01  0.66 0.65 0.94 1.00 0.00
True 20 210 0.01 1.05 1.02 0.94 1.00 0.00
True 25 325 0.07 1.69 1.74 0.96 1.00 0.00
BMA 2 3 031 049 0.15 0.55 0.91 0.04
BMA 5 15 032 0.52 0.25 0.69 0.91 0.02
BMA 10 55 0.21  0.54 0.43 0.89 0.93 0.02
BMA 15 120 0.24  0.77 0.67 0.91 0.93 0.03
BMA 20 210 0.25 1.16 1.03 0.92 0.92 0.05
BMA 25 325 027  2.07 1.67 0.89 0.88 0.20
Unadjusted 2 3 1.14 1.16 0.15 0.01 0.00 0.00
Unadjusted 5 15 2.81  2.83 0.32 0.00 0.00 0.00
Unadjusted 10 55 3.64  3.71 0.69 0.00 0.00 0.00
Unadjusted 15 120 4.10  4.26 1.14 0.06 0.00 0.00
Unadjusted 20 210 4.39 4.74 1.79 0.31 0.00 0.00
Unadjusted 25 325 4.71  5.55 2.96 0.63 0.00 0.00
ACPME 2 3 -0.01 0.15 0.15 0.95 0.99 0.05
ACPME 5 15 0.00 0.23 0.23 0.97 0.99 0.03
ACPME 10 55 -0.01 042 0.41 0.95 0.99 0.05
ACPME 15 120 0.02  0.68 0.66 0.94 1.00 0.09
ACPME 20 210 0.02 1.11 1.03 0.93 0.99 0.18
ACPME 25 325 0.03 215 1.79 0.90 0.98 0.46
BayesPen 2 3 -0.01 0.16 0.15 0.94 1.00 0.07
BayesPen 5 15 0.00 0.23 0.23 0.95 1.00 0.09
BayesPen 10 55  0.00 0.43 0.41 0.94 1.00 0.11
BayesPen 15 120 0.05 0.71 0.64 0.92 0.99 0.15
BayesPen 20 210 0.09 1.14 1.00 0.92 0.99 0.20

BayesPen 25 325 024 208 12 1.68 0.89 0.96 0.35
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Figure 7: Posterior probability that the multivariate exposure effect is non-zero for each
exposure group, outcome, and method on -logig scale. We define significance level as the
highest probability symmetric credible interval that does not contain zero. The black hori-
zontal lines indicate the 0.05 and 0.01 significance level for the multivariate exposure effect.
The probability levels are adjusted using Bonferroni corrections for 72 tests, the total number
of tests calculated with each method. Faded estimates were flagged for potentially selection
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Figure 8: QQ-plots for the data analysis (part 1). The standardized residuals are obtained
from an OLS model that includes as covariates all covariates that had a posterior probability
of at least 0.5 of inclusion based on ACPME.
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Figure 9: QQ-plots for the data analysis (part 2). The standardized residuals are obtained
from an OLS model that includes as covariates all covariates that had a posterior probability
of at least 0.5 of inclusion based on ACPME.

16



LBDHDL LBDLDL LBXTR

aulunod

sSuoqes0IpAy

plousjoled
sjusLINU

sjesauIL
SUETLIT

 uiwepA
SyeLNU

g uiweyin
SyueLINU

Standardized residual

O ulwepA
selnu

Q unweyn
sjuaLnu

3 ulweyn
syusuNu

sjouayd

suaboljsa
0)Ayd

spunodwod
ETREIN

Fitted value

Figure 10: Residuals (y-axis) verse fitted values (z-axis) for the data analysis (part 1). The
standardized residuals and fitted values are obtained from an OLS model that includes as
covariates all covariates that had a posterior probability of at least 0.5 of inclusion based on
ACPME.

17



Standardized residual

Figure 11: Residuals (y-axis) verse fitted values (z-axis) for the data analysis (part 2). The
standardized residuals and fitted values are obtained from an OLS model that includes as
covariates all covariates that had a posterior probability of at least 0.5 of inclusion based on

ACPME.
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Scaled Covariate

Figure 12: Smoothed residuals (y-axis) verse continuous covariates (z-axis) for the data
analysis (part 1). To ease presentation the figure shows a smoothing spline fit thorough
residuals instead of a point for each residuals. Each line represents a different covariate.
The standardized residuals are obtained from an OLS model that includes as covariates all
covariates that had a posterior probability ofl8t least 0.5 of inclusion based on ACPME.
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Figure 13: Smoothed residuals (y-axis) verse continuous covariates (z-axis) for the data
analysis (part 2). To ease presentation the figure shows a smoothing spline fit thorough
residuals instead of a point for each residuals. Each line represents a different covariate.
The standardized residuals are obtained from an OLS model that includes as covariates all
covariates that had a posterior probability of6t least 0.5 of inclusion based on ACPME.



