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Supplemental Methods 1 

A. Participants  2 

The study included 58 RRMS (40F, mean age 49 ± 12 years), 28 PPMS (18F, mean age 46 ± 3 

9 years) and 36 SPMS (28F, mean age 52 ± 7 years) patients who had not experienced relapses 4 

within the preceding 4 weeks. Fifty-one healthy controls (HCs; 26F, mean age [±SD] 41 ± 13 5 

years) who had no known neurological or psychiatric disorder were also recruited. All MS 6 

patients underwent MRI scans and neurological assessment using EDSS [1] at the time of 7 

participation in the study. SDMT (Symbol Digit Modalities Test) was also used to assess 8 

information processing speed and visual attention [2] in a subset of MS participants (n=60) for 9 

whom we had SDMT scores (eTable 1 supplemental results). SDMT was used to screen for 10 

cognitive impairment [3]. Levels of fatigue and depression were also assessed as previously 11 

described [4] and reported in the eTable 2 (supplemental results). Clinical and demographic 12 

data for the whole MS group and the RRMS, PPMS and SPMS phenotypes are summarised in 13 

Table 1.  14 

B. MRI data acquisition  15 

MRI data were acquired using a Philips Achieva 3T MR scanner (Philips Healthcare, Best, 16 

Netherlands) with a 32-channel head coil. The whole brain High Angular Resolution Diffusion 17 

Imaging (HARDI) scan consisted of a cardiac-gated spin-echo (SE) sequence with echo planar 18 

imaging (EPI) readout: TR = 4000 ms; TE = 68 ms; 72 axial slices with an isotropic resolution 19 

of 2x2x2 mm3; 61 volumes with non-collinear diffusion gradients (b-value of 1200 s mm-2) 20 

and 7 volumes without directional weighting. 3D sagittal T1-weighted scans were acquired 21 

using a fast-field echo scan: TR=6.9 ms; TE=3.1 ms; inversion time=824.5 ms, resolution = 22 

1x1x1 mm3. For each subject, dual-echo proton density/T2-weighted axial oblique-scans 23 
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aligned with the anterior to posterior commissure were also acquired: TR=3500 ms, TE=19/85 24 

ms, and 50 axial slices, resolution = 1x1x3 mm3, field of view 240x180 mm2. All data were 25 

acquired with slices aligned with the anterior commissure (AC) – posterior commissure (PC) 26 

line to minimise the effect of head positioning on data analysis 27 

C. Structural imaging processing  28 

Anatomical T1-weighted images were bias field corrected using the N4 algorithm [5]. For WM 29 

lesion detection, T2-hyperintense lesions were manually delineated by two experienced raters 30 

(SvdP and DC) from the PD-T2-weighted scans using JIM (v6.0, Xinapse Systems, Aldwincle, 31 

UK).  32 

Registration between T1-weighted and diffusion-weighted images 33 

A non-rigid transformation was performed to register the subject’s non-filled T1-weighted 34 

image to the corresponding diffusion-weighting image (DWI) using BrainSuite [6]. The target 35 

volume was the first b=0 image after DWI pre-processing, resulting in a structural image of 36 

resolution 2x2x2 mm3. The purpose of registering the structural images to the diffusion images 37 

at this stage is two-fold: a) matching the voxel dimensions and positions of the T1-scan to that 38 

of DWI means that any subsequent image derived from the anatomical scan will be inherently 39 

aligned to the DWI; and b) aligning the anatomical image to the DWI and not the other way 40 

around ensures that a re-orientation of the gradient direction is not required.  41 

Tissue segmentation and parcellation  42 

We non-rigidly transformed the lesions to DWI space and then filled the T1-weighted images 43 

in this space using a modality-agnostic patch-based method [7]. The reason that we registered 44 

we registered the T1-image in DWI space before lesion filling so that we matched all the 45 

anatomical features between the two modalities incusing lesions. Hence, we ensured that the 46 

non-rigid registration was not affected by the lesion filling. The filled T1-weighted images 47 
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were then segmented into cortical grey matter, white matter, deep grey matter, brainstem and 48 

cerebrospinal fluid (CSF) and parcellated into anatomically distinct regions according to 49 

Desikan–Killiany–Tourville atlas protocol using the GIF framework [8]. This method has been 50 

previously used in different neurological diseases such as MS [9], dementia [10] and epilepsy 51 

[11] GIF is freely available as web-service at http://cmictig.cs.ucl.ac.uk/niftyweb [12]. We then 52 

estimated the volumes of the various tissue types (NABV (normal appearing brain volume 53 

(BV)), GM, CGM (cortical GM), DGM (deep GM)). Reduction of these volumes reflects 54 

atrophy. LL (lesion load) was also computed as a measure of WM focal damage. 55 

 56 

D. Diffusion-weighted imaging processing  89 

B0 registration, eddy current and susceptibility induced correction  90 

The mean b0 image was rigid registered to the first b0 image. Then, the same rigid 91 

transformation was applied to the 61 DWI volumes. FSL v5.0.9 was used on the DWI data to 92 

correct for eddy current and head motion [13]. We also corrected for susceptibility induced 93 

distortions caused by EPI sequences using BrainSuite v.15b. This method uses the T1-weighted 94 

image as the registration-template to correct the diffusion data [6].  95 

Model response function and Constrained Spherical Deconvolution  96 

For the subsequent steps, we used MRtrix3 v0.3.14. We estimated the response function [14], 97 

the signal expected from a voxel that contains a single coherent fibre bundle, and then we 98 

performed constrained spherical deconvolution (CSD) [15, 16] to estimate the voxel-wise fibre 99 

orientation distribution (FOD).  100 

Whole-brain streamline tractography  101 

For each subject, 107 streamlines were generated. For the probabilistic tractography, the iFOD2 102 

algorithm [17] was employed using the default parameters – step size=1.25 mm, maximum 103 
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length=250 mm, implementing the anatomically constrained tractography (ACT) framework 104 

[18]. Spherical-deconvolution informed filtering of tractograms (SIFT2) was applied to the 105 

generated tractograms to modulate the contribution of each streamline to the relevant edge [19]. 106 

In this way the streamline count is reflective of the underlying fibre density at the local level. 107 

When looking at the connection density of a particular pathway, this interpretation remains 108 

such that a larger region is likely to be intersected by a greater number of streamlines. In fact, 109 

Yeh, Smith [20] showed that the application of ACT and SIFT2 (both techniques were also 110 

applied in our study) improves the biological accuracy of the reconstructed connectome while 111 

other scaling methods provide only incomplete correction. 112 

 113 

E. Network reconstruction  114 

GM parcellations constituted the network nodes, 120 in total. Each network edge was defined 115 

as the sum of weights of streamlines connecting a pair of nodes [19]. The pipeline is 116 

summarised in Fig. 1. To assess the network topology, we extracted the following network 117 

measures: 118 

Edge Density: also known as connectivity, this is defined as the percentage of connections that 119 

exist relative to the potential number of network connections [21].   120 

Global efficiency: is the average of the inverse of the distance matrix of the entire network 121 

matrix [22]. It is a measure of the overall information transfer efficiency across the whole 122 

network.  123 

Local efficiency: similar to global efficiency, it is defined as the average of the inverse distance 124 

matrix but in a sub-cluster of the network [22]. It is considered as a measure of the local 125 

information flow. As this is a node-specific measure we average over all the nodes to get the 126 

mean local efficiency metric.  127 
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Clustering coefficient: is also a node-specific measure which describes local organisation 128 

reflecting the number of connections between the neighbours of each node [23]. Averaging 129 

over all the nodes provides the mean clustering coefficient.  130 

The metrics were derived using the TractoR [24] package. In this study, we used the 131 

weighted forms of the graph-derived metrics, except for density, which by definition is derived 132 

from a binary network.  133 

 134 

 135 

 136 

  137 
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