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1 Regression Model

Data management for computing the summary statistics was conducted with the R-packages
Biostrings,adegenet,ape [Pages et al., 2016, Jombart, 2008, Paradis et al., 2004].
We simulated populations with {10, 16, 20} individuals and sequence lengths of {500, 1000,
2000, 3000, 5000} bp. The recombination rates per base pair were simulated from uniform
distributions on the intervals {[0,0.01], [0.01,0.02], [0.02,0.05], [0.05,0.1], [0.1,0.2]} and used for
every combination of population size and sequence length. For the �rst setup we simulated 100
recombination rates in [0,0.01]. Subsequently, a population with 10 individuals and a sequence
length of 500 nucleotides was simulated using each of these 100 values. This procedure was
conducted with all setups that involved di�erent population sizes and sequence lengths. Hence,
the simulated data consists 8000 samples, where 1 sample was removed due to the lack of a
recombination and mutation event. The mutation rate θ was set 0.01 per base pair in these
simulations as well as the computations with LDhat and LDhelmet. In natural populations
GC-biased gene conversion is associated with recombination [Birdsell, 2002] and modi�es the
GC content in regions with active recombination (reviewed in [Duret and Galtier, 2009]). To
the best of our knowledge we are not aware of simulators being capable of reproducing this
process. Therefore, we do not use GC content related summaries in our regression model.

1.1 Coe�cients & E�ect Plots

Figure 1 contains graphical representations of the in�uence of the summary statistics on the
recombination rate. The plots from top-left to bottom-right represent the estimated cubic
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spline functions for the variables haps, vapw, apwd, hahe, wath, MaxChi, and NSS. The 95%
con�dence interval of the e�ect is plotted with dashed lines.
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Visualized Effects of GAM

Figure 1: Univariate spline estimates (e�ects) of the variables in our generalized additive re-
gression model are shown.

Table 1 contains the estimated parameters of the regression model for the summary statistics
with signi�cant e�ects (represented with asterisks). The �rst two columns show the coe�cients
and the standard deviation of the quadratic functions and columns three and four the EDF and
ref.df of the cubic spline functions. The quality of �t measure R2 (0.76) shows a high model
�t based on the simulated data.

1.2 On the model assumptions of variance homogeneity and normal-

ity

We use the Box-Cox transformation [Box and Cox, 1964] (1) given as

t(ρ, γ, ϵ) =

{
(ρ+ϵ)γ−1

γ
for γ ̸= 0

ln(ρ+ ϵ) for γ = 0.
(1)

This transformation performed best under our considered transformations including also log-
arithmic and exponential transformations. In order to tune the model with respect to homo-
geneity and normality of the residuals as well as high prediction accuracy, we compared the
performance under di�erent combinations of parameters. The considered grid of values for γ
and ϵ for the Box-Cox transformation (1) was {0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1} and {0,
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15}, respectively.
To assess the quality of �t, the plots of Figure 2 are produced with the chosen model and the
trained data. The left plot of Figure 2 shows the scatter plot of the predicted values (y-axis) and
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Variable EDF (Ref.df)

(Intercept) -1.58 (0.00)∗∗∗

s(haps) 8.25 (9.00)∗∗∗

s(vapw) 8.95 (9.00)∗∗∗

s(apwd) 5.94 (9.00)∗∗∗

s(hahe) 5.13 (9.00)∗∗∗

s(wath) 6.94 (9.00)∗∗∗

s(MaxChi) 6.98 (9.00)∗∗∗

s(NSS) 8.13 (9.00)∗∗∗

R2 0.76
Num. obs. 7427

∗∗∗p < 0.001,
∗∗p < 0.01,

∗p < 0.05

Table 1: Coe�cients of summary statistics estimated via a generalized additive model to explain
the recombination rate. EDF refers to the estimated degrees of freedom and Ref.df are the
degrees of freedom used in the tests reported.

the true values (x-axis) of the simulated recombination rates (both transformed). By dividing
the grid of recombination rates into 15 segments we can compute the standard deviations for
the predictions in this interval. The ratio between the standard deviation and the mean of
the standard deviations of all intervals is visualized in the middle plot of Figure 2 together
with an estimated smoothing spline. The standard deviations di�ered up to 15% from the
mean, the largest deviation being in [0.0148, 0.0259] (down) and [0.1429, 0.1571] (up). Further
computations with 10 to 25 segments show robustness with respect to the number of segments,
and maximum deviation to the mean of 20%. The right plot of Figure 2 shows the QQ-plot for
the residuals of the model.
Figure 3 contains heat maps, illustrating slight deviations from the model assumptions of the
GAM models. Each panel has its own color key and is calibrated, with green boxes indicating a
good performance in terms of the criterion. The x-axis of each plot contains the values of ϵ and
the y-axis the values of γ. The top-left and the top-right panel show the sum of squared and the
sum of absolute di�erences of the standard deviation to their means, respectively. Small values
are coded in dark green and indicate a small deviation from variance homogeneity. Greater
sums of squared/absolute di�erences are visualized with brighter colors. Values of γ in a range
of 0.35 - 0.5 with ϵ = 0 and γ in a range of 0.1 - 0.5 with ϵ = 0.1 are seen as possible candidates
for a proper transformation.
Normality of the residuals is considered in the bottom-left panel. Here, Shapiro-Wilk statistics
are calculated with values close to 1 coded in green color. The standard implementation of
this test in [R Development Core Team, 2017] is restricted to 5000 observations. Therefore, we
drew 100 di�erent samples of 5000 residuals and computed the mean of these 100 Shapiro-Wilk
statistics. We can observe a similar pattern as for the variance homogeneity comparisons except
for the combinations with ϵ = 0.1. The quality of the regression model in terms of R2 also
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Figure 2: Plot of predicted versus true values (left), graphical tests for variance homogeneity
(middle) and normality of residuals (right) of the chosen GAM model.
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Figure 3: Comparison of model assumptions of Box-Cox transformed ρ under di�erent values
for γ and ϵ.

points to the same choice of the parameters γ and ϵ. We �nally chose γ = 0.5 and ϵ = 0 due
to the much better performance in terms of the variance homogeneity measures given slightly
smaller value of R2 and very similar value for the Shapiro-Wilk statistics.
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1.3 Bias Correction and Homoscedasticity Check

We applied a simulation based bias correction due to an observable bias especially for setups
with small background rates. Therefore, we simulated recombination maps of length 1000 kb
(1Mb) with in total 15 hotspots of lengths of 1kB (7) and 2kb (8). These recombination maps
di�er in 10 equidistant background rates between 0.001 and 0.011 with 15 replicates. The
hotspots are between �ve and forty folds of the background recombination rates.
By estimating ρ with k = 1000 we use the systematic overlap of hotspot boundaries and segment
boundaries to compare the estimator with the true value. This comparison (transformed scale)
is provided in left plot of Figure 4 with a solid black diagonal line as perfect �t. Note that due
to the overrepresentation of small recombination rates we have sampled as many background
rates as hotspot rates in the recombination map. This yields approximately 4600 observations.
We sampled the background rates uniformly from all background rates. Visual inspections
reveal an overestimation of the background rate as well as an underestimation of very high
ρ. A correction of these patterns is performed with quantile regressions where the estimated
recombination rates explain the true recombination rates. The result of the estimated quantile
regression for the 0.25 (orange), 0.35 (blue), 0.4 (green), and 0.5 (red) quantile, respectively, is
given in Figure 4. On the right hand side of Figure 4 the residuals of the quantile regression
models are plotted starting with the 0.25 quantile (top) and ending with 0.50 quantile (bottom).
Values smaller than -2 after bias-correction are set to -2, such that they equal to zero after the
back-transformation.
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Figure 4: Left: Estimated versus true recombination rates based on recombination maps from
simulations containing 15 hotspots of lengths 1 and 2kb. Predictions based on quantile regres-
sions with 0.25 (orange), 0.35 (blue), 0.4 (green), and 0.5 (red) are added in this plot. Right:
Residuals originating from the three quantile regressions provided for diagnostic purposes.
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Figure 5 provides a comparison between LDJump with (grey) and without (purple) bias correc-
tion, and LDhat2 (blue). Three samples with di�erent background recombination rates of 0.001
(left), 0.0054 (middle), and 0.01 (right) are presented in dotted black lines. Segment lengths
were chosen to be 1kb with the quantile chosen 0.35 in the bias correction (see supporting
information section 1.3) and a type-I error probability of 0.05. The bias-correction decreases
the bias in the background rates and increases the intensities of the estimated hotspots.
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Figure 5: Estimated recombination maps using LDhat and LDJump, both with and without
our bias-correction. The chosen setups di�er in the background rates (0.001 (topp), 0.0054
(middle), and 0.01 (bottom)). The true recombination map (black dotted lines) contains 15
hotspots. Horizontal lines represent the hotspot threshold (5·background rate).

The SMUCE estimator requires homoscedastic observations [Frick et al., 2014]. Similar to the
approach in supporting information section 1.2, we analyze the homogeneity of the recombi-
nation rates by comparing the variance of the recombination rates in di�erent intervals. Here,
we divide the range of [0,0.2] in 32 equidistant segments. For each segment we compute the
variance of the corrected (and back-transformed) recombination rates. By dividing the vari-
ance of each segment with the mean of all variances, we have a measure of the variability of
the variances along the considered recombination rates. In Figure 6 we show ratios of variances
divided by the mean of variances for all 20 considered intervals with an estimated smoothing
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spline for the four quantiles, 25% (left), 35% (middle-left), 40% (middle-right), and 50% (right).
The di�erence of the variance to the mean variance only exceeds 20 percentage points in terms
of variances for the �rst quartile in 3 intervals and for two intervals of the median. When com-
paring the standard deviations (dashed lines) we can see that these deviations are less than (or
slightly above) 15 percentage points (in absolute values) for (almost) all considered quantiles
in the correction.
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Figure 6: Graphical test for the homogeneity of the estimated recombination rates per quantile
used in the quantile regression of the bias-correction (left: 0.25, left-middle. 0.35, right-middle:
0.4, right: 0.5). Variances are computed for 32 intervals of recombination rates between 0 and
0.2. The ratio of the variances divided by the overall mean of variances is plotted. The same
approach is applied and visualized in terms of the standard deviation (dashed lines).

1.4 Segment Lengths using LDJump

An important tuning parameter of LDJump is the number of segments k on which our summary
statistics are computed. We chose k between 10 and 50 (yielding segment lengths between 200
and 2000 base pairs depending on the overall sequence length). Figure 7 shows the RMSE
depending on the segment length for three di�erent sample sizes. It suggests to choose segments
of at least 400 bp. This observation is consistent across the considered sample sizes. The �gure
also suggests that larger samples only improve the performance under very small segment
lengths up to 400 bp. As noted above, we do not recommend to apply LDJump under such
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small segment lengths. Our considered type-I error probabilities (0.01, 0.05, and 0.1) did not
a�ect these results.
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Figure 7: Comparison of the quality of �t of LDJump for di�erent segment lengths, distin-
guished between the considered sample sizes. For the sake of comparability we refrain from
plotting the results below segment lengths of 286 bp.

1.5 LDJump assessed under di�erent Levels of Genetic Diversity

Figure 8 contains a quality assessment of LDJump under di�erent SNP densities. Based on
simulated samples under di�erent mutation rates we compute intervals with di�erent SNP
densities per base pair and plot these intervals. Hence, we can conclude that the quality of
LDJump increases with on average higher SNP densities, i.e. more information present per
segment.

2 Detailed Quality Assessment for Simple Setups

In Table 2 we provide a detailed quality assessment between the considered methods for simple
setups. More speci�cally, we computed the mean, median, and standard deviation (across
simulations) of the RMSE for LDhat(v1) (column 3), LDhat (c. 4), LDhelmet (c. 5), FastEPRR
(c. 6-9, with di�erent segment lengths) and LDJump (c. 10-15 with di�erent numbers of user-
de�ned segments k). The results using di�erent block penalties for LDhat, LDhelmet along
with di�erent type I error probabilities for LDJump are listed in separate rows.
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Figure 8: RMSE of LDJump using simulated populations under simple setups with di�er-
ent mutation rates θ = {0.0025, 0.005, 0.01, 0.02}. We compare the performance of LDJump
depending on the mean number of SNPs per bp.

We compare the performance of FastEPRR under the simple setups with respect to segment
lengths in Figure 9. Here, we can see the increasing variation based on the estimation results
of larger segments. In contrast, the median per group decreases with segment length.

3 Detailed Quality Assessment for Natural Setups

Figure 10 shows our considered quality measures depending on the background recombination
rates. We provide the average performance over 20 replicates. We can see that LDhat has
constant PCB and decreasing PCH as the background rate increases. LDJump shows constant
values for PCH and slightly increasing PCB for higher background rates. The overall measure
AP slightly increases for LDJump and decreases for LDhat with increasing background rates,
respectively. The weighted RMSE is also plotted. It can be seen that LDhat leads to a slightly
smaller weighted RMSE with decreasing di�erences for larger ρ.
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bpen LDhat(v1) LDhat LDhel
FastEPRR (Segment Length)

α
LDJump (Number of Segments)

500 1000 1500 2000 10 15 20 25 30

x̄
0 0.158 0.064 0.286

0.053 0.057 0.061 0.063
0.1 0.066 0.067 0.066 0.066 0.066

5 0.132 0.064 0.234 0.05 0.065 0.067 0.065 0.066 0.066
50 0.078 0.064 0.094 0.01 0.065 0.067 0.065 0.065 0.066

x0.5

0 0.138 0.036 0.247
0.039 0.034 0.035 0.036

0.1 0.039 0.040 0.038 0.039 0.040
5 0.100 0.036 0.169 0.05 0.039 0.040 0.038 0.039 0.041
50 0.049 0.036 0.044 0.01 0.039 0.040 0.038 0.039 0.041

SD
0 0.115 0.076 0.227

0.053 0.066 0.072 0.074
0.1 0.076 0.078 0.077 0.076 0.075

5 0.121 0.076 0.224 0.05 0.076 0.078 0.077 0.075 0.074
50 0.102 0.076 0.145 0.01 0.075 0.077 0.076 0.075 0.074

Table 2: Mean (x̄), median (x0.5) and SD of the RMSE for LDhat(v1), LDhat, LDhelmet
(LDhel), FastEPRR, and LDJump under simple setups. Di�erent block penalties (bpen) have
been tried for LDhat(v1), LDhat, LDhelmet. Di�erent segment lengths have been applied with
FastEPRR, and di�erent number of segments as well as type I error probabilities α considered
for LDJump.
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Figure 9: Comparing the RMSE of FastEPRR based on di�erent segment lengths of 500 (red),
1000 (green), 1500 (blue), and 2000 (purple) under simple setups.
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identi�ed background rates (PCB, dashed), the average of these two quality measures (AP,
dotted), and weighted RMSE*10 (dash-dotted) across di�erent recombination rates. We com-
pare LDJump (purple, segment length: 1kb, quantile 0.35), with LDhat (blue, same line coding
per quality measure).

11



4 Quality Assessment for Natural Setups with FastEPRR

Here we compare the results of LDJump with FastEPRR based on the natural setups. Notice
that due to the very high error share of 88% in FastEPRR using segment lengths of 1kb we
only compare the results of actually estimated recombination maps. For the sake of visibility,
we assess LDJump using our recommended quantile of 0.35 in the bias correction and compare
across the number of segments of 500, 1000, 1500, and 2000. Figure 11 shows that LDJump
estimates recombination maps with smaller WRMSE, irrespective of the segment lengths con-
sidered and has a much higher share of correctly identi�ed hotspots (PCH), but a lower share
of correctly identi�ed background rates (PCB).
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Figure 11: Natural setups: quality assessment is performed based on the weighted RMSE (top),
the proportion of correctly identi�ed hotspots (PCH, middle), and the proportion of correctly
identi�ed background rates (PCB,bottom). The results for LDJump were computed using
di�erent number of initial segments k (500, 1000, 1500, 2000) and compared with the results
of FastEPRR using segment lengths of 1000 base pairs.
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5 Runtime Comparison

5.1 Runtime under Simple Setups

Based on the summary statistics mean (top), median (middle), and SD (bottom) of our mea-
sured runtimes we compare the runtimes between the considered software packages in Table 3.
We can clearly see that LDJump has the smallest runtime followed by FastEPRR, LDhat(v1),
LDhat, and LDhelmet.

LDhat(v1) (bpen) LDhat(bpen) LDhelmet(bpen) FastEPRR (seg. length) LDJump (k)
0 5 50 0 5 50 0 5 50 500 1000 1500 2000 10 20 25 30

x̄ 35 56 156 751 3333 3260 1281 1368 1958 139 113 85 65 27 39 45 49
x0.5 34 55 138 735 3315 3261 849 936 1575 121 131 98 77 28 42 48 53
SD 6 7 70 273 999 977 1034 1042 1125 84 40 28 21 5 8 9 10

Table 3: Mean (x̄), median (x0.5), and SD of runtime (in seconds) for LDhat(v1), LDhat , LDhel-
met, FastEPRR, and LDJump under simple setups of length 20kb. For each method, separate
columns provide values depending on either the block penalty for LDhat(v1), LDhat, LDhelmet
(columns 2-4, 5-7, 8-10, respectively), the segment length (seg. length) for FastEPRR (columns
11-14) or the number of prede�ned segments k on which LDJump was applied (columns 15-18).

5.2 E�ect on Runtime by Increasing Sample Size and Sequence Length

In Table 4 we explore the e�ects of sample size and sequence length on the runtime. We
compared the aforementioned methods with respect to their mean and median runtimes again
for our simple setups. The runtimes for LDhat and LDhelmet are strongly a�ected by sequence
length and sample size. Interestingly LDhat seems to have more problems dealing with longer
sequences, whereas LDhelmet shows an especially large increase in runtime when the sample
size increases. The runtime of LDJump (using segments of length 500 and 1000 bp) seems to be
less sensitive to such increases. Doubling the sequence length only leads to additional 16% of
average runtime. Increasing the sample size has almost no e�ect on the runtime of LDJump. We
observe a similar behavior of FastEPRR (using a segment length of 1kb) with more pronounced
e�ects on the double �initial� runtime for the smallest sample size and sequence lengths.

5.3 Runtime under Natural Setups

Table 5 shows average and median runtimes in seconds per 20 replicates of the 13 di�erent
natural setups. In the �rst �ve rows we provide the mean runtimes of LDJump with k = 500,
1000, 1500, and 2000, and of LDhat. The same pattern builds rows 6-10 for the median. The
columns show the increasing background rates and highlight that the mean and (to a larger
extent) the median of LDhat is more strongly a�ected by larger recombination rates than
LDJump with approximately constant runtimes across these setups. The runtime of LDJump
is mainly determined by the computation of the summary statistics. However, LDJump is
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Time Method
Sample Size Sequence Length

10 16/10 20/10 10kb 20kb/10kb

Mean LDhat(v1) 124 141 149 121 155
Mean LDhat 1862 2484 2634 1388 3262
Mean LDhelmet 709 1347 3247 1581 1960
Mean FastEPRR 88 88 90 76 113
Mean LDJump 37 36 37 34 34

Median LDhat(v1) 109 125 135 111 138
Median LDhat 1526 1969 2075 1398 3257
Median LDhelmet 625 1219 3225 1101 1574
Median FastEPRR 74 80 83 78 131
Median LDJump 35 35 36 34 42

Table 4: Runtime in seconds are provided separately for di�erent sample sizes and sequence
lengths. We computed the mean and median runtime for each method and scenario under
simple setups.

approximately (depending on the number of segments chosen) between 340 and 1400 times
faster than LDhat.

Runtime Method
Background rates per base pair

0.001 0.0013 0.0022 0.0027 0.0039 0.0045 0.0054 0.0062 0.0071 0.008 0.0085 0.0091 0.01

Mean LDJump, k=500 54 55 54 55 55 55 55 55 55 55 54 54 56
Mean LDJump, k=1000 111 111 110 111 110 111 112 111 111 111 111 112 112
Mean LDJump, k=1500 169 169 166 167 167 167 168 168 167 168 167 167 168
Mean LDJump, k=2000 226 225 222 223 224 225 229 225 222 224 226 224 223
Mean LDhat 73902 73752 77171 87025 73832 74423 80707 70203 86679 81078 70239 74016 81053

Median LDJump, k=500 54 55 54 55 55 55 55 55 55 55 54 54 56
Median LDJump, k=1000 111 111 110 111 110 111 112 111 111 111 111 112 112
Median LDJump, k=1500 169 169 166 167 167 167 168 168 167 168 167 167 168
Median LDJump, k=2000 226 225 222 223 224 225 229 225 222 224 226 224 223
Median LDhat 100963 100963 124040 125921 100963 100934 125856 98629 126433 126072 98629 100963 126072

Table 5: Mean and median of runtime (in seconds) are provided for each approach. The run-
times in seconds applying LDJump with k = 1000, 1500, 2000, and using LDhat are compared
across all considered background recombination rates.

6 Application of LDJump on chromosome 21 under neu-

trality

Figure 12 shows the application of LDJump with segment lengths of 1kb, a quantile of 0.35,
and under the neutral scenario (estimated without considering demography). LDJump esti-
mates hotspots of high intensities for several positions not overlapping with LDhat or active
recombination measures. In comparison, several of these hotspots (e.g. at positions 45 and 60
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kb for TSI or 25 and 30 for FIN, respectively) were not estimated by LDJump trained using
demography model (2) (see panel A in Figure 6 of the main manuscript). Hence, including
demography in the estimation of hotspots from LD is an important feature to reduce false
positives.
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Figure 12: Estimated recombination map with LDJump (under neutrality) of 5 di�erent
European populations (Italy, Finland, Spain, United Kingdom, Northern Europeans from Utah
- CEU) on chromosome 21:41187000-41290679 (GRCH37).
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