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Description HCP field

Visual Episodic Memory PicSeq_Unadj

Cognitive flexibility (DCCS) CardSort_Unadj

Inhibition (Flanker task) Flanker_Unadj

Fluid Intelligence (PMAT) PMAT24_A_CR

Reading (pronounciation) ReadEng_Unadj

Vocabulary (picture matching) PicVocab_Unadj

Processing Speed ProcSpeed_Unadj

Delay Discounting DDisc_AUC_40K

Spatial orientation VSPLOT_TC

Sustained Attention - Sens. SCPT_SEN

Sustained Attention - Spec. SCPT_SPEC

Verbal Episodic Memory IWRD_TOT

Working Memory (list sorting) ListSort_Unadj

Cognitive status (MMSE) MMSE_Score

Sleep quality  (PSQI) PSQI_Score

Walking endurance Endurance_Unadj

Walking Speed GaitSpeed_Comp

Manual dexterity Dexterity_Unadj

Grip strength Strength_Unadj

Odor identificaiton Odor_Unadj

Pain Interference Survey PainInterf_Tscore

Taste intensity Taste_Unadj

Contrast Sensitivity Mars_Final

Emotional Face Matching Emotion_Task_Face_Acc

Arithmetic Language_Task_Math_Avg_Difficulty_Level

Story comprehension Language_Task_Story_Avg_Difficulty_Level

Relational processing Relational_Task_Acc

Social Cognition - random Social_Task_Perc_Random

Social Cognition - interaction Social_Task_Perc_TOM

Working Memory (n-back) WM_Task_Acc

Agreeableness (NEO) NEOFAC_A

Table S1. Lookup table showing the original HCP variable names with the corresponding 

descriptive labels used in the manuscript. More details of the behavioral measures can be 

found in the HCP data dictionary. 



Description HCP field

Openness (NEO) NEOFAC_O

Conscientiousness (NEO) NEOFAC_C

Neuroticism (NEO) NEOFAC_N

Extraversion (NEO) NEOFAC_E

Emot. Recog. - Total ER40_CR

Emot. Recog. - Angry ER40ANG

Emot. Recog. - Fear ER40FEAR

Emot. Recog. - Happy ER40HAP

Emot. Recog. - Neutral ER40NOE

Emot. Recog. - Sad ER40SAD

Anger - Affect AngAffect_Unadj

Anger - Hostility AngHostil_Unadj

Anger - Aggression AngAggr_Unadj

Fear - Affect FearAffect_Unadj

Fear - Somatic Arousal FearSomat_Unadj

Sadness Sadness_Unadj

Life Satisfication LifeSatisf_Unadj

Meaning & Purpose MeanPurp_Unadj

Positive Affect PosAffect_Unadj

Friendship Friendship_Unadj

Loneliness Loneliness_Unadj

Perceived Hostility PercHostil_Unadj

Perceived Rejection PercReject_Unadj

Emotional Support EmotSupp_Unadj

Instrument Support InstruSupp_Unadj

Perceived Stress PercStress_Unadj

Self-Efficacy SelfEff_Unadj

Table S1 (cont.). Lookup table showing the original HCP variable names with the 

corresponding descriptive labels used in the manuscript. More details of the behavioral 

measures can be found in the HCP data dictionary. 



HCP field Initial search terms
Relevant (final)

NeuroSynth term

Task-relevant

networks

PicSeq_Unadj
Visual episodic 

memory
Episodic memory DefaultA; ControlA

CardSort_Unadj

Cognitive flexibility, 

dimensional sort, 

Wisconsin card 

sorting, task switching

Cognitive control

DorsalAttentionA; 

VentralAttentionB; 

ControlA

Flanker_Unadj Flanker task Inhibitory control
ControlA; ControlC; 

VentralAttentionB

PMAT24_A_CR Fluid intelligence Intelligence
DorsalAttentionA; 

ControlA

ReadEng_Unadj
Reading decoding, 

pronounciation
Reading

DorsalAttentionA; 

ControlA; 

TemporalParietal

PicVocab_Unadj

Picture matching, 

vocabulary 

comprehension, 

vocabulary

NA NA

ProcSpeed_Unadj Processing speed NA NA

DDisc_AUC_40K Delay discounting Impulsivity
ControlA; ControlC; 

VentralAttentionB;

VSPLOT_TC

Spatial orientation, 

orientation, visual 

spatial

Visual perception VisualA

SCPT_SEN Sustained attention Attention
DorsalAttentionA; 

ControlA; VisualA

SCPT_SPEC Sustained attention Attention
DorsalAttentionA; 

ControlA; VisualA

IWRD_TOT
Verbal episodic 

memory, word memory
Episodic memory DefaultA; ControlA

ListSort_Unadj Working memory Working memory
DorsalAttentionA; 

ControlA;

Table S2. Task-relevant networks of 13 cognitive measures based on NeuroSynth database. 

The “initial search terms” were our initial queries in the NeuroSynth database for each 

cognitive measure. The “final search terms” were the terms that we finally utilized to retrieve 

the forward inference map. There was no appropriate search term for PicVocab_Unadj

(picture vocabulary) and ProcSpeed_Unadj (processing speed). Each forward map was 

projected to fsLR surface space and compared with the group-level parcellation estimated 

from the HCP training set (Figure 2A) to select the task-relevant networks. 



Table S3. Average prediction accuracies for different sets of behavioral measures (minimally 

correlated set of 5 behaviors, 58 behavioral measures, 13 cognitive measures, NEO-5 

personality measures, emotion recognition measures and emotional measures) across 

different parcellation approaches. Prediction was based on individual-specific network 

topography. The mean accuracy and standard deviation was calculated across 100 20-fold 

cross-validations. The percentage improvement and number of cross-validations that MS-

HBM outperforms other approaches across 100 20-fold cross-validations was reported.

Minimally 

correlated set 

of 5 behaviors

All 58 

behaviors

13 Cognitive

measures

Accuracy 

across 100 

20-fold CVs

(mean ± std)

MS-HBM 0.1327±0.0065 0.0803±0.0032 0.1321±0.0053

YeoBackProject 0.1036±0.0080 0.0728±0.0032 0.1057±0.0060

Gordon2017 0.0830±0.0080 0.0655±0.0036 0.0545±0.0062

Wang2015 0.1039±0.0080 0.0755±0.0033 0.1202±0.0054

Percentage 

improvement

(#CV splits 

MS-HBM 

outperforms 

other 

approaches)

MS-HBM

vs

YeoBackProject

28.55%

(100/100)

10.35%

(100/100)

25.17%

(100/100)

MS-HBM

vs

Gordon2017

61.07% 

(100/100)

22.88%

(100/100)

145.12%

(100/100)

MS-HBM

vs

Wang2015

28.20% 

(100/100)

6.43%

(95/100)

10.05%

(97/100)

NEO-5

Emotional 

recognition 

(ER)

Emotional 

measures

excluding ER

Accuracy 

across 100 

20-fold CVs

(mean ± std)

MS-HBM 0.0955±0.0085 -0.0445±0.0101 0.1038±0.0070

YeoBackProject 0.1027±0.0084 -0.0170±0.0092 0.0781±0.0070

Gordon2017 0.0820±0.0080 0.0297±0.0092 0.0794±0.0072

Wang2015 0.0772±0.0090 0.0068±0.0093 0.0802±0.0069

Percentage 

improvement

(#CV splits 

MS-HBM 

outperforms 

other 

approaches)

MS-HBM

vs

YeoBackProject

-6.82%

(16/100)

-264.70%

(0/100)

33.46%

(100/100)

MS-HBM

vs

Gordon2017

17.20%

(94/100)

-269.91% 

(0/100)

31.36% 

(100/100)

MS-HBM

vs

Wang2015

24.61%

(99/100)

-913.27% 

(0/100)

29.85% 

(100/100)



Table S4. Average prediction accuracies of DVARS and FD across different parcellation 

approaches. Prediction was performed based on individual-specific network topography 

without regressing any nuisance covariates. The mean accuracy and standard deviation was 

calculated across 100 20-fold cross-validations. 

Accuracy (mean ± std) across 100 20-fold cross-validations

MS-HBM YeoBackProject Gordon Wang

DVARS 0.3157±0.0182 0.4283±0.0169 0.2115±0.0180 0.3621±0.0175

FD 0.2120±0.0153 0.2733±0.0140 0.2565±0.0136 0.2066±0.0171



(A) Group parcellation

(B) Inter-subject RSFC variability (C) Intra-subject RSFC variability

Figure S1. Sensory-motor networks exhibit lower inter-subject, but higher intra-subject, 

functional connectivity variability than association networks in the GSP training set. (A) 17-

network group-level parcellation. (B) Inter-subject functional connectivity variability for 

different cortical networks. (C) Intra-subject functional connectivity variability for different 

cortical networks. Note that (B) and (C) correspond to the 𝜖𝑙 and 𝜎𝑙 parameters in Figure 1, 

where higher values indicate lower variability. .



(A) Group parcellation

(B) Inter-subject RSFC variability (C) Intra-subject RSFC variability

Figure S2. Sensory-motor networks exhibit lower inter-subject, but higher intra-subject, 

functional connectivity variability than association networks in the CoRR-HNU dataset. (A) 

17-network group-level parcellation. (B) Inter-subject functional connectivity variability for 

different cortical networks. (C) Intra-subject functional connectivity variability for different 

cortical networks. Note that (B) and (C) correspond to the 𝜖𝑙 and 𝜎𝑙 parameters in Figure 1, 

where higher values indicate lower variability.



Figure S3.  Sensory-motor networks are less spatially variable than association networks 

across subjects in the HCP training set. Spatial probability maps of (A) Somatomotor

network A, (B) Visual network B, (C) Dorsal Attention network A, and (D) Dorsal Attention 

network B. A higher value (bright color) at a spatial location indicates high probability of a 

network appearing at that spatial location. Results were replicated in the GSP (Figure S4) 

and Corr-HNU (Figure S5) datasets. Note that this corresponds to the Θ𝑙 parameter in 

Figure 1.

(A) Somatomotor A (B) Visual B

(D) Dorsal Attention B(C) Dorsal Attention A



(A) Somatomotor A (B) Visual B

(D) Dorsal Attention B(C) Dorsal Attention A

Figure S4.  Sensory-motor networks are less spatially variable than association networks 

across subjects in the GSP dataset. Spatial probability maps of (A) Somatomotor network 

A, (B) Visual network B, (C) Dorsal Attention network A, and (D) Dorsal Attention network 

B. A higher value (bright color) at a spatial location indicates high probability of a network 

appearing at that spatial location. Note that this corresponds to the Θ𝑙 parameter in Figure 

1. 



(A) Somatomotor A (B) Visual B

(D) Dorsal Attention B(C) Dorsal Attention A

Figure S5.  Sensory-motor networks are less spatially variable than association networks 

across subjects in the CoRR-HNU dataset. Spatial probability maps of (A) Somatomotor

network A, (B) Visual network B, (C) Dorsal Attention network A, and (D) Dorsal Attention 

network B. A higher value (bright color) at a spatial location indicates high probability of a 

network appearing at that spatial location. Note that this corresponds to the Θ𝑙 parameter 

in Figure 1. 



Figure S6. Task inhomogeneity of resting-state parcellations in the HCP dataset. 17-network 

individual-specific parcellations were estimated using one rs-fMRI session. Task 

inhomogeneity was then defined as the standard deviation of task activation within each 

network, and then averaged across all networks and contrasts within each behavioral domain. 

Lower value indicates better functional homogeneity. Error bars correspond to standard 

errors. Compared with Yeo2011, YeoBackProject, Gordon2017 and Wang2015, the MS-HBM 

individual-specific parcellations achieved a modest average improvement 0.63% (Cohen’s d = 

0.12, 0.09, 0.66, 1.0, 0.9, 1.1, 0.46 for social, motor, gambling, relational, language, working 

memory and emotion respectively), 2.0% (Cohen’s d > 1.3 for all domains), 1.04% (Cohen’s d 

> 0.99 for all domains) and 0.7% (Cohen’s d > 0.79 for all domains) respectively. 



Figure S7. 17-network parcellations were estimated using runs 1-2 and runs 3-4 separately 

for each subject from the HCP test set. Parcellations of four representative subjects are 

shown here. Left hemisphere parcellations are shown in Figure 4.  



Figure S8. 17-network parcellations were estimated using sessions 1-5 and sessions 6-10 

separately for each subject from the CoRR-HNU dataset. Parcellations of four representative 

subjects are shown here. Black and green arrows indicate individual-specific parcellation

features. The Default C (dark blue) network exhibited a dorsal prefrontal component for 

certain subjects (blue arrows), but was missing in other subjects. As another example, the 

lateral prefrontal component of the Control A (orange) network was separated into two 

separate components by the Control B (brown) network (green arrows). These features were 

mostly replicated across sessions. Right hemisphere parcellations are shown in Figure S9.  



Figure S9. 17-network parcellations were estimated using sessions 1-5 and sessions 6-10 

separately for each subject from the CoRR-HNU dataset. Parcellations of four representative 

subjects are shown here. Left hemisphere parcellations are shown in Figure S8.  



(A) Inter-subject similarity (B) Intra-subject reproducibility

Figure S10. Individual-specific MS-HBM parcellations show high within-subject reproducibility 

and low across-subject similarity in the HCP test set. Individual-specific MS-HBM parcellations 

were generated by using the first two runs (day 1) and last two runs (day 2) separately for 

each subject. (A) Inter-subject spatial similarity for different networks. (B) Intra-subject 

reproducibility for different networks. Warm color indicates higher overlap. Cool color indicates 

lower overlap. (C) Quantification of inter-subject similarity and intra-subject reproducibility for 

different networks. “VentAttnAB” corresponds to Salience/Ventral Attention (A and B) 

networks. “SomoAB” corresponds to Somatomotor (A and B) networks. Error bars correspond 

to standard errors. 

(C)



(A) Inter-subject similarity (B) Intra-subject reproducibility

(C)

Figure S11. Individual-specific MS-HBM parcellations show high within-subject reproducibility 

(overlap = 81.6%) and low across-subject similarity (overlap = 59.4%) in the CoRR-HNU 

dataset. (A) Inter-subject spatial similarity for different networks. (B) Intra-subject 

reproducibility for different networks. Warm color indicates higher overlap. Cool color indicates 

lower overlap. (C) Quantification of inter-subject similarity and intra-subject reproducibility for 

different networks. “VentAttnAB” corresponds to Salience/Ventral Attention networks A and B. 

“SomoAB” corresponds to Somatomotor networks A and B. Error bars correspond to standard 

errors. 



Figure S12. Prediction accuracy of 22 cognitive, emotion, personality and other non-imaging 

measures based on inter-subject differences in the spatial arrangement of cortical networks. 

Boxplots utilized default Matlab parameters, i.e., box shows median and inter-quartile range 

(IQR). Whiskers indicate 1.5 IQR. Dot indicates mean. In the case of the NEO-5 personality 

scores, average predication accuracy was r = 0.0955 ± 0.0085 (mean ± std). Other measures 

are found in Figures 5 and S13. 



Figure S13. Prediction accuracy of 23 cognitive, emotion, personality and other non-imaging 

measures based on inter-subject differences in the spatial arrangement of cortical networks.

Boxplots utilized default Matlab parameters, i.e., box shows median and inter-quartile range 

(IQR). Whiskers indicate 1.5 IQR. Dot indicates mean. In the case of the emotional measures 

(all items in Figure S15 except for emotional recognition), the average prediction accuracy 

was r = 0.1038 ± 0.0070 (mean ± std). Other measures are found in Figures 5 and S12. 

Interestingly, prediction accuracy for the emotion recognition task was poor. 



Figure S14. Intra-subject reproducibility is not significantly affected by FD or DVARS 

difference between the two scan days of the HCP subjects. (A) Scatterplot of intra-subject 

reproducibility versus absolute FD difference between the two scan days. (B) Scatterplot of 

intra-subject reproducibility versus absolute DVARS difference between the two scan days. 

Only HCP test set subjects with all 58 behavioral measures were considered. If network 

topography was corrupted by motion-related imaging artifacts, then one would expect 

subjects who moved by very different amounts on the two different scan days to have poorer 

intra-subject parcellation reproducibility than subjects who moved by similar amounts on both 

days. As shown above, this is not the case. 

(A)

(B)



(A) FD of HHM, HLM and LLM group

Figure S15. Motion-related imaging artifacts have little effect on intra-subject reproducibility 

and inter-subject similarity. (A) One issue with the previous analysis (Figure S14) is that a 

subject with high absolute FD difference between the two scan days might still exhibit low 

motion on both days (relative to other subjects). Therefore, we also considered three groups 

of 60 HCP subjects. The high-low-motion (HLM) subjects consisted of subjects, whose FD 

were above the median FD in one day, and below the median FD in another day. The high-

high-motion (HHM) group consisted of subjects whose FD were high on both days and 

matched the FD of the HLM subjects on the high FD days. The low-low-motion (LLM) motion 

group consisted of subjects whose FD were low on both days and matched the FD of the 

HLM subjects on the low FD days. (B) Intra-subject parcellation reproducibility were basically 

identical among HLM subjects (Intra-H2L), HHM subjects (Intra-H2H) and LLM subjects 

(Intra-L2L). For comparisons, the inter-subject parcellation similarity between HHM subjects 

and HLM subjects during their high motion days (Inter-H2H), between LLM subjects and HLM 

subjects during their low motion days (Inter-L2L), between HHM subjects and HLM subjects 

during their low motion days (Inter-H2L) and between LLM subjects and HLM subjects during 

their high motion days (Inter-L2H) were basically identical and significantly lower than intra-

subject parcellation reproducibility. (C) Similar results were obtained with DVARS. 

(C) DVARS

(B) FD



Figure S16. Prediction accuracies of 5 behavioral measures with the highest correlation with 

(A) FD and (B) DVARS. The correlation between the behavioral measures and FD/DVARS

was depicted as the blue dot. Boxplots utilized default Matlab parameters, i.e., box shows 

median and inter-quartile range (IQR). Whiskers indicate 1.5 IQR. Dot indicates mean. The

prediction accuracies of these 5 behaviors were higher than the correlation between the

prediction of these 5 behavioral measures and FD/DVARS.

(A)

(B)



Figure S17. Prediction accuracy of 11 cognitive measures based on inter-subject differences 

in the spatial arrangement of task-relevant cortical networks. Boxplots utilized default Matlab

parameters, i.e., box shows median and inter-quartile range (IQR). Whiskers indicate 1.5 

IQR. Dot indicates mean. Average prediction accuracy based only on task-relevant networks 

was r = 0.1129 ± 0.0062 (mean ± std). 



Kong et al.  Network Spatial Topography Predicts Behavior 
 

1 
 

Spatial Topography of Individual-Specific Cortical Networks  

Predicts Human Cognition, Personality and Emotion 

 

Supplemental Material 

This supplemental material is divided into Supplemental Methods and Supplemental Results to 

complement the Methods and Results sections in the main text, respectively. 

 

Supplementary Methods 

This section provides additional information about preprocessing, multi-session hierarchical 

Bayesian model (MS-HBM) and alternative parcellation algorithms that we compared with. Section S1 

provides more details about the preprocessing of the GSP and CoRR-HNU data. Section S2 provides 

more details about the preprocessing of the HCP data. Section S3 provides mathematical details about 

the MS-HBM. Section S4 describes the algorithms for estimating group-level priors and deriving the 

individual-specific parcellations and how “free” parameters of the model are set. Section S5 provides 

more details about the alternative parcellation algorithms that were compared against MS-HBM. 

Section S6 describes the kernel ridge regression model for behavioral prediction. 

 

S1. Processing of GSP and CoRR-HNU data 

Structural data were processed using FreeSurfer. FreeSurfer constitutes a suite of automated 

algorithms for reconstructing accurate surface mesh representations of the cortex from individual 

subjects’ T1 images (Dale et al., 1999; Fischl et al., 2001; Ségonne et al., 2007). The cortical surface 

meshes were then registered to a common spherical coordinate system (Fischl et al. 1999a; 1999b). 

The GSP subjects were processed using FreeSurfer 4.5.0 (Holmes et al., 2015), while the CoRR-HNU 

subjects were processed using FreeSurfer 5.3.0.  

Resting-state fMRI data of GSP and CoRR-HNU were initially pre-processed with the 

following steps: (i) removal of first 4 frames, (ii) slice time correction with the FSL package 

(Jenkinson et al., 2002; Smith et al., 2004), (iii) motion correction using rigid body translation and 

rotation with the FSL package. The structural and functional images were aligned using boundary-

based registration (Greve and Fischl 2009) using the FsFast software package 

(http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). 

Framewise displacement (FD) and voxel-wise differentiated signal variance (DVARS) were 

computed using fsl_motion_outliers (Smith et al., 2004). Volumes with FD > 0.2mm or DVARS > 50 

were marked as outliers. Uncensored segments of data lasting fewer than 5 contiguous volumes were 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
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also flagged as outliers (Gordon et al., 2016). BOLD runs with more than half of the volumes flagged 

as outliers were removed completely. For the CoRR-HNU dataset, no session (and therefore no 

subject) was removed. For the GSP subjects, only one run was removed (out of a total of 222 runs). No 

individuals in the GSP dataset lost an entire session, and therefore, all subjects were retained. 

Linear regression using multiple nuisance regressors was applied. Nuisance regressors 

consisted of global signal, six motion correction parameters, averaged ventricular signal, averaged 

white matter signal, as well as their temporal derivatives (18 regressors in total). The flagged outlier 

volumes were ignored during the regression procedure. The data were interpolated across censored 

frames using least squares spectral estimation of the values at censored frames (Power et al., 2014). 

Finally, a band-pass filter (0.009 Hz ≤ f ≤ 0.08 Hz) was applied.  

The preprocessed fMRI data was projected onto the FreeSurfer fsaverage6 surface space (2mm 

vertex spacing). The projected fMRI data was smoothed using a 6mm full-width half-maximum 

(fwhm) kernel and then downsampled onto fsaverage5 surface space (4mm vertex spacing). 

Smoothing on the fsaverage6 surface, rather than in the volume minimized the blurring of fMRI signal 

across sulci. 

 

S2. Processing of HCP data  

Details of the HCP preprocessing can be found elsewhere (HCP S900 manual; Van Essen et al. 

2012b; Glasser et al. 2013; Smith et al. 2013). Of particular importance is that the rs-fMRI data has 

been projected to the fs_LR surface space (Van Essen et al. 2012a), smoothed by 2mm fwhm and 

denoised with ICA-FIX (Salimi-Khorshidi et al. 2014; Griffanti et al., 2014) and aligned with MSMAll 

(Robinson et al., 2014).  

However, recent studies have shown that ICA-FIX does not fully eliminate global and head-

motion related artifacts (Burgess et al., 2016; Siegel et al., 2016). Therefore, further processing steps 

were performed on the rs-fMRI data in fs_LR surface after ICA-FIX denoising, which included 

nuisance regression, motion censoring and interpolation, and band-pass filtering. Volumes with FD > 

0.2mm or DVARS > 75, as well as uncensored segments of data lasting fewer than 5 contiguous 

volumes were flagged as outliers. BOLD runs with more than half the volumes flagged as outliers 

were completely removed. Consequently, 56 subjects were removed. Furthermore, for this work, only 

subjects with all four runs remaining (N = 676) were considered.  

Nuisance regression utilized regressors consisting of global signal, six motion parameters, 

averaged ventricular signal, averaged white matter signal, and their temporal derivatives (18 regressors 

in total). The outlier volumes were ignored during the regression procedure. The data were interpolated 

across censored frames using least squares spectral estimation (Power et al., 2014). A band-pass filter 
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(0.009 Hz ≤ f ≤ 0.08 Hz) was then applied to the data. Finally, the data was smoothed by 4mm 

fwhm. Given that the HCP team has already smoothed the data by 2mm, this results in an effective 

smoothing of 6mm fwhm. 

 

S3.Mathematical model (MS-HBM) 

In this section, we describe our model for individual-level parcellation of the cerebral cortex. 

We assume a common surface coordinate system, where the cerebral cortex is represented by left and 

right hemisphere spherical meshes such as FreeSurfer fsaverage surface meshes. Each mesh consists of 

a collection of vertices and edges connecting neighboring vertices into triangles 

(https://en.wikipedia.org/wiki/Triangle_mesh). 

Let 𝑁 denote the total number of vertices, 𝑇 denote the number of resting-state fMRI (rs-fMRI) 

sessions, 𝑆 denote the number of subjects, 𝐿 denote the number of networks, and 𝒩𝑛 denote the 

neighboring vertices of vertex 𝑛 (as defined by the cortical mesh). For each subject 𝑠 and session 𝑡, 

there is a preprocessed rs-fMRI time course associated with each vertex 𝑛. For each subject 𝑠, there is 

an unknown parcellation label 𝑙𝑛
𝑠  at vertex 𝑛. Note that the parcellation label is assumed to be the same 

across sessions (hence there is no index on the session). In this work, we use 1: 𝑆 to denote a set of 

subjects {1, 2, … , 𝑆}, 1: 𝑇 to denote a set of sessions {1, 2, … , 𝑇}, 1: 𝑁 to denote a set of vertices 

{1, 2, … , 𝑁}, 1: 𝐿 to denote a set of parcellation labels {1, 2, … , 𝐿}.  

For each subject 𝑠 at a particular session 𝑡, we computed the functional connectivity profile of 

each vertex (of the cortical mesh) by correlating the vertex’s fMRI time course with the time courses 

of uniformly distributed cortical regions of interests1 (ROIs). For the GSP and HNU datasets, the 

preprocessed data were in fsaverage5 surface space. In this case, the ROIs consisted of 1175 vertices 

approximately uniformly distributed across the two hemispheres (Yeo et al., 2011). For the HCP 

dataset, the preprocessed data is in fs_LR32k surface space. In this case, the ROIs consisted of 1483 

vertices spaced approximately uniformly distributed across the two hemispheres. Each vertex’s 

connectivity profile was binarized (see Methods in main manuscript) and normalized to unit length. 

Let 𝑋𝑛
𝑠,𝑡

 denote the binarized, normalized functional connectivity profile of subject 𝑠 at vertex 𝑛 during 

                                                      
1 We note that with uniformly distributed ROIs, spatially extensive networks might be over-

represented because they contribute disproportionately more ROIs to the computation of the 

connectivity profiles. However, regions within these spatially extensive networks do not necessarily 

have homogeneous connectivity patterns, so the uniformly distributed ROIs can capture these 

heterogeneous connectivity patterns. Furthermore, given that we do not know the networks a-priori, 

it would be challenging to define the ROIs a-priori, such that large patches of homogeneous regions 

would not be over-represented.  
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session 𝑡. Let 𝐷 denote the total number of ROIs and hence the length of 𝑋𝑛
𝑠,𝑡

. We denote the 

connectivity profiles from all sessions of all subjects at all cortical vertices as 𝑋1:𝑁
1:𝑆,1:𝑇

.  

Figure 1 (main text) illustrates the schematic of the multi-session hierarchical Bayesian model 

(MS-HBM). Following previous work (Yeo et al., 2011), the functional connectivity profile 𝑋𝑛
𝑠,𝑡

 of 

subject 𝑠 from a session 𝑡 at vertex n is assumed to be generated from a von Mises-Fisher distribution,  

 

𝑝(𝑋𝑛
𝑠,𝑡|𝑙𝑛

𝑠 = 𝑙, 𝜇1:𝐿
𝑠,𝑡 , 𝜅) = 𝑝(𝑋𝑛

𝑠,𝑡|𝜇𝑙
𝑠,𝑡, 𝜅) = 𝑧𝐷(𝜅)exp(𝜅〈𝑋𝑛

𝑠,𝑡, 𝜇𝑙
𝑠,𝑡〉),            (1) 

 

where 𝑙𝑛
𝑠  is the parcellation label at vertex 𝑛 of subject 𝑠, and 〈 , 〉 denote inner product. 𝜇𝑙

𝑠,𝑡
 and 𝜅 are 

the mean direction and concentration parameter of the von Mises-Fisher distribution for network label 

𝑙 of subject 𝑠 during session 𝑡. 𝜇1:𝐿
𝑠,𝑡

 are the mean directions for networks 1 to 𝐿. We can think of 𝜇𝑙
𝑠,𝑡

 as 

the mean connectivity profile of network label 𝑙 normalized to unit length. If functional connectivity 

profile 𝑋𝑛
𝑠,𝑡

 is similar to mean connectivity profile 𝜇𝑙
𝑠,𝑡

 (i.e., 〈𝑋𝑛
𝑠,𝑡, 𝜇𝑙

𝑠,𝑡〉 is big), then vertex 𝑛 is more 

likely to be assigned to network 𝑙.  

The concentration parameter 𝜅 controls the variability of the functional connectivity profiles 

within each network. A higher 𝜅 results in a lower dispersion (i.e., lower variance), which means that 

vertices belonging to the same network are more likely to possess functional connectivity profiles that 

are close to the mean connectivity profile of the network. In theory, it might make sense for 𝜅 to be 

different across networks because certain networks might exhibit more inter-region functional 

connectivity variability (Gordon et al., 2017a). However, in practice, certain networks (e.g., limbic 

networks) with low signal-to-noise ratio (SNR) would end up with very low 𝜅, resulting in their 

encroachment into the peripheries of other networks. Therefore, 𝜅 was set to be the same across all 

networks, subjects and sessions. Finally,  𝑧𝐷(𝜅) is a normalization constant to ensure a valid 

probability distribution (Banerjee et al., 2005): 

 

𝑧𝐷(𝜅) =
𝜅

𝐷−1
2

 −1

(2𝜋)
𝐷−1

2 𝐼𝐷−1
2

−1
(𝜅)

  ,                                               (2) 

 

where 𝐼𝐷−1

2
−1

(∙) is the modified Bessel function of the first kind with order 
𝐷−1

2
− 1.  
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To model intra-subject functional connectivity variability, we assume a conjugate prior on the 

subject-specific and session-specific mean connectivity profiles 𝜇𝑙
𝑠,𝑡

, which turns out to also be a von 

Mises-Fisher distribution: 

 

𝑝(𝜇𝑙
𝑠,𝑡|𝜇𝑙

𝑠, 𝜎𝑙) = 𝑧𝐷(𝜎𝑙)exp (𝜎𝑙〈𝜇𝑙
𝑠,𝑡, 𝜇𝑙

𝑠〉),                 (3) 

 

where 𝜇𝑙
𝑠 and 𝜎𝑙 are the mean direction and concentration parameter of the von Mises-Fisher 

distribution for network label 𝑙 of subject 𝑠. We can think of 𝜇𝑙
𝑠 as the individual-specific functional 

connectivity profile of network 𝑙 of subject 𝑠. The concentration parameter 𝜎𝑙 controls how much the 

session-specific mean direction 𝜇𝑙
𝑠,𝑡

 of subject 𝑠 during session 𝑡 can deviate from the subject-specific 

mean direction 𝜇𝑙
𝑠. A higher 𝜎𝑙 would imply lower intra-subject functional connectivity variability 

across sessions. 𝜎𝑙 is network-specific but is assumed to be the same for all subjects.  

To model inter-subject functional connectivity variability, we assume a conjugate prior on the 

subject-specific mean connectivity profiles 𝜇𝑙
𝑠, which is again a von Mises-Fisher distribution whose 

mean direction corresponded to the group-level mean direction 𝜇 𝑔: 

 

𝑝(𝜇𝑙
𝑠|𝜇𝑙

𝑔
, 𝜖𝑙) = 𝑧𝐷(𝜖𝑙)exp (𝜖𝑙〈𝜇𝑙

𝑠, 𝜇𝑙
𝑔〉),             (4) 

 

where 𝜇 𝑔 and 𝜖𝑙 are the mean direction and concentration parameter of the von Mises-Fisher 

distribution for network label 𝑙. We can think of 𝜇𝑙
𝑔

 as the group-level functional connectivity profile 

of network 𝑙. The concentration parameter 𝜖𝑙 controls how much the individual-specific connectivity 

profile 𝜇𝑙
𝑠 can deviate from the group-level connectivity profile 𝜇𝑙

𝑔
. A higher 𝜖𝑙 would imply lower 

inter-subject functional connectivity variability across subjects.  

Because the functional connectivity profiles of individual subjects are generally very noisy, we 

impose a MRF prior on the hidden parcellation labels 𝑙1:𝑁
𝑠   

 

𝑝(𝑙1:𝑁
𝑠 ) =

1

𝑍(𝛼,𝑐)
exp (𝛼 ∑ log 𝑈(𝑙𝑛

𝑠 |𝛩) − 𝑐 ∑ ∑ 𝑉(𝑙𝑛
𝑠 , 𝑙𝑚

𝑠 )𝑚∈𝒩𝑛
𝑁
𝑛=1

𝑁
𝑛=1 ),      (5) 

 

where 𝑍(𝛼, 𝑐) is a normalization term (partition function) to ensure 𝑝(𝑙1:𝑁
𝑠 ) is a valid probability 

distribution. log 𝑈(𝑙𝑛
𝑠 = 𝑙|𝛩) = log 𝜃𝑙,𝑛 is a singleton potential encouraging certain vertices to be 

associated with certain labels. 𝑉(𝑙𝑛
𝑠 , 𝑙𝑚

𝑠 ) is a pairwise potential (Potts model) encouraging neighboring 

vertices to have the same parcellation labels: 
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𝑉(𝑙𝑛
𝑠 , 𝑙𝑚

𝑠 ) = {
0,         if 𝑙𝑛

𝑠 = 𝑙𝑚
𝑠

1,         if 𝑙𝑛
𝑠 ≠ 𝑙𝑚

𝑠 ,           (6)  

 

The parameters 𝛼 and 𝑐 are tunable parameters greater than zero, and control the tradeoffs between the 

various terms in the generative model. Assuming that 𝛼 = 1 and 𝑐 = 0, then 𝜃𝑙,𝑛 can be interpreted as 

the probability of label 𝑙 occurring at vertex 𝑛 of subject 𝑠. 

 

S4. Model estimation for MS-HBM 

In this section, we describe how model parameters are estimated from a training set and a 

validation set (Section S2.1), and how the parameters can be used to parcellate a new subject (Section 

S2.2). Throughout the entire section, we assume that the number of networks 𝐿 =  17 without loss of 

generality.  

 

S4.1 Learning model parameters 

Our goal is to estimate the model parameters {𝜖1:𝐿, 𝜎1:𝐿, 𝛩1:𝑁,1:𝐿 , 𝜇1:𝐿
𝑔

, 𝑐, 𝛼} from a training set 

and a validation set of binarized and normalized functional connectivity profiles, which can then be 

utilized for estimating individual-specific parcellations in unseen data of new subjects (Section S2.2). 

As a reminder, 𝜖1:𝐿 is a group prior representing inter-subject functional connectivity variability, 𝜎1:𝐿 is 

a group prior corresponding to intra-subject functional connectivity variability, 𝛩1:𝑁,1:𝐿 is a group prior 

representing inter-subject spatial variability and reflects the probability of a network occurring at 

particular spatial location, and 𝜇1:𝐿
𝑔

 is the group-level connectivity profile for each network. The 

parameters 𝛼 and 𝑐 tradeoff between various terms in the generative model. Because the partition 

function 𝑍(𝛼, 𝑐) (Eq. (5)) is NP-hard to compute, for computational efficiency, we first assume 𝛼 = 1, 

𝑐 = 0 in order to estimate {𝜖1:𝐿 , 𝜎1:𝐿 , 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇, 𝛩1:𝑁,1:𝐿} from the training dataset2. Under this 

                                                      
2 Conceptually, 𝜅 is estimated by averaging information across all vertices of all subjects. 𝜖1:𝐿, 

𝜎1:𝐿and 𝜇1:𝐿
𝑔

 are estimated by averaging information across all vertices within each network across all 

subjects, 𝜇1:𝐿
1:𝑆 and 𝜇1:𝐿

1:𝑆,1:𝑇
 are estimated by averaging information across all vertices within each 

network for each subject, while 𝛩1:𝑁,1:𝐿 is estimated for each vertex by averaging information across 

all subjects. On the other hand, the spatial smoothness 𝑉 (parameterized by c) serves to “clean up” 

individual-specific parcellations by removing isolated islands of vertices assigned to particular 

networks. Because these isolated islands constitute only a small fraction of the networks, excluding 

the spatial smoothness 𝑉 (i.e., set 𝑐 =  0) will not significantly affect the estimates of 𝜖1:𝐿, 

𝜎1:𝐿 , 𝛩1:𝑁,1:𝐿.  
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scenario, 𝑍(𝛼, 𝑐) = 1, and 𝜃𝑙,𝑛 can be interpreted as the probability of label 𝑙 occurring at vertex 𝑛 of 

subject 𝑠. The tunable parameters 𝛼 and 𝑐 are then estimated in the validation set using a grid search.   

 

S4.1.1 Estimating {𝜖1:𝐿 , 𝜎1:𝐿 , 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇, 𝛩1:𝑁,1:𝐿} from training set 

Given observed binarized, normalized functional connectivity profiles 𝑋1:𝑁
1:𝑆,1:𝑇

 from the training 

set, we seek to estimate   {𝜖1:𝐿 , 𝜎1:𝐿 , 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇, 𝛩1:𝑁,1:𝐿} using Expectation-Maximization 

(EM). As previously explained, we assume 𝛼 = 1, 𝑐 = 0.  

Let 𝛺 = {𝜖1:𝐿, 𝜎1:𝐿, 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇 , 𝛩1:𝑁,1:𝐿}. We consider the following maximum-a-

posterior (MAP) estimation problem: 

 

argmax
𝛺

log 𝑝(𝜖1:𝐿 , 𝜎1:𝐿 , 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇, 𝛩1:𝑁,1:𝐿|𝑋1:𝑁
1:𝑆,1:𝑇) .        (7) 

 

Assuming a uniform (improper) prior on {𝛩1:𝑁,1:𝐿, 𝜅, 𝜎1:𝐿, 𝜖1:𝐿}, the MAP problem can be written as 

 

argmax
𝛺

log 𝑝(𝑋1:𝑁
1:𝑆,1:𝑇|𝜇1:𝐿

1:𝑆,1:𝑇, 𝜅, 𝛩1:𝑁,1:𝐿)𝑝(𝜇1:𝐿
1:𝑆,1:𝑇|𝜎1:𝐿, 𝜇1:𝐿

1:𝑆)𝑝(𝜇1:𝐿
1:𝑆|𝜖1:𝐿, 𝜇1:𝐿

𝑔
).     (8) 

 

We then introduce the parcellation labels 𝑙1:𝑁
𝑠  for each subject 𝑠 as latent variables, and use 

Jensen’s inequality to define a lower bound ℒ(𝜆, 𝛺), where 𝜆 = 𝜆1:𝑁,1:𝐿
1:𝑆  are the parameters of the 𝑞 

functions 𝑞(𝑙1:𝑁
𝑠 ) = ∏ 𝑞(𝑙𝑛

𝑠 |𝜆𝑛,1:𝐿
𝑠 )𝑁

𝑛=1 : 

 

     log 𝑝(𝑋1:𝑁
1:𝑆,1:𝑇|𝜇1:𝐿

1:𝑆,1:𝑇 , 𝜅, 𝛩1:𝑁,1:𝐿)𝑝(𝜇1:𝐿
1:𝑆,1:𝑇|𝜎1:𝐿 , 𝜇1:𝐿

1:𝑆)𝑝(𝜇1:𝐿
1:𝑆|𝜖1:𝐿 , 𝜇1:𝐿

𝑔
) 

= ∑ log 𝑝(𝑋1:𝑁
𝑠,1:𝑇|𝜇1:𝐿

𝑠,1:𝑇 , 𝜅, 𝛩1:𝑁,1:𝐿)

𝑆

𝑠=1

+ ∑ ∑ log 𝑝(𝜇𝑙
𝑠,1:𝑇|𝜎𝑙, 𝜇𝑙

𝑠) 𝑝(𝜇𝑙
𝑠|𝜖𝑙, 𝜇𝑙

𝑔
)

𝐿

𝑙=1

𝑆

𝑠=1

                  (9) 

= ∑ log ∑ 𝑝(𝑋1:𝑁
𝑠,1:𝑇 , 𝑙1:𝑁

𝑠 |𝜇1:𝐿
𝑠,1:𝑇 , 𝜅, 𝛩1:𝑁,1:𝐿)

𝑙1:𝑁
𝑠

𝑆

𝑠=1

+ ∑ ∑ log 𝑝(𝜇𝑙
𝑠,1:𝑇|𝜎𝑙, 𝜇𝑙

𝑠) 𝑝(𝜇𝑙
𝑠|𝜖𝑙, 𝜇𝑙

𝑔
)

𝐿

𝑙=1

𝑆

𝑠=1

     (10) 

≥ ∑ ∑ 𝑞(𝑙1:𝑁
𝑠 ) log

𝑝(𝑋1:𝑁
𝑠,1:𝑇, 𝑙1:𝑁

𝑠 |𝜇1:𝐿
𝑠,1:𝑇 , 𝜅, 𝛩1:𝑁,1:𝐿)

𝑞(𝑙1:𝑁
𝑠 )

+ ∑ ∑ log 𝑝(𝜇𝑙
𝑠,1:𝑇|𝜎𝑙 , 𝜇𝑙

𝑠) 𝑝(𝜇𝑙
𝑠|𝜖𝑙, 𝜇𝑙

𝑔
)

𝐿

𝑙=1

𝑆

𝑠=1𝑙1:𝑁
𝑠

𝑆

𝑠=1

  (11) 
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= ∑ ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝑝 (𝑋𝑛
𝑠,𝑡|𝜇𝑙𝑛

𝑠
𝑠,𝑡, 𝜅) + ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛

𝑠
𝑠 log 𝛩𝑛,𝐿𝑛

𝑠

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝑆

𝑠=1

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝑇

𝑡=1

𝑆

𝑠=1

            

− ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝜆𝑛,𝑙𝑛
𝑠

𝑠 + ∑ ∑(∑ log 𝑝(𝜇𝑠,𝑡|𝜎𝑙, 𝜇𝑙
𝑠)

𝑇

𝑡=1

𝐿

𝑙=1

𝑆

𝑠=1

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝑆

𝑠=1

+ log 𝑝(𝜇𝑙
𝑠|𝜖𝑙, 𝜇𝑙

𝑔
))   (12) 

= ℒ(𝜆, 𝛺),                                                                                                                                                            (13) 

 

where equality is achieved when 𝑞(𝑙1:𝑁
𝑠 ) = 𝜆1:𝑁,1:𝐿

𝑠  are the posterior probability of the individual-

specific parcellation of subject 𝑠 given the parameters 𝛺. Therefore, instead of maximizing the original 

MAP problem (Eq. (7)), we instead maximize the lower bound:  

 

{𝜆∗, 𝛺∗} = argmax
𝜆,𝛺

ℒ(𝜆, 𝛺).               (14) 

 

In the E-step, we fix 𝛺 = {𝜖1:𝐿 , 𝜎1:𝐿 , 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇, 𝛩1:𝑁,1:𝐿}, and estimate 𝜆: 

𝜆 = argmax
𝜆

ℒ(𝜆, 𝛺)              (15) 

= argmax
𝜆

∑ ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝑝(𝑋𝑛
𝑠,𝑡|𝜇𝑙𝑛

𝑠
𝑠,𝑡, 𝜅)

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝑇

𝑡=1

𝑆

𝑠=1

+ ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝛩𝑛,𝑙𝑛
𝑠

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝑆

𝑠=1

− ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝜆𝑛,𝑙𝑛
𝑠

𝑠

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝑆

𝑠=1

+ ∑ ∑ 𝜂𝑛
𝑠  ( ∑ 𝜆𝑛,𝑙𝑛

𝑠
𝑠

𝐿

𝑙𝑛
𝑠 =1

− 1) 

𝑁

𝑛=1

,

𝑆

𝑠=1

    (16) 

 

where 𝜂𝑛
𝑠  are the Lagrange multipliers enforcing the constraint ∑ 𝜆𝑛,𝑙

𝑠 = 1𝐿
𝑙=1 . Optimizing Eq. (16), we 

get: 

log 𝜆𝑘,𝑙
𝑠 ∝ ∑ log 𝑝(𝑋𝑘

𝑠,𝑡|𝜇𝑙
𝑠,𝑡, 𝜅)

𝑇

𝑡=1

+ log 𝛩𝑘,𝑙                         (17) 

                    = ∑ log 𝑧𝐷(𝜅) exp(𝜅〈𝑋𝑛
𝑠,𝑡, 𝜇𝑙

𝑠,𝑡〉)

𝑇

𝑡=1

+ log 𝛩𝑘,𝑙       (18) 

                    = 𝑇 log 𝑧𝐷(𝜅) + ∑ 𝜅〈𝑋𝑛
𝑠,𝑡, 𝜇𝑙

𝑠,𝑡〉

𝑇

𝑡=1

+ log 𝛩𝑘,𝑙          (19) 

 

In the M-step, we fix 𝜆 and estimate 𝛺: 
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𝛺 = argmax
𝛺

ℒ(𝜆, 𝛺).             (20) 

 

By using the constraints that 〈𝜇𝑙
𝑠,𝑡, 𝜇𝑙

𝑠,𝑡〉 = 1, 〈𝜇𝑙
𝑠, 𝜇𝑙

𝑠〉 = 1, 〈𝜇𝑙
𝑔

, 𝜇𝑙
𝑔〉 = 1, 𝜅 > 0, 𝜎𝑙 > 0, 𝜖𝑙 > 0, and 

differentiating ℒ(𝜆, 𝛺) with respect to 𝜖1:𝐿 , 𝜎1:𝐿 , 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇, 𝛩1:𝑁,1:𝐿, and setting the derivatives 

to zero, we get the following update equations: 

 

𝜇𝑙
𝑠,𝑡 =

𝜅 ∑ 𝜆𝑛,𝑙
𝑠 𝑋𝑛

𝑠,𝑡 + 𝜎𝑙𝜇𝑙
𝑠𝑁

𝑛=1

‖𝜅 ∑ 𝜆𝑛,𝑙
𝑠 𝑋𝑛

𝑠,𝑡 + 𝜎𝑙𝜇𝑙
𝑠𝑁

𝑛=1 ‖
                   (21) 

𝜅 =
(𝐷 − 2)𝛤𝜅

1 − 𝛤𝜅2 +
(𝐷 − 1)𝛤𝜅

2(𝐷 − 2)
, 𝛤𝜅 =

∑ ∑ ∑ ∑ 𝜆𝑛,𝑙
𝑠 〈𝜇𝑙

𝑠,𝑡, 𝑋𝑛
𝑠,𝑡〉𝐿

𝑙=1
𝑁
𝑛=1

𝑇
𝑡=1

𝑆
𝑠=1

𝑇 ∑ ∑ ∑ 𝜆𝑛,𝑙
𝑠𝐿

𝑙=1
𝑁
𝑛=1

𝑆
𝑠=1

      (22) 

𝜇𝑙
𝑠 =

𝜎𝑙 ∑ 𝜇𝑙
𝑠,𝑡 + 𝜖𝑙𝜇𝑙

𝑔𝑇
𝑡=1

‖𝜎𝑙 ∑ 𝜇𝑙
𝑠,𝑡 + 𝜖𝑙𝜇𝑙

𝑔𝑇
𝑡=1 ‖

                          (23) 

𝜎𝑙 =
(𝐷 − 2)𝛤𝑙

𝜎

1 − 𝛤𝑙
𝜎2 +

(𝐷 − 1)𝛤𝑙
𝜎

2(𝐷 − 2)
, 𝛤𝑙

𝜎 =
1

𝑆𝑇
∑ ∑〈𝜇𝑙

𝑠, 𝜇𝑙
𝑠,𝑡〉

𝑇

𝑡=1

𝑆

𝑠=1

         (24) 

𝜇𝑙
𝑔

=
∑ 𝜖𝑙𝜇𝑙

𝑠𝑆
𝑠=1

‖∑ 𝜖𝑙𝜇𝑙
𝑠𝑆

𝑠=1 ‖
=

∑ 𝜇𝑙
𝑠𝑆

𝑠=1

‖∑ 𝜇𝑙
𝑠𝑆

𝑠=1 ‖
                (25) 

𝜖𝑙 =
(𝐷 − 2)𝛤𝑙

𝜖

1 − 𝛤𝑙
𝜖2 +

(𝐷 − 1)𝛤𝑙
𝜖

2(𝐷 − 2)
, 𝛤𝑙

𝜖 =
1

𝑆
∑〈𝜇𝑘

𝑔
, 𝜇𝑙

𝑠〉

𝑆

𝑠=1

       (26) 

𝛩𝑛,𝑙 =
1

𝑆
∑ 𝜆𝑛,𝑙

𝑠

𝑆

𝑠=1

  ,                (27) 

 

where 𝐷 is the length of 𝑋𝑛
𝑠,𝑡

 (i.e., number of ROIs in each functional connectivity profile), 𝑆 is the 

number of subjects, 𝑇 is the number of sessions, and ‖∙‖ corresponds to the 𝑙2-norm. Therefore, the 

estimate of the functional connectivity profile 𝜇𝑙
𝑠,𝑡

 (Eq. (21)) of network 𝑙 of subject 𝑠 during session 𝑡 

is the weighted sum of the average time course of vertices constituting network 𝑙 of subject 𝑠 during 

session 𝑡 (∑ 𝜆𝑛,𝑙
𝑠 𝑋𝑛

𝑠,𝑡𝑁
𝑛=1 ) and the subject-specific mean direction 𝜇𝑙

𝑠, with weights 𝜅 and 𝜎𝑙 for each 

term, normalized to be unit norm. If 𝜎𝑙 is much greater than 𝜅, then 𝜇𝑙
𝑠,𝑡

 is more likely to be dominated 

by subject-specific mean direction 𝜇𝑙
𝑠, which means that the functional connectivity profile of network 

𝑙 is highly stable across sessions. Similarly, the estimate of the functional connectivity profile 𝜇𝑙
𝑠 (Eq. 

(23)) of network 𝑙 of subject 𝑠 is the weighted sum of the average session-specific mean directions 

across all sessions for network 𝑙 of subject 𝑠 (∑ 𝜇𝑙
𝑠,𝑡𝑇

𝑡=1 ) and the group-level mean direction 𝜇𝑙
𝑔

, with 
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weights 𝜎𝑙 and 𝜖𝑙 for each term, normalized to be unit norm. If 𝜖𝑙 is much greater than 𝜎𝑙, then 𝜇𝑙
𝑠 is 

more likely to be dominated by group-level mean direction 𝜇𝑙
𝑔

, which means that the functional 

connectivity profile of network 𝑙 is highly stable between subjects. Finally, the estimate of the group-

level functional connectivity profile 𝜇𝑙
𝑔

 (Eq. (25)) of network 𝑙 is the sum of the subject-specific mean 

directions across all subjects for network 𝑙 (∑ 𝜇𝑙
𝑠𝑆

𝑠=1 ), normalized to be unit norm. The estimate of 𝛩𝑛,𝑙 

(Eq. (27)) is the posterior probability of network 𝑙 being assigned to vertex 𝑛, averaged across all the 

subjects. 

Given the training set, the algorithm first estimates a group-level parcellation (Yeo et al., 

2011), which is then used to initialize the EM algorithm. The EM algorithm iterates E-step (Eq. (19)) 

and M-step (Eqs. (21-27)) till convergence. We note that the update equations (Eqs. (21-27)) in the M-

step are dependent on each other. Therefore, within the M-step, the update equations (Eqs. (21-27) are 

iterated till convergence. 

 

S4.1.2 Estimating tunable parameters c and 𝛼 

In the previous subsection (Section S2.1.1), the training set was used to estimate 𝛺 =

{𝜖1:𝐿, 𝜎1:𝐿, 𝜅, 𝜇1:𝐿
𝑔

 𝜇1:𝐿
1:𝑆, 𝜇1:𝐿

1:𝑆,1:𝑇 , 𝛩1:𝑁,1:𝐿}, assuming 𝛼 = 1, 𝑐 = 0. To tune the parameters c and 𝛼, we 

assume access to a validation set.  

Recall that each subject in the validation set has multiple rs-fMRI sessions. We consider 𝑐 ∈

{10,20,30,40, 50,60} and 𝛼 ∈ {100,150,200,250}. For a given pair of (𝑐, 𝛼), and given 

{𝜖1:𝐿, 𝜎1:𝐿, 𝛩1:𝑁,1:𝐿 , 𝜇1:𝐿
𝑔

} estimated from the training set, we estimate for each subject in the validation 

set, the individual-specific parcellation based on a subset of rs-fMRI sessions (see Section S2.2 for 

algorithm). Resting-state homogeneity (Eq. (1) in main text) is then computed in the remaining rs-

fMRI sessions of the validation subjects. The pair of (𝑐, 𝛼) with the highest homogeneity in the unseen 

rs-fMRI sessions of the validation subjects is then utilized for parcellating new subjects. 

In the case of the GSP data, the optimal pair of parameters is 𝑐 = 30 and 𝛼 = 200. In the case 

of the HCP data, the optimal pair of parameters is 𝑐 = 40 and 𝛼 = 200. Note that we do expect the 

parameters to be different between the GSP and HCP datasets because of resolution differences 

between the fsaverage5 and fs_LR32k surface meshes.  

Throughout the paper (main text), the reported quality (Figures 5, 6 and 7) of the individual-

specific parcellations was evaluated using subjects not used to tune the parameters. For example, in the 

case of the CoRR-HNU subjects (Figures 5 and 6), the model parameters were estimated from the GSP 

training and validation sets. In the case of the HCP data (Figures 6 and 7), model parameters were 
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estimated the HCP training and validation sets, while the reported quality of the individual-specific 

parcellations was evaluated using the HCP test set.  

 

S4.2 Individual-level parcellation estimation 

Using parameters {𝜖1:𝐿 , 𝜎1:𝐿 , 𝛩1:𝑁,1:𝐿 , 𝜇1:𝐿
𝑔

} estimated from the training set (Section S2.1.1), and 

for a particular pair of (𝑐, 𝛼), we can estimate the individual-specific parcellation 𝑙1:𝑁
𝑠  of a new subject 

𝑠 with 𝑇 sessions by employing the variational Bayes expectation maximization (VBEM) algorithm.  

Let 𝛹 = {𝜅, 𝜇1:𝐿
𝑠,1:𝑇 , 𝜇1:𝐿

𝑠  }. We consider the following maximum-a-posterior (MAP) estimation 

problem: 

 

argmax
𝛹

log 𝑝( 𝜅, 𝜇1:𝐿
𝑠,1:𝑇 , 𝜇1:𝐿

𝑠 |𝑋1:𝑁
𝑠,1:𝑇 , 𝜖1:𝐿 , 𝜎1:𝐿 , 𝜇1:𝐿

𝑔
, 𝛩1:𝑁,1:𝐿).              (28) 

 

Assuming a uniform (improper) prior on 𝜅, and by introducing the parcellation labels 𝑙1:𝑁
𝑠  of the new 

subject 𝑠 as latent variables, the lower bound ℒ(𝜆, 𝛹) of the MAP problem (Eq. (28)) can be written 

as: 

 

ℒ(𝜆𝑠, 𝛹) = ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝑝 (𝑋𝑛
𝑠,𝑡|𝜇𝑙𝑛

𝑠
𝑠,𝑡, 𝜅) + 𝛼 ∑ ∑ 𝜆𝑛,𝑙𝑛

𝑠
𝑠 log 𝛩𝑛,𝐿𝑛

𝑠

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

           (29)

𝑇

𝑡=1

− 𝑐 ∑ ∑ ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 𝜆𝑚,𝑙𝑚
𝑠

𝑠 𝑉(𝑙𝑛
𝑠 , 𝑙𝑚

𝑠 )

𝐿

𝑙𝑚
𝑠 =1

𝐿

𝑙𝑛
𝑠 =1𝑚∈𝒩𝑛

𝑁

𝑛=1

− ∑ ∑ 𝜆𝑛,𝑙𝑛
𝑠

𝑠 log 𝜆𝑛,𝑙𝑛
𝑠

𝑠 + ∑ (∑ log 𝑝(𝜇𝑠,𝑡|𝜎𝑙, 𝜇𝑙
𝑠)

𝑇

𝑡=1

+ log 𝑝(𝜇𝑙
𝑠|𝜖𝑙, 𝜇𝑙

𝑔
))

𝐿

𝑙=1

𝐿

𝑙𝑛
𝑠 =1

𝑁

𝑛=1

,  

 

where equality is achieved when 𝜆𝑠 is the posterior probability of the individual-specific parcellation 

of subject 𝑠 given the parameters 𝛹. Similar to Section S2.1.1, we can maximize the lower bound (Eq. 

(29)) by iteratively updating 𝜆𝑠 and 𝛹. Unlike Section S2.1.1, we cannot compute the exact posterior 

probability 𝜆𝑠 because of the pairwise potentials in the Markov random field (Wainwright and Jordan, 

2008). Using the mean-field approximation (Wainwright and Jordan, 2008), an approximate posterior 

probability 𝜆𝑠 is estimated in the variational E-step, while 𝛹 is updated in the variational M-step.  

More specifically, in the variational E-step, 𝛹 is fixed and 𝜆𝑠 is estimated as follows: 
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    log 𝜆𝑛,𝑙
𝑠  ∝ 𝑇 log 𝑧𝐷(𝜅) + ∑ 𝜅〈𝑋𝑛

𝑠,𝑡, 𝜇𝑙
𝑠,𝑡〉

𝑇

𝑡=1

− 2c ∑ ∑ 𝜆𝑚,𝑙𝑚
𝑠

𝑠 𝑉(𝑙𝑛
𝑠 , 𝑙𝑚

𝑠 )

𝐿

𝑙𝑚
𝑠 =1𝑚∈𝒩𝑛

+ 𝛼 log 𝛩𝑛,𝑙 .      (30) 

 

In the variational M-step, 𝜆𝑠 is fixed and 𝛹 = {𝜅, 𝜇1:𝐿
𝑠,1:𝑇 , 𝜇1:𝐿

𝑠  } is estimated as follows: 

 

𝜇𝑙
𝑠,𝑡 =

𝜅 ∑ 𝜆𝑛,𝑙
𝑠 𝑋𝑛

𝑠,𝑡 + 𝜎𝑙𝜇𝑙
𝑠𝑁

𝑛=1

‖𝜅 ∑ 𝜆𝑛,𝑙
𝑠 𝑋𝑛

𝑠,𝑡 + 𝜎𝑙𝜇𝑙
𝑠𝑁

𝑛=1 ‖
             (31) 

𝜅 =
(𝐷 − 2)𝛤𝜅

1 − 𝛤𝜅2 +
(𝐷 − 1)𝛤𝜅

2(𝐷 − 2)
, 𝛤𝜅 =

∑ ∑ ∑ ∑ 𝜆𝑛,𝑙
𝑠 〈𝜇𝑙

𝑠,𝑡, 𝑋𝑛
𝑠,𝑡〉𝐿

𝑙=1
𝑁
𝑛=1

𝑇
𝑡=1

𝑆
𝑠=1

𝑇 ∑ ∑ ∑ 𝜆𝑛,𝑙
𝑠𝐿

𝑙=1
𝑁
𝑛=1

𝑆
𝑠=1

          (32) 

𝜇𝑙
𝑠 =

𝜎𝑙 ∑ 𝜇𝑙
𝑠,𝑡 + 𝜖𝑙𝜇𝑙

𝑔𝑇
𝑡=1

‖𝜎𝑙 ∑ 𝜇𝑙
𝑠,𝑡 + 𝜖𝑙𝜇𝑙

𝑔𝑇
𝑡=1 ‖

 .           (33) 

 

Once the VBEM algorithm converges, vertex 𝑛 of subject 𝑠 will be assigned to label 𝑙 with the highest 

(approximate) posterior probability.  

 

S5. Alternative parcellation approaches 

We compared the MS-HBM with four alternative parcellation approaches. The first approach 

was to apply the population-level parcellation (Yeo et al., 2011) to individual subjects. We will refer to 

this approach as “Yeo2011”. For the second approach, recall that the population-level parcellation 

algorithm was an expectation-maximization (EM) algorithm, which iteratively computed a network 

connectivity profile based on vertices assigned to the same network (M-step) and then re-assigned the 

network membership of vertices based on the similarity between each vertex’s connectivity profile and 

the network connectivity profile (E-step). Using the network connectivity profiles from the Yeo2011 

population-level parcellation, we could estimate networks in an individual subject by assigning a 

network label to each vertex based on the similarity between the vertex’s connectivity profile (for that 

subject) and the population-level network connectivity profile (i.e., E-step). Since this approach is 

analogous to the ICA back-projection algorithm (Calhoun et al., 2009; Beckmann et al., 2009; Filippini 

et al., 2009; Zuo et al., 2010; Calhoun and Adali 2012), we will refer to this second alternative 

approach as “YeoBackProject”.  

We also implemented the influential individual-specific parcellation algorithm of Gordon and 

colleagues (Gordon et al., 2017a; Gordon et al., 2017b), where the binarized functional connectivity 

map of each cortical vertex was matched to binarized network templates derived from the Yeo2011 

population-level parcellation. Care was taken to verify that our implementation was consistent with 
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Gordon’s algorithm (whose code is publicly available). We refer to this third approach as 

“Gordon2017”.  

Finally, we considered the prominent individual-specific parcellation algorithm of Wang and 

colleagues (Wang et al., 2015), which adapted the Yeo2011 population-level parcellation to an 

individual subject, while accounting for inter-subject RSFC variability and SNR characteristics of the 

subject’s rs-fMRI data. However, scanner noise is just one component contributing to intra-subject 

variability. As shown by others (Mueller et al., 2013; Laumann et al., 2015) and also in our results, 

brain networks with the highest intra-subject variability do not correspond to low SNR regions. We 

refer to this fourth approach as “Wang2015”. 

 

S6. Behavioral prediction model 

In this section, we describe our model for behavioral prediction based on individual differences 

in the spatial arrangement of cortical networks. Kernel regression (Murphy et al., 2012) was utilized to 

predict each behavioral phenotype in individual subjects. Suppose we have 𝑀 training subjects, 𝑦𝑖 is 

the behavioral measure (e.g., fluid intelligence) and 𝑙𝑖 is the individual-specific parcellation of the 𝑖-th 

training subject. Given {𝑦1, 𝑦2, … , 𝑦𝑀} and {𝑙1, 𝑙2, … , 𝑙𝑀}, the kernel regression model will be: 

𝑦𝑖 = ∑ 𝛼𝑗𝐾(𝑙𝑗, 𝑙𝑖)

𝑀

𝑗=1

,            (34) 

where 𝐾(𝑙𝑗, 𝑙𝑖) is the Dice overlap coefficient between corresponding networks of the 𝑖-th and 𝑗-th 

training subjects, averaged across 17 networks. The classical way to estimate 𝛼 in Eq. (34) is to 

minimize the quadratic cost: 

𝛼 = argmin
𝛼

1

2
∑ (𝑦𝑖 − ∑ 𝛼𝑗𝐾(𝑙𝑗, 𝑙𝑖)

𝑀

𝑗=1

)

2
𝑀

𝑖=1

.           (35) 

Defining 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑀]𝑇, 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑀]𝑇 and 𝕂 to be an 𝑀 × 𝑀 matrix, whose (𝑗, 𝑖)-th 

element is 𝐾(𝑙𝑗, 𝑙𝑖), Eq. (35) can be written as: 

𝜶 = argmin
𝜶

1

2
(𝒚 − 𝕂𝜶)𝑇(𝒚 − 𝕂𝜶).               (36) 

Differentiating Eq. (36) with respect to 𝜶, we can get 

𝜶 = 𝕂−1𝒚.                     (37) 

To predict the behavior measure 𝑦𝑠 (e.g., fluid intelligence) of a test subject 𝑠 with its 

individual-specific parcellation 𝑙𝑠, we can compute 𝐾(𝑙𝑖, 𝑙𝑠), which is the Dice overlap coefficient 
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between corresponding networks of subject 𝑠 and 𝑖-th training subject, averaged across 17 networks. 

The predicted behavior measure 𝑦𝑠 can be calculated as  

𝑦𝑠 = ∑ 𝛼𝑖𝐾(𝑙𝑖, 𝑙𝑠)

𝑀

𝑖=1

,                 (38) 

where 𝛼𝑖 is estimated by Eq. (37). If we denote 𝑲𝑠 = [𝐾(𝑙1, 𝑙𝑠), 𝐾(𝑙2, 𝑙𝑠), … , 𝐾(𝑙𝑀, 𝑙𝑠)], then Eq. (38) 

can be written as: 

𝑦𝑠 = 𝑲𝑠𝜶 = 𝑲𝑠𝕂−1𝒚 .         (39) 

In practice, 𝕂−1 is a symmetric matrix whose diagonal elements are roughly the same and ~100 times 

larger than the off-diagonal elements. Therefore, the predicted behavior measure 𝑦𝑠 can be seen as the 

weighted average of the behaviors of the training subjects: 𝑦𝑠 ≈ 𝑲𝑠𝒚 = ∑ 𝐾(𝑙𝑖, 𝑙𝑠)𝑦𝑖
𝑀
𝑖=1 . If the 

individual-specific parcellation 𝑙𝑠 of test subject 𝑠 is more similar to the parcellation of training subject 

𝑖 than training subject 𝑗, then weight 𝐾(𝑙𝑖, 𝑙𝑠) will be larger than 𝐾(𝑙𝑗, 𝑙𝑠), and so 𝑦𝑠 will be more 

similar to 𝑦𝑖 than 𝑦𝑗. 

To reduce overfitting, an 𝑙2-regularization term (i.e., kernel ridge regression) is typically added 

to cost function (Eq. (36)), resulting in a new regularized cost function: 

𝜶 = argmin
𝜶

1

2
(𝒚 − 𝕂𝜶)𝑇(𝒚 − 𝕂𝜶) +  

𝜆

2
𝜶𝑇𝕂𝜶 ,               (40) 

where 𝜆 is a tuning parameter, which controls the importance of the regularization term. 

Differentiating Eq. (40) with respect to 𝜶, we get 

𝜶 = (𝕂 + 𝜆𝑰)−1𝒚.                     (41) 

To predict the behavior measure 𝑦𝑠 (e.g., fluid intelligence) of a test subject 𝑠, Eq. (41) is substituted 

into Eq. (38), resulting in 

𝑦𝑠 = 𝑲𝑠𝜶 = 𝑲𝑠(𝕂 + 𝜆𝑰)−1𝒚.                      (42) 
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